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Abstract
We derive the stochastic version of the Magnus expansion for linear systems of stochastic
differential equations (SDEs). The main novelty with respect to the related literature is that
we consider SDEs in the Itô sense, with progressively measurable coefficients, for which an
explicit Itô-Stratonovich conversion is not available. We prove convergence of the Magnus
expansion up to a stopping time τ and provide a novel asymptotic estimate of the cumulative
distribution function of τ . As an application, we propose a new method for the numerical
solution of stochastic partial differential equations (SPDEs) based on spatial discretization
and application of the stochastic Magnus expansion. A notable feature of the method is that
it is fully parallelizable. We also present numerical tests in order to asses the accuracy of the
numerical schemes.

Keywords Magnus expansion · Matrix-valued SDE · Stochastic linear systems · Numerical
solution of SPDE

1 Introduction

The Magnus expansion (hereafter referred to as ME) is a classical tool to solve non-
autonomous linear differential equations. Generalizations of the ME to Stratonovich SDEs
are well-known and were proposed by several authors (see for instance [2,3,5,32] and the
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references given in Sect. 1.2). In this paperwe derive, for the first time to the best of our knowl-
edge, the ME for Itô SDEs under general assumptions which do not guarantee an explicit
Itô-Stratonovich conversion, namely progressively measurable stochastic coefficients. Our
main results are the convergence of the stochastic ME up to a stopping time τ and a novel
asymptotic estimate of the cumulative distribution function of τ . The latter improves some
previous estimates obtained in purely Markovian settings and is based on an application
of Morrey’s inequality. We also explore possible applications to the numerical solution of
stochastic partial differential equations (SPDEs).

Let d, q ∈ N and consider the linear matrix-valued Itô SDE{
d Xt = Bt Xt dt + A( j)

t Xt dW j
t ,

X0 = Id ,
(1)

with A(1), . . . , A(q), B being real (d ×d)-matrix-valued bounded stochastic processes, Id the
identity (d×d)-matrix and W = (W 1, . . . , W q) a q-dimensional standard Brownianmotion.
In (1), as well as anywhere throughout the paper, we use Einstein summation convention to
imply summation of terms containing W j , over the index j from 1 to q .

In the deterministic case, i.e. A( j) ≡ 0, j = 1, . . . , q , (1) reduces to the matrix-valued
ODE {

d
dt Xt = Bt Xt ,

X0 = Id ,
(2)

which admits an explicit solution, in terms of matrix exponential, in the time-homoge-neous
case. Namely, if Bt ≡ B, the unique solution to (2) reads as

Xt = et B , t ≥ 0.

However, in the non-autonomous case, the ODE (2) does not admit an explicit solution. In

particular, if Bt is not constant, the solution Xt typically differs from e
∫ t
0 Bs ds . This is due to

the fact that, in general, Bt and Bs do not commute for t �= s. As it turns out, a representation
of the solution in terms of a matrix exponential is still possible, at least for short times, i.e.

Xt = eYt , (3)

for t ≥ 0 suitably small and Yt real valued (d×d)-matrix.Moreover, Y admits a semi-explicit
expansion as a series of iterated integrals involving nested Lie commutators of the function
B at different times. Such representation is known as Magnus expansion [23] and its first
terms read as

Yt =
∫ t

0
Bsds + 1

2

∫ t

0
ds
∫ s

0
[Bs, Bu]du

+ 1

6

∫ t

0
ds
∫ s

0
du
∫ u

0

([
Bs, [Bu, Br ]

]+ [Br , [Bu, Bs]
])

dr + · · · , (4)

where [A, B] := AB−B A denotes the Lie commutator. TheMEhas awide range of physical
applications and the related literature has grown increasingly over the last decades (see, for
instance, the excellent survey paper [3] and the references given therein).

In the stochastic case, when j = 1, Bt ≡ 0 and A is constant, i.e. At (ω) ≡ A, the Itô
equation (1) reduces to {

d Xt = AXt dWt ,

X0 = Id ,
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whose explicit solution can be easily proved to be of the form (3), with

Yt = −1

2
A2t + AWt , t ≥ 0.

In general, when the matrices A( j)
t , A( j)

s , Bt , Bs with t �= s do not commute, an explicit
solution to (1) is not known. For instance, in the non-commutative case, neither the equation{

d Xt = Bdt + AXt dWt ,

X0 = Id ,
(5)

nor the equation {
d Xt = At Xt dWt ,

X0 = Id ,

admit an explicit solution, save some particular cases (see for instance the example in
Sect. 3.3). Among the approximation tools that were developed in the literature to solve
stochastic differential equations, including (1), some Magnus-type expansions that extend
(3)–(4) were derived in different contexts. We now go on to describe our contribution to this
stream of literature, and then to firm our results within the existing ones. In particular, a
detailed comparison with existing stochastic MEs previously derived by other authors will
be provided below, in the last subsection.

1.1 Description of theMain Results

In this paper we derive a Magnus-type representation formula for the solution to the Itô SDE
(1), which is (3) together with

Yt = Y (1)
t + Y (2)

t + Y (3)
t + · · · t ∈ [0, τ ], (6)

for τ suitably small, strictly positive stopping time. In analogy with the deterministic ME,
the general term Y (n) can be expressed recursively, and contains iterated stochastic integrals
of nested Lie commutators of the processes B, A( j) at different times.

In the case j = 1, the first two terms of the expansion read as

Y (1)
t =

∫ t

0
Bsds +

∫ t

0
AsdWs,

Y (2)
t = 1

2

∫ t

0

([
Bs,

∫ s

0
Budu +

∫ s

0
AudWu

]
− A2

s

)
ds

+ 1

2

∫ t

0

[
As,

∫ s

0
Budu +

∫ s

0
AudWu

]
dWs .

For example, in the case of SDE (5) the latter can be reduced to

Y (1)
t = Bt + AWt ,

Y (2)
t = [A, B]

(
1

2
tWt −

∫ t

0
Wsds

)
− 1

2
A2t .

Notice that the last expressions do not contain stochastic integrals. In fact, in the general
autonomous case, and if j = 1, all the iterated stochastic integrals in Y (n) can be solved for
any n (see Corollary 5.2.4 in [16]). Therefore, in this case the expansion becomes numerically
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computable by only approximatingLebesgue integrals, as opposed to stochasticRunge–Kutta
schemes, which typically require the numerical approximation of stochastic integrals. As we
shall see in the numerical tests in Sect. 3, this feature allows us to choose a sparser time-grid
in order to save computation time. This feature is also preserved in some non-autonomous
cases as illustrated in Sect. 3.

A notable feature of the expansion is the possibility of parallelizing the computation of
its terms. In contrast to standard iterative methods, which require the solution at a given
time-step in order to go through the next step in the iteration, the discretization of the inte-
grals in the terms Y (n) can be done simultaneously for all the time steps. Conclusively, this
entails the possibility of parallelizing over all times in the time-grid and makes the numerical
implementation of the stochastic ME perfectly GPU applicable.

As it often happens when deriving convergent (either asymptotically or absolutely) expan-
sions, a formal derivation precedes the rigorous result: that is what we do for (3)–(6) in
Sect. 2.2. Just like the derivation of the deterministic ME relies on the possibility of writing
the logarithm Y as the solution to an ODE, in the stochastic case the first step consists in
representing Y as the solution to an SDE. Such representation of Y will be more involved
compared to the deterministic case because of the presence of the second order derivatives of
the exponential map coming from the application of Itô’s formula. This is a distinctive feature
of our derivation with respect to other analogous results in the Stratonovich setting where
the standard chain-rule applies. With the SDE representation for Y at hand, the expansion
(6) stems, like in the deterministic case, from applying a Dyson-type perturbation procedure
to the SDE solved by Y .

In the deterministic case, the convergence of the ME (4) to the exact logarithm of the
solution to (2)was studied by several authors, who proved progressively sharper lower bounds
on the maximum t̄ such that the convergence to the exact solution is assured for any t ∈ [0, t̄].
At the best of our knowledge, the sharpest estimate was given in [26], namely

t̄ ≥ sup

{
t ≥ 0 |

∫ t

0
‖Bs‖ ds < π

}
, (7)

where ‖Bs‖ denotes the spectral norm. Note that the existence of a real logarithm of Xt is an
issue that underlies the study of the convergence of the ME. We state here our main result,
proved in Sect. 2.3, which dealswith thesematters in the stochastic case,when the coefficients
B, A( j) in (1) are progressively measurable processes. We defer a comparison with previous
convergence results for stochasticMagnus-type expansions to the next subsection.We denote
by M d×d the space of the (d × d)-matrices with real entries. Also, for an M d×d -valued
stochastic process M = (Mt )t∈[0,T ], we set ‖M‖T := ‖‖M‖F‖L∞([0,T ]×Ω), where ‖·‖F

denotes the Frobenius (Euclidean entry-wise) norm.

Theorem 1 Let A(1), . . . , A(q) and B be bounded, progressively measurable, M d×d -valued
processes defined on a filtered probability space (Ω,F , P, (Ft )t≥0) equipped with a
standard q-dimensional Brownian motion W = (W 1, . . . , W q). For T > 0 let also
X = (Xt )t∈[0,T ] be the unique strong solution to (1) (see Lemma 5). There exists a strictly
positive stopping time τ ≤ T such that:

(i) Xt has a real logarithm Yt ∈ M d×d up to time τ , i.e.

