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Abstract. The ensemble Kalman filter and its variants have
shown to be robust for data assimilation in high dimensional
geophysical models, with localization, using ensembles of
extremely small size relative to the model dimension. How-
ever, a reduced rank representation of the estimated covari-
ance leaves a large dimensional complementary subspace un-
filtered. Utilizing the dynamical properties of the filtration
for the backward Lyapunov vectors, this paper explores a
previously unexplained mechanism, providing a novel the-
oretical interpretation for the role of covariance inflation in
ensemble-based Kalman filters. Our derivation of the fore-
cast error evolution describes the dynamic upwelling of the
unfiltered error from outside of the span of the anomalies into
the filtered subspace. Analytical results for linear systems ex-
plicitly describe the mechanism for the upwelling, and the
associated recursive Riccati equation for the forecast error,
while nonlinear approximations are explored numerically.

1 Introduction

It is well understood that in chaotic physical systems, dy-
namical instability is among the leading drivers of forecast
uncertainty (Toth and Kalnay, 1997; Trevisan and Palatella,
2011a; Vannitsem, 2017). Furthermore, recent mathematical
and numerical results have established a rigorous framework
for understanding the relationship between dynamical insta-
bility, in terms of the non-negative Lyapunov exponents, and
the asymptotic properties of the uncertainty in ensemble-
based data assimilation techniques: in perfect models, with
weakly-nonlinear error growth, the anomalies of ensemble
Kalman filters project strongly on the span of the unstable-

neutral backward Lyapunov vectors (Carrassi et al., 2009; Ng
et al., 2011; González-Tokman and Hunt, 2013; Bocquet and
Carrassi, 2017), and the divergence of the ensemble Kalman
filter depends significantly upon whether error in this space
is sufficiently observed and corrected.

Inspired by the “assimilation in the unstable subspace”
(AUS) methodology of Anna Trevisan and her collaborators
(Trevisan and Uboldi, 2004; Carrassi et al., 2007, 2008; Tre-
visan et al., 2010; Trevisan and Palatella, 2011b; Palatella
et al., 2013; Palatella and Trevisan, 2015), recent mathe-
matical results have rigorously validated the underlying hy-
pothesis of AUS: for perfect, linear models, the uncertainty
of the Kalman filter asymptotically collapses to the span of
the backward Lyapunov vectors with non-negative exponents
(Gurumoorthy et al., 2017). Furthermore, if a reduced rank
filter has an estimated covariance initialized only in these
modes, and the unstable–neutral subspace is uniformly, com-
pletely observed, the reduced rank filter becomes asymptoti-
cally equivalent to the optimal Kalman filter (Bocquet et al.,
2017). Furthermore, this phenomenon has been generalized
as a necessary and sufficient criterion for the exponential sta-
bility of continuous time filters, in perfect models, in terms
of the detectability of the unstable–neutral subspace (Frank
and Zhuk, 2017).

The above mathematical studies demonstrate how the sta-
ble dynamics in perfect models dissipate forecast errors, in
sequential filters, such that a reduced rank representation of
the error covariance matrix in the unstable–neutral subspace
alone suffices to control error growth. This behavior, simi-
larly understood in the smoothing problem (Pires et al., 1996;
Trevisan et al., 2010), is now also mathematically verified for
the linear Kalman smoother and its nonlinear ensemble for-
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mulation is shown numerically to exhibit the same behavior
in a weakly-nonlinear regime for error dynamics (Bocquet
and Carrassi, 2017). With these results, AUS provides a ro-
bust theoretical framework for interpreting the behavior of
the ensemble Kalman filter in terms of the model dynamics.
However, this framework has, for the most part, been lim-
ited to understanding the ensemble Kalman filter in models
without errors.

The sources of model error are varied and a common sim-
plifying assumption in data assimilation is that it takes the
form of additive, Gaussian noise that is white in time. The
work of (Grudzien et al., 2018) recently extended the theoret-
ical framework of AUS, so far established for perfect models,
to the presence of additive model errors with additional qual-
ifications. The study introduced novel bounds on the Kalman
filter’s asymptotic forecast uncertainty, and a necessary cri-
terion for filter stability, as an inverse relationship between
the model’s dynamical instabilities and the relative precision
of observations. Particularly, in stationary dynamics and the
absence of corrections to forecast errors in the stable modes,
the Grudzien et al. (2018) work demonstrated that the model
dynamics alone are once again sufficient to uniformly bound
the errors in the span of the stable backward Lyapunov vec-
tors.

However, the uniform bound may be impractically large
due to the excitation of model errors by the transient instabil-
ities in stable directions. While uncertainty is asymptotically
dissipated by the stable dynamics, the reintroduction of un-
certainty from model error significantly differentiates models
with additive errors. Newly injected errors are subject to the
growth rates of the local (in time) Lyapunov exponents, and
stable Lyapunov exponents of sufficiently high variance may
experience transient periods of growth. Therefore, strategies
for representing the forecast error with a low rank ensem-
ble must be adapted for imperfect models to account for a
residual error in the span of the stable, backward Lyapunov
vectors which never vanishes and, moreover, may go through
transient periods of growth. As a consequence, confining the
error description within a reduced rank Kalman filter to only
the unstable–neutral subspace does not suffice when model
error is present and suggests that one must include additional,
asymptotically stable, modes (Grudzien et al., 2018).

Furthermore, in this current work we show that such an
increase of the ensemble span does not automatically render
the filter optimal: one may also need to account for the in-
jection of error from unfiltered directions into the ensemble
span. In particular, when an ensemble-based Kalman gain is
used to correct the forecast errors, the dynamics induce er-
ror propagation which transmits uncertainty from the uncor-
rected, complementary subspace into the ensemble span. In
this study, the propagation of error in the linear Kalman fil-
ter, written in a basis of backward Lyapunov vectors, will
reveal the leading order evolution of the unfiltered uncer-
tainty. Although the evolution is derived for linear models,
the mechanism for error propagation can be considered a

generic feature of ensemble Kalman filters. Under the con-
dition that error evolution is weakly-nonlinear, the ensemble
span will align with the span of the leading backward Lya-
punov vectors; therefore, the error decomposition in the basis
of backward Lyapunov vectors will be valid for the ensemble
Kalman filter.

Similar to how we view AUS as a theoretical framework
for understanding the properties of ensemble-based covari-
ances in the presence of chaotic dynamics (and in the ab-
sence of model error), this work aims to be used as a the-
oretical explanation for the empirically observed properties
of ensemble-based covariances in the presence of chaotic
dynamics and additive model errors, providing a theoreti-
cal motivation for the role of covariance inflation in prevent-
ing filter divergence. We demonstrate that even when issues
of sampling error, truncation errors due to nonlinearity, and
misspecification of model and observation error distributions
are all excluded, there is an intrinsic deficiency of the stan-
dard reduced rank error covariance recursion that leads to
systematic underestimation of the forecast errors in the en-
semble span. While we believe this provides a new theoreti-
cal explanation for the role of covariance inflation in the en-
semble Kalman filter, we also discuss possible strategies to
obviate inflation with less ad hoc methods that take into ac-
count the evolution of unfiltered errors more directly.

This paper is structured as follows: Sect. 2.1 concerns es-
sential results from the theory of Lyapunov vectors which are
used throughout; Sects. 2.2 and 2.3 describe the basic frame-
work for the Kalman filter, and will motivate our subsequent
results; Sect. 3 contains our main analytical result, the deriva-
tion of the exact forecast error under a reduced rank filter in a
basis of backward Lyapunov vectors; Sect. 4 will use numer-
ics to qualitatively explore the forecast error of the reduced
rank filter, and its approximation in nonlinear models. Im-
plications of the results in this work are discussed in Sect. 5,
with an emphasis on future research directions and their chal-
lenges. Final conclusions are drawn in Sect. 6.

2 Preliminaries

We begin by introducing our notation and the problem for-
mulation, including relevant definitions. There is inconsistent
use of the terminology for Lyapunov vectors in the literature,
and so we choose to use the nomenclature of (Kuptsov and
Parlitz, 2012) for its accessibility and self-consistency.

2.1 Lyapunov vectors

Throughout the entire text, the conventional notation k =

0,1,2, . . . is adopted to indicate that the quantity is defined
at time tk . Let zk−1 ∈ Rn be an arbitrary vector, the ma-
trix propagator of the forward model from tk−1 to tk is
given by Mk , such that zk =Mkzk−1. We denote the oper-
ator taking the system state from an arbitrary time tl to tk
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as Mk:l,MkMk−1. . .Ml+1, with the symbol , used to sig-
nify that the expression is a definition. We denote Mk:k,In,
where In is the identity matrix (of size n× n in this case).
At all times we assume Mk to be non-singular and to be uni-
formly bounded in k.

