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Abstract: Biologic tissues respond to the biomechanical conditions to which they are exposed by 
modifying their architecture. Experimental evidence from the literature suggests that the aim of this 
process is the mechanical optimization of the tissues (functional adaptation). In particular, this process 
must produce articular surfaces that, in physiological working conditions, optimize the contact load 
distribution or, equivalently, maximize the joint congruence. It is thus possible to identify the space of 
adapted joint configurations (or adapted space of motion) starting solely from knowledge of the shape 
of the articular surfaces, by determining the envelope of the maximum congruence configurations. The 
aim of this work was to validate this hypothesis by testing its application on ten human ankle joints. 
Digitalizations of articular surfaces were acquired in ten in-vitro experimental sessions, together with 
the natural passive tibio-talar motion, which may be considered as representative of the adapted space 
of motion. This latter was predicted numerically by optimizing the joint congruence.  
The highest mean absolute errors between each component of predicted and experimental motion 
were 2.07 degrees and 2.29 mm respectively for the three rotations and translations. 
The present kinematic model replicated the experimentally observed motion well, providing a reliable 
subject-specific representation of the joint motion starting solely from articulating surface shapes. 
 
 
 
 
 



ABSTRACT 22 

Biologic tissues respond to the biomechanical conditions to which they are exposed by 23 

modifying their architecture. Experimental evidence from the literature suggests that the aim of 24 

this process is the mechanical optimization of the tissues (functional adaptation). In particular, 25 

this process must produce articular surfaces that, in physiological working conditions, optimize 26 

the contact load distribution or, equivalently, maximize the joint congruence. It is thus possible 27 

to identify the space of adapted joint configurations (or adapted space of motion) starting solely 28 

from knowledge of the shape of the articular surfaces, by determining the envelope of the 29 

maximum congruence configurations. The aim of this work was to validate this hypothesis by 30 

testing its application on ten human ankle joints. 31 

Digitalizations of articular surfaces were acquired in ten in-vitro experimental sessions, together 32 

with the natural passive tibio-talar motion, which may be considered as representative of the 33 

adapted space of motion. This latter was predicted numerically by optimizing the joint 34 

congruence.  35 

The highest mean absolute errors between each component of predicted and experimental 36 

motion were 2.07 degrees and 2.29 mm respectively for the three rotations and translations. 37 

The present kinematic model replicated the experimentally observed motion well, providing a 38 

reliable subject-specific representation of the joint motion starting solely from articulating 39 

surface shapes. 40 

41 



INTRODUCTION 42 

The knowledge of the three dimensional joint kinematics is necessary for the understanding of 43 

normal and pathological behavior. It provides significant insight into the effects of joint injuries 44 

and diseases and allows the design and evaluation of treatments, particularly total joint 45 

replacement. A large number of techniques for in-vivo kinematic analysis exist for direct tracking 46 

of bone relative motions. Intra-cortical bone-pins (Ramsey and Wretenberg, 1999) provide an 47 

accurate though very invasive means of directly measuring skeletal motion under physiological 48 

conditions. Stereophotogrammetric fluoroscopy (Fregly et al., 2005) provides acceptable precision 49 

but exposes the patient to ionizing radiation and normally reduces the range of joint motion due 50 

to the small field of view of the x-ray equipment. Optical tracking of skin mounted markers 51 

represents the most non-invasive technique but the relative motion between the skin and the 52 

underlying bone, i.e. soft tissue artifacts, makes its accuracy insufficient (Leardini et al., 2005).  53 

A possible alternative to the direct tracking of joint motion is the definition of kinematic models 54 

that, based on individual patient anatomy, allow for its indirect estimation. It has been shown how 55 

equivalent spatial mechanisms are capable of replicating the same kinematic constraints exerted 56 

by ligaments and articular contacts on joint motion both for the knee (Wilson and O'Connor, 1997; 57 

Feikes et al., 2003; Ottoboni et al., 2007; Sancisi et al., 2011-b) and the ankle (Franci and Parenti-58 

Castelli, 2009; Franci and Parenti-Castelli, 2008) joints. Unfortunately, the motion calculated by 59 

these mechanisms requires both ligament and surface geometries, and is very sensitive to the 60 

accuracy with which these anatomical structures are acquired (Sancisi et al., 2011-a). As a result, 61 

this approach provides high accuracy when replicating but not forecasting the joint motion.  62 

