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Randomized dynamic programming principle and Feynman-Kac

representation for optimal control of McKean-Vlasov dynamics

Erhan BAYRAKTAR* Andrea COSSOT Huyén PHAM?

October 21, 2016

Abstract

We analyze a stochastic optimal control problem, where the state process follows a
McKean-Vlasov dynamics and the diffusion coefficient can be degenerate. We prove that
its value function V' admits a nonlinear Feynman-Kac representation in terms of a class of
forward-backward stochastic differential equations, with an autonomous forward process. We
exploit this probabilistic representation to rigorously prove the dynamic programming princi-
ple (DPP) for V. The Feynman-Kac representation we obtain has an important role beyond
its intermediary role in obtaining our main result: in fact it would be useful in developing
probabilistic numerical schemes for V. The DPP is important in obtaining a characterization
of the value function as a solution of a non-linear partial differential equation (the so-called
Hamilton-Jacobi-Belman equation), in this case on the Wasserstein space of measures. We
should note that the usual way of solving these equations is through the Pontryagin maxi-
mum principle, which requires some convexity assumptions. There were attempts in using
the dynamic programming approach before, but these works assumed a priori that the con-
trols were of Markovian feedback type, which helps write the problem only in terms of the
distribution of the state process (and the control problem becomes a deterministic problem).
In this paper, we will consider open-loop controls and derive the dynamic programming
principle in this most general case. In order to obtain the Feynman-Kac representation and
the randomized dynamic programming principle, we implement the so-called randomization
method, which consists in formulating a new McKean-Vlasov control problem, expressed in
weak form taking the supremum over a family of equivalent probability measures. One of
the main results of the paper is the proof that this latter control problem has the same value
function V' of the original control problem.
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principle, randomization method, forward-backward stochastic differential equations.
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1 Introduction

In the present paper we study a stochastic optimal control problem of McKean-Vlasov type.
More precisely, let 7' > 0 be a finite time horizon, (2, F,P) a complete probability space,
B = (By)i>0 a d-dimensional Brownian motion defined on (Q,F,P), F¥ = (FF);>0 the P-
completion of the filtration generated by B, and G a sub-c-algebra of F independent of B. Let
also Z,(R"™) denote the set of all probability measures on (R", B(R"™)) with a finite second-order
moment. We endow ,(R™) with the 2-Wasserstein metric W,, and assume that G is rich enough
in the sense that Z2,(R") = {P.: ¢ € L*(Q,G,P;R")}, where P, denotes the law of & under P.
Then, the controlled state equations are given by

S S
Xbea = §+/ b(r, X159 Pyrea, atr ) dr—i—/ o(r, X% Pyrea, o) dB,, (1.1)
t t
S S
X§7x7§7a — x+/ b(T’, X£7I7'E,O"Pxﬁ,£,a,CkT) d’f’—i-/ J(T’Xﬁx’g’a,ﬂmxﬁ,s,a,Oér) dBr, (12)
t t

for all s € [t,T], where (t,2,£) € [0,T] x R® x L?(Q,G,P;R"), and « is an admissible control
process, namely an FZ-progressive process a:  x [0,7] — A, with A Polish space. We denote
by A the set of admissible control processes. On the coefficients b: [0,7] x R™ x Z,(R™) x
A — R"and o: [0,7] x R* x Z,(R") x A — R™9 we impose standard Lipschitz and linear
growth conditions, which guarantee existence and uniqueness of a pair (Xé’g’a, Xﬁ’x’g’a) seft,7] of
continuous (F2 V G),-adapted processes solution to equations (1.1)-(1.2). Notice that X%®:&e
depends on ¢ only through its law 7 := P.. Therefore, we define X*®™ = Xto.6a,

The control problem consists in maximizing over all admissible control processes « € A the
following functional

T
J(t,$,ﬂ, Oé) = IE|:/ f(87X;7x77r7a7PX§’57‘*7as) ds"i'g(X’%xﬂr’avPX%s*"‘) )
t

for any (t,z,m) € [0,T] x R™ x Z,(R™), where f: [0,T] x R" x Z,(R") x A — R and g: R" x
Z,(R™) — R satisfy suitable continuity and growth conditions, see Assumptions (A1) and
(A2). We define the value function

V(t,z,m) = sup J(t,z, T, a), (1.3)
acA

for all (t,z,7) € [0,T] x R" x Z,(R™). We will show in Proposition 2.2 that the mapping V is
the disintegration of the value function

T
VMKV(tvf) = Su.fl) IE|:/ f(87X£7§7a7P;t,§,aaas) dS + g(X’_?["'&a?Pit,&‘a) ’ (14)
acAg t s T

for every (t,£) € [0,T] x L?(Q,G,P;R"), where A, denotes the set of A-valued (FZ V o(¢))-
progressive processes, and Pi,,yg,a denotes the regular conditional distribution of the random

variable X4%: Q — R" with respect to (). That is,

Viw (1, €) = / V(L 2, ) (dz). (1.5)

Notice that at time ¢ = 0, when £ = x is a constant, then Vi (0, o) is the natural formulation
of the McKean-Vlasov control problem as in [13].
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Optimal control of McKean-Vlasov dynamics is a new type of stochastic control problem
related to, but different from, what is well-known as mean field games (MFG), and which has
attracted a surge of interest in the stochastic control community since the lectures by P.L. Lions
at College de France, see [25] and [10], and the recent books [6] and [11]. Both of these problems
describe equilibriums states of large population of weakly interacting symmetric players and
we refer to [14] for a discussion pointing out the differences between the two frameworks: In
a nutshell MFGs describe Nash equilibrium in large populations and the optimal control of
McKean-Vlasov dynamics describes the Pareto optimality, as heuristically shown in [14], and
recently proved in [23]. As an example we mention the model of systemic risk due to [15], where,
using our notation, X“$® (as well as the auxiliary process X»%$®) represents the log-reserve of
the representative bank, and « is the rate of borrowing/lending to a central bank.