Although much of the derivations that follow are done for
linear dynamics, we are ultimately concerned with nonlin-
ear systems; therefore, we will assume that Oseledec’s the-
orem holds, even for linear model propagators. In general,
this is a non-trivial assumption, but one which can be consid-
ered generic for the tangent-linear model of a wide class of
nonlinear systems, due to the multiplicative ergodic theorem
(MET): with probability one, Oseledec’s theorem holds, the
Lyapunov exponents are well defined and the values of the
Lyapunov exponents are independent of the initial condition
(Barreira and Pesin, 2002, see their theorems 2.1.1 and 2.1.2
for a full statement and proof). A more general version of the
MET, and its interpretation for several physical systems, is
provided by (Froyland et al., 2013) in their Theorem 1.1 and
Example 1.2.

We order the Lyapunov exponents

λ1 ≥ ·· · ≥ λn0 ≥ 0> λn0+1 ≥ ·· · ≥ λn, (1)

such that the unstable–neutral subspace is of dimension n0
and the model state dimension is n. Note that we do not as-
sume that the Lyapunov exponents are distinct.

Oseledec’s theorem decomposes the (tangent-linear)
model space into a direct sum of time-varying, covariant Os-
eledec spaces, referred to as an Oseledec splitting or decom-
position. At times, we will refer to the covariant Oseledec
spaces, as well as to the covariant, and to the forward Lya-
punov vectors. These discussions will provide a deeper in-
terpretation of our results for those familiar with these tech-
nical points. However, these discussions are not crucial to
the understanding of our results; therefore, we limit the use
of formal definitions to the backward Lyapunov vectors. For
a more formal discussion of the Oseledec spaces, construc-
tions for Lyapunov vectors and related results for the full
rank Kalman filter see (Grudzien et al., 2018). For a survey
on the mathematical and numerical construction of Lyapunov
vectors see (Kuptsov and Parlitz, 2012). For a discussion of
general Oseledec splitting and a comparison of methods for
its computation see (Froyland et al., 2013).

The backward Lyapunov vectors can be defined by a
choice of an orthonormal eigenbasis for the far past operator,
and/or by recursive QR factorizations of the (tangent-
linear) model propagator (Kuptsov and Parlitz, 2012).
Throughout the text, we utilize the invariance of the back-
ward Lyapunov vectors under the recursive QR algorithm.

Definition 1. Define the matrix Ek to be the or-
thogonal matrix at time k whose i-th column
is the i-th “backward Lyapunov vector” (BLV),
corresponding to the Lyapunov exponent λi .

Lemma 1. There is an n× n upper triangular matrix Uk , such
that the (tangent-linear) model propagator satisfies

Mk = EkUkET
k−1. (2)

Define the product of matrices

Uk:l,Uk· · ·Ul+1, (3)

the i-th Lyapunov exponent is equal to the limit

λi = lim
k→∞

1
k− l

log
(∣∣∣U iik:l∣∣∣) , (4)

where U iik:l is the i-th diagonal element of the matrix Uk:l .
The local Lyapunov exponents are defined by log

(∣∣U iik ∣∣).
Proof. Equation (2) follows from Eq. (31) of (Kuptsov and
Parlitz, 2012) and is a consequence of the invariance of
the BLVs under the recursive QR decomposition (Grudzien
et al., 2018). Computing Lyapunov exponents via recursive
QR factorizations as in Eq. (4) is the standard method, de-
scribed by, e.g., (Shimada and Nagashima, 1979), (Benettin
et al., 1980) and (Ershov and Potapov, 1998).

The decomposition in Eq. (2) represents a change of the
basis of the model space into the upper triangular dynamics
of the moving frame of BLVs, defining a basis for the back-
ward Lyapunov filtration (Legras and Vautard, 1996). In par-
ticular, ET

k−1 takes the model state into the orthogonal pro-
jection coefficients in the basis of the BLVs at time k−1. We
will denote the projection coefficients of an arbitrary vector
zk into a basis of BLVs with a “hat”, i.e., ET

k zk, ẑk . Using
the orthogonality of the matrix Ek , the invariant dynamics in
the BLVs is written as follows:

ẑk = Uk ẑk−1 ⇔ zk =Mkzk−1. (5)

Thus, the operator Uk describes the invariant, upper trian-
gular dynamics, transferring the model state into its forward
representation in the BLVs at time k.

2.2 The Kalman filter

We seek to estimate the distribution of a Gaussian random
vector xk ∈ Rn evolved via a linear Markov model with ad-
ditive white noise,

xk =Mkxk−1+wk, (6)

and with observations yk ∈ Rd given in the following form:

yk =Hkxk + vk. (7)

The forecast mean, xb
k , is propagated from the last posterior

mean, xa
k−1 by the deterministic component of Eq. (6), i.e.,

xb
k =Mkx

a
k−1. (8)
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The model variables and observation vectors are related via
the linear observation operator Hk : Rn 7−→ Rd . The respec-
tive model and observation noise, wk and vk , are assumed
mutually independent, unbiased, Gaussian white sequences
such that

E[vkvT
l ] = δk,lRk and

E[wkwT
l ] = δk,lQk, (9)

where E is the expectation, Rk ∈ Rd×d is the observa-
tion error covariance matrix at time tk , and Qk ∈ Rn×n
stands for the model error covariance matrix. The error
covariance matrix Rk can be assumed invertible without
losing generality. To avoid pathologies, we assume that
the model and the observation error covariance matrices
are uniformly bounded. For 1≤ t < s ≤ n, and given a
matrix A ∈ Rn×n, we define At :s ∈ Rn×(s−t+1) to be the
matrix composed (inclusively) of columns s through t of A.

Definition 2. The “forecast error” is defined as the difference
of the mean state estimated by the filter and the unknown
random state, i.e.,

εk,x
b
k − xk. (10)

The “innovation” is the measured difference between the
forecast in the observation space and the observation,

δk,yk −Hkx
b
k = vk −Hkεk. (11)

We define the “exact forecast error covariance” at time k to
be

Bk,E
[
εkε

T
k

]
. (12)

Conversely, suppose some filter, yet to be identified, is used
to estimate the forecast mean and error covariance – the es-
timated forecast error covariance will be denoted Pk , defined
according to the chosen estimation algorithm.

Suppose that Kk ∈ Rn×d is some estimator which takes the
forecast state to the analysis state. In the case of the theoreti-
cal Kalman filter (KF), where the exact forecast error covari-
ances are computed Pk ≡ Bk , the gain Kk will be defined as
follows:

Kk, PkHT
k

(
HkPkHT

k +Rk
)−1

= BkHT
k

(
HkBkHT

k +Rk
)−1

. (13)

In this text, we will vary the choice of the analysis update
operator Kk , but the functional form of the recursion for the
analysis update of the mean will be unchanged and defined
as

xa
k, xb

k +Kk

(
yk −Hkx

b
k

)
= xb

k −KkHkεk +Kkvk. (14)

Therefore, for any estimator, the forecast mean can be de-
rived recursively from Eq. (8) and Eq. (14) as

xb
k+1,Mk+1

(
xb
k −KkHkεk +Kkvk

)
, (15)

where Kk is some choice for the gain. The recursion on the
forecast error can be derived equal to

εk+1,Mk+1 [(In−KkHk)εk +Kkvk]−wk+1, (16)

although εk,vk and wk+1 are assumed to be unknown.

2.3 Rank deficiency in the Kalman filter

In a linear model, with known Gaussian observation and
model error distributions, the estimated error covariances of
the KF are exact: the posterior error distribution for the state
is Gaussian, and the KF completely describes the Bayesian
posterior through its recursive equations for the estimated
mean and covariance. However, it is often the case that the
recursion for the posterior error distribution is approximated
with a reduced rank surrogate in which the estimated covari-
ance, Pk , and resulting exact error covariance, Bk , may not
be equal (Chandrasekar et al., 2008). This mismatch can lead
to the systematic underestimation of the forecast error and
filter divergence.

Nonetheless, it is possible in an ideal setting to analyti-
cally describe the error statistics of a reduced rank Kalman
filter – to illustrate this, assume that we have a linear model
with known Gaussian error distributions. Suppose we apply
the analysis update in a reduced rank set of BLVs, as has
been done in extended Kalman filter (EKF)-AUS (Trevisan
and Palatella, 2011b). Furthermore, suppose the exact error
covariance, Bk , is known. Then the gain

Kk, E1:n0
k

(
E1:n0
k

)T
BkE

1:n0
k

(
E1:n0
k

)T
HT
k× (17)[

HkE
1:n0
k

(
E1:n0
k

)T
BkE

1:n0
k

(
E1:n0
k

)T
HT
k +Rk

]−1

yields the exact Kalman estimator with respect to a subset
of the anomaly variables, defined by the span of the leading
n0 BLVs. We may use Eq. (16) to derive the analytical re-
cursion for the forecast error covariance, Bk+1, under the re-
duced rank gain in Eq. (17). The “rank deficiency (or reduced
rank)” is defined by the restriction of the Kalman estimator to
a low dimensional subspace. Note that, although the estima-
tor is restricted to the span of E1:n0

k , the observation operator
is still applied to the full state vector; thus, the analysis does
not equal the restriction of the Bayesian update to the leading
n0 BLVs. We recover the restricted Bayesian update using the
estimator in Eq. (17) precisely when HkE

n0+1:n
k ≡ 0d×(n−n0).