A different approach, taking into account the behavior of the biological tissues composing the 63 

joint, may overcome these limitations. It has been widely documented that connective tissues 64 

such as bone, cartilage, tendons and ligaments, possess the capability, often called 65 

mechanotransduction, to convert the mechanical strain experienced into biochemical signals 66 

(Turner et al., 1995; Burger and Klein-Nulend, 1999; Letechipia et al., 2010; Chen et al., 2000; 67 

Ingber, 2008; Kaneko et al., 2009; Grodzinsky et al., 2000; Neu et al., 2007; Leong et al., 2011). 68 

These signals participate in governing the action of the cells responsible for the deposition and 69 

resorption of the tissues. As a result, tissues are able to modify their structure in response to the 70 

mechanical environment to which they are exposed (Robling et al., 2006; Frost, 1990-a; Frost, 71 

1990-b; Burr et al., 1985; Judex et al., 1997; Hsieh and Turner, 2001; Schriefer et al., 2005; Tipton 72 



et al., 1986; Gillard et al., 1979; Frost, 1990-d; Hayashi, 1996; Fujie et al., 2000; Blackwood, 1966; 73 

Vogel et al., 1993; Benjamin and Ralphs, 1999; Arokoski et al., 2000; Hudelmaier et al., 2003; 74 

Eckstein et al., 2006; Frost, 1990-c; Brommer et al., 2005; Plochocki et al., 2006). This capability 75 

was named functional adaptation by Roux (Roux, 1881) and is often also indicated as “Wolff’s law” 76 

when considering the bone (Wolff, 1986). Although there is still room for discussion (Bertram and 77 

Biewener, 1988; Lanyon, 1987; Lanyon and Rubin, 1984; Lanyon, 1980), functional adaptation 78 

seems to produce anatomical structures that use their material optimally, providing the necessary 79 

strength with the smallest amount of tissue (Pauwels, 1980; Riggs et al., 1993; Robling et al., 80 

2002). 81 

As an indirect validation of this hypothesis, several biomechanical models are available in the 82 

literature, capable of predicting the physiological organization of connective tissues by imposing 83 

mechanical optimization with respect to physiological working conditions (Carter, 1987; Huiskes et 84 

al., 1987; Smith et al., 1997; Huiskes et al., 2000; Jang and Kim, 2008; van Oers et al., 2008; 85 

Vahdati and Rouhi, 2009; Adachiet al., 2010; Giori et al., 1993; Wren et al., 1998; Wren et al., 86 

2000; Carter and Wong, 1988; Heegaard et al., 1999; Carter et al., 2004). Reverting this reasoning 87 

and assuming that physiological organization of the tissues is the result of a mechanical 88 

optimization, it is possible to identify the physiological working conditions of a joint by searching 89 

for the conditions that optimally exploit its architecture. In particular, it has been reported that 90 

the correct development (Drachman and Sokoloff, 1966; McMaster and Weinert, 1970; Ruano-Gil 91 

et al., 1985; Ward and Pitsillidcs, 1998) and maintenance (Palmoski et al., 1980; Steinberg and 92 

Trueta, 1981; Amiel et al., 1982; Paukkonen et al., 1984; Bouvier and Zimny, 1987; Loitz et al., 93 

1989; Smith et al., 1992; Walsh et al., 1993; O'Connor, 1997; Jortikka et al., 1997; Vanwanseele et 94 

al., 2002) of the articulating surfaces is modulated by the load and motion experienced at the 95 

diarthrodial joint. In other words, functional adaptation must shape the articular surfaces in order 96 

to optimize the load transmission throughout the joint motion (Cooney and Chao, 1977; Dekel and 97 

Weissman, 1978; Radin et al., 1978; Sokoloff, 1969; Bullough, 1981; Frost, 1999; Heegaard et al., 98 

1999; Hueter, 1862; Volkmann, 1862). As a final consequence, it is theoretically possible to 99 

identify the space of motion for which the articular surfaces are adapted (i.e. ‘adapted space of 100 

motion’) by searching for the relative position and orientation of the bones in a joint (hereinafter 101 

‘joint configuration’) that maximize the articular capability to distribute an applied load. 102 



The first kinematic model exploiting this concept (Sirkett et al., 2004) tried to reconstruct the 103 

carpal bone configuration during the ulnar deviation of the hand, by imposing the maximization of 104 

the contact areas during joint motion, evaluated by a proximity criterion (Scherrer et al., 1979; 105 