Xt = eYt , 0 ≤ t < τ ; (8)
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(ii) the following representation holds P-almost surely:

Yt =
∞∑

n=0

Y (n)
t , 0 ≤ t < τ, (9)

where Y (n) is the nth term in the stochastic ME as defined in (27) and (31)–(33);
(iii) there exists a positive constant C, only dependent on ‖A(1)‖T , . . . , ‖A(q)‖T , ‖B‖T , T

and d, such that

P(τ ≤ t) ≤ Ct, t ∈ [0, T ]. (10)

The proof of (i) relies on the continuity of X together with a standard representation for
the matrix logarithm. The key point in the proof of (ii) consists in showing that Xε,δ

t and its
logarithm Y ε,δ

t are holomorphic as functions of (ε, δ), where Xε,δ
t represents the solution of

(1) when A( j) and B are replaced by εA( j) and δB, respectively. Once this is established, the
representation (9) follows from observing that, by construction, the series in (9) is exactly
the formal power series of Y ε,δ

t at (ε, δ) = (1, 1). To prove the holomorphicity of Xε,δ
t

we follow the same approach typically adopted to prove regularity properties of stochastic
flows. Namely, in Lemma 5 we state some maximal L p and Hölder estimates (with respect
to the parameters) for solutions to SDEs with random coefficients and combine them with
the Kolmogorov continuity theorem. Finally, the proof of (iii) owes one more time to the L p

estimates in Lemma 5 and to a Sobolev embedding theorem to obtain pointwise estimates
w.r.t. the parameters (ε, δ) above.

Theorem 1 has been used in the recent paper [34] (cf. Lemma 1) where a semi-linear non-
commuative Itô-SDEs is studied and Euler, Milstein and derivative-free numerical schemes
are developed, with a convergence analysis for those schemes.

In the last part of the paper we perform numerical tests with the Magnus expansion.
In particular, Sect. 3.2 is devoted to the application of the stochastic ME to the numerical
solution of parabolic stochastic partial differential equations (SPDEs). The idea is to discretize
the SPDE only in space and then approximate the resulting linear matrix-valued SDE by
truncating the series in (8)–(9). The goal here is to propose the application of stochastic
MEs as novel approximation tools for SPDEs; we study the error of this approximating
procedure only numerically, in a case where an explicit benchmark is available, and we defer
the theoretical error analysis to further studies.

1.2 Review of the Literature and Comparison

Stochastic generalizations of the MEs were proposed by several authors. To the best of our
knowledge, we recognize mainly two streams of research.

The beginning of the first one can be traced back to the work [2], where the author derived
exponential stochastic Taylor expansions (see also [1,16] for general stochastic Taylor series)
of the solution of a system of Stratonovich SDEs with values on a manifold M , i.e.{

d Xt = B(Xt )dt + A( j)(Xt ) ◦ dW j
t ,

X0 = x0,
(11)

with B, A( j) being smooth, deterministic and autonomous vector fields onM . The stochastic
flow of (11) is represented in terms of the exponential map of a stochastic vector field Y , i.e.

Xt (x0) = exp Yt (x0),

123



   56 Page 6 of 31 Journal of Scientific Computing            (2021) 89:56 

the vector field Y being expressed by an infinite series of iterated stochastic integrals multi-
plying nested commutators of the vector fields B, A( j). This representation is proved up to
a strictly positive stopping time and extends some previous results in [11,31] for the com-
mutative case and in [13,19,33] for the nilpotent case. Refinements of [2] were proved in [6]
making the expansion of Y more explicit. Later, numerical methods based on these repre-
sentations were proposed in [7] and [8]. Such techniques, known as Castell-Gaines methods,
require the approximation of the solution to a time-dependent ODE besides the approxima-
tion of iterated stochastic integrals. Truncating the expansion of Y at a specified order, these
schemes turn out to be asymptotically efficient in the sense of Newton [28].

If M = M d×d and the vector fields are linear, then (11) reduces to the Stratono-vich
version of (1) with B, A( j) constant matrices, and the representation of X given in [2] can
be seen as a stochastic ME, in that the exponential map of Y reduces to the multiplication
by a matrix exponential. In fact, in this case the expansion in [2] becomes explicit in terms
of iterated stochastic integrals, and can be shown to coincide with the expansion in this
paper by applying Itô-Stratonovich conversion formula. In the very interesting paper [22],
the authors study several computational aspects of numerical schemes stemming from the
truncatedME, in which the iterated stochastic integrals are approximated by their conditional
expectation. Besides showing that asymptotic efficiency holds for an arbitrary number of
Brownian components, they compare the theoretical accuracy with the one of analogous
schemes based on Dyson (or Neumann) series, which are obtained by applying stochastic
Taylor expansion directly on the equation. They find that, although the theoretical accuracy
of Magnus schemes is not superior, Magnus-based approximations seem more accurate than
their Dyson counterparts in practice. They also discuss the computational cost deriving from
approximating the iterated stochastic integrals and the matrix exponentiation, in relation to
different features of the problem such as the dimension and the number of Brownianmotions,
as well as to the order of the numerical scheme.

The second stream of literature is explicitly aimed at extending the originalMagnus results
to stochastic settings and can be traced back to [5] where the ME is derived via formal argu-
ments for a linear system of Stratonovich SDEswith deterministic coefficients. Clearly, in the
autonomous case such expansion coincides with the one obtained by Ben Arous [2], whereas
in the non-autonomous case, B ≡ 0 and j = 1, it is formally equivalent to the deterministic
ME (4) with all the Lebesgue integrals replaced by Stratonovich ones. The authors of [5]
do not address the convergence of the ME, but rather study computational aspects of the
resulting approximation, in particular in comparison with Runge-Kutta stochastic schemes.
The authors of [24] consider the Ito SDE (1) with constant coefficients, and propose to
resolve via Euler method the SDE (25) for the logarithm of the solution. In [32] the ME for
the Stratonovich version of (1) with deterministic coefficients is applied to solve non-linear
SDEs; however, the error analysis of the truncated expansion seems flawed, since the fact
that the Magnus series converges only up to a positive stopping time is overlooked. In [27],
a general procedure for designing higher strong order methods for Itô SDEs on matrix Lie
groups is outlined.

Wenowgoon to discuss the contribution of this paperwith respect to the existing literature.
In the first place, Theorem 1 on the convergence of the ME requires very weak conditions on
the coefficients, which are stochastic processes satisfying the sole assumption of progressive
measurability. This is a novel aspect compared to the results in [2,6], which surely cover a
wider class of SDEs, but under the assumption of time-independent deterministic coefficients.
We point out that this feature is also relevant in light of the fact that our result is stated for Itô
SDEs as opposed to Stratonovich ones. Indeed, while this difference might appear as minor
in the Markovian case, where a simple conversion formula exists (cf. [10,21]), it becomes
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substantial in the case of progressively measurable coefficients. We also point out that, even
in the Markovian non-autonomous case, convergence issues were not discussed in [5,22].

Another novel aspect of our result concerns the estimate (10) for the cumulative distribution
function of the stopping time τ up to which theMagnus series converges to the real logarithm
of the solution: this kind of estimate was unknown even in the autonomous case. Theorem 11
in [2] (see also [6]) provides an asymptotic estimate for the truncation error of the logarithm,
which in the linear case studied in this paper would read as

Yt =
N∑

n=1

Y (n)
t + t

N+1
2 Rt , t < T ,

with R bounded in probability. Although this type of result holds for the general SDE (11), it
is weaker than Theorem 1 in the linear case. In fact, it can be obtained by (10) together with

the standard estimate
∥∥∥sup0≤s≤t ‖Y (n)

s ‖F

∥∥∥
L2(Ω)

≤ Ct
N+1
2 , but not the other way around.

A rigorous error analysis of the ME is left for future research, as well as applications to
non-linear SDEs (see [32] for a recent attempt in this direction).

The rest of the paper is structured as follows. In Sect. 2 we derive the ME and prove
Theorem 1. In particular, Sect. 2.1 contains the key Lemma 1 with a representations for the
first and second order differentials through which the terms Y (n) in (8)–(9) will be defined,
and some preliminary results that will be used to derive the expansion. Section 2.2 contains
a formal derivation of (8)–(9). Section 2.3 is entirely devoted to the proof of Theorem 1.

In Sect. 3 we first introduce a numerical test for an SDE with constant, non-commuting
coefficients. The formulas for the first three orders of the ME in this test will also be used
in in Sect. 3.2, where we present the application of the ME to the numerical solution of
parabolic SPDEs. In particular, in Sect. 3.2.1 we recall some general facts about stochastic
Cauchy problems, in Sect. 3.2.2 we introduce the finite-difference–Magnus approximation
scheme and we check the effectiveness of the proposed approach through numerical tests.
Finally, we provide an additional numerical test to assess the accuracy of the ME in the case
of time-dependent coefficients.

2 Itô-Stochastic ME

In this section we define the terms in the expansion (9) and prove Theorem 1.

2.1 Preliminaries

LetM d×d be the vector space of (d × d) real-valued matrices. For the readers’ convenience
we recall the following notations. Throughout the paper we denote by [·, ·] the standard Lie
commutator, i.e.

[M, N ] := M N − N M, M, N ∈ M d×d ,

and by ‖·‖ the spectral norm onM d×d . Also, we denote byβk , k ∈ N0, the Bernoulli numbers
defined as the derivatives of the function x 
→ x/(ex − 1) computed at x = 0. For sake of
convenience we report the first three Bernoulli numbers: β0 = 1, β1 = − 1

2 , β2 = 1
6 . Note

also that β2m+1 = 0 for any m ∈ N.
We now define the operators that we will use in the sequel. For a fixed Σ ∈ M d×d , we

let:
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• ad j
Σ : M d×d → M d×d , for j ∈ N0, be the linear operators defined as

ad0Σ(M) := M,

ad j
Σ(M) :=

[
Σ, ad j−1

Σ (M)
]
, j ∈ N.