The significance of deriving an analytical recursion for the
forecast error under the reduced rank estimator in Eq. (17) is
as follows. The analysis operator in Eq. (17) is characteristic
of the typical gain for the ensemble Kalman filter (EnKF) in
large, geophysical models: the ensemble-based gain applies
its update with respect to the subspace defined by the span
of the ensemble of anomalies, which is usually of reduced
rank and aligns with the span of the leading BLVs (Ng et al.,
2011; Bocquet and Carrassi, 2017). Therefore, the standard
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EnKF can, be considered a Monte Carlo estimate of the error
statistics resulting from a rank deficient Kalman estimator as
in Eq. (17). This is the motivation of Sect. 3, where we will
define a reduced rank gain which operates within the span
of an arbitrary number of the leading BLVs and derive the
resulting exact forecast error covariance.

3 Filtering in the backward Lyapunov basis vectors

Consider the forecast error recursion for the linear KF
in Eq. (16). As we are motivated by ensemble covari-
ances, suppose Kk is defined as a reduced rank gain
which corrects only the leading r BLVs, with r < n. The
subspace defined by the span of the anomalies defines a
subspace of “filtered variables” where we perform our
analysis. The “unfiltered subspace” is uniquely defined
(up to the inner product) as the orthogonal comple-
ment to the filtered space, i.e., the subspace in which
the reduced rank Kalman estimator makes no correction.

Definition 3. For each k, we define the “filtered subspace” by
the column span of the vectors Ef

k,E1:r
k and the “unfiltered

subspace” by the column span of the vectors Eu
k,Er+1:n

k .
The projection coefficients of a vector z ∈ Rn into the fil-
tered and unfiltered subspace will be denoted ẑ f,

(
E f
k

)T
z and

ẑ u,
(
Eu
k

)T
z, respectively.

Thus, we decompose the forecast error into its orthogonal
projections in the filtered and unfiltered subspaces as

εk,Ef
k ε̂

f
k +Eu

k ε̂
u
k . (18)

For r = n, define Ef
k,Ek and Eu

k,0n such that ε̂ f
k is the full

error written in an orthogonal change of basis – this case will
only be referred to for comparison.

For i,j ∈ {f,u}, we write the sub-covariances in the basis
defined by Ek as

B̂ ij
k ,E

[̂
ε ik

(̂
ε
j
k

)T
]
. (19)

Therefore, the exact forecast error covariance is given as

Bk ≡ Ek
(

B̂ ff
k B̂ fu

k

B̂ uf
k B̂ uu

k

)
ET
k , (20)

where B̂ ff
k and B̂ uu

k are symmetric matrices, and B̂ fu
k =(

B̂ uf
k

)T
. We similarly express Uk as a block matrix,

Uk,
(

Uff
k Ufu

k

0(n−r)×r Uuu
k

)
. (21)

For an arbitrary rank filtered subspace, the reduced rank
gain Kk correcting the span of Ef

k is defined by

Kk, Ef
kK̂k,

K̂k, Bff
k

(
Ef
k

)T
HT
k

[
HkEf

kB
ff
k

(
Ef
k

)T
HT
k +Rk

]−1

, (22)

where K̂k represents the projection coefficients of the re-
duced rank gain into the filtered variables.

For every k ≥ 1, we decompose the model error covariance
into the basis of filtered and unfiltered BLVs as

Qk,Ek
(

Q̂ ff
k Q̂ fu

k

Q̂ uf
k Q̂ uu

k

)
ET
k , (23)

where Q̂ ff
k and Q̂ uu

k are symmetric matrices, and Q̂ fu
k =(

Q̂ uf
k

)T
.

With the above notation, and using Eq. (2), the evolution
of the forecast error under the reduced rank gain is derived
from Eq. (16) as

εk+1 =Mk+1

(
In−Ef

kK̂kHk

)
εk +Mk+1Ef

kK̂kvk −wk+1

=
(
Ek+1Uk+1ET

k −Ek+1Uk+1In×rK̂kHk

)
εk

+ Ek+1Uk+1In×rK̂kvk −wk+1. (24)

Equation (24) describes the evolution of the forecast er-
ror with respect to the suboptimal filter, and suggests, as in
Eq. (5), how we may write the error evolution into the upper
triangular dynamics in the moving frame of BLVs. Comput-
ing the evolution of ε̂ f

k and ε̂ u
k under the forecast–analysis

update cycle in Eq. (24), we will derive the exact recursion
for B̂ ff

k . This will describe the exact forecast uncertainty in
the filtered subspace under a gain which operates in the span
of the leading r BLVs.

3.1 Evolution of unfiltered error

We begin by deriving the evolution of error in the unfiltered
subspace, by verifying that it evolves according to the free
evolution. Notice first the following relation:(
Eu
k+1

)TEk+1Uk+1In×r = 0(n−r)×r , (25)

due to the fact that Ek+1 is an orthogonal matrix, the above
product is equal to the lower left block of Uk+1, which is
upper triangular. With the substitution of Eq. (18) into in
Eq. (24) for εk , multiplying on the left by

(
Eu
k

)T to move into
the unfiltered subspace, and by utilizing Eq. (25) to cancel
the error in the filtered space, we find

ε̂ u
k+1 =

(
Eu
k+1

)TEk+1Uk+1ET
k

(
Ef
k ε̂

f
k +Eu

k ε̂
u
k

)
−
(
Eu
k+1

)T
wk+1 = Uuu

k+1̂ε
u
k − ŵ

u
k+1. (26)

Equation (26) demonstrates that the evolution of the error
in the unfiltered subspace exactly follows the free forecast
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evolution. The covariance of unfiltered error at time k can be
computed from Eq. (26) as

B̂ uu
k = Uuu

k:0B̂ uu
0
(
U uu
k:0
)T
+

k∑
l=1

Uuu
k:lQ̂

uu
l

(
Uuu
k:l

)T
. (27)

The initial uncertainty in the unfiltered subspace evolves as
Uuu
k:0B̂ uu

0
(
Uuu
k:0
)T; thus, when r > n0, it vanishes exponen-

tially. This implies that asymptotic unfiltered error is inde-
pendent of the initialization, similar to the results of (Boc-
quet et al., 2017). The remaining sum in Eq. (27) represents
the contribution to the current forecast uncertainty from the
model error at all times after initialization, propagated under
the upper triangular evolution in the BLVs. Therefore, while
the initial error is forgotten, the asymptotic error in the re-
duced rank filter here explicitly depends on the dimension of
the unfiltered subspace and the local variability of the stable
BLVs therein.

The error in the i-th BLV in Eq. (27) is given by the free
evolution of perturbations, formerly studied by (Grudzien
et al., 2018): when the filtered subspace dimension is of di-
mension r ≥ n0, we can recursively, and stably, compute the
unfiltered uncertainty via

B̂ uu
k+1 = Q̂ uu

k+1+U uu
k+1B̂ uu

k

(
Uuu
k+1

)T
. (28)

When r < n0, we explicitly see that the filter will diverge as
a consequence of leaving an unstable direction unfiltered.

3.2 Evolution of filtered error

We now consider the evolution of the projection of the fore-
cast error into the filtered space, with respect to the reduced
rank gain. From Eq. (24) we derive

ε̂ f
k+1 =

(
Ef
k+1

)T
Ek+1Uk+1ET

k

(
Ef
k ε̂

f
k +Eu

k ε̂
u
k

)
−

(
Ef
k+1

)T
Ek+1Uk+1In×rK̂kHk

(
Ef
k ε̂

f
k +Eu

k ε̂
u
k

)
+

(
Ef
k+1

)T (
Ek+1Uk+1In×rK̂kvk −wk+1

)
. (29)

Similar to Eq. (25), we see the terms(
Ef
k+1

)T
Ek+1Uk+1ET

kEf
k = Uff

k+1 (30)(
Ef
k+1

)T
Ek+1Uk+1ET

kEu
k = Ufu

k+1, (31)

using the orthogonality of the BLVs. Therefore, substitution
into Eq. (24) yields

ε̂ f
k+1 =

(
Uff
k+1−Uff

k+1K̂kHkEf
k

)
ε̂ f
k (32a)

+Uff
k+1K̂kvk − ŵ

f
k+1 (32b)

+

(
Ufu
k+1−Uff

k+1K̂kHkEu
k

)
ε̂ u
k . (32c)

The terms (32a) and (32b) correspond to the standard recur-
sion on the KF forecast error. If the filtered subspace is the

entire state space (i.e., Ef
k,Ek) the term (32c) is identically

zero, and the terms (32a) and (32b) are equivalent to a change
of basis for the forecast error recursion in Eq. (16), written in
the invariant dynamics for the moving frame of the BLVs.