Ateshian et al., 1995; Perie and Hobatho, 1997; Ronsky et al., 1997; Kura et al., 1998; Corazza et 106 

al., 2005). However, there was no indication that ulnar deviation is the motion the wrist is 107 

optimally adapted for. Further, the amplitude of the contact areas allowed evaluation of the mean 108 

contact pressure but not its distribution or peak value and thus was not a good indicator of 109 

optimal configurations. 110 

A better evaluation of the capability of a joint in a given configuration to distribute an applied load 111 

can be provided by a measure of its congruence. In clinical practice, joint congruence refers to the 112 

geometric similarity of two articulating surfaces and it is taken as representative of the joint 113 

capability to withstand an applied load under the assumption that the better the two surfaces 114 

mate each other, the smaller the peak pressure will be. Thus, a reliable measure of joint 115 

congruence may provide a valuable measure of the articular adaptation from a purely geometrical 116 

perspective. 117 

In a preliminary work, Conconi and Parenti-Castelli (2012-a) exploited this concept in developing a 118 

kinematic model that, requiring solely the knowledge of the articular surfaces shape, forecasted 119 

the passive motion of tibio-talar joint by searching for the motion that maximizes the joint 120 

congruence, this being evaluated by means of a measure that relies on the Winkler elastic 121 

foundation contact model (Conconi and Parenti-Castelli, 2014). The aim of the present paper is to 122 

provide an experimental validation of this model by testing its reliability on a number of ankle 123 

specimens. 124 

 125 

MATERIAL AND METHODS 126 

Analogy between passive and adapted space of motion  127 

When the joint is moving within its adapted space of motion, the ligaments should experience 128 

slight length variations. Indeed, while no significant change in ligament length in the joint has been 129 

reported as a result of training, experimental evidence shows that ligaments grow in length when 130 



subjected to constant tensioning while they shorten when subjected to a prolonged relaxation 131 

(Frost, 1990-4; Fujie et al., 2000; Solomonow, 2009). 132 

Similarly, when cartilage is loaded at physiologic loading frequencies it becomes nearly 133 

incompressible and thus should be subject to slight deformation. In fact, dynamic loading extrudes 134 

fluid from the superficial layer, consolidating it and decreasing its porosity (Wong and Carter, 135 

2003; Mosher et al., 2005; Setton et al., 1998). This seals the cartilage and blocks further liquid 136 

exudation. As a result, cartilage thickness decreases by 5% after a few cycles and then stabilizes, 137 

regardless of the performed activity (Eckstein et al., 2006).  138 

 139 

As a result, both ligaments and cartilage experience slight deformation when the joint is working 140 

within its adapted space of motion. It follows that a motion during which ligaments and cartilage 141 

are undeformed should belong to the adapted space of motion. This condition can be found in the 142 

passive motion, obtainable in-vitro as a sequence of positions of neutral equilibrium (Wilson and 143 

O'Connor, 1997; Wilson et al., 1998). In fact, it has been experimentally shown that ankle 144 

ligaments tend to stay isometric during passive motion, particularly the calcaneo-fibular and the 145 

tibio-calcaneal ones (Leardini et al., 1999). Also, since no external loads were applied, cartilage 146 

deformation can be ignored. Thus, the passive motion can be taken as an idealization of the 147 

adapted space of motion. 148 

 149 

Experimental Sessions 150 

In the last few years, ten tibio-talar joint specimens were analyzed according to a number of 151 

slightly different protocols (Franci et al., 2009, Sancisi et al. 2014). Nevertheless, the recording of 152 

the tibio-talar relative motion was performed consistently, making it possible to group and analyze 153 

the present ten articulations all together. 154 

The fresh frozen amputated lower limb specimens comprising complete shank and foot, were 155 

declared free of anatomical defects by a surgeon, and were fixed through the tibia to a workbench 156 

(figure 1.a), leaving the rearfoot free to move, compatibly with the anatomical structures in 157 

between. A calcaneal pin protruded from the posterior surface and came into contact with a rigid 158 

frame, connected to the workbench by a revolute pair, which supported the pin and drove the 159 

tibio-talar joint to move in dorsi/plantar-flexion. Since the weights and the friction between the 160 



pin and the frame were negligible, the overall joint motion was considered as obtained in a 161 

virtually unloaded condition. Starting from a rest position in maximum plantarflexion, the joint 162 

was extended to maximum dorsiflexion, thus producing the desired complete arc of joint motion, 163 

i.e. of the talus with respect to the tibia. 164 

A standard stereophotogrammetric system (Stryker Navigation System; nominal accuracy: ±0.5 165 

degrees, ±0.5 mm) was used for the acquisition of the position of the talus and of the tibia. Two 166 

anatomical reference systems were defined, on the tibia (Tf) and the talus (Tc) (Franci et al., 2009) 167 