To ease notation we also set adΣ := ad1Σ ;
• eadΣ : M d×d → M d×d be the linear operator defined as

eadΣ (M) :=
∞∑

n=0

1

n!ad
n
Σ(M) = eΣ Me−Σ, (12)

where eΣ :=∑∞
j=0

Σ j

j ! is the standard matrix exponential;

• LΣ : M d×d → M d×d be the linear operator defined as

LΣ(M) :=
∫ 1

0
eadτΣ (M)dτ =

∞∑
n=0

1

(n + 1)!ad
n
Σ(M); (13)

• QΣ : M d×d × M d×d → M d×d be the bi-linear operator defined as

QΣ(M, N ) := LΣ(M)LΣ(N ) +
∫ 1

0
τ
[
LτΣ(N ), eadτΣ (M)

]
dτ (14)

=
∞∑

n=0

∞∑
m=0

adn
Σ(M)

(n + 1)!
adm

Σ(N )

(m + 1)! +
∞∑

n=0

∞∑
m=0

[
adn

Σ(N ), adm
Σ(M)

]
(n + m + 2)(n + 1)!m! . (15)

In the next lemma we provide explicit expressions for the first and second order differen-
tials of the exponential map M d×d � M 
→ eM . We recall that this map is smooth and in
particular, it is continuously twice differentiable.

Lemma 1 For any Σ ∈ M d×d , the first and the second order differentials at Σ of the
exponential map M d×d � M 
→ eM are given by

M 
→ LΣ(M) eΣ = eΣ L−Σ(M), M ∈ M d×d ,

(M, N ) 
→ QΣ(M, N ) eΣ, M, N ∈ M d×d ,
(16)

whereLΣ andQΣ are the linear and (symmetric) bi-linear operators as defined in (13)–(14).

We point out that this result, though very basic, is novel and of independent interest (for
instance it was recently employed in [14]).

Proof The first part of the statement, concerning the first order differential, is a classical
result; its proof can be found in [3, Lemma 2] among other references.

We prove the second part. Fix M ∈ M d×d and denote by ∂M eΣ the first order directional
derivative of eΣ w.r.t. M , i.e.

∂M eΣ := d

dt
eΣ+t M

∣∣∣
t=0

.

By the first part, we have

∂M eΣ = LΣ(M) eΣ, Σ ∈ M d×d .
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We now show that, for any M, N ∈ M d×d , the second order directional derivative

∂N ,M eΣ := d

dt
∂M eΣ+t N

∣∣∣
t=0

is given by

∂N ,M eΣ = QΣ(N , M) eΣ, Σ ∈ M d×d . (17)

We have

d

dt
∂M eΣ+t N = d

dt

(
LΣ+t N (M) eΣ+t N

)
= LΣ+t N (M)LΣ+t N (N ) eΣ+t N +

( d

dt
LΣ+t N (M)

)
eΣ+t N . (18)

We use the definition (13) and exchange the differentiation and integration signs to obtain

d

dt
LΣ+t N (M) =

∫ 1

0

d

dt
eadτ(Σ+t N ) (M)dτ

(by(12))

=
∫ 1

0

d

dt

(
eτ(Σ+t N )Me−τ(Σ+t N )

)
dτ

=
∫ 1

0

(
d

dt
eτ(Σ+t N )

)
M e−τ(Σ+t N )dτ +

∫ 1

0
eτ(Σ+t N ) M

d

dt
e−τ(Σ+t N )dτ

(by employing the two expressions in (16) for the first-order differential)

=
∫ 1

0
τLτ(Σ+t N )(N ) eτ(Σ+t N ) M e−τ(Σ+t N )dτ

−
∫ 1

0
τeτ(Σ+t N ) M e−τ(Σ+t N ) Lτ(Σ+t N )(N )dτ

=
∫ 1

0
τ
[
Lτ(Σ+t N )(N ), eadτ(Σ+t N ) (M)

]
dτ .

This, together with (18), proves (17).
To conclude, we prove equality (15). It is enough to observe that∫ 1

0
τ LτΣ(N ) eadτΣ (M)dτ =

∫ 1

0
τ

∞∑
n=0

∞∑
m=0

adn
τΣ(N )

(n + 1)!
adm

τΣ(M)

m! dτ

=
∫ 1

0

∞∑
n=0

∞∑
m=0

adn
Σ(N )

(n + 1)!
adm

Σ(M)

m! τ n+m+1dτ

=
∞∑

n=0

∞∑
m=0

adn
Σ(N )adm

Σ(M)

(n + m + 2)(n + 1)!m! .

�
Proposition 1 (Itô formula) Let Y be an M d×d -valued Itô process of the form

dYt = μt dt + σ
j

t dW j
t . (19)
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Then we have

deYt =
(
LYt (μt ) + 1

2

q∑
j=1

QYt

(
σ

j
t , σ

j
t
))

eYt dt + LYt

(
σ

j
t
)

eYt dW j
t .

Proof The statement follows from the multi-dimensional Itô formula (see, for instance, [29])
combined with Lemma 1 and applied to the exponential process eYt . �
We also have the following inversion formula for the operator LΣ .

Lemma 2 (Baker, 1905) Let Σ ∈ M d×d . The operator LΣ is invertible if and only if the
eigenvalues of the linear operator adΣ are different from 2mπ , m ∈ Z \ {0}. Furthermore,
if ‖Σ‖ < π , then

L −1
Σ (M) =

∞∑
k=0

βk

k! adk
Σ(M), M ∈ M d×d . (20)

For a proof to Lemma 2 we refer the reader to [3].

2.2 Formal Derivation

In this section we perform formal computations to derive the terms Y (n) appearing in the ME
(9). Although such computations are heuristic at this stage, they are meant to provide the
reader with an intuitive understanding of the principles that underlie the expansion procedure.
Their validity will be proved a fortiori, in Sect. 2.3, in order to prove Theorem 1.

Let (Ω,F , P, (Ft )t≥0) be a filtered probability space. Assume that, for any ε, δ ∈ R,
the process Xε,δ = (Xε,δ

t
)

t≥0 solves the Itô SDE{
d Xε,δ

t = δBt Xε,δ
t dt + εA( j)

t Xε,δ
t dW j

t ,

Xε,δ
0 = Id ,

(21)

and that it admits the exponential representation

Xε,δ
t = eY ε,δ

t (22)

with Y ε,δ being an M d×d -valued Itô process. Clearly, if (ε, δ) = (1, 1), then (21)–(22)
reduce to (1)–(3). Assume now that Y ε,δ is of the form (19). Then, Proposition 1 yields

εA( j)
t = LY ε,δ

t

(
σ

j
t
)
, j = 1, . . . , q, (23)

δBt = LY ε,δ
t

(μt ) + 1

2

q∑
j=1

QY ε,δ
t

(
σ

j
t , σ

j
t
)
. (24)

Inverting now (23)–(24), in accord with (20), one obtains

σ
j

t = L −1
Y ε,δ

t

(
εA( j)

t
) = ε

∞∑
k=0

βk

k! ad
k
Y ε,δ

t

(
A( j)

t
)
, j = 1, . . . , q,

μt = L −1
Y ε,δ

t

(
δBt − 1

2

q∑
j=1

QY ε,δ
t

(
σ

j
t , σ

j
t
))
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=
∞∑

k=0

βk

k! ad
k
Y ε,δ

t

(
δBt − 1

2

q∑
j=1

∞∑
n=0

∞∑
m=0

(adn
Y ε,δ

t

(
σ

j
t
)

(n + 1)!
adm

Y ε,δ
t

(
σ

j
t
)

(m + 1)!

+
[
adn

Y ε,δ
t

(
σ

j
t
)
, adm

Y ε,δ
t

(
σ

j
t
)]

(n + m + 2)(n + 1)!m!
))

.

Equivalently, Y ε,δ solves the Itô SDE{
dY ε,δ

t = με,δ
(
t, Y ε,δ

t
)
dt + σε

j

(
t, Y ε,δ

t
)
dW j

t ,

Y ε,δ
0 = 0,

(25)

with

σε
j (t, ·) = ε

∞∑
n=0

βn

n! ad
n·
(

A( j)
t
)
, j = 1, . . . , d,

με,δ(t, ·) =
∞∑

n=0

βn

n! ad
n·
(

δBt − 1

2

q∑
j=1

Q·
(
σε

j (t, ·), σ ε
j (t, ·)

))
.

We now assume that Y ε,δ admits the representation

Y ε,δ
t =

∞∑
n=0

n∑
r=0

Y (r ,n−r)
t εr δn−r , (26)

for a certain family (Y (r ,n−r))n,r∈N0 of stochastic processes. In particular, setting (ε, δ) =
(1, 1), (26) would yield

Yt =
∞∑

n=0

Y (n)
t with Y (n)

t :=
n∑

r=0

Y (r ,n−r)
t . (27)

Remark 1 Note that it is possible to re-order the double series
∑∞

n=0
∑n

r=0 Y (r ,n−r)
t according

to any arbitrary choice, for the latter will be proved to be absolutely convergent. The above
choice for Y (n) contains all the terms of equal order by weighing ε and δ in the same way.
A different choice, which respects the probabilistic relation

√
Δt ≈ ΔWt , corresponds to

weighing δ as ε2. This would lead to setting

Y (n)
t :=

� n
2 �∑

r=0

Y (n−2r ,r)
t

in (27).