For r < n, the remaining term (32c) is our primary object
of interest. Term (32c) is fundamentally different from the re-
lationship described by terms (32a) and (32b), which repre-
sents the usual stabilizing effect of the forecast–analysis cy-
cle. Instead, term (32c) describes two different processes: (i)
Ufu
k+1 represents the purely dynamical upwelling of the unfil-

tered error into the filtered variables; (ii) Uff
k+1K̂kHkEu

k is the
correction in the filtered subspace, due to the sensitivity of
these variables to observations in the unfiltered subspace, for-
ward propagated to time tk+1. When Kk yields the restricted
Bayesian update, i.e., when Kk is defined as in Eq. (22)
and HkEu

k ≡ 0d×(n−r), term (32c) represents dynamical up-
welling alone. Generically, Ufu

k+1−Uff
k+1K̂kHkEu

k 6= 0r×(n−r)
and ε̂ u

k is Gaussian distributed with covariance given by
Eq. (27); thus term (33c) is almost surely non-zero. This
demonstrates that the forecast error in the filtered subspace
depends on the unfiltered error via the forward evolution,
whereas the unfiltered error does not depend on the error in
the filtered space.

This implies that the direct application of EKF-AUS from
perfect dynamics (Trevisan and Palatella, 2011b) to a linear
system with model error systematically underestimates the
uncertainty in the span of the leading r BLVs. Specifically,
EKF-AUS neglects the injection of the errors from the trail-
ing vectors, ε̂ u

k , into the forecast of the leading vectors, ε̂ f
k+1,

represented in Eq. (32c). Even when the uncertainty in the
stable BLVs is uniformly bounded (Grudzien et al., 2018),
error in the trailing BLVs moves up the Lyapunov filtration,
and may cause filter divergence. In perfect, linear models,
where uncertainty in the stable BLVs vanishes exponentially,
the injection of error from the stable BLVs into the unstable
subspace results in temporary misestimation although does
not pose an issue to the asymptotic stability (Bocquet et al.,
2017). However, with model error, term (32c) demonstrates
that reduced rank Kalman filters must be augmented to cor-
rect a persistent underestimation.

It is important to note that the error in the unfiltered sub-
space moves upward through the backward Lyapunov filtra-
tion precisely because the unfiltered subspace is defined by
the span of the trailing BLVs, governed by the invariant up-
per triangular dynamics. The span of the trailing BLVs is not
equal to the direct sum of the trailing Oseledec spaces, which
are themselves covariant with the dynamics. However, this
choice for the unfiltered subspace comes naturally because
the filtered subspace (the image space of Kk) is given by the
span of the leading BLVs, and is equivalent to the span of
the leading covariant Lyapunov vectors (Kuptsov and Parlitz,
2012, see their Eq. 43).

In principle, data assimilation could be designed to pre-
vent dynamical upwelling of unfiltered error by defining the
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unfiltered space to be the direct sum of the trailing, stable
Oseledec spaces. In this case, the unfiltered error would be
covariant with the dynamics and leave the filtered error un-
affected. To achieve this, the filtered space would need to be
defined by the orthogonal complement to trailing Oseledec
spaces, i.e., the span of the leading forward Lyapunov vec-
tors (Kuptsov and Parlitz, 2012, see their Eq. 43). However,
the span of the leading forward Lyapunov vectors has been
numerically shown not to contain the largest mass of the un-
certainty (Ng et al., 2011). Similarly, uniformly completely
observing the leading d ≥ n0 forward Lyapunov vectors has
been numerically shown to put a weaker constraint on the
growth of the uncertainty than uniformly completely observ-
ing the leading d ≥ n0 BLVs (Grudzien et al., 2018). Further-
more, the forward Lyapunov vectors are defined by the recur-
sive QL factorization (Kuptsov and Parlitz, 2012), and the
lower triangular dynamics for the forecast error would trans-
mit filtered uncertainty to the unfiltered subspace, creating a
dynamic downwelling which cannot be accounted for in the
ensemble subspace. These results suggest that it is preferable
that the unfiltered space is equal to the span of the trailing
BLVs, or equivalently, that the filtered space is defined equal
to the span of the leading covariant/backward Lyapunov vec-
tors.

With the recursive form of the filtered error in Eq. (32),
we directly compute the covariance of the filtered error, and
the cross covariance of the filtered and unfiltered error, in the
basis of BLVs. We define the operators

8k+1, Ufu
k+1−Uff

k+1K̂kHkEu
k, (33)

6k,
[
Ir − K̂kHkEf

k

]
B̂ ff
k

[
Ir − K̂kHkEf

k

]T

+ K̂kRkK̂ T
k , (34)

where 8k is the operator which describes the propagation of
unfiltered error into the filtered space and the operator 6k
corresponds to the analysis error covariance for the standard
KF, written in the basis of BLVs.

We first consider the recursion for the cross covariance. In
particular, by combining Eq. (32) and Eq. (26), we obtain

B̂ fu
k+1 = 8k+1B̂ uu

k

(
Uuu
k+1

)T
+ Q̂ fu

k+1

+ Uff
k+1

(
Ir − K̂kHkEf

k

)
B̂ fu
k

(
Uuu
k+1

)T
. (35)

We now consider the covariance of the forecast error in the
filtered variables. Using the identity in Eq. (34) we derive the
recursion for the filtered error covariance B̂ ff

k+1 as

Bff
k+1 = Uff

k+16k

(
Uff
k+1

)T
+ Q̂ ff

k+1 (36a)

+ 8k+1B̂ uu
k 8

T
k+1 (36b)

+ Uff
k+1

[
Ir − K̂kHkEf

k

]
B̂ fu
k 8

T
k+1 (36c)

+ 8k+1B̂ uf
k

[
Ir − K̂kHkEf

k

]T(
Uff
k+1

)T
. (36d)

When the filtered space is the whole space, i.e., Ef
k = Ek ,

term (36a) entirely describes the evolution of the forecast er-
ror in the basis of BLVs – this is indeed just the forward
propagation of the analysis error covariance for the KF. Term
(36b) represents the contribution of uncertainty from the
unfiltered subspace, propagated via the 8k operator, while
terms (36c) and (36d) describe the forward evolution of the
cross covariances of the uncertainty into the filtered space.

3.3 Assimilation in the unstable subspace exact (AUSE)

Having derived the exact error covariance associ-
ated to the reduced rank Kalman estimator, char-
acteristic of the ensemble-based Kalman gain in
geophysical models, we will summarize the result.

Definition 4. For all k, let the matrix Bk be decomposed as
in Eq. (20). Then, define the recursive relationship

K̂k = Bff
k

(
Ef
k

)T
HT
k

[
HkEf

kB
ff
k

(
Ef
k

)T
HT
k +Rk

]−1

, (37a)

B̂uu
k+1 = Q̂uu

k+1+Uuu
k+1B̂uu

k

(
Uuu
k+1

)T
, (37b)

8k+1 = Ufu
k+1−Uff

k+1K̂kHkEu
k, (37c)

B̂ fu
k+1 = 8k+1B̂ uu

k

(
Uuu
k+1

)T
+ Q̂ fu

k+1

+ Uff
k+1

(
Ir − K̂kHkEf

k

)
B̂ fu
k

(
Uuu
k+1

)T
, (37d)

6k =
[
Ir − K̂kHkEf

k

]
B̂ ff
k

[
Ir − K̂kHkEf

k

]T

+ K̂kRkK̂ T
k , (37e)

B̂ ff
k+1 = Uff

k+16k

(
Uff
k+1

)T
+ Q̂ ff

k+1+8k+1B̂ uu
k 8

T
k+1 (37f)

+ Uff
k+1

[
Ir − K̂kHkEf

k

]
B̂ fu
k 8

T
k

+ 8kB̂ uf
k

[
Ir − K̂kHkEf

k

]T(
Uff
k+1

)T
, (37g)

to be the Kalman filter, assimilation in the unsta-
ble subspace exact (KF-AUSE) Riccati equation,
for a filtered subspace of dimension 1≤ r < n.

Proposition 1. Assume that a Gaussian prior distribution
is given for x0, the state of the system defined by Eq. (6).
Assume that the initial uncertainty, ε0, is of mean zero
and covariance B0, and suppose observations of the state
are given as in Eq. (6). Let Kk be defined as the Kalman
estimator restricted to the span of Ef

k (rank 1≤ r < n) as
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in Eq. (22). Then, the forecast error defined by Eq. (16)
is Gaussian, mean zero, with covariance matrix defined
recursively by the KF-AUSE Riccati equation, Eq. (37).

Proof. Proving the covariance is given by Eq. (37) is the con-
tent of Sects. 3.1 and 3.2. That the error is mean zero and
Gaussian is easily proven by induction.