(figure 2), and used for the computation of tibio-talar relative motion, which was expressed by 168 

means of a vector x  of six parameters, three identifying the origin and three defining the 169 

orientation by means of a standard sequence-independent Euler angle convention (Grood and 170 

Suntay, 1983). 171 

In five cases, after recording of bone motion, it was possible to disarticulate the joint and to 172 

digitalize the entire articular surfaces of the talus dome and the distal tibia. In the other five cases 173 

(hereinafter denoted with an asterisk), the joint integrity had to be preserved in order make the 174 

implant of a prosthesis possible. Thus, in the latter case, the articular surfaces of the top of the 175 

talus and the bottom of the tibia could be digitized only partially, by opening the joint capsule and 176 

distracting the foot in full plantarflexion. 177 

Each articulating surface was initially represented as a cloud of points in the corresponding 178 

anatomical frame and then converted into a triangular mesh model. Where the digitalization was 179 

missing or lacking, the articular surface was manually reconstructed from the data of one of the 180 

complete specimens. 181 

 182 

Measure of joint congruence 183 

From the elastic foundation contact model (Conconi and Parenti-Castelli, 2014), a purely 184 

geometrical relation was derived, representing the ratio between the peak pressure p0 and the 185 

amplitude of the pressure distribution resultant force F at the contact. This relation was 186 

considered representative of the joint congruence, i.e. the ability of the articulation, in a specific 187 

configuration, to distribute an applied load. The derivation of the same relation is here recalled for 188 



a generic non-conforming contact (figure 3), but it holds also for highly conforming contacts such 189 

as the human ankle articulation here analyzed. 190 

Let us consider a rigid body indenting a mattress of springs of constant stiffness k (N/m3) resting 191 

on a rigid base, where no interaction between the adjacent springs is considered (Johnson, 1985). 192 

Defining  ( , )x y  as the deformation of the spring at position ( , )x y , the contact pressure at the 193 

same location can be expressed as: 194 

( , ) ( , ).p x y k x y           (1) 195 

It follows that the peak pressure 0p  will take place at the position of maximum indentation  , 196 

namely: 197 

  0 max .p k k           (2) 198 

Defining A as the projection of the contact surface on a plane orthogonal to z, with dA being the 199 

infinitesimal area on which a single spring acts, the resultant F of the pressure distribution can be 200 

computed as:  201 

      ( , ) ( , ) ( , ) ,
A A A

F p x y dA k x y dA k x y dA kV     (3) 202 

where V is the volume of the Boolean intersection of the two undeformed bodies, which 203 

corresponds to the dashed area in the cross sectional view of the contact, as depicted in figure 3. 204 

Within this contact model, the ratio between the peak pressure and the resultant force becomes 205 

purely geometrical, i.e.: 206 

 
 0

.
F kV V

p k
         (4) 207 

In practice, joint congruence is evaluated by means of a virtual indentation, achieved by offsetting 208 

one bone surface by a prescribed threshold  . 209 

Let us indicate with Stib and Stal the undeformed and closed surfaces of distal tibia and talus 210 

respectively, including both the bone and the articular surface, and with Vtib and Vtal their volumes 211 



(figure 4). The offset of Stib is indicated with SΔ, where VΔ is the volume in it. The volume trapped 212 

between SΔ and Stib is called control volume Vc, i.e.  213 


  .c tibV V V            (5) 214 

The intersection volume can be measured as the volume of talus within the control volume, i.e.: 215 

 .c talV V V            (6) 216 

Substituting the real indentation and intersection volume with the virtual ones, the congruence 217 

measure CM was obtained from equation 4 as 218 

 CM V .           (7) 219 

Clearly, under a prescribed and constant value for the offset threshold Δ, the bigger V is, the more 220 

congruent the considered joint will be. 221 

 222 

Determination of the adapted space of motion 223 

The general configuration of a joint with BN  bones is described by a vector x  belonging to a space 224 

G  of dimension   6 1BN . In fact, once one bone has been chosen as the  reference frame, 6 225 

parameters are required to determine the relative position and orientation of each of the other 226 