Remark 2 Observe that, if the function (ε, δ) 
→ Y ε,δ
0 is assumed to be continuous P-almost

surely, then the initial condition in (25) implies

Y (i, j)
0 = 0 P-a.s., i, j ∈ N0,

and thus

Y (n)
0 = 0 P-a.s., n ∈ N0.
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We now plug (26) into (25) and collect all terms of equal order in ε and δ. Up to order 2 we
obtain

ε0δ0 : Y (0,0)
t = 0, (28)

ε1δ0 : Y (1,0)
t =

∫ t

0
A( j)

s dW j
s , (29)

ε0δ1 : Y (0,1)
t =

∫ t

0
Bsds,

ε2δ0 : Y (2,0)
t = −1

2

∫ t

0

(
A( j)

s
)2

ds + 1

2

∫ t

0

[
A( j)

s ,

∫ s

0
A(i)

r dW i
r

]
dW j

s ,

ε1δ1 : Y (1,1)
t = 1

2

∫ t

0

[
Bs,

∫ s

0
A( j)

r dW j
r

]
ds + 1

2

∫ t

0

[
A( j)

s ,

∫ s

0
Br dr

]
dW j

s ,

ε0δ2 : Y (0,2)
t = 1

2

∫ t

0

[
Bs,

∫ s

0
Br dr

]
ds, (30)

for any t ≥ 0, where we used, one more time, Einstein summation convention to imply
summation over the indexes i, j and Remark 2 to set all the initial conditions equal to zero.
Proceeding by induction, one can obtain a recursive representation for the general term
Y (r ,n−r) in (26), namely:

Y (r ,n−r)
t =

∫ t

0
μr ,n−r

s ds +
∫ t

0
σ

r ,n−r , j
s dW j

s , n ∈ N0, r = 0, . . . , n, (31)

where the terms σ r ,n−r , j , μr ,n−r are defined recursively as

σ
r ,n−r , j
s :=

n−1∑
i=0

βi

i ! Sr−1,n−r ,i
s

(
A( j)), (32)

μr ,n−r
s :=

n−1∑
i=0

βi

i ! Sr ,n−r−1,i
s (B) − 1

2

q∑
j=1

n−2∑
i=0

βi

i !
r∑

q1=2

n−r∑
q2=0

Sr−q1,n−r−q2,i
(
Qq1,q2, j ),

(33)

with

Qq1,q2, j
s : =

q1∑
i1=2

q2∑
i2=0

i1−1∑
h1=1

i2∑
h2=0

q1−i1∑
p1=0

q2−i2∑
p2=0

p1+p2∑
m1=0

q1−i1−p1+q2−i2−p2∑
m2=0(

S p1,p2,m1
s

(
σ

h1,h2, j
s

)
(m1 + 1)!

Sq1−i1−p1,q2−i2−p2,m2
s

(
σ

i1−h1,i2−h2, j
s

)
(m2 + 1)!

+
[

S p1,p2,m1
s

(
σ

i1−h1,i2−h2, j
s

)
, Sq1−i1−p1,q2−i2−p2,m2

s
(
σ

h1,h2, j
s

)]
(m1 + m2 + 2)(m1 + 1)!m2!

)
,

and with the operators S being defined as

Sr−1,n−r ,0
s (A) :=

{
A if r = n = 1,

0 otherwise,
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Sr−1,n−r ,i
s (A) :=

∑
( j1,k1),...,( ji ,ki )∈N2

0
j1+···+ ji =r−1
k1+···+ki =n−r

[
Y ( j1,k1)

s ,
[
. . . ,

[
Y ( ji ,ki )

s , As
]
. . .
]]

=
∑

( j1,k1),...,( ji ,ki )∈N2
0

j1+···+ ji =r−1
k1+···ki =n−r

ad
Y

( j1,k1)
s

◦ · · · ◦ ad
Y

( ji ,ki )
s

(As), i ∈ N.

Remark 3 All the processesY (r ,n−r),withn ∈ N and r = 0, . . . , n, arewell defined according
to the recursion (31)–(32)–(33), as long as B and A(1), . . . , A(q) are bounded and progres-
sively measurable stochastic processes.

Example 1 As we already pointed out in the introduction, in the case j = 1 and B ≡ 0, the
SDE (1) admits an explicit solution given by

Yt = −1

2
A2t + AWt , t ≥ 0,

and the terms in the ME (27) read as

Y (1)
t = AWt , Y (2)

t = −1

2
A2t, Y (n)

t = 0, n ≥ 3.

In particular, the ME coincides with the exact solution with the first two terms.

2.3 Convergence Analysis

In this section we prove Theorem 1. To avoid ambiguity, only in this section, we denote by
M d×d

R
and M d×d

C
the spaces of (d × d)-matrices with real and complex entries, respec-

tively; on these spaces we shall make use of the Frobenius norm denoted by ‖·‖F . We
say that a matrix-valued function is holomorphic if all its entries are holomorphic func-
tions. We recall that W = (W 1, . . . , W q) is a q-dimensional standard Brownian motion
and A(1), . . . , A(q), B are bounded M d×d

R
-valued progressively measurable stochastic pro-

cesses defined on a filtered probability space (Ω,F , P, (Ft )t≥0). Also recall that, for any
M d×d

R
-valued process M = (Mt )t∈[0,T ], we set ‖M‖T := ‖‖M‖F‖L∞([0,T ]×Ω).

We start with two preliminary lemmas.

Lemma 3 Assume that Y = (Y ε,δ
t )ε,δ∈R, t∈R≥0 is a M d×d

R
-valued stochastic process that can

be represented as a convergent series of the form (26). If Y solves the SDE (25) up to a
positive stopping time τ , then Y (r ,n−r) in (26) are Itô processes and satisfy (31)–(32)–(33)
for any t < τ .

Proof We prove (31)–(32)–(33) only for n = 0, 1. Namely, we show that (28), (29) and (30)
hold up to time τ , P-a.s. The representation for the general term Y (r ,n−r) can be proved by
induction; we omit the details for brevity.

Since Y is of the form (26) then Y (0,0)
t = Y 0,0

t for any t < τ . Moreover, since Y solves
the SDE (25) then Y 0,0 ≡ 0 on [0, τ [, P-a.s. Thus (28) holds up to time τ , P-a.s.

Now, (25) yields

Y ε,0
t = ε

∫ t

0
A( j)

s dW j
s + εRε

t , t ∈ [0, τ [, P-a.s., (34)
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where

Rε
t =

∫ t

0

( ∞∑
k=1

βk

k! ad
k
Y ε,0

s

(
A( j)

s
))

dW j
s

− ε

2

∫ t

0
L −1

Y ε,0
s

(
QY ε,0

s

( ∞∑
k=0

βk

k! ad
k
Y ε,0

s

(
A( j)

s
)
,

∞∑
k=0

βk

k! ad
k
Y ε,0

s

(
A( j)

s
)))

ds.

Note that, again by (25), R0 ≡ 0 P-a.s. Moreover, representation (26) implies continuity
of ε 
→ Y ε,0

t near ε = 0, which in turn implies the continuity of ε 
→ Rε
t . Thus we have

lim
ε→0

Rε
t = R0

t P-a.s. This, together with (34) and (26) implies that (29) necessarily holds, up

to time τ , P-a.s.
Similarly, (25) yields

Y 0,δ
t = δ

∫ t

0
Bsds + δQδ

t , t ∈ [0, τ [, P-a.s.,

with

Qδ
t =

∫ t

0

( ∞∑
k=1

βk

k! ad
k
Y 0,δ

s
(Bs)

)
ds

and the same argument employed above yields (30) up to time τ , P-almost surely. �
Lemma 4 Let M ∈ M d×d

C
be nonsingular and such that ‖M − Id‖ < 1 where ‖·‖ is the

spectral norm. Then M has a unique logarithm, which is

log M =
∞∑

n=1

(−1)n+1 (M − Id)n

n

= (M − Id)

∫ ∞

0

1

1 + μ
(μId + M)−1dμ.

In particular, we have

‖log M‖ ≤ − log
(
1 − ‖M − Id‖ ). (35)

Proof The first representation is a standard result. The second representation stems from the
factorization M = V J V −1 with J in Jordan form, under the assumption that M has no
non-positive real eigenvalues, i.e. λ ∈ C\] − ∞, 0] for any λ eigenvalue of M . This last
property, however, is ensured by the assumption ‖M − Id‖ < 1. Indeed, the latter implies

‖Mv − v‖F < 1, v ∈ R
d , |v| = 1,

which in turn implies that, if λ is a real eigenvalue of M and v is one of its normalized
eigenvectors, then

1 > ‖Mv − v‖F = |λv − v| = |λ − 1| .
�

We have one last preliminary lemma, containing some technical results concerning the solu-
tions to (21). These are semi-standard, in that they can be inferred by combining and adapting
existing results in the literature.
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Lemma 5 For any T > 0 and ε, δ ∈ C, the SDE (21) has a unique strong solution
(Xε,δ

t )t∈[0,T ]. For any p ≥ 1 and h > 0 there exists a positive constant κ , only depen-
dent on ‖A(1)‖T , . . . , ‖A(q)‖T , ‖B‖T , d, T , h and p, such that

E
[
‖Xε,δ

t − Xε′,δ′
s ‖2p

F

]
≤ κ

( |t − s|p + (∣∣ε − ε′∣∣+ ∣∣δ − δ′∣∣)2p )
, (36)

E
[

sup
0≤u≤t

‖Xε,δ
u − Xε,δ

0 ‖2p
F

]
≤ κt p(|ε| + |δ|)2p, (37)

for any 0 ≤ t, s ≤ T and ε, δ, ε′, δ′ ∈ C with |ε| , |δ| , ∣∣ε′∣∣ , ∣∣δ′∣∣ ≤ h.

Up to modifications, (Xε,δ
t )ε,δ∈C, t∈[0,T ] is a continuous process such that:

i) for any t ∈ [0, T ], the function (ε, δ) 
→ Xε,δ
t is holomorphic;

ii) the functions (t, ε, δ) 
→ ∂ε Xε,δ
t and (t, ε, δ) 
→ ∂δ Xε,δ

t are continuous;
iii) for any p ≥ 1 and h > 0 there exists a positive constant κ only dependent on

‖A(1)‖T , . . . , ‖A(q)‖T , ‖B‖T , d, T , h and p, such that

E
[

sup
0≤s≤t

{
‖∂ε Xε,δ

s ‖2p
F + ‖∂δ Xε,δ

s ‖2p
F

}]
≤ κt p(|ε| + |δ|)p, (38)

for any t ∈ [0, T ] and |ε| , |δ| ≤ h.