It should be noted that the KF-AUSE Riccati equation is
also valid for the exact forecast error covariance of a reduced
rank Kalman filter in perfect models, where Qk,0n for all
k. Let r = n0, Qk,0n and Pk,Ef

k0k
(
Ef
k

)T be defined as the
estimated forecast error covariance for EKF-AUS (Trevisan
and Palatella, 2011b), then the recursion is defined by

0k+1, Uff
k+1

[
Ir − K̂kHkEf

k

]
0k

[
Ir − K̂kHkEf

k

]T(
Uff
k+1

)T

+ Uff
k+1K̂kRkK̂ T

k

(
Uff
k+1

)T
, (38)

analogous to term (36a). Comparing Eqs. (37) and (38), we
see that even in perfect models the estimated error covari-
ance of EKF-AUS in the filtered subspace and the exact error
covariance do not agree, i.e., 0k+1 6= B̂ ff

k+1. This is because
the estimated AUS error in Eq. (38) neglects the upwelling of
the initial error in the unfiltered subspace, described by terms
(36b), (36c) and (36d). However, the unfiltered error decays
exponentially and the misestimation in the filtered space does
not threaten filter stability: the AUS estimated error covari-
ance converges to the exact error in its asymptotic limit, al-
though possibly arithmetically (Bocquet et al., 2017).

3.4 Discussion: dynamical upwelling and covariance
inflation

We emphasize that the KF-AUSE Riccati equation (37) is not
intended to provide a computational advantage – its com-
putation requires knowledge of error in the unfiltered sub-
space and, in nonlinear models, a full rank representation of
the tangent-linear dynamics. Nonetheless, this recursion is
demonstrative of an important concept: for a reduced rank
Kalman estimator that applies its analysis update in the span
of the leading BLVs, the exact error in the same span al-
ways depends on the unfiltered error in the trailing vectors.
This dependence is explicitly described by the terms (36b)–
(36d) for the recursion on the filtered error covariance in KF-
AUSE, representing the missing terms in the Kalman filter
recursion necessary to describe the exact uncertainty in the
ensemble span.

Thus, the upwelling of uncertainty from the unfiltered sub-
space to the ensemble span highlights a dynamical mecha-
nism, and provides a theoretical motivation for why covari-
ance inflation in the EnKF has been successful in preventing
filter divergence. In certain scenarios, due to the neglected
upwelling terms in the standard Kalman filter error recursion,
covariance inflation may emulate the process of upwelling in
the ensemble span, replicating the increased uncertainty in

the ensemble span due to the injection of terms (36b)–(36d),
or otherwise ameliorate the effect of neglecting these terms.

Generally, the reasons for using covariance inflation in the
EnKF are wide, including the treatment of model error, sam-
pling error, intrinsic bias and non-Gaussianity of error dis-
tributions (Raanes et al., 2018, see Sect. 2.2 for a survey).
However, Eq. (37) demonstrates that even when excluding
nonlinearity, non-Gaussianity, and intrinsic deficiencies of
the EnKF, the exact correction to the error in the ensemble
span requires the covariance of the unfiltered error as well as
the cross covariance of the error in the filtered and unfiltered
subspaces, as in Eq. (37). In practice, one must find a suit-
able approximation of the upwelling phenomenon to prevent
the systematic underestimation of the forecast error, and/or,
extend the rank of the ensemble-based correction to control
the transient growth of errors in the stable modes.

Reduced rank Kalman filters have previously corrected
for the upwelling of model errors with both multiplicative
and additive covariance inflation methods. Although it was
not explicitly formulated as such, the SEEK filter of (Pham
et al., 1998) can been seen to compensate for model errors
originating in the unfiltered, stable subspace: while compo-
nents of the model error covariance which are orthogonal to
the filtered subspace are left neglected, there is an implicit
treatment by utilizing its forgetting factor to inflate the vari-
ance of the estimated error in the filtered subspace (Nerger
et al., 2005). The contribution of the unfiltered error to the
estimated error was also studied in ensemble methods by
(Raanes et al., 2015), in which the authors explored sampling
methodology to compensate for the unresolved model errors,
residing outside of the ensemble span. Our work adds to this
discussion, now highlighting the explicit mechanism which
these covariance inflation techniques have compensated for.

The dynamical upwelling of model error differs from the
misrepresentation of the covariance due to truncation error
or sampling error induced by nonlinear dynamics in perfect
models, treated in the modified EKF-AUS-NL (Palatella and
Trevisan, 2015) and in the finite size ensemble Kalman fil-
ter, (EnKF-N) (Bocquet, 2011; Bocquet et al., 2015). We
have shown that the upwelling of the unfiltered error through
the Lyapunov filtration acts as a linear effect and is acute in
the presence of additive model errors which are excited by
transient instabilities. While the effect of the dynamical up-
welling could be neglected in perfect models (Bocquet et al.,
2017), the work of (Grudzien et al., 2018) has demonstrated
that transient instability in the span of the stable BLVs can
drive the unfiltered error to become impractically large; fur-
thermore, this error is transmitted into the filtered subspace,
driving filter divergence if it is left uncorrected. However, the
significance of perfect models is not lost: if the dimension
of the filtered space is sufficiently large such that dynamical
stability rapidly dissipates unfiltered errors, the effect of the
upwelling may become negligible.

Without otherwise augmenting the ensemble-based
Kalman gain, the upwelling of uncertainty into the filtered

Nonlin. Processes Geophys., 25, 633–648, 2018 www.nonlin-processes-geophys.net/25/633/2018/



C. Grudzien et al.: Role of covariance inflation for reduced rank Kalman filters with model error 641

space can, in certain scenarios, be emulated with multi-
plicative inflation. In the following section, we numerically
explore the interaction of the filtered subspace rank, the
stability in the unfiltered directions, and multiplicative
covariance inflation in relation to the effect of dynamical
upwelling in reduced rank Kalman filters. However, while
the results of Sect. 4 empirically validate the hypothesis that
multiplicative inflation can compensate for unrepresented
dynamical upwelling, they also reveal how multiplicative
inflation may be obviated by less ad hoc methods. Likewise,
the observed structure of the reduced rank covariance
suggests that, even when the upwelling of error is well
parameterized, the greatest driver of forecast uncertainty
may be due to the presence of unfiltered errors in the trailing
BLVs – this will be the subject of the discussion in Sect. 5.

4 Numerical results

4.1 Experimental setup

We will explore two different discrete model configurations
in which we vary the effect of nonlinearity. In the continuous
model configuration with stochastic differential equations,
we also achieve qualitatively similar results which will not
be included. It is important to remark that the analytic form
for the forecast error in Eq. (37) is only a useful representa-
tion for weakly-nonlinear evolution of error, corresponding
to the error evolution of the EnKF on short timescales. As
the effect of nonlinearity is increased, the linear approxima-
tions utilized in our work will no longer be adequate, leading
to truncation errors as discussed by, e.g., (Palatella and Tre-
visan, 2015).

In the following, we use two different formulations of the
standard Lorenz 96 equations (L96) (Lorenz and Emanuel,
1998), commonly used in data assimilation literature (see,
e.g., (Carrassi et al., 2018) and references therein). For each
m ∈ {1, · · ·,n}, the (L96) equations read dx

dt ,L(x),

Lm(x)=−xm−2xm−1
+ xm−1xm+1

− xm+F (39)

such that the components of the vector x are given by the
variables xm with periodic boundary conditions, x0

= xn,
x−1
= xn−1 and xn+1

= x1. The term F in L96 is the forc-
ing parameter. The tangent-linear model (Kalnay, 2003) is
governed by the equations of the Jacobian matrix, ∇L(x),

∇Lm(x) (40)

=

(
0, · · ·,−xm−1,xm+1

− xm−2,−1,xm−1,0, · · ·,0
)
.

4.1.1 Discrete linear experiments

In linear experiments, we construct a discrete, linear model
from the L96 system. Fixing the system dimension n,10,
the linear propagator in our model Mk is generated by com-
puting the discrete, tangent-linear model from the resolvent

of the Jacobian equation, Eq. (40). In generating the discrete,
tangent-linear model, the discretization time between obser-
vations is fixed at δk,δ = 0.1 for all k. We numerically inte-
grate the Jacobian equation with a fourth-order Runge–Kutta
scheme with a fixed time step of h,0.01. For the forcing
value of F = 8, with 10 dimensions, there are three unstable,
one neutral and six stable Lyapunov exponents, i.e, n0 = 4.
The observation error covariance Rk , model error covariance
Qk and observation operator Hk are all fixed as the identity
I10 in this setup for simplicity.