In the literature McKean-Vlasov control problem is tackled by two different approaches: On
the one hand, the stochastic Pontryagin maximum principle allows one to characterize solutions
to the controlled McKean-Vlasov systems in terms of an adjoint backward stochastic differential
equation (BSDE) coupled with a forward SDE: see [1], [8] in which the state dynamics depend
upon moments of the distribution, and [13] for a deep investigation in a more general setting. On
the other hand, the dynamic programming (DP) method (also called Bellman principle), which
is known to be a powerful tool for standard Markovian stochastic control problem and does not
require any convexity assumption usually imposed in Pontryagin principle, was first used in [24]
and [5] for a specific McKean-Vlasov SDE and cost functional, depending only upon statistics
like the mean of the distribution of the state variable. These papers assume a priori that the
state variables marginals at all times have a density. Recently, [26] managed to drop the density
assumption, but still restricted the admissible controls to be of closed-loop (a.k.a. feedback) type,
i.e., deterministic and Lipschitz functions of the current value of the state, which is somewhat
restrictive. This feedback form on the class of controls allows one to reformulate the McKean-
Vlasov control problem (1.4) as a deterministic control problem in an infinite dimensional space
with the marginal distribution as the state variable. In this paper we will consider the most
general case and allow the controls to be open-loop. In this case reformulation mentioned above
is no more possible. We will instead work with a proper disintegration of the value function,
which we described in (1.4). The disintegration formula (1.5) was pointed out heuristically in
[12], see their formulae (40) and (41), but the value function V' was not identified. The idea of
formulating the McKean-Vlasov control problem as in (1.3) (rather than as in (1.4)) is inspired
by [9], where the uncontrolled case is addressed. We will then generalize the randomization
approach developed by [21] to the McKean-Vlasov control problem corresponding to V.

The DPP that we will prove is the so-called randomized dynamic programming principle
(see [4]), which is the dynamic programming principle for an intensity control problem for a
Poisson random measure whose marks leave in a subclass of control processes which is dense
with respect to the Krylov metric (see Definition 3.2.3 in [22]). See (3.8) for the definition of the
randomized control problem, Theorem 3.1 for the equivalence to V' (in itself is one of the main
technical contributions), and Theorem 5.1, which is our main result, for the statement of the
randomized dynamic programming principle. Although, the approach of replacing the original
control problem with a randomized version is also taken in [4] and [17], our contribution here is
in identifying the correct randomization that corresponds to the McKean-Vlasov problem. The
McKean-Vlasov nature of the control problem makes this task rather difficult and as a result
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the marks of the Poisson random measure live in an abstract space of processes. We should also
emphasize that another relevant issue resolved in this paper concerns the flow properties for the
solutions to equations (1.1) and (1.2), see Section 5.1. The importance of the flow properties is
to prove an identification formula (Lemma 5.3) between V' and the solution to the BSDE, which
in turn allows to derive the randomized dynamic programming principle for V. Our aim is then
to use the randomized dynamic programming principle to characterize V through a Hamilton-
Jacobi-Bellman equation on the Wasserstein space Z,(R"™), using the recent notion of Lions’
differentiability.

Although it is an intermediary step in deriving the randomized DPP, we see Theorem 4.1 as
the second main result of our paper. Here we derive the nonlinear Feynman-Kac representation
of the value function V in terms of a class of forward-backward stochastic differential equations
with constrained jumps, where the forward process is autonomous. This representation has
been derived in [21] for the case of classical stochastic optimal control problems and here we
are generalizing it to McKean-Vlasov control problems. The importance of this representation,
beyond its intermediary role, is that it would be useful in developing probabilistic numerical
schemes for V' (see [20] for the case treated in [21]).

The rest of the paper is organized as follows. Section 2 is devoted to the formulation of the
McKean-Vlasov control problem, and its continuity properties. In Section 3 we introduce the
randomized McKean-Vlasov control problem and we prove the fundamental equivalence result
between V and V7 (Theorem 3.1). In Section 4 we prove the nonlinear Feynman-Kac represen-
tation for V' in terms of the so-called randomized equation, namely BSDE (4.1). In Section 5
we derive the randomized dynamic programming principle, proving the flow properties (Lemma
5.2) and the identification between V' and the solution to the BSDE (Lemma 5.3). Finally, in
the Appendix we prove some convergence results with respect to the 2-Wasserstein metric W,
(Appendix A), we report the proofs of the measurability Lemmata 3.1 and 3.2 (Appendix B), we
state and prove a stability result with respect to the Krylov metric p (Appendix C), we consider
an alternative randomization McKean-Vlasov control problem, more similar to the randomized
problems studied for instance in [4, 16, 17, 21] (Appendix D).

2 Formulation of the McKean-Vlasov control problem

2.1 Notations

Consider a complete probability space (2, F,P) and a d-dimensional Brownian motion B =
(Bt)i>0 defined on it. Let FP® = (FP);>0 denote the P-completion of the filtration generated by
B. Fix a finite time horizon T' > 0 and a Polish space A, endowed with a metric p. We suppose,
without loss of generality, that p < 1 (if this is not the case, we replace p with the equivalent
metric p/(1 + p)). We indicate by B(A) the family of Borel subsets of A.

Let Z2,(R™) denote the set of all probability measures on (R™, B(R™)) with a finite second-
order moment. We endow 22,(R"™) with the 2-Wasserstein metric W, defined as follows:

1/2
W, (m,7') = inf { (/ |z —a'| 7 (du, d:z:’)) c € Po(R"xR"™) with marginals 7 and 77’},
R7™ xR™
for all 7,7’ € Z,(R™). We recall from Theorem 6.18 in [31] that (Z2,(R™),W,) is a complete

4
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separable metric space. Notice that
Wy(Pe,Po) < (E[|€ —¢&|P)V2,  for every pair €& € L2(Q, F,P;R"), (2.1)

where P, denotes the law under P of the random variable £: Q@ — R"”. We also denote by ||7||.
the square root of the second-order moment of © € Z2,(R"):

Wiy(m,60) = |7, = </ ]x|27r(da:)>2, for all m € Z,(R"), (2.2)
R

where g is the Dirac measure on R™ concentrated at the origin. We denote B(Z,(R")) the
Borel g-algebra on &,(R") induced by the 2-Wasserstein metric W.