Proof Existence of the solution and estimates (36)–(37) of the moments follow from the
results in Section 5, Chapter 2 in [18] (in particular, see Corollary 5 on page 80 and Theorem
7 on page 82).

The second part of the statement is a refined version of theKolmogorov continuity theorem
in the form that can be found for instance in Sect. 2.3 in [20]: a detailed proof is provided in
[15]. �
Remark 4 The existence and uniqueness for the solution to (1) is a particular case of the
previous result.

We are now in the position to prove Theorem 1.

Proof of Theorem 1 We fix h > 1, T > 0, and let (Xε,δ
t )ε,δ∈C, t∈[0,T ] be the solution of the

SDE (21) as defined in Lemma 5. Moreover, for t ∈ ]0, T ], we set Qt,h := ]0, t[×Bh(0)
where Bh(0) = {(ε, δ) ∈ C

2 | |(ε, δ)| < h}.
Part (i): as Xε,δ

0 = Id , by continuity the random time defined as

τ := sup
{
t ∈ [0, T ] ∣∣‖Xε,δ

s − Id‖F < 1 − e−π for any (s, ε, δ) ∈ Qt,h
}

(39)

is strictly positive. Furthermore, again by continuity,

(τ ≤ t) =
⋃

(s,ε,δ)∈Q̃t,h

(‖Xε,δ
s − Id‖F ≥ 1 − e−π

)
, t ∈ [0, T ],

where Q̃t,h is a countable, dense subset of Qt,h , which implies that τ is a stopping time.
Let (t, ε, δ) ∈ Qτ,h : by Lemma 4 applied to M = Xε,δ

t we have

Y ε,δ
t := log Xε,δ

t =
∞∑

n=1

(−1)n+1

(
Xε,δ

t − Id
)n

n

= (Xε,δ
t − Id

) ∫ ∞

0

1

1 + μ

(
μId + Xε,δ

t
)−1

dμ. (40)
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Notice that Xε,δ
t (and therefore also Y ε,δ

t ) is real for ε, δ ∈ R: in particular, Yt = Y 1,1
t is real

and this proves Part (i).
Part (ii): since (ε, δ) 
→ Xε,δ

t is holomorphic, we can differentiate (40) to infer that (ε, δ) 
→
Y ε,δ

t is holomorphic as well: indeed, we have for (t, ε, δ) ∈ Qτ,h

∂εY ε,δ
t = ∂ε Xε,δ

t

∫ ∞

0

1

1 + μ

(
μId + Xε,δ

t
)−1

dμ

+ (Xε,δ
t − Id

) ∫ ∞

0

1

1 + μ

(
μId + Xε,δ

t
)−1(

∂ε Xε,δ
t
)(

μId + Xε,δ
t
)−1

dμ,

and similarly by differentiating w.r.t. to δ. Then the expansion of Y ε,δ
t in power series at

(ε, δ) = (0, 0) is absolutely convergent on Bh(0) and the representation (26) holds on Qτ,h

for some random coefficients Y (r ,n−r)
t . To conclude we need to show that the latter are as

given by (31)–(32)–(33). Then (9) will stem from (26) by setting (ε, δ) = (1, 1).
In light of Lemma 4, the logarithmic map is continuously twice differentiable on the

open subset of M d×d
C

of the matrices M such that ‖M − Id‖ < 1: thus Y ε,δ
t admits an Itô

representation (19) for (t, ε, δ) ∈ Qτ,h . Then Proposition 1 together with (21) yield (23)–(24)
P-a.s. up to τ for any (ε, δ) ∈ Bh(0) ∩ R

2. Furthermore, by estimate (35) of Lemma 4 we

also have
∥∥∥Y ε,δ

t

∥∥∥ < π for t < τ . Therefore, we can apply Baker’s Lemma 2 to invert LY ε,δ
t

in (23)–(24) and obtain that Y ε,δ solves (25) up to τ for any (ε, δ) ∈ Bh(0) ∩ R
2. Part (ii)

then follows from Lemma 3.
Part (iii): for t ≤ T let

ft (ε, δ) := max
s∈[0,t] ‖Xε,δ

s − Id‖F , Mt := sup
(ε,δ)∈Bh(0)

ft (ε, δ).

By definition (39), we have

P(τ ≤ t) ≤ P
(
Mt ≥ 1 − e−π

) ≤ 1(
1 − e−π

)2 E
[
M2

t

]
, (41)

and therefore (10) follows by suitably estimating E
[
M2

t

]
. To prove such an estimate we will

show in the last part of the proof that ft belongs to the Sobolev space W 1,2p(Bh(0)) for any
p ≥ 1 and we have

E
[‖ ft‖2p

W 1,2p(Bh(0))

] ≤ Ct p, t ∈ [0, T ], (42)

where the positive constant C depends only on ‖A(1)‖T , . . . , ‖A(q)‖T , ‖B‖T , d , T , h and
p. Since ft ∈ W 1,2p(Bh(0)) and Bh(0) ⊆ R

4, by Morrey’s inequality (cf., for instance,
Corollary 9.14 in [4]) for any p > 2 we have

Mt ≤ c0‖ ft‖W 1,2p(Bh(0)), (43)

where c0 is a a positive constant, dependent only on p and h (in particular, c0 is independent
of ω). Combining (42) with (43), for a fixed p > 2 we have

E
[
M2

t

] ≤ c20E
[‖ ft‖2W 1,2p(Bh (0))

] ≤
(by Hölder inequality)

≤ c20Ct, t ∈ [0, T ].
This last estimate, combined with (41), proves (10).
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To conclude, we are left with the proof of (42). First we have

E

[ ∫
Bh(0)

| ft (ε, δ)|2pdε dδ

]
=
∫

Bh (0)
E
[| ft (ε, δ)|2p]dε dδ ≤ Ct p, (44)

where we used the estimate (37) of Lemma 5 in the last inequality. Fix now t ∈ ]0, T ],
(ε, δ), (ε′, δ′) ∈ Bh(0) such that ft (ε

′, δ′) ≤ ft (ε, δ) and set

t̄ ∈ argmax
0≤s≤t

‖Xε,δ
s − Id‖F , t̃ ∈ argmax

0≤s≤t
‖Xε′,δ′

s − Id‖F .

Note that the argmax above do exist in that the process gs(ε, δ) := Xε,δ
s − Id is continuous

in s and we have∣∣ ft (ε, δ) − ft (ε
′, δ′)

∣∣ = ∣∣‖gt̄ (ε, δ)‖F − ‖gt̃ (ε
′, δ′)‖F

∣∣ ≤ ∣∣‖gt̄ (ε, δ)‖F − ‖gt̄ (ε
′, δ′)‖F

∣∣
≤ ‖gt̄ (ε, δ) − gt̄ (ε

′, δ′)‖F ≤ sup
0≤s≤t

‖gs(ε, δ) − gs(ε
′, δ′)‖F

≤ ∣∣(ε, δ) − (ε′, δ′)
∣∣ sup
0≤s≤t

sup
|ε̄−ε|≤|ε′−ε|
|δ̄−δ|≤|δ′−δ|

‖∇gs(ε̄, δ̄)‖F ,

where ∇ = ∇ε,δ . This, as (s, ε, δ) 
→ ∇gs(ε, δ) is continuous on Qt,h , implies ft ∈
W 1,2p(Bh(0)) and yields the key inequality

|∇ ft (ε, δ)| ≤ sup
0≤s≤t

‖∇ Xε,δ
s ‖F , (ε, δ) ∈ Bh(0).

Therefore, we have

E

[ ∫
Bh(0)

|∇ ft (ε, δ)|2p dε dδ

]
=
∫

Bh(0)
E
[ |∇ ft (ε, δ)|2p ]dε dδ

≤
∫

Bh(0)
E

[
sup

0≤s≤t
‖∇ Xε,δ

s ‖2p
F

]
dε dδ ≤ Ct p,

where we used the estimate (38) of Lemma 5 in the last inequality. This, together with (44),
proves (42) and conclude the proof. �

3 Numerical Tests and Applications to SPDEs

We present here some numerical tests in order to confirm the accuracy of the approximate
solutions to (1) stemming from the truncation of the series (9). We also show how this
approximation can be applied to approximate the solutions to stochastic partial differential
equations (SPDEs) of parabolic type.

We consider two examples of SDEs (one in Sect. 3.1 and one in Sect. 3.3), for which we
compute the first three terms of theMEgiven by (27)–(31) and present numerical experiments
to test the accuracy of the approximate solutions to (1) stemming from it. In both cases we
consider j = 1 in (1) and replace A(1) with A to shorten notation. The first example will be
for constant matrices A and B. In the second one we will consider B ≡ 0 and a deterministic
upper diagonal At . For each numerical test wewill implement the exponential of the truncated
ME up to order n = 1, 2 and 3, i.e.

X (n) := e
∑n

i=1 Y (i)
, n = 1, 2, 3, (45)
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and compare it with a benchmark solution to (1). In Sect. 3.2 we turn our attention to the
application of the ME to the numerical resolution of SPDEs. In particular, in the numerical
tests we will make use of the ME for constant matrices discussed in Sect. 3.1.

Error and notations. Throughout this section we will employ the following tags:

1. euler for the solution obtained with Euler-Maruyama scheme, which was implemented
with Matlab’s pagefun for the matrix multiplication on a single GPU and vectorized over
all samples;

2. exact to denote the time-discretization of an explicit solution, if available;
3. m1, m2 and m3 for the time-discretization of the Magnus approximations in (45), up to

order 1,2 and 3, respectively.