4.1.2 Discrete nonlinear experiments

In our experiments with the discrete extended Kalman fil-
ter for nonlinear systems, we use Eq. (39) directly for our
model state evolution, and fix the state dimension to n,40.
For the 40 dimensional L96, with standard forcing F = 8,
the unstable neutral subspace is of dimension n0 = 14, with
one neutral Lyapunov exponent. The nonlinear trajectory is
integrated with a fourth-order Runge–Kutta scheme, with a
fixed step size of h,0.05, and an interval between observa-
tion times of δk,δ = 0.1. At each observation time, before
observations are given, the true trajectory is perturbed (in
model space) by additive Gaussian noise with a prescribed
covariance Q, fixed in time. In general, the random model
noise can be injected at different intervals than the interval
between observations, affecting the nonlinearity of the er-
ror evolution. However, we fix these intervals to be equal for
simplicity.

Let us define the nonlinear map 9(t0, t1) : Rn→ Rn to
be the flow map, generated from Eq. (39), that takes the
model state from time t0 to t1. Then, noting that9(t, t+δ)=
9(s,s+ δ) for all t and s, we will define 9δ,9(0,δ). Thus,
in our experiments, the “truth” is evolved via the equation,

xk+1 =9δ(xk)+wk+1, (41)

wk+1 ∼N(0,Q), while the mean trajectory of the “model”
state is given by the deterministic evolution, xb

k+1 =9δ(x
b
k).

In our experimental design, the extended Kalman filter es-
timates the state of the nonlinear “true” state, perturbed by
the noise wk , Eq. (41), and Mk+1 (the linear propagator
for the covariance forward evolution) is defined by the map
Mk+1,∇9δ

∣∣∣
xb
k

.

The matrix Q is defined by the circulant matrix with c0 =

0.5, c1 = 0.25, c2 = 0.125, c39 = 0.25, c38 = 0.125 and all
other entries zero,

Q,



c0 c39 · · · c2 c1
c1 c0 c39 c2
... c1 c0

. . .
...

c38
. . .

. . . c39
c39 c38 · · · c1 c0

 . (42)

The choice of the circulant matrix reflects the stationary
statistics and periodic nature of the L96 model, and the fact
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that we wish to highlight the effect of analytically resolving
complex model error. The observation error covariance ma-
trix is fixed as 0.25∗ I40. The observation operator is fixed in
time as Hk,I40.

This experimental configuration is mathematically consis-
tent with the extended Kalman filter for a discrete nonlin-
ear map with model error, and is a standard formulation for
model error twin experiments, utilized by e.g, Mitchell and
Carrassi (2015) and Sakov et al. (2018), with the configura-
tion using the circulant covariance matrix, Q, drawn specif-
ically from (Raanes et al., 2015). The interval between ob-
servations δ controls the nonlinearity of the evolution of the
forecast errors in the combined forecast/analysis data assim-
ilation cycle. Our chosen configuration for the observation
interval, and the interval of random forcing in the model, can
be considered weakly-nonlinear.

4.2 Linear Kalman filter

In a linear setting, we compute the exact forecast error co-
variance of KF-AUSE via the recursive Riccati equation,
Eq. (37), and compare it with that of the KF, for which the
filtered space is the entire model space. This illustrates the
performance of a rank deficient filter where the forecast er-
ror is treated analytically, without misestimation of the error
covariances. We compute the average eigenvalues of the fore-
cast covariance matrix for each the KF and KF-AUSE over
105 parallel forecast cycles and examine the stratification of
the uncertainty in a basis of BLVs, i.e., how strongly the co-
variance projects into each direction. Specifically, for both
the KF and KF-AUSE we compute the average projection co-
efficient of the forecast error covariance into the i-th BLV at
each forecast time,

(
Eik
)TBkEik , and average this coefficient

over k.
In Fig. 1, the averaged eigenvalues of the KF and KF-

AUSE forecast error covariance are plotted, with triangle
markers, differentiated by color. In each subplot, the KF re-
mains the same but we vary the dimension of the filtered
subspace, r , for KF-AUSE. In the top left panel of Fig. 1
the number of corrected modes is equal to n0, correspond-
ing to correcting the error in the unstable–neutral subspace.
Here, the leading eigenvalue of the forecast uncertainty of
KF-AUSE is orders of magnitude above the forecast uncer-
tainty in the KF. This should be contrasted with perfect mod-
els where, asymptotically, there can only be four non-zero
eigenvalues and, under generic conditions, the KF and EKF-
AUS will coincide (Bocquet et al., 2017). In accordance with
the results of (Grudzien et al., 2018), correcting error in the
first stable mode (r = 5) brings a substantial reduction in
forecast uncertainty (see top right Fig. 1). We see that the
forecast uncertainty also diminishes as each additional mode
is corrected, as the KF-AUSE covariance converges to that of
the KF.

It is of special interest how the projection coefficients of
the forecast error covariance relate to the dimension of the

Figure 1. Eigenvalues of the KF and KF-AUSE forecast error co-
variance plotted with triangles. Projection coefficients of the KF-
AUSE forecast error covariance plotted with crosses. Dimension of
the KF-AUSE filtered subspace is r . Note the log scale of the y axis.

filtered subspace, r . In the KF, the projection coefficients are
closely aligned with the eigenvalue profile, descending in the
order of the Lyapunov exponents, and this line is not pictured
due to the redundancy. However, in the forecast error covari-
ance of KF-AUSE, the leading uncorrected stable mode is the
dominant direction for the uncertainty among the BLVs, sys-
tematically across n0 ≤ r < n, with a projection coefficient
on the order of the leading eigenvalue. This distinguishes the
setting of additive model error from perfect models where the
projection coefficients of the forecast error covariance in the
stable BLVs will be zero asymptotically (Gurumoorthy et al.,
2017).

4.3 Discrete extended Kalman filter

In our experiments with the discrete extended Kalman filter,
we compute the analysis root mean square error (RMSE) of
each of the following: (i) the full rank extended Kalman fil-
ter (EKF), (ii) the EKF-AUS and (iii) the EKF-AUSE, for
which Eq. (37) is used to compute the estimated covariance
and rank r gain. We will study the effect of analytically re-
solving the unfiltered error as compared with the straight-
forward implementation of EKF-AUS, which will make no
correction to account for the unfiltered error in the trailing
BLVs, or its upwelling into the leading BLVs.

Recall that EKF-AUS has historically only been studied
without additive model errors – we implement EKF-AUS in
the presence of model error by computing a rank r estimated
error covariance, which includes the projection of the model
error covariance, Qk into the span of the leading BLVs in
the forecast Riccati equation, i.e.,

(
Ef
k

)TQkEf
k = Q̂ ff

k . This
corresponds to utilizing only the first line of the recursion
for B̂ ff

k , Eq. (36a), to compute the estimated forecast error
covariance of EKF-AUS. Thus, the implementation of EKF-
AUSE differs by utilizing a full rank ensemble of anomalies
to compute the complete Riccati equation, Eq. (37).
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Figure 2. Analysis RMSE of EKF-AUS plotted with triangles and
EKF-AUSE plotted with crosses, varying over the rank of the sub-
optimal gain. Horizontal lines are the observation error standard
deviation and the EKF analysis RMSE. Note the log scale of the
y axis.

We study the performance of EKF-AUS/E when the di-
mension of the filtered subspace is greater than, or equal
to, the dimension of the unstable–neutral subspace; the case
r < n0 will trivially lead to divergence (Bocquet et al., 2017).
In Fig. 2, we plot the analysis RMSE of EKF-AUS and EKF-
AUSE with triangles and crosses, respectively, while we vary
over the dimension of the filtered subspace, with the RMSE
computed over 105 analysis cycles.

To benchmark the performance of EKF-AUS/E, we plot
the observation error standard deviation and the analysis
RMSE of the standard, full rank EKF in horizontal lines –
the algorithms for EKF-AUS/E are tantamount to a change
of basis for the EKF when the filtered subspace is equal to
the full space; thus, this is the logical point of comparison.
We are interested in finding the necessary dimension of the
filtered subspace such that EKF-AUS/E has an RMSE which
(i) performs better than the observation error standard de-
viation and (ii) performs comparably to filtering the entire
space. When the RMSE of EKF-AUS/E falls below the ob-
servation error standard deviation, the filter has a forecast
performance superior to initializing observations directly in
the model; when it performs similarly to the EKF, the filter
can be considered close to optimal performance, while utiliz-
ing a suboptimal correction based on only r < n directions.