We assume that there exists a sub-c-algebra G C F such that B is independent of G and
Py(R") = {P,: £ € L*(Q,G,P;R™)}.

Finally, we denote C,(R™) the set of real-valued continuous functions with at most quadratic
growth, and %,(R™) the set of real-valued Borel measurable functions with at most quadratic
growth.

Remark 2.1 For every ¢ € Co(R"), let A, : Z2,(R") — R be given by
A (m) = / o(z) 7(dx), for every m € Z2,(R").

We notice that (as remarked on pages 6-7 in [18]) B(Z2,(R"™)) coincides with the o-algebra
generated by the family of maps A, ¢ € C,(R"). As a consequence, we observe that, given a
measurable space (E, &) and a map F': E — Z,(R"), then F is measurable if and only if Ao F'
is measurable, for every ¢ € C,(R"). Finally, we notice that if ¢ € %,(R") then the map A, is
B(Z,(R™))-measurable. This latter property can be proved using a monotone class argument,
noting that A is B(#,(R"))-measurable whenever ¢ € C,(R"). O

2.2 Optimal control of McKean-Vlasov dynamics

Let A denote the set of admissible control processes, which are FB-progressive processes a: £ x
[0,T] — A. Given (t,7,&) € [0,T] x R" x L?(Q,G,P;R") and a € A, the controlled state
equations are given by:

dX05% = b(s, X059 Pyrca, ) ds + o (s, X050 Py, og) dBs, XHee = ¢ (2.3)
AXEEY = b(s, XEU9 Pyrcw, ) ds + 0 (s, X0 Py, a5) dBs, X[™5 =z, (2.4)

for all s € [t,T]. The coefficients b: [0,T] xR" x Z,(R")x A — R™ and o: [0,T] x R™ x Z,(R") x
A — R™¥? are assumed to be Borel measurable. Recall that Pytca denotes the law under P
of the random variable X:%%: Q) — R™. Notice that (Pxte«)se,r) depends on € only through
its law 7 = P, and 7 is an element of 22,(R"). As a consequence, X**& = (Xﬁ’z’g’a)se[tﬂ
depends on ¢ only through 7. Therefore, we denote X% simply by X“*™ whenever 7 = P..

Our aim is to maximize, over all & € A, the following functional

T
J(t,x,m ) = E[/ f(S,szxﬂT,Oé’PX;,E,ajas) ds+g(X%x,7r,oa’PX,¥f,n) , (2.5)
t
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where f:[0,7] x R" x Z,(R") x A — R and ¢g: R" x Z,(R") — R are Borel measurable. We
impose the following assumptions.

(A1)

(i) For every t € [0,T], b(t,-), o(t,-) and f(¢,-) are continuous on R™ x Z,(R") x A, and g is
continuous on R™ x Z,(R").

(ii) For every (t,x,2',m, 7' ;a) € [0,T] x R™ x R™ x Z,(R™) x Z,(R") x A,

IN

|b(t,z,m,a) — b(t,2', 7' a)| + |o(t,z,m a) — o(t,2', 7', a)| L(lz — 2| + Wy(m, 7)),
’b(t707507a)’ + ’U(t707507a>‘ < L7

[f(t, 2, ma) + (@, ™) < A7) (1+ [2]F),

for some positive constants L and p, and some continuous function h: Ry — R.

Under Assumption (A1), and recalling property (2.1), it can be proved by standard ar-

t7§7a tyx,mo
s X )se[t,T] of

continuous (F? Vv G),-adapted processes solution to equations (2.3)-(2.4), satisfying

guments that there exists a unique (up to indistinguishability) pair (X

supIE[ sup (‘Xﬁ’g’a‘Q—i—‘Xﬁx’”’a‘q)} < 00, (2.6)
acA s€t,T)

for all ¢ > 1. The estimate sup,e 4 E[supycp 11 | X5599] < 00 holds whenever |€|9 is integrable.
Notice that (Xﬁ’x’ﬂ’a)se[t,ﬂ is FB-adapted.

Recalling 2,(R") = {P.: £ € L?(Q,G,P;R")}, we see that J(t,x, T, a) is defined for every
quadruple (¢, z, 7, ) € [0,T] x R" x Z,(R") x A. The value function of our stochastic control
problem is the function V on [0, 7] x R" x Z,(R™) defined as

V(t,z,m) = sup J(t,z, 7, ), (2.7)
acA
for all (t,z,7) € [0,T] x R™ x Z2,(R").

From estimate (2.6), we see that H]P)X;,g,a |l. < M, for some positive constant M independent
of € Aand s € [t,T]. It follows from the continuity of h that the quantity h(IPyteal2) is
bounded uniformly with respect to a and s. Therefore, by the polynomial growth condition
on f and g in Assumption (A1)(ii), we deduce that the value function V in (2.7) is always a
finite real number on its domain [0,7] x R™ x Z,(R"), namely V: [0,T] x R" x Z,(R") — R.
In particular, it is easy to see that, under Assumption (A1), V satisfies the following growth
condition:

V(t,z,m) < (llnl.) (1 +[f), (2.8)

for some continuous function ¢: Ry — Ry
We now study the continuity of V. Firstly, we impose the following additional assumption.