For the numerical error analysis in the SDE examples we will make use of the following
norms. Denoting by X ref and by X app a benchmark and an approximate solution, respectively,
to (1) and by (tk)k=0,...,N a homogeneous discretization of [0, t], we consider the random
variable

Errt := Δ

t

N∑
k=1

‖X ref
tk − X app

tk ‖F

‖X ref
tk ‖F

≈ 1

t

∫ t

0

‖X ref
s − X app

s ‖F

‖X ref
s ‖F

ds with Δ = t

N
,

namely a discretization of the time-averaged relative error on the interval [0, t]. This is a way
to measure the error on the whole trajectory as opposed to the error at a specific given time.
Then we use Monte Carlo simulation, with M independent realizations of the discretized
Brownian trajectories, to approximate the distribution of Errt .

The matrix norm above is the Frobenius norm. In the following tests, m1, m2 and m3 will
always play the role of X app, exact always the role of X ref, whereas euler will be either
X app or X ref depending on whether exact is available or not.

We used for the calculations Matlab R2021a with Parallel Computing Toolbox run-
ning on Windows 10 Pro, on a machine with the following specifications: processor Intel(R)
Core(TM) i7-8750H @ 2.20GHz, 2x32 GB (Dual Channel) Samsung SODIMM RAM @
2667MHz, and a NVIDIA GeForce RTX 2070 with Max-Q Design (8GB GDDR6 RAM).
Also, we will make use of the Matlab built-in routine expm for the computation of the
matrix exponential. As it turns out, this represents the most expensive step in the implemen-
tation of the Magnus approximation. However important, the pursue of optimized method
for the matrix exponentiation is an extended topic of separate interest, which goes beyond
the goals of this paper. Therefore, here we will limit ourselves to pointing out, separately, the
computational times for the approximations of the logarithm and of the matrix exponential.

In the implementation we simulate the Brownian motion first and use it as an input for
each scheme to be able to compare the trajectories of each scheme amongst each other.

3.1 Example: Constant A and B

With a slight abuse of notation, we consider At ≡ A and Bt ≡ B. Recall that, if A and B do
not commute, there is in general no closed-form solution to (1). The first three terms of the
ME read as

Y (1)
t = Bt + AWt , Y (2)

t = [A, B]

(
1

2
tWt −

∫ t

0
Wsds

)
− 1

2
A2t,
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Table 1 A and B constant

Method t = 0.25 (%) t = 0.5 (%) t = 0.75 (%) t = 1 (%) t = 2 (%) t = 3 (%)

Euler Δ = 10−4, Magnus Δ = 10−2

m1 4.59 9.6 14.8 21.1 49.5 86.1

m2 0.217 0.503 0.951 1.55 5.29 10.9

m3 0.176 0.256 0.371 0.543 2.03 5.25

Values of E[Errt ] (in percentage) for m1, m2, m3, with euler as benchmark solution, obtained with 103

samples

Y (3)
t = [[B, A] , A]

(
1

2

∫ t

0
W 2

s ds − 1

2
Wt

∫ t

0
Wsds + 1

12
tW 2

t

)

+ [[B, A] , B]

(∫ t

0
sWsds − 1

2
t
∫ t

0
Wsds − 1

12
t2Wt

)
. (46)

We point out that, in this case, all the stochastic integrals appearing in the ME can be solved
in terms of Lebesgue integrals by using Itô’s formula. Therefore, in order to discretize Y (n)

it is not necessary to approximate stochastic integrals. This allows to use a sparser time
grid compared to the Euler method, for which the discretization of stochastic integrals is
necessary. In particular, the theoretical speed of convergence with respect to the time-step
is of order

√
Δ for Euler-Maruyama scheme and of order Δ for deterministic Euler, which

is the scheme used to discretize the Lebesgue integrals in the Magnus expansion above. In
the following numerical tests, we discretize in time with mesh Δ equal to 10−4 for euler
and equal to

√
Δ = 10−2 for m1, m2 and m3. Note that, as it is confirmed by the results

in Table 1, choosing a finer time-discretization for euler (our reference method here) is
essential in order to make it comparable with m3. Furthermore, in the example of Sect. 3.3,
where an explicit solution is available, we show (see Tables 7 and 9 ) that choosing a sparser
time-grid (say Δ = 10−3) the Euler-Maruyama method incurs a sensitive loss of precision.

It is also clear that the implementation is totally parallelizable, in that Y (1), Y (2) and Y (3)

do not depend on each other and thus they can be computed in parallel. More importantly,
the discretization of the integrals in each Y (n) can be parallelized as the latter are explicit and
not implicitly defined through a differential equation.

We choose A and B at random and normalize them by their spectral norms. In particular,
the results below refer to

A =
(

0.335302 −0.645492
−0.264419 0.634641

)
, B =

(−0.0572262 0.0493763
−0.665366 0.742744

)
.

In Fig. 1we plot one realization of the trajectories of the top-left component (Xt )11, computed
with the methods above, up to time t = 0.75. In Table 1 we show the expectations E[Errt ]
for different values of t , with euler as benchmark solution, computed via Monte Carlo
simulation with 103 samples. The same samples are used in Fig. 3 to plot the empirical CDF
of Errt . The computational times for the 103 sampled trajectories of X , up to time t = 1,
computed with m1, m2, m3 and euler are reported in Table 2. For the Magnus methods we
separate the time to compute the approximate logarithm from the one to compute the matrix
exponential.

Remark 5 We can see from Table 2 that the Magnus methods m1, m2 and m3 are significanty
faster than euler. The reason for this is two-fold: on the one hand, we have the possibility
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Fig. 1 A and B constant. One realization of the trajectories of the top-left component (Xt )11, computed with
euler, m1, m2, m3
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Fig. 2 A and B constant. Empirical CDF of Errt , at t = 0.75, for m1, m2, m3, with euler as benchmark
solution, obtained with 103 samples

Table 2 A and B constant Method Log Matrix Exp Total

euler Δ = 10−4 0 0 6.7784

m1 Δ = 10−2 0.0093466 0.535331 0.544678

m2 Δ = 10−2 0.0221759 0.569511 0.591687

m3 Δ = 10−2 0.0475184 0.584098 0.631616

Computational times for 103 sampled trajectories of X , up to time t = 1,
computed with m1, m2, m3 and euler

of parallelizing the Magnus methods over both time and samples, while euler is only
parallelizable over all samples, and on the other hand,we can discretize theMagnus expansion
with a time-step that is the square root of the one used for Euler-Maruyama, due to the different
rates of convergence.

In our numerical experimentswe already use 6CPU cores to parallelize the computation of
thematrix exponential on the CPU, while we use oneGPU to compute theMagnus logarithm.
For eulerwe speed up in each iteration the matrix multiplications by using pagefun on a
GPU to parallelize over all samples. As for m1, m2 and m3, if we were to increase the number
of CPU cores to, say, 12, we could see an approximate reduction in the computation time of
matrix exponentiation by half (plus overhead), making it about 24 times as fast as the Euler
method.
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Table 3 A and B constant

Method E
[
((Xt )11)

k
]

E
[
((Xt )12)

k
]

E
[
((Xt )21)

k
]

E
[
((Xt )22)

k
]

Total time

First moment, k = 1

euler 0.884995 0.136974 − 0.913738 1.99784 6.83223

m1 1.23538 − 0.510346 − 1.38672 2.88552 0.11308

m2 0.92461 0.0488442 − 0.889341 2.00131 0.16783

m3 0.886685 0.132748 − 0.910886 1.9915 0.185966

Second moment, k = 2

euler 1.20982 1.09315 1.78757 7.06842 6.83263

m1 2.49141 3.21348 3.99804 15.4156 0.113674

m2 1.31038 1.18291 1.7166 7.07746 0.168869

m3 1.21421 1.09186 1.77727 7.00593 0.186955

Third moment, k = 3

euler 2.62519 − 3.20706 − 5.74199 40.8729 6.83229

m1 8.21939 − 20.9025 − 18.9891 136.058 0.1131

m2 2.95392 − 4.05804 − 5.44452 40.8636 0.168065

m3 2.6546 − 3.27689 − 5.70576 40.2687 0.185915

Computational times and values of first, second and third moment at the terminal time t = 1 for m1, m2, m3,
using Δ = 10−2, and euler, using Δ = 10−4, obtained with 103 samples

Now, the very nature of euler (see Example 2 together with Table 3) as an iterative
scheme yields another advantage of the Magnus methods; namely, that the computation of
the logarithm is very fast and if one needs only the solution of the SDE at the terminal
time then one has to compute the matrix exponential only at a single time. Let us consider
Table 2 for the moment. In this particular experiment it would mean that we can divide
the computational time of the matrix exponentiation by approximately Δ−1 = 102 without
increasing the CPU core count. Hence, the Magnus methods would require approximately
only 0.04 s plus effects from distributing the memory to the different processors. The euler
method, in contrast, does not benefit from this because, as an iterative method, it must fully
evaluate the trajectories.

Such situations are not uncommon; for example, in mathematical finance pricing a Euro-
pean call option depends only on the terminal time of the underlying process, giving the
Magnus methods a tremendous advantage even without increasing CPUs or GPUs. We will
illustrate such a situation in Example 2 together with Table 3. In calibration procedures, such
as fitting a model to data at few points in time, the Magnus method also excels for the same
reason.

Example 2 In this example we want to demonstrate the benefit, explained in Remark 5, of
using the Magnus methods compared to iterative schemes, such as the Euler method, when
calculating the first, second and third element-wise moments of the terminal value of a
matrix-valued SDE.