1BN  bones. 227 

In general, the adapted space of motion A  is a subset of G  with dimension N . In other words, 228 

if the adapted space of motion possesses N  DOF, once N  parameters of the joint configuration 229 

vector x  are chosen within a physiological range, the remaining    6 1BN N  can be 230 

determined by imposing the mechanical optimization, in our case the maximization of joint 231 

congruence. 232 

In particular, when considering the tibio-talar joint, BN  is equal to 2 and thus G  corresponds to 233 

6 . Furthermore, the tibio-talar joint may be considered as a single DOF joint (Leardini et al., 234 

1999) and therefore A  is a spatial trajectory in 6  which can be parameterized, for instance, by 235 



the dorsi/plantar-flexion angle. The tibio-talar adapted space of motion can thus be found as the 236 

envelope of successive maximum congruence configurations obtained spanning the whole 237 

physiological range of ankle flexion. 238 

Optimization was performed with Nelder-Mead Simplex algorithm as implemented in the GNU 239 

Scientific Library (GSL) while Boolean operations were performed by means of the GNU 240 

Triangulated Surface Library (GTS).  241 

The objective function was obtained by modifying the congruence measure with the introduction 242 

of a penalty term to keep optimization far away from physically impossible configurations where 243 

bones penetrate with each other. The final objective function to be maximized became: 244 

 



c tal tib talV V k V V

CM .        (8) 245 

The optimal value for k was chosen as the value leading to a residual indentation compatible with 246 

human physiology: assuming a mean cartilage thickness of 1.3 mm for each articular surface in the 247 

ankle joint (Shepherd and Seedhom, 1999), and admitting deformations of 5% (Eckstein et al., 248 

2006), a 0.13 mm indentation may be considered physiological. A k equal to 20 was taken for this 249 

aim. 250 

With this choice for k, the algorithm proved to be almost independent of the choice of Δ (Conconi 251 

and Parenti-Castelli, 2012-a; Conconi and Parenti-Castelli, 2012-b), which can thus be chosen 252 

arbitrarily. A value of 7 mm was taken in order to maximize the portion of the articular surface 253 

within the control volume while preventing other bone features from affecting the congruence 254 

measure.  255 

The algorithm accuracy was evaluated by means of the mean absolute errors (MAE): 256 

corresponding components of the experimental ( eC ) and predicted (
pC ) joint motion were 257 

compared on the whole range of the flexion angle φ, with one degree increment. For each 258 

component, the norm of differences between Ce and Cp were summed up and divided by the 259 

number n of the comparisons, i. e. 260 

 






1

( ) ( )n
e i p i

i

C C
MAE

n
.        (9) 261 



 262 

RESULTS 263 

The predicted joint motion from the model compared very well with the corresponding motion 264 

from the experimental measurements (figures 5 and 6). The differences between computed and 265 

experimental motion were greatest near the extremes of dorsi/plantar-flexion. 266 

The maximum MAE was 2.1° for the rotations, and 2.3 mm for the three translations, though these 267 

were smaller than 1 mm in most of the specimens (table 1). 268 

 269 

DISCUSSION 270 

From the presented comparison of the results from the model and corresponding in-vitro 271 

measurements, we can state that tibio-talar kinematic models based on the functional adaptation 272 

of the joint tissues provide a good prediction of the passive motion of this joint, both qualitatively 273 

and quantitatively. Previous analysis (Conconi and Parenti-Castelli, 2012-b) has shown that the 274 

outcome of the model is not affected by the choice of the component of the configuration vector 275 

x  used for the parameterization of the adapted space of motion. Furthermore, for values of the 276 

penalty term k above 10, the algorithm converged to the same space of motion independently of 277 

the choice of Δ. Also, the algorithm proved to be very robust with respect to variations of the 278 

optimization initial guess (Conconi and Parenti-Castelli, 2012-b). However, a systematic analysis of 279 

the model sensitivity to the accuracy of articular surface reconstruction has not yet been 280 

performed. In the present study, articular surfaces were reconstructed also from incomplete 281 

digitalizations. Missing surface areas were integrated manually from other experimental data. This 282 

procedure may have introduced some variation on the real shape of articular surfaces, possibly 283 

affecting the model outcome. However, there was no correlation between the size of the 284 

digitalized surface and MAE. Despite that, the quality of the final matching between experimental 285 

motion and model prediction supports the robustness of the method with respect to the present 286 

articular surface representation. 287 

It must be cautioned that the proposed method allows the determination only of the adapted 288 