(A2) For every t € [0,7] and R > 0, the map (z, 7) — f(¢,-, -, a) is uniformly continuous and
bounded on {(z,7) € R" x 25(R"): |z|, |||, < R}, uniformly with respect to a € A. For every

R > 0, the map g is uniformly continuous and bounded on {(z,7) € R" x Z5(R"): |z, ||7||. <
R}.
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Proposition 2.1 Under Assumptions (A1) and (A2), for every t € [0,T] the map (z,7)
V(t,xz,m) is continuous on R™ x Z2,(R™).

Proof. We begin noting that, as a consequence of Assumption (A2), for every ¢ € [0,7] and
R > 0, there exists a modulus of continuity §/*: [0, 00) — [0, 00) such that, for ¢ € [0,T),

‘f(t,:v,ﬂ,a)—f(t,a:',w',a)‘ < 5ﬁ(|x—x'|+W2(7r,7r')),
and, for t =T,
|f(T,2,7,a) — f(T,2' .7, a)| + |g(z,7) — g(,7)| < 6F(|lx — 2’| + Wa(m, 7)),

for all (z,7),(2',7") € R™ x Z,(R"™), a € A, with |z|,|2/|, ||7|2, ||7'|l. < R. Recall that, by
definition (see for instance [2], page 406), the modulus of continuity §f is nondecreasing and
lim,_,o+ 0%(¢) = 0. Moreover, by Assumption (A2), we see that 6% can be taken bounded. In
particular, limsup,_, , ., 68 (e) /e = 0. Therefore, without loss of generality, we can suppose that
61 is concave (see for instance Theorem 1, page 406, in [2]; we refer, in particular, to the concave
modulus of continuity constructed in the proof of Theorem 1 and given by formula (1.6) at page
407). Then, we notice that §I is also subadditive.

Now, fix t € [0,T] and (z, 70), (T, Tm) € R x Z,(R™), with |2, —z| — 0 and W, (7, 1) — 0
as m goes to infinity. Our aim is to prove that

V(t, Ty ) =5 V(t,x, 7). (2.9)
By Lemma A.1 we know that there exist random variables ¢, &, € L*(Q, G, P; R") such that m =
P, and 7, = P, under P, moreover &,, converges to ¢ pointwise P-a.s. and in L?(£2, G, P;R").
In particular, sup,, E[|¢,]?] < co. Then, by standard arguments, we have

P ; P . p
e { se[t%,paEA H X?ﬁ,a ‘ 2’ Slnlqp 36['«‘?}?&6,4 H XLEme H2} Rv

for some constant R > 0. For every R > R and « € A, define the set E, € F as

E, = {we Q: sup |XEPTX(W)], sup sup | XLTm T (w)] < R}.
sE[t,T] m selt,T]

Then, we have
‘V(ta x, 7T> - V(ta Ty 7Tm)|

T
< SUPE|:1EQ/ 55(‘X§,x,7r,a o X;,rm,wm,a‘) ds + 1Ea 57@(‘)(%967”,06 o X;lxm’ﬂm’a‘)]
acA t

T
+ sup E {1,;& / SE(W, (PytcasPyrema))ds + 15, (W, (Px%g,a,PX;Em,a))]
ac t

+supE [1 pe | g (X35, Px;g,a) — g(xprmomme IPXtT,gm,a)\

acA

T
+ 1E& /t |f(5) X£,$’7na7 sz,iﬂay Oés) - f(87 X?xm’ﬂ’m’a’ sz,gm,a, O[S)‘ d8:|

T
< [ [ (i - xmmenal) gy (e - e
acA t

7
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T
+ Sup </ 55 (WQ (PXt,g,a,]P)Xt,fm,a)) dS + 57}? (W2 (]:P)Xt,g,a,]P)Xt,ﬁm,a))>
acA \ Jt ° s T T

+ C(1+ |z|P + |zm|P) sup P(EY), (2.10)
acA

for some positive constant C', depending only on R, T', the constants L, p in Assumption (A1) (ii),
and the maximum maxy,.< g h(r), where the function h was introduced in Assumption (A1)(ii).

Recalling that WQ(PX?@Q,IP’ ;,gm,a) < E[|X§’£’a — Xﬁ’fm’o‘ 2] and 6% is nondecreasing, we find

X
SEWa(P gt Pyrema)) < 55(1@:[\)(;75@ —Xﬁ’fm’a\z]l/z>. (2.11)
Now, recall the standard estimate

sup E[| X156 — xteme 2|12 < eR[j6 — ¢,/ (2.12)

acA

for some positive constant ¢, depending only on 7" and L. Therefore, from (2.11) we obtain
S, (Pyrca Pyrena)) < 0F(CE[lE — &nl]?). (2.13)
On the other hand, from the concavity of 6%, we get
B[s5(|Xtome - xienmne|)] < sRE[|Xieme - xtmnmne])).  (214)
By standard arguments, we have

supIE[ sup {X;ﬁ,xm,a _ szxmyﬂ'm,au < ¢ <\x — Tp| + sup sup W, (]P)Xg,g,a,]P)X‘z,gm,a)>,
acA s€[t,T] acAselt,T]

where c¢ is a positive constant, depending only on 7" and L. Therefore, by (2.12), we obtain

supIE[ sup | XLTT — Xz’xm’”m’o‘ﬂ <ec <\x — T | + ¢E[|€ - fmlz]l/z). (2.15)
acA s€t,T]

Since 6 is nondecreasing, from (2.14) and (2.15), we find

sup E[6F (| xtome — xtommmo|)] < R (c & — | + CER[|E — &7 1/2). (2.16)
acA

Concerning P(EY), we have

B(25) < B sup [X{570| > R) +B( sup |XLmme| > R) (217)
selt,T] s€[t,T]
1 1 o 2 2
< —]E[ sup |Xt,a:,7r,oz|2:| + —E[ sup |Xt,a:m,7rm,a|2} < =L(1+ |$| + ]:E ‘ ,
R? s€[t, T ° R? s€ft,T) ° R2( " )

for some positive constant ¢y, depending only on T, L, R. In conclusion, plugging (2.13)-(2.16)-
(2.17) into (2.10), we get

|V(t7 x, 7T) - V(ta Tm, 7Tm)|

g R A 271/2 R A 271/2
< /t s (c\x—xml—l—ccEUf—ﬁm\] )ds+5T<c]a:—xm\+ccEU§—§m\] )
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+ /tT 55(6E[|§ —&ml] 1/2) ds + 57’?(@1@“5 _ €m|2]1/2)