Precisely, we evaluate E
[
((Xt )i j )

k
]
for i, j = 1, . . . , d and k = 1, 2, 3. We will keep the

same parameters as in Table 1.
The results of this example are summarized in Table 3. In this table columns 2–4 contain

the values of the element-wise moments at the terminal time of the solution to the SDE with
constant coefficients starting with the upper left corner of the solution matrix, then the upper
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right, lower left and lower right, respectively. In the last columnwe present the computational
times in seconds.

The values of themoments do not differ significantly betweeneuler andm3, and remark-
ably the Magnus methods are roughly 35 times as fast in this particular example. We stress
again at this point that a coarser time-grid for eulerwould not be comparable to the accuracy
of m3.

In the interesting paper [12] a non-linear extension in the case of commuting A and B can be
found and applications to SPDEs via space discretizations are discussed, which is the same
approach we take in the next subsection with the ME.

3.2 Applications to SPDEs

The aim of this subsection is to apply the previously derived ME for the numerical solution
of parabolic stochastic partial differential equations (SPDEs). We derive an approximation
scheme for the general case of variable coefficients, which we only test in the case of the
stochastic heat-equation (Example 3), for which an exact solution is available.

3.2.1 Stochastic Cauchy Problem and Fundamental Solution

Let (Ω,F , P, (Ft )t≥0) be a filtered probability space endowedwith a real Brownianmotion
W . We consider the stochastic Cauchy problem{

dut (x) = Lt ut (x)dt + Gt ut (x)dWt , t > 0, x ∈ R,

u0 = ϕ,
(47)

where Lt is the elliptic linear operator acting as

Lt ut (x) = 1

2
at (x)∂xx ut (x) + bt (x)∂x ut (x) + ct (x)ut (x),

and Gt is the first-order linear operator acting as

Gt ut (x) = σ t (x)∂x ut (x) + gt (x)ut (x).

The coefficients (a,b, c, g, σ ) are random fields indexed by (t, x) ∈ [0,∞[×R and the
initial datum ϕ is a random field on R. A classical solution to (47) is understood here as a
predictable and almost-surely continuous random field u = ut (x) over [0,∞[×R, such that
ut ∈ C2(R) a.s. for any t > 0 and

ut (x) = φ(x) +
∫ t

0
Lτ uτ (x)dτ +

∫ t

0
Gτ uτ (x)dWτ , t ≥ 0, x ∈ R.

There is a vast literature on stochastic SPDEs and problems of the form (47), under suitable
measurability, regularity and boundedness assumptions on the coefficients and on the initial
datum: see, for instance, [9,17,25,30] and the references therein.

Note that, in analogywith deterministic PDEs, the solution of theCauchy problem (47) can
be written, in some cases, as a convolution of the initial datum with a stochastic fundamental
solution p(t, x; 0, ξ), i.e.

ut (x) =
∫
R

p(t, x; 0, ξ)φ(ξ)dξ, (t, x) ∈ ]0,∞[×R,
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with p(t, x; 0, ξ) being a random field that solves the SPDE in (47) with respect to the
variables (t, x) and which approximates a Dirac delta centered at ξ as t approaches 0.

3.2.2 Finite-Difference Magnus Scheme

We employ the stochastic ME to develop an approximation scheme for the Cauchy problem
(47). Our goal here is only to hint at the possibility that the stochastic ME is a useful tool for
the numerical solution of SPDEs. Therefore, we keep the exposition at a heuristic level and
postpone the rigorous study of the problem for further research.

The idea is to apply finite-difference space-discretization for the operators L and G, and
then ME to solve the resulting linear (matrix-valued) Itô SDE. We fix a bounded interval
[a, b] and use the following notation: for a given d ∈ N, we denote by ςd a mesh of d + 2
equidistant points in [a, b], i.e.

ςd = {xd
i | xd

i = a + ih, i = 0, . . . , d + 1}, h := b − a

d + 1
,

and for any random field f(x), x ∈ R, we denote by fd = (fd
0 , . . . , fd

d+1) the random vector
whose components correspond to f evaluated at the points of the mesh, namely

fd
i = f(xd

i ), i = 0, . . . , d + 1.

Following the classical centered finite-difference discretization, we approximate the spatial
derivatives in each point as

∂x ut (xd
i ) ≈ ud

t,i − ud
t,i−1

h
, ∂xx ut (xd

i ) ≈ ud
t,i+1 − 2ud

t,i + ud
t,i−1

h2 , i = 1, . . . , d,

to obtain the system of Itô SDEs{
dud

t,i = (Ld
t ud

t )i dt + (Gd
t ud

t )i dWt ,

ud
0,i = φd

i ,
(48)

for i = 1, . . . , d , where Ld
t and Gd

t are now the operators acting as

(Ld
t ud

t )i = 1

2
ad

t,i

ud
i+1 − 2ud

i + ud
i−1

h2 + bd
t,i

ud
i − ud

i−1

h
+ cd

t,i u
d
i ,

(Gd
t ud

t )i = σ d
t,i

ud
i − ud

i−1

h
+ gd

t,i u
d
i .

By imposing some boundary conditions, for instance

ud
t,0 = ud

t,d+1 = 0, t > 0, (49)

the system of SDEs (48) can be cast in the framework of the previous section. More precisely,
under condition (49), system (48) is equivalent to{

dūd
t = Ad

t ūd
t dt + Bd

t ūd
t dWt ,

ūd
0 = φ̄d ,

(50)

where we set

ūd
t = (ud

t,1, . . . , ud
t,d), φ̄d = (φd

1 , . . . , φd
d ),
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and Ad
t , Bd

t are the random tridiagonal (d × d)-matrices given by

Ad
t =

⎛
⎜⎜⎜⎜⎜⎜⎝

− ad
t,1

h2
+ bd

t,1
h + cd

t,1
1
2
ad

t,1

h2
· · · 0

1
2
ad

t,2

h2
− bd

t,2
h − ad

t,2

h2
+ bd

t,2
h + cd

t,2
. . .

...

...
. . .

. . . 1
2
ad

t,d−1

h2

0 · · · 1
2
ad

t,d

h2
− bd

t,d
h − ad

t,d

h2
+ bd

t,d
h + cd

t,d

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Bd
t =

⎛
⎜⎜⎜⎜⎜⎜⎝

σ d
t,1
h + gd

t,1 0 · · · 0

− σ d
t,2
h + σ d

t,2
h + gd

t,2
. . .

...

...
. . .

. . . 0

0 · · · − σ d
t,d
h + σ d

t,d
h + gd

t,d

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Now, the solution to (50) can be written as

ūd
t = Xd

t ūd
0 , t ≥ 0,

where Xd is in turn the solution to the M d×d -valued Itô SDE{
d Xd

t = Ad
t Xd

t dt + Bd
t Xd

t dWt ,

Xd
0 = Id .

(51)

Remark 6 The components of Xd can be regarded as approximations of the integrals of the
fundamental solution of the SPDE in (47), when it exists, on each sub-interval [ 12 (xd

j−1 +
xd

j ),
1
2 (xd

j + xd
j+1)], namely

(Xd
t )i, j ≈

∫ 1
2 (xd

j +xd
j+1)

1
2 (xd

j−1+xd
j )

p
(
t, xd

i ; 0, ξ)dξ =: (I d
t )i, j , i, j = 1, . . . , d. (52)

Example 3 We consider a special case of (47) with at ≡ a > 0, b, c, g ≡ 0 and σ t ≡ σ > 0.
Hence, we consider the stochastic heat equation

dut = a
2
∂xx ut (x)dt + σ∂x ut (x)dWt , t > 0, x ∈ R,

with a > σ 2, whose stochastic fundamental solution is given explicitly by

p(t, x; 0, ξ) := 1√
2π(a − σ 2)t

exp

(
− (x + σ Wt − ξ)2

2(a − σ 2)t

)
, t > 0, x, ξ ∈ R. (53)

The matrices Ad
t and Bd

t in (51) now read as

Ad
t ≡ a

h2

⎛
⎜⎜⎜⎜⎝

−1 1
2 · · · 0

1
2 −1

. . .
...

...
. . .

. . . 1
2

0 · · · 1
2 −1

⎞
⎟⎟⎟⎟⎠ , Bd

t ≡ σ

h

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0
−1 1

. . .
...

...
. . .

. . . 0
0 · · · −1 1

⎞
⎟⎟⎟⎟⎠ .

In particular, they do not commute and are constant for fixed d .
In the next numerical test we compare the approximate solutions to (51), obtained with

the stochastic ME in the special case of constant coefficients (46), with the M d×d -valued
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stochastic processI d , whose components are given by the integral in (52) with p as in (53).
In doing this, we shall keep in mind that the difference between the latter quantities can be
decomposed into two errors, namely: the one between Xd and its approximation, and the
one between Xd and I d . In turn, the latter is the result of both space-discretization and the
error that stems by imposing null boundary conditions (see (49)). In particular, this last error
cannot be reduced by refining the space-grid. Therefore, the analysis should be restricted to
the “central" components of I d , namely those which do not depend on the values of the
fundamental solution in the vicinity of the boundary {a, b}. This motivates the definition that
follows. For a given κ ∈ N with κ < d , and a given approximation Xd,app of Xd , we define
the process

Errdt := ‖Ĩ d,κ
t − X̃d,κ,app

t ‖F

‖Ĩ d,κ
t ‖F

, t > 0, (54)

where Ĩ d,κ
t and X̃d,κ,app

t are the projections on M κ×d obtained by selecting the central κ

rows ofI d
t and Xd,app

t , respectively. The matrix norm above is the Frobenius norm. The role
of Xd,app will be played by the time-discretization of the truncated ME (8)–(9). In particular,
we will denote by m1 and m3 the discretized first and third-order MEs of Xd , respectively.
We will not consider the second-order Magnus approximation m2 as it appears less stable
than the others. Note that, being Ad

t and Bd
t constant matrices, the first three terms of the ME

are given explicitly by (46).
In the numerical experiments we set

a = −2, b = 2, a = 0.2, σ = 0.15. (55)