space of motion A , a subset of the possible joint configurations. Despite this limitation, the 289 



determination of A
 may provide useful information due to its peculiar characteristics. In fact, a 290 

joint working in its adapted space remains in a homeostatic condition, thus reducing the metabolic 291 

cost associated with further tissue modification. Also, the analogy with the passive motion 292 

characterizes the adapted space of motion as a minimum resistance path, since the forces that 293 

drive the joint along it do no or the least work to deform the passive structures. Furthermore, it is 294 

worth noting that Carter (1987) suggested a correlation between the risk of microdamage 295 

occurrence and accumulation and the strain energy density. Thus, the motion along an adapted 296 

path should also reduce the risk of tissue fatigue failure. Finally, adapted configurations represent 297 

the healthy functional state of a joint and thus their definition makes the recognition of 298 

pathological conditions possible by comparison. 299 

If further validated in-vivo, the method here presented can also constitute the initial step for the 300 

definition of a fully subject-specific dynamic model of the joint based solely on anatomical 301 

measurements. As discussed above, it is in fact possible to kinematically model the human joints 302 

by means of mechanisms capable of replicating, between the moving bodies, the same constraints 303 

that the joint passive structures exert on the bones they connect. The main advantage of 304 

representing the joint by means of an equivalent mechanism is that the kinematic model obtained 305 

is built on the subject-specific anatomy and it can be easily generalized into kinetostatic or 306 

dynamic models with a sequential approach (Sancisi and Parenti-Castelli, 2011). However, the 307 

definition of these mechanisms requires the knowledge of the joint motion. The method here 308 

presented allows the determination of such a motion starting solely from a tridimensional 309 

representation of the articular surfaces, which may be collected in-vivo, for instance through MRI, 310 

and it can thus be considered as the initial step of the sequential approach. 311 

 312 

CONCLUSION 313 

A non invasive, subject-specific approach for modeling the adapted space of motion of the tibio-314 

talar joint was tested on ten ankle specimens. The present analysis shows good quantitative 315 

agreement between the model outcome and the corresponding experimental data, supporting the 316 

validity of the method. The kinematic model here obtained allows in particular the evaluation of 317 

the adapted space of motion that, due to its characteristics, can be considered as representative 318 

of the healthy functioning of the joint. The present determination of a physiological joint motion, 319 



here based on in-vitro digitalization of the articular surfaces, opens the way to the definition of 320 

subject-specific joint models built in-vivo from standard medical images, for more personalized 321 

treatments and devices. 322 

 323 
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Figure 1: The workbench used for the passive motion generation (a) and the digitalization of the 

articular surfaces (b). In the case depicted in (a), the calcanear motion was also tracked, but not 

utilized in the present study; the motion of the pin driving the tibio-talar motion is also sketched. 

Figure 2: Schematization of the anatomical reference systems for tibia (Tt) and talus (Tc) and the 

corresponding axes of rotations. 

Figure 3: Schematization of the Winkler contact model. 

Figure 4: Cross sectional (a) and 3D (b) representation of the determination of the intersection 

volume V (red dashed area in (a) and red volume in (b)). 

Figure 5: Computed (-) vs experimental (- -) motion for the first five specimens. 

Figure 6: Computed (-) vs experimental (- -) motion for the last five specimens, digitized without 

disarticulating the tibio-talar joint. 

Table 1: Mean absolute error (MAE) on prono-supination (PS), intra-extra rotation (IE), X, Y and Z 

displacement, between computed and experimental motion for each of the ten considered 

specimens. Bold red and green denote maximum and minimum MAE, respectively. An asterisk 

indicate digitization without disarticulation. 
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 PS (deg) IE (deg) X (mm) Y (mm) Z (mm) 

LEG 1 1.85 1.03 1.78 0.80 1.75 

LEG 2 1.89 2.07 1.04 2.29 0.59 

LEG 3 1.37 0.92 1.41 0.73 1.11 

LEG 4 1.15 1.28 0.90 0.31 0.65 

LEG 5 0.68 0.49 0.26 0.35 0.16 

LEG 6
* 0.94 0.42 0.18 0.08 0.18 

LEG 7
*
 0.79 0.72 0.25 0.14 0.22 

LEG 8
*
 1.71 0.51 0.59 0.52 0.35 

LEG 9
*
 0.53 0.48 0.29 0.45 0.45 

LEG 10
*
 1.35 1.15 0.76 0.07 0.18 
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