C
+ o (L [of? + o) (L + lol? + fom]?): (2.18)

Taking the lim sup,,_,., in the above inequality, we find

limsup |V (¢, z,7) — V(t, T, )| < ﬁ(l + 2|z %) (1 + 2|z P).
m—r0o0
Letting R — oo, we deduce that limsup,,_, .. |V (¢, z,7) =V (¢, T, ™m)| = 0, therefore (2.9) holds.
a

We end this section showing that the value function V': [0, 7] x R™ x Z,(R"™) — R given by
(2.7) is the disintegration of the value function Vyucey: [0, 7] x L?(2,G,P;R") — R given by:

VMKV(tvé-) = sup E

T
t77
s / F s, KPS P ) ds + g (XG5 P ) | (2.19)

t

for every (t,&) € [0,7] x L*(Q,G,P;R"), where A, denotes the set of A-valued (FZ Vv o(€))-
progressive processes, (X 575’0‘) seft,7] is the solution to the following equation:

AX5E = b(s, XEOO P, o) ds + o (s, XVOU P, . as) dBs, X[V = ¢,

X.§1£7a’ X;wngC,

for all s € [¢,T], with a € A, and Pié,f,a denotes the regular conditional distribution of the

random variable Xﬁ’g’a: Q — R™ with respect to (), whose existence is guaranteed for instance

by Theorem 6.3 in [19].

Proposition 2.2 Under Assumptions (A1) and (A2), for every (t,€) € [0,T)x L*(Q, G, P; R"),
with m = P under P, we have

‘/MKV(ta 5) = E [V(ta 57 7T):| 9
or, equivalently,

n

View (£, €) = / V(t, 2, 7) 7(dx).

Proof. Fix ¢t € [0,T]. Recall from Proposition 2.1 that the map (z, 7) — V (¢, x, 7) is continuous
on R" x Z,(R™). Proceeding as in the proof of Proposition 2.1, we can also prove that the map
€ — Vav(t, €) is continuous on L2(Q,G,P;R"). As a consequence, it is enough to prove the
Proposition for ¢ € L?(, G, P;R™) taking only a finite number of values, the general result being
proved by approximation. In other words, we suppose that

K
£ =) mlp,
k=0

for some K € N, z, € R", E, € o(&), with (Eg)g=1,.. x being a partition of Q. Notice that
a € Ae¢ if and only if

K
o = Zak 1Ek’ (220)
k=0
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for some «y € A. We also observe that

K
X0 = Y Xk g, Prce = ZP vonen 15,

k=0
Then, the stochastic processes (X5 “)sepe/r) and (X Xhrree 1g, +- XY I 00 LEg ) sel,)
are indistinguishable, since they solve the same equation. Therefore

4 t
Vuxv (t,€) = sup E[/ f(s,X;f’S’ Pi, . n,as) ds + g(X S e ” 5,(,)] (2.21)
OzE.Ag t

K T
k) 751' b 7617 bl
sup E[E (/ F(5, X0 P v, (an)s) ds + g (X7 P, ak)> 1Ek:|-
OzE.Ag k=0 t ,

Since ¢ is independent of X%®#% k% and of oy, we can write the last quantity in (2.21) as

K T

Z Tk, 0a Oy,

Viukv (t,§) = sup E|: IE|:/ f(stzwk g akapxﬁ’”*%’( k)s )d5+ ( txk b P Xy Qk):| 1Ek:|.
acAg k=0 t )

From (2.20), we conclude that

K

T

k) 761 b 761 ’

%IKV(tag)_E|:§ SquAE|:/ f(S,X;xk kakapxg‘lk’o‘k’v( ) )d8+g(thk o ]P) tlk "‘k):| 1Ek:|
k;:(]ake t

K
=E {Z V(t, 2k, 0, 1@} =E[V(t &, )]

k=0

3 The randomized McKean-Vlasov control problem

Following Definition 3.2.3 in [22], we define on A the metric p given by:

o) = | [ Tp(at,ﬁadt} (3.1)

where we recall that p is a metric on A satisfying p < 1. Notice that convergence with respect
to p is equivalent to convergence in dP dt-measure. We also observe that (A, p) is a metric space
(identifying processes a and 8 which are equal dPdt-a.e. on € x [0,7]). Moreover, since A is
a Polish space, it turns out that (A, p) is also a Polish space (separability follows from Lemma
3.2.6 in [22], completeness follows from the completeness of A and the fact that a p-limit of
FB-progressive processes is still FZ-progressive). We denote by B(.A) the family of Borel subsets
of A.

Following [22], we introduce the following subset of admissible control processes.