In Fig. 2, when the dimension of the filtered subspace
reaches 28, the difference between EKF-AUS/E and the full-
rank EKF becomes negligible. The RMSE of each filter is
as follows: (i) EKF is approximately 0.198; (ii) EKF-AUS,
r = 28, is approximately 0.213; and (iii) EKF-AUSE, r =
28, is approximately 0.205. The fact that EKF-AUS obtains
near optimal performance, representing the uncertainty in the
leading r = 28 BLVs while neglecting the remaining, corrob-
orates the claim of (Grudzien et al., 2018): in the presence
of model noise, the filter correction should also incorporate
weakly stable directions that can be instantaneously unsta-
ble. However, it is of particular interest that the convergence
of EKF-AUSE to the skill of the full rank EKF is substan-

Figure 3. Box plot statistics of the local Lyapunov exponents, for
Lyapunov exponents 14 through 29, over 105 realizations for the
40 dimensional L96 model. The mean (i-th Lyapunov exponent) is
plotted as a triangle with median the horizontal line. Box contains
inner two quartiles of realizations, with whiskers extending to 1.5
the inner quartile width from the third and first quartile. Outliers are
realizations outside of this range, plotted individually.

tially faster: EKF-AUSE obtains adequate filter performance
(RMSE lower than observation error standard deviation) by
correcting the error in only 16 BLVs while EKF-AUS re-
quires a correction of rank 19. For other scalings of the ma-
trix Q, multiplying Q by 0.1, 0.2, 1.5, 2, changing the obser-
vation dimension, e.g., d = 20 or d = 30 and by varying the
time between observations, e.g., δk = 0.01 or 0.5, we obtain
qualitatively similar results, that are not pictured here. The
profiles of the curves in Fig. 2 are similar across these experi-
mental configurations: the RMSE of EKF-AUSE is improved
over EKF-AUS by analytically resolving the effect of the
upwelling, and the RMSE approaches an adequate/optimal
level with a smaller dimension for the filtered space. We em-
phasize again that EKF-AUSE does not represent a compu-
tational advantage as a full rank set of perturbations is used
to describe the analytic form for the upwelling of the error.

We look at the behavior of the local Lyapunov exponents
for the L96 model to explain the convergence of EKF-AUS
to the full rank EKF. In Fig. 3 we show the box plot statistics
of the local Lyapunov exponents for exponents 14 through 28
of the L96 model. Exponent λ14 = 0, and the remaining pic-
tured exponents correspond to the leading, stable BLVs. We
emphasize that the local Lyapunov exponents of λ15 through
λ19, although they have a negative mean, are sufficiently
unstable locally that EKF-AUS diverges when it disregards
the upwelling of the error from these asymptotically stable
modes.

When the filtered subspace for EKF-AUS is of dimen-
sion 19, such that the leading unfiltered BLV corresponds
to λ20, all unfiltered Lyapunov exponents have over 75 %
of local realizations strictly stable; this corresponds to the
rank when EKF-AUS has adequate performance. Likewise,
the difference between EKF-AUS/E and the EKF is negli-
gible when the leading unfiltered BLV corresponds to λ29,
with only 1.51 % of its local realizations being non-negative.
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with

Figure 4. Analysis RMSE of EKF-AUS (y axis), correction rank
17, with multiplicative inflation plotted versus the inflation value α
(x axis). Horizontal lines are the observation error standard devia-
tion, EKF-AUSE and EKF analysis RMSE. Note the log scale of
the y axis.

These findings are consistent with the results from (Grudzien
et al., 2018): in the presence of model error, unconstrained
forecast error is strongly forced by the error in BLVs, which
are asymptotically stable, but experience strong and frequent
local instabilities.

Finally, we are interested in how analytically comput-
ing the upwelling of error from the unfiltered subspace,
as in EKF-AUSE, compares with a homogeneous, mul-
tiplicative inflation applied to the EKF-AUS algorithm.
Multiplicative scalar inflation is among the most common
approaches to mitigate for sampling and model error in
Kalman filtering methods, and it is widely used in opera-
tional environmental forecasts utilizing the EnKF. We define
Pk,

(
Eff
k

)T (
0k + Q̂ ff

k

)
Eff
k to be the estimated forecast error

of EKF-AUS, where 0k is defined in Eq. (38). The inflated
covariance PI

k is defined as PI
k =

(
Eff
k

)T (
α0k + Q̂ ff

k

)
Eff
k for

some chosen scalar α. The inflated covariance PI
k is used to

compute the reduced rank gain, as a simple way to compen-
sate for the underestimation of the forecast error when using
the recursion in Eq. (36a). Furthermore, the inflated covari-
ance is subsequently used in the recursion for the analysis
and forecast error covariances.

From the results in Fig. 2, we select the dimension of the
filtered subspace to be 17, such that EKF-AUSE has RMSE
below the observation error standard deviation while EKF-
AUS (without inflation) has diverged. In Fig. 4, we plot the
analysis RMSE of EKF-AUSE, with filtered subspace di-
mension 17, the observation error standard deviation and the
full-rank EKF analysis RMSE as in Fig. 2 as horizontal lines.
Additionally, we plot the analysis RMSE (y axis) of EKF-
AUS as a function of the inflation value (the x axis) applied
to the forecast error covariance. The inflation values, α, are
defined as the evenly spaced points in the interval [1,4] at
increments of 0.1, denoted by triangles. The RMSE is again
computed over 105 forecast cycles.

Figure 4 distinctly highlights the impact of including mul-
tiplicative inflation to EKF-AUS: the performance of EKF-
AUS with inflation quickly becomes comparable to the ana-
lytically resolved EKF-AUSE, which in this case, represents
the lowermost bound for the RMSE of EKF-AUS with ho-
mogeneous inflation. The lowest RMSE for EKF-AUS with
inflation, realized in Fig. 4, is approximately 0.322 compared
to the RMSE of EKF-AUSE, approximately 0.304. Figure 4
confirms the role of multiplicative inflation as compensating
for the upwelling of unfiltered error under weakly-nonlinear
error growth, and explains the underlying dynamical mech-
anism: multiplicative inflation brings the estimated forecast
error covariance of EKF-AUS closer to the covariance given
by EKF-AUSE.

5 Discussion: the reduced rank KF covariance and
gain augmentation

(Whitaker and Hamill, 2012) found evidence that additive in-
flation could better compensate for the effects of unresolved
model error, while multiplicative inflation is best suited to
account for sampling error, consistent with what was noted
by (Bocquet, 2011) and (Bocquet and Sakov, 2012). This hy-
pothesis is supported by our results as follows. The combi-
nation of rank deficiency of the analysis and the presence
of additive model error leads to a persistent, residual unfil-
tered uncertainty, and its resultant upwelling into the ensem-
ble span of the EnKF. The dynamical upwelling forms the
basis for a systematic underestimation of the uncertainty in
the ensemble space, as demonstrated in Fig. 2. This can be
compensated for with multiplicative inflation in the ensem-
ble span, which emulates the additional uncertainty that is
neglected in the standard, reduced rank Kalman filter recur-
sion – this effect is exhibited in Fig. 4. Figure 5 gives a con-
ceptual diagram of the number of samples (ensemble mem-
bers) needed to prevent divergence of the EnKF in different
dynamical regimes, and the effect of multiplicative inflation
on this requirement.

However, multiplicative inflation (in the ensemble span)
neglects the fundamental issue that the unfiltered error ly-
ing outside of the ensemble span can be the major driver
of the uncertainty in a reduced rank filter with model er-
ror. Figure 1 shows that when the upwelling is analytically
resolved, the largest uncertainty typically lies in the lead-
ing unfiltered BLV, even when this is an asymptotically sta-
ble mode. We provide a conceptual, two-dimensional visu-
alization of the difference between the standard (full rank)
Kalman filter forecast error covariance and the reduced rank
Kalman filter forecast error covariance in Fig. 6. Note that
the shape of the reduced rank Kalman filter forecast error co-
variance may depend strongly on the model error covariance,
Q.

Generally, unless local Lyapunov exponents in the unfil-
tered space are strongly stable and thereby rapidly dissipate
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Figure 5. Conceptual representation of the number of samples necessary to prevent divergence of the EnKF in different filtering regimes.
Dark green represents near-optimal filter performance and dark red represents filter divergence. In perfect-linear models, only n0 samples
are needed for an asymptotically optimal performance. Without inflation, in noisy linear and perfect, weakly-nonlinear regimes, near optimal
performance can be obtained by correcting error in all modes up to the moderately-stable BLVs – here nws corresponds to the number of
unstable/neutral/weakly-stable modes, while nms furthermore includes moderately-stable modes. Additional samples may be necessary to
control error growth with noisy, weakly-nonlinear evolution. Multiplicative inflation corrects for the upwelling from the uncorrected stable
modes so that near optimal performance can be obtained when the error growth in unstable/neutral/weakly-stable modes are corrected.
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Figure 6. Conceptual diagram of the shape of the exact forecast er-
ror covariance of the full rank Kalman filter and the exact reduced
rank Kalman filter. The U axis represents the span of the unstable-
neutral BLVs, where the forecast uncertainty projects most strongly
in the standard (full rank) Kalman filter. The S axis represents the
span of the stable BLVs, where the uncertainty is the largest (al-
though bounded), for a reduced rank Kalman filter that neglects cor-
rections to these modes. The comparison between the full rank and
reduced rank Kalman filter covariance corresponds to the behavior
exhibited in the curves in Fig. 1.

the unfiltered perturbations of model error, transient instabil-
ities can make the unfiltered errors large enough to prevent
useful state estimates (Grudzien et al., 2018). This is evi-
denced in Fig. 4 where neither EKF-AUSE nor EKF-AUS,
with multiplicative inflation, achieve an RMSE comparable
with the full rank EKF. For this reason, it is highly perti-
nent to explore the role of augmenting the EnKF gain with
a suboptimal correction which provides some control on the
transient error growth in the orthogonal complement to the
ensemble span. Ideally, some constraint on the unfiltered er-
ror, even if suboptimal, would further close the gap between
the RMSE of EKF-AUSE and EKF in Fig. 4.