Setting the parameter κ in (54), which determines the number of rows that are taken into
account to asses the error, as κ = �d/2�, we study the expectation of Errdt up to t = 0.5.
Such choice for κ and t allows us to study the error in a region that is suitably away from the
boundary. Indeed, choosing κ as above implies xd

i in (52) ranging roughly from −1 to 1. On
the other hand, the standard-deviation parameter associated to the Gaussian density (53) at
t = 0.5 is roughly 0.30, while the mean parameter is 0.15× W0.5, whose standard deviation
is in turn roughly 0.10. Therefore, both (Ĩ d,κ

t )i,1 and (Ĩ d,κ
t )i,d are likely to be very close

to zero, thus meeting the null boundary condition implied by (49).
In Tables 4, 5, 6, we report the approximate values of E[Errdt ] for d = 50, 100 and 200,

respectively. These were obtained via simulation of 50 trajectories of W with time step-size
Δ = 10−4. Now, let us inspect the Tables 4–6 in more detail. As a reminder, these results
were obtained by using theexact solution as a reference, which is available in this particular
example. In Table 4 it is noticeable that euler and m3 can exhibit worse results for small
times compared to m1. This is due to the coarse space approximation with only 52 space grid
points. Increasing the number d of grid points improves the error of euler and m3 for all
displayed times, which can be seen in Tables 5 and 6 by comparing each column for the same
final time. Finally, notice that the third-order Magnus expansion has the same magnitude of
error as the euler scheme for all final times.

3.3 Example: j = 1, B = 0 and At Upper Triangular

We now test the ME on an SDE with time-dependent coefficients and with known explicit
solution.
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Table 4 SPDE

Method t = 0.1 (%) t = 0.2 (%) t = 0.3 (%) t = 0.4 (%) t = 0.5 (%)

euler 9.1364 5.5467 5.3231 4.8377 4.5829

m1 8.0746 5.3243 4.9617 4.7273 5.3065

m3 9.1337 5.5296 5.3310 4.8314 4.5704

Values of E[Errdt ] (in percentage) for m1 and m3, with d = 50, obtained with 50 independent samples.
Parameters as in (55)

Table 5 SPDE

Method t = 0.1 (%) t = 0.2 (%) t = 0.3 (%) t = 0.4 (%) t = 0.5 (%)

euler 4.2053 3.4600 2.8214 2.3524 2.0370

m1 4.4452 5.1232 4.7061 4.8807 4.8397

m3 4.2576 3.4543 2.8172 2.3598 2.0467

Values of E[Errdt ] (in percentage) for m1 and m3, with d = 100, obtained with 50 independent samples.
Parameters as in (55)

Table 6 SPDE Method t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5

euler 2.1832 1.4403 1.4190 1.2174 1.1532

m1 4.9891 5.0444 4.8249 5.0042 5.2603

m3 2.1690 1.4364 1.4467 1.2140 1.1420

Values ofE[Errdt ] (in percentage) for m1 and m3, with d = 200, obtained
with 50 independent samples. Parameters as in (55)

Set

At =
(
2 t
0 −1

)
, Bt ≡ 0. (56)

In this case (1) admits an explicit solution, which can be obtained by using Itô’s formula,
given by

Xt =
(

e2(Wt −t) e2(Wt −t)
(∫ t

0 s e−3Ws+ 3
2 s dWs − 2

∫ t
0 s e−3Ws+ 3

2 s ds
)

0 e−(Wt + 1
2 t)

)
.

The first three terms of the ME read as

Y (1)
t =

(
2Wt tWt − ∫ t

0 Wsds
0 −Wt

)
,

Y (2)
t = −1

2

(
4t 1

2 t2

0 t

)
− 3

2

(
0 Wt

∫ t
0 Wudu − ∫ t

0 W 2
u du

0 0

)
,

Y (3)
t =

(
0 3

4 (t − W 2
t )
∫ t
0 Wudu − 3

2

∫ t
0 Wuudu

0 0

)

+
(
0 9

4Wt
∫ t
0 W 2

u du − 3
2

∫ t
0 W 3

u du + 3
8 t2Wt

0 0

)
.
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Table 7 Bt and At as in (56)

Method t = 0.25 (%) t = 0.5 (%) t = 0.75 (%) t = 1 (%) t = 2 (%) t = 3 (%)

euler Δ = 10−4 0.503 0.716 0.883 1.08 2.07 3.3

euler Δ = 10−3 1.56 2.12 2.56 2.92 4.16 5.6

m1 Δ = 10−2 19.6 42.9 70.8 108 409 1490

m2 Δ = 10−2 0.147 0.659 1.71 3.36 11.3 20.6

m3 Δ = 10−2 0.117 0.309 0.77 1.61 6.44 13.9

Values of E[Errt ] (in percentage) for euler, m1, m2, m3, with exact as benchmark solution, obtained with
103 samples

Table 8 Computational times (s) for 103 sampled trajectories of X , up to time t = 1, choosing Δ = 10−2 for
m1, m2 and m3, and Δ = 10−4 for euler and exact

Bt and At as in (56) Bt and At as in (56) normalized
by its spectral norm

Method Log Matrix Exp Total Log Matrix Exp Total

exact 0 0 0.70544 0 0 0.807434

euler 0 0 4.59658 0 0 4.53311

m1 0.0186238 0.51252 0.531143 0.0128825 0.522425 0.535308

m2 0.0245188 0.517689 0.542207 0.0557674 0.527644 0.583412

m3 0.0441915 0.530973 0.575165 0.212351 0.471555 0.683906

Again, all the stochastic integrals appearing in the ME can be solved in terms of Lebesgue
integrals by using Itô’s formula, which allows us to use one more time a sparser time grid
compared to the Euler method and the discretized exact solution. In the following numerical
tests, we discretize in time with mesh Δ equal to 10−4 for exact and equal to 10−2 for
m1, m2 and m3. For euler we run two experiments with mesh equal to 10−4 and 10−3.

Note that euler serves here as an alternative approximation and that choosing a finer time-
discretization for euler and exact (our reference method here) is again essential in order
to make them comparable with m3.

In Table 7 we show the expectations E[Errt ] for different values of t , with exact as
benchmark solution, computed via Monte Carlo simulation with 103 samples. The same
samples are used in Fig. 3 to plot the empirical CDF of Errt . It is clear from the results that
the time-step sizeΔ = 10−3 is not small enough in order for euler to yield accurate results.
Also note that m3 outperforms euler with Δ = 10−4 up to t = 0.75.

The computational time for 103 sampled trajectories, up to time t = 1, which is given in
Table 8, is approximately 0.7 s for exact, 4.6 s for euler and 0.6 s for either m1, m2 or m3.
The latter, however, is divided as follows: nearly 0.05 s to compute the ME and nearly 0.55 s
to compute the matrix exponential with the Matlab function expm. Let us recall Remark 5
and note that the computation of the logarithm via ME is very fast thanks to the possibility
of parallelizing the computation of the integrals in Y (1), Y (2) and Y (3).

As it appears in the results above, the accuracy of the ME quickly deteriorates as the time
increases. This is largely due the fact that the spectral norm

‖At‖ =
√
1

2

(
t2 +

√
t4 + 10t2 + 9 + 5

)
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Fig. 3 B ≡ 0 and At as in (56). Empirical CDF of Errt , at t = 0.75, for euler, m1, m2, m3, with exact as
benchmark solution, obtained with 103 samples

Table 9 Bt and At as in (56) normalized by its spectral norm

Method t = 0.25 t = 0.5 t = 0.75 t = 1 t = 2 t = 3 t = 10

euler Δ = 10−4 0.134 0.191 0.227 0.263 0.382 0.489 0.715

euler Δ = 10−3 0.416 0.572 0.691 0.777 0.965 1.12 1.35

m1 Δ = 10−2 4.69 9.25 13.6 18.1 34 47 90.9

m2 Δ = 10−2 0.047 0.109 0.263 0.529 2.01 3.92 15.2

m3 Δ = 10−2 0.0537 0.0821 0.126 0.201 0.642 1.28 5.31

Values of E[Errt ] (in percentage) for euler, m1, m2, m3, with exact, using Δ = 10−4, as benchmark
solution, obtained with 103 samples

is an increasing function of t . This behavior shall not come as a surprise, since the proof of
Theorem 1 already uncovered the relation between the convergence time τ and the spectral
norms of At and Bt . Such relation is also consistent with the convergence condition (7) that
holds in the deterministic case. In order to asses numerically the impact of the spectral norm
of At on the quality of the Magnus approximation, we now repeat the experiments on the
equation obtained by normalizing At as in (56) with respect to ‖At‖. As it turns out, the
accuracy of m1, m2 and m3 improves considerably with this normalization. Note that, in
this case, (1) no longer admits a closed-form solution, while the representation for the terms
Y (1), Y (2) and Y (3) in the ME is omitted for it becomes rather tedious to write. In Fig. 4 we
plot one realization of the trajectories of the top-right component (Xt )12, computed with all
the methods above, up to time t = 10. In this case we did not plot a diagonal component of
the solution because the latter are exact for m2 and m3, up to discretization errors of Lebesgue
integrals. Table 9 and Fig. 5 are analogous to Table 7 and Fig. 3 and are obtained again with
103 independent samples. The computational times, reported in Table 8, are comparable with
those of the non normalized case. The same can said about the accuracy results reported in
Table 9, which are comparable with those in Table 7.
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Fig. 5 Bt and At as in (56) normalized by its spectral norm. Empirical CDF of Errt , at t = 0.75, for euler,
m1, m2, m3, with exact as benchmark solution, obtained with 103 samples
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