Definition 3.1 For every t € [0,T), let (E})s>1 € F be a countable class of subsets of Q which
generates 0(Bs, s € [0,t]). Fiz a countable dense subset (am)m>1 of A. Fix also, for every

10
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integer k > 1, a subdivision Iy, := {0 =:tog < t; < ... <ty :=T} of the interval [0,T], with the
diameter max;—y . k(t; — ti—1) of the subdivision I}, going to zero as k — oco. Then, we denote

Asiep 1= {a e A: there exist k> 1, M > 1, L > 1, such that, for everyi=0,...,k—1,

ar: Q= (am)m=1,...m, with oy, constant on the sets of the partition

generated by Ef", . ,EtLi, and, for every t € [0,T],

= agg Ly 1) (8) + - Aoy L0 (D) + o, 1{tk}(t)}'

Remark 3.1 Notice that A, depends (even if we omit to write explicitly this dependence) on
the two sequences (am)m>1 and (Ix)g>1, which are supposed to be fixed throughout the paper.
The set Ag.p, with oy, being o(Bs, s € [0, t;])-measurable, is introduced in the proof of Lemma
3.2.6 in [22], where it is proved that it is dense in A with respect to the metric p defined in (3.1).
It can be shown (proceeding as in the proof of Lemma C.1) that the map o — J(¢,z, 7, «) is
continuous with respect to p, so that we could define V (¢, z, 7) in the following equivalent way:

Vt,z,m7) = sup J(t,z,m, ). (3.2)
aeAstep

Finally, we observe that A, is a countable set, so that it is a Borel subset of A, namely

Asier € B(A). O

Now, in order to implement the randomization method, it is better to reformulate the original
McKean-Vlasov control problem as follows. Let A, be the following set:

Ao = {a: [0,T] — Aep: « is Borel-measurable, cadlag, and piecewise constant}.

It is easy to see that, for every o € A, the stochastic process ((s)s)sepo,r] is an element
of A. Vice versa, for every element & € A,.,, there exists & € A, such that ((&s)s)sefo,7)
coincides with & (take &5 = &, for every s € [0,7]). Hence, by (3.2),

V(t,z,m) = sup J(t,:z:,w, ((as)s)se[oﬂ).
acAstep
On the right-hand side of the above identity we have an optimization problem with class of
admissible control processes given by {((cs)s) se07]: @ € A...p }. We now randomize this latter
control problem.

Consider another complete probability space (2!, 71, P!). We denote by E! the P'-expected
value. We suppose that a Poisson random measure p on Ry x A is defined on (Q!, F1,P!). The
random measure p has compensator A(da) dt, for some finite positive measure A on A, with full
topological support given by A..,. We denote fi(dt da) := p(dt dar) — A(der) dt the compensated
martingale measure associated to p. We introduce F# = (F');>0, which is the P!-completion of
the filtration generated by u, given by:

Ft' = o(p((0,s] x A"): s €[0,8], A" C Ayep) VAN
for all t > 0, where N'! is the class of P'-null sets of F'. We also denote P(F*) the predictable
o-algebra on Q! x R, corresponding to F*,
11
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We recall that p is associated to a marked point process (T, Ay)n>1 on Ry x A by the
formula p = anr 8(1,,,A,), Where &(7;, 4,y is the Dirac measure concentrated at the random
point (T}, Ay,). We recall that every T,, is an F*-stopping time and every A,, is ]-"éfn—measurable.

Let Q = Q x Q! and let F be the P ® P'-completion of F @ F', and P the extension of
P®P' to F. We denote by G, B, [i the canonical extensions of G, B, u, to €, given by:
G:={Gx 0 G eg} Bw,wh = Bw), ilw,w';dtda) = pw;dtda). Let FP = (FP)0
(resp. F* = (F/')1>0) denote the P-completion of the filtration generated by B (resp. fi). Notice
that fg and FY are independent.

Let FB# = (f'tB ")t>0 denote the P-completion of the filtration generated by B and ji. Notice
that B is a Brownian motion with respect to FZ# and the FP#-compensator of fi is given by
A(da) dt. We define the A-valued piecewise constant process I = (I;)i>0 on (Q, F,P) as follows:

L(w,w') = D (An(@)iar(@) 1z, i) 1 @y (£), forall £ >0, (3.3)
n>0
where Ty := 0 and Ay := @, for some deterministic and arbitrary control process & € Ag.p,

which will remain fixed throughout the paper. Notice that I is FZ#-adapted.
Randomizing the control in (2.3)-(2.4), we are led to consider the following equations on
(Q, F,P), for every (t,z,€) € [0,T] x R" x L?(Q,G,P;R"), with 7 = P¢ under P:

d)zzf _ b( th P )ds—l—a( Xlté pP7 )dBS, Xf’g = f_a (3-4)

thv X:gv
dXbem = p(s, XboT ]P’,tg,[)ds—i—a(s Xtom IP)F,'tg,I)dBS, XU =, (3.5)

for all s € [t,T], where IP’Z5 denotes the regular conditional distribution of the random variable

Xﬁ’fz Q — R™ with respect to F, whose existence is guaranteed for instance by Theorem 6.3

n [19]. Notice that ]P’,t ¢ depends on £ only through its law 7, so that equation (3.5) depends
only on 7. Under Assurnptron (A1), it follows by standard arguments that there exists a unique
(up to indistinguishability) pair (X e Xbm ™) seft,r] of continuous (.7:5 "V G)s-adapted processes
solution to equations (3.4)-(3.5), satisfying

I_E[ sup (}X "5‘ +|X“”’ } < o0, (3.6)
s€ft,T)

for all ¢ > 1, where E denotes the P-expected value. Moreover, (Xﬁ"r’ﬂ) seft,T] 18 FB:#_adapted.

We now prove two technical results concerning the process (Pf{:&) se[r,7]- In particular, the
first result (Lemma 3.1) concerns a particular version of (P’ < £) selt,7]» Which Will be used in the

proof of Lemma 3.2. This latter proves the existence of another version of (P ( < §) se[t,7], Which
will be used throughout the paper.

Lemma 3.1 Under Assumption (A1), for every (t,m) € [0,T]x P,(R™), there exists a P2,(R™)-
valued F*-predictable stochastic process (IP’ftg )se[t,r] which is a version of (P X:s)se[tT with & €

L?(Q,G,P;R") such that T = P¢ under P. For all s € [t,T), PL™ is given by
Pim(whle] = Elp(Xet(wh)], (3.7)
for every w! € Q! and ¢ € B,(R™).
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Proof. See Appendix B. O

Lemma 3.2 Under Assumption (A1), for every t € [0,T], there exists a measurable map

PU s (Q x [, T) x Z,(R™), Fr @ B([t, T)) ® B(Z(R™))) = (P5(R"), B(P,(R™))) such that
P" = P7}

th)

Pl-a.s., for every s € [t,T], m € Z,(R™), where £ € L*(Q, G, P;R") has law K under P. In other
words, for every s € [t,T] and m € Z,(R"), (]P)Z’”)Se[t’ﬂ is a version of (P”. < 5)s€[t 17-

Proof. See Appendix B. O

From now on, we will always suppose that (Pg,g)se[t,ﬂ stands for the stochastic process

(P57 seft,r] introduced in Lemma 3.2.

Let us now formulate the randomized McKean-Vlasov control problem. An admissible control
is a P(F*) ® B(A)-measurable map v: Q' x Ry x A — (0,00), which is both bounded away
from zero and bounded from above: 0 < infgi g, x4 ¥ < SUPQixR, x4V < 00. We denote by V
the set of admissible controls. Given v € V, we define PV on (Q', F!) as dP¥ = K dP', where
K" = (K{ )1efo,r is the Doléans exponential process on (O, FLPY) defined as

W= g <//y ) 1) dsda))
:exp(//lnys u(ds day) — //y ) 1) da)d) for all ¢ € [0, T].

Notice that ¥ is an F“-martingale under P!, so that P¥ is a probability measure on (Q!, F1).
We denote by E” the P-expected value. Observe that, by the Girsanov theorem, the [F¥-
compensator of y under PV is given by v;(a) A(da) dt. Let P¥ denote the extension of P ® PV
o (Q,F). Then dP” = k4.dP, where i/ (w,w!) := k¥ (w), for all ¢t € [0,7]. Using again the
Girsanov theorem, we see that the FB*-compensator of fi under PV is 7;(a) A(da) dt, where

! ) is the canonical extension of v to  x Ry x A.

Di(w, wl, a) = v(w
Notice that a G-measurable £: Q — R” has law 7 under P if and only if it has the same law
under PV. In particular, £ € L?(Q,G,P;R") if and only if ¢ € L?(Q, G,P¥;R™). As a consequence,
the following generalization of estimate (3.6) holds (E” denotes the P”-expected value):
sup B[ sup (| X4+ [X0o7[7)] < oo,
vey s€lt,T)
for all ¢ > 1, for every (t,x,€) € [0,7] x R® x L*(Q,G,P;R"), with 7 = P under P (or
equivalently, under P¥).
Let (t,z,€) € [0,T] x R* x L?(Q,G,P;R"), with 7 = P, under P, and v € V, then the gain
functional for the randomized McKean-Vlasov control problem is given by:

th?

T .
JR(t,LU,ﬂ',V) = I_El’[/t f( X“”7r P’ )ds—|—g(Xt‘7“r P;TT’E) .

As for the functional (2.5), the quantity J®(¢,z, 7, v) is defined for every (t,z,m, v) € [0,T] x
R™ x Z,(R") x V, since by assumption Z,(R") = {P,: ¢ € L*(Q,G,P;R")}. Then, we can
define the value function of the randomized McKean-Vlasov control problem as

VR(t,z,m) = sup J®(t, z,m,v), (3.8)
vey
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for all (t,z,7) € [0,T] x R™ x Z2,(R").

Remark 3.2 Let V be the set of P(F*) @ B(A)-measurable maps 7: Q' x Ry x A — (0, 00),
which are bounded from above supgi, g, 47 < 00, but not necessarily bounded away from
zero. For every (t,z,m) € [0,T] x R" x Z2,(R"), we define

VR(t, z,m) = sup J®(t,x, 1)
eV

In [4] the randomized control problem is formulated over V. Here we considered V because this
set is more convenient for the proof of Theorem 3.1. However, notice that

VR(t,x,m) = VR(t,z, 7). (3.9)

Indeed, clearly we have V C V, so that VR(t,z,7) < VR(t,x,ﬂ). On the other hand, let 7 € V
and define v° = 0 V ¢, for every € € (0,1). Observe that v € V and /?;lq’f converges pointwise
P-a.s. to R;. Then, it is easy to see that

T =~ — —_ ymi ol
JR(t,z,m, ) = E[Fﬁf(/ f(s, X057 P T) ds + g(Xyom PTr ))} 20 JR(t,z, 7, D).
] :

' 5 gt €
XT

This implies that JR(t,x,m,0) < sup,ecy JX(t, 2,7, v), from which we get the other inequality
VR(t,z,m) < VR(t,z, ), and identity (3.9) follows. O

We can now prove one of the main results of the paper, namely the equivalence of the two
value functions V and V.

Theorem 3.1 Under Assumption (A1), the value function V in (2.7) of the McKean-Vlasov
control problem coincides with the value function V™ in (3.8) of the randomized problem:

Vit,z,m) = VR(t, x,m),
for all (t,z,m) € [0,T] x R™ x Z,(R™).
Remark 3.3 As an immediate consequence of Theorem 3.1, we see that V™ does not depend
on ag and A, since V' does not depend on them. O

Proof (of Theorem 3.1). Fix (t,z,£) € [0,T] x R" x L*(Q,G,P;R"), with 7 = P, under P.
Set £(w,w!) := &(w), then £ € L?(Q,G,P;R") and m = P under P. We split the proof of the
equality V (t,z,7) = VR(t,z,n) into three steps, that we now summarize:

I) Instep I we prove that the value of the randomized problem does not change if we formulate
the randomized McKean-Vlasov control problem on a new probability space.

IT) Step II is devoted to the proof of the first inequality V (¢, z,7) > VR(t, z, ).

1) In order to prove it, we construct in substep 1 a new probability space (Q, F, IP’) for
the randomized problem, which is a product space of (€2, F,P) and a canonical space
supporting the Poisson random measure. Step I guarantees that the value of the new
randomized problem is still given by V(¢ x, 7).
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2) In substep 2 we prove that the value of the original McKean-Vlasov control problem
is still equal to V(¢,z,m) if we enlarge the class of admissible controls, taking all
&: Q x [0,T] — A which are progressive with respect to the filtration FB#>~. The
new class of admissible controls is denoted Ao

3) In substep 3 we conclude the proof of the inequality V (¢, z, ) > VR(t,z, ), proving
that for every 7 € V there exists &’ € AB#e such that JR(t,z,n,v) = J(t,z, 7, &").
From substep 2, we immediately deduce that V (¢, z,7) > VR(t,z, 7).

III) Step III is devoted to the proof of the other inequality V(¢,z,7) < VR(t,z,7). In few
words, we prove that the set {¢”: ¥ € V} is dense in AP#>~ with respect to the distance
pin (3.1). Then, the claim follows from the stability Lemma C.1.

Step L. Value of the randomized McKean-Viasov control problem. Consider another probabilistic
setting for the randomized problem, defined starting from (€2, F,P), along the same lines as
in Section 3, where the objects (Q!, FL,PY), (Q,F,P), G, B, fi, Ty, An, I th Xbrm oy,
JR(t,z,m,v), VR(t,z,7) are replaced respectively by (Q', F1,P), (Q, F,P), g, B, [, Ty, An,
I, th,g’ Xtam y o JR(t, x, 7w, 0), VR(t,z,7), with £(w,@!) := £(w), so that & € L*(Q, G, P;R™)
and 7 = P; under P.

We claim that VR(t, 2, 7) = VR(t,z,7). Let us prove VR(t,z,m) < VR(t,z,7), the other
inequality can be proved in a similar way. We begin noting that V?(t, z, 7) < VR (t x,m) follows
if we prove that for every v € V there exists 7 € V such that J®(¢,z,m,v) =
Observe that

T "
s = s [ e )

JR(t,x,m D).

The quantity JR(t, x,m,v) depends only on the joint law of k%, Xbem IP’J: o I. under P, which
in turn depends on the joint law of B, fi, ¥ under P.
Recall that 7(w,w!,a) := »(w!,a) and v is P(F*) ® B(A)-measurable. Then, we can

suppose, using a monotone class argument, that v is given by
Vs(a) = k(a)l(Tn,Tn+1}(3)\II(3, Tl, ce ,Tn, .Al, ‘e ,.An),

for some bounded and positive Borel-measurable maps k& and W. We then see that o defined by

ﬂs(a) = k(a)l(Tn7Tn+1](8)\Il(87Tl7'"7TnaA17'-->An)

is such that JR(t,z,m,v) = JR(t,x, 7, ).

Step II. Proof of the inequality V (t,x,m) > V™ (t,x, 7). We shall exploit Proposition 4.1 in [4],
for which we need to introduce a specific probabilistic setting for the randomized problem.
Substep 1. Canonical probabilistic setting for the randomized McKean-Vilasov control problem.
Recall that the Polish space A can be countable or uncountable, and in this latter case it is
Borel-isomorphic to R (see Corollary 7.16.1 in [7]). Then, in both cases, it can be proved (see
the beginning of Section 4.1 in [4]) that there exists a surjective measurable map ¢: R — A and
a finite positive measure A on (R, B(R)) with full topological support, such that A = A\ o~}
and X is diffuse, namely ' ({r}) = 0 for every r € R.
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Now, consider the canonical probability space (€', ', P’) of a marked point process on R xR
associated to a Poisson random measure with compensator X' (dr)dt. In other words, ' €
is a double sequence W' = (tn,7n)n>1 C (0,00) X R, with ¢, < tp41  co. We denote by
(T}, R},)n>1 the canonical marked point process defined as (7}, (w'), R, (w’)) = (tn, ), and by
¢ = Zn21 (7 R ) the canonical random measure. F " is the o-algebra generated by the sequence
(T),Rl)n>1. P’ is the unique probability on F’ under which ¢’ has compensator \'(dr)ds.
Finally, we complete (', F',P') and, to simplify the notation, we still denote its completion by
(Q,F,P).

Set A, = «(Ry,) and p' =37, <1 67z 4 ). Then /' is a Poisson random measure on (Q', 7', P')

with compensator A(da) ds. Proceeding along the same lines as in Section 3, we define, starting
from (Q,F,P) and (', F',P'), a new setting for the randomized problem where the objects
(QI7F17P1)7 (Q Jr ]P)) g B s F5 = (fsB)S>07 Fr = (}—5)820: Fo# = (ﬁSB”u)SZO? (anAn)nZh
I, Xt€, Xtem y pv P, JR(t,I,ﬂ', v), VR(t,z,7) are replaced respectively by (€, F' P'),
(Q,FP), G, B, i, FP = (FF),z0, B = (F')sz0, BB = (FP)s50, (T, Ap)zr, I, XU,
Xtem P PY PP, JR(t x,m,0), VR(t,z, ), with £(w,w’) = £(w), so that € € L?(Q, G, P;R™)
and 7 = P¢ under P.
Substep 2. Value of the original McKean-Viasov control problem. FBi#ee = (ff’“"o)szo be the
P-completion of the filtration (FZ ® F')s>0, and F' the canonical extension of F’' to . We
define the set AVB oo of all FB#eo_progressive processes é: 2 x [0,7] — A. For every @ € AB#es,
we denote (Xﬁ’g’d,)zﬁ’z’ﬂ’d)se[tﬂ the unique continuous (FZ#> v G),-adapted solution to the
following system of equations:

AXLET = p(s, X0ES P7 as) ds + o (s, X250 P7* S) dB, X4 = ¢ (3.10)

Xfﬁa’ tha7

dXbTmE = p(s, XL0TO P Gy)ds + o (s, X0 PP ay)dBy, XU = x