This issue of instability forcing unfiltered error is even
more acute in practice. If an EnKF applies a correction of a
rank less than the number of unstable and neutral Lyapunov
exponents, it has been found that the filter’s estimated error
can become small while the filter permanently loses track of
the true trajectory (Ng et al., 2011). This behavior is easily
understood in terms of the filter’s failure to correct the er-
ror growth in the span of at least one of the unstable-neutral
BLVs. For large geophysical models, computational limita-
tions may prohibit the use of an ensemble of a size suffi-
cient to even span the unstable–neutral subspace, let alone
the weakly-stable modes which exhibit transient instabilities.
In this case, the unfiltered error in the unstable–neutral modes
can grow, possibly exponentially, and the filter may experi-
ence catastrophic filter divergence, due to the failure of the
ensemble-based gain to correct the error in the span of all the
unstable–neutral BLVs (Penny, 2017).

Hybridization of the ensemble-based gain and additive in-
flation of the ensemble-based covariance are two historical
methods for compensating for the inability to correct for in-
stabilities outside of the ensemble span. In hybridization, the
ensemble-based Kalman estimator is augmented by a static,
climatologically based estimator – using a background cli-
matological covariance, the rank of the estimator used for
the analysis update is increased, and has the effect of apply-
ing a correction to additional modes outside of the ensemble
span (Hamill and Snyder, 2000). Likewise, the use of addi-
tive, random perturbations to the ensemble-based covariance
has been shown to prevent filter divergence by rectifying the
rank deficiency of the covariance, which in turn rectifies the
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rank deficiency of the ensemble-based gain (Corazza et al.,
2007).

However, there is considerable difficulty in mathemat-
ically analyzing the exact recursive form for a subopti-
mal augmentation of the ensemble-based covariance and
ensemble-based Kalman gain. Although the dynamical up-
welling of errors is a generic dynamical feature of these sys-
tems, the one-way dependence of the error in the leading
BLVs on the trailing BLVs does not persist, due to the in-
troduction of estimation errors into the trailing modes via the
augmented gain. Moreover, the surrogate covariance used to
constrain error in the trailing BLVs will not generally agree
with the exact error covariance in the trailing BLVs, making
a closed form more difficult to derive. In this setting, it may
be more appropriate to derive heuristic methods which at-
tempt to (i) provide some corrections in the trailing BLVs, al-
beit suboptimal, (ii) describe the dynamical upwelling of the
residual error from the trailing BLVs into the leading BLVs
and (iii) describe the cross covariances, between the leading
and trailing BLVs, with respect to the corrections.

Multiplicative inflation may be used in this case to account
for misestimation of forecast errors resulting from these ap-
proximations, but this misestimation can also be accounted
for using less ad hoc approaches including parameterizing
this error with hyperpriors (Bocquet et al., 2015). We argue
that the hyperprior in the EnKF-N can, in principle, also be
selected to take the dynamical upwelling exhibited by KF-
AUSE into account. Recently, an extension of the EnKF-
N to the presence of model error has utilized an adaptive
multiplicative inflation term to compensate for model errors
(Raanes et al., 2018), but we suggest that an alternative ap-
proach including gain augmentation (Bocquet et al., 2015,
suggested in Sect. 7), and a hyperprior parameterizing the
resulting error distribution, including dynamical upwelling,
would be a logical extension for future research.

6 Conclusions

Assimilation in the unstable subspace (AUS) has provided a
useful conceptual framework for understanding the dynam-
ical properties of data assimilation cycling in perfect mod-
els. Both numerical and mathematical results have confirmed
the underlying hypothesis of Anna Trevisan: in the setting
of perfect, chaotic models, the evolution of uncertainty is
confined to a space characterized by non-negative Lyapunov
exponents, typically of much lower dimension than the full
model state space (Palatella et al., 2013). In ensemble data
assimilation, we see that the asymptotic characteristics of the
anomalies exhibit these properties, which can be exploited
to reduce the computational burden of the assimilation cy-
cle (Bocquet and Carrassi, 2017). This phenomena has re-
cently also been utilized to reduce the numerical cost of syn-
chronization in dynamical shadowing based data assimilation
methods (de Leeuw et al., 2017). Furthermore, the work of

(Palatella and Grasso, 2018) proposed an extension of the
EKF-AUS-NL algorithm to account for parametric model er-
rors.

This paper now demonstrates that the framework of AUS
can also be used to understand the underlying mechanisms
for the evolution of uncertainty for ensemble-based filters
in chaotic models with additive errors. Due to the high di-
mensional models, and unresolved physical processes, this
circumstance is ubiquitous in high-dimensional geoscience
applications where standard EnKFs are extremely rank defi-
cient. Utilizing the Lyapunov filtration for the backward vec-
tors, we have shown how unfiltered error, outside of the span
of the anomalies, is transmitted by the dynamics into the fil-
tered subspace. In perfect models, or when stability in the un-
filtered subspace is sufficiently strong, this effect can be ne-
glected due to the rapid dissipation of unfiltered errors. How-
ever, (Grudzien et al., 2018) demonstrate how weakly stable
modes of high variance can go through periods of transient
instability, exciting unfiltered error. The dynamic upwelling
of unfiltered error, characterized by the term (32c) in the fore-
cast error recursion, and by the terms (36b)–(36d) in the fil-
tered error covariance, acts as a linear effect on filters with
small ensemble sizes. Under weakly-nonlinear error growth,
the span of the anomalies projects strongly onto the span of
the leading BLVs – therefore, the Riccati equation, Eq. (37),
highlights an important, and previously unexplained, mech-
anism driving the systematic underestimation of the forecast
error in ensemble-based Kalman filters. This mechanism also
explains one reason why, in certain scenarios, covariance in-
flation has been successful in preventing filter divergence.

The role of inflation we describe differs from previous
studies, e.g., the work of (Palatella and Trevisan, 2015),
which studied the nonlinear interactions of error in perfect
models. The phenomena of dynamical upwelling is also in-
dependent of the misestimation of error due to a finite sample
size representing the error statistics (Bocquet et al., 2015).
Rather, we exhibit an effect which can contribute to filter di-
vergence over short timescales in ensemble data assimilation
when the error dynamics are linear or weakly-nonlinear, and
uncertainty is forced by additive model errors. This persis-
tent dynamical upwelling of errors from the unfiltered space
into the ensemble subspace is a phenomena which we prove
analytically in linear models, and demonstrate numerically to
be a valid approximation of weakly-nonlinear error growth in
nonlinear models for reduced rank extended Kalman filters.

If we treat the standard EnKF as a Monte Carlo estimate
of the error statistics characteristic of the KF-AUSE covari-
ance, Eq. (37), the dynamical upwelling explains a signifi-
cant role for covariance inflation in the EnKF. However, our
results also suggest that covariance inflation may potentially
be obviated by (i) sufficiently increasing the ensemble size to
include asymptotically stable modes that produce transient
instabilities, (ii) increasing the rank of the analysis update
itself, with a hybridized gain, (iii) parameterizing the up-
welling of error via a hyperprior which targets the evolution
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of forecast errors, or (iv) some combination of the above.
The necessary ensemble size to mitigate the effect of tran-
sient instabilities can, in principle, be studied empirically by
examining the local variability of the exponents as in Fig. 3,
and their forcing on the evolution of perturbations as in the
numerical study performed by (Grudzien et al., 2018) in their
Sect. 5. However, computational limits on ensemble sizes in
large geophysical models and the non-stationarity of the sys-
tem’s dynamics can limit the effectiveness of this approach.
Thus, our understanding of the dynamics of error propaga-
tion opens new opportunities in algorithm design, where a
combination of the above techniques may be used directly to
ameliorate the effects of dynamical upwelling, and produce
more robust ensemble-based filters.

Where there is dynamical chaos, AUS will continue to be a
robust framework for the theory of data assimilation in phys-
ical models. Understanding the dynamical mechanisms that
govern the evolution of error in fully nonlinear data assimi-
lation, e.g., the unstable–neutral manifolds of a (stochastic)
chaotic attractor, will be the subject of future research and
may be considered the logical extension of the framework
put forward by Anna Trevisan – her insight to the underly-
ing processes in assimilation will continue to provide inspira-
tion to both developers and practitioners of data assimilation
methods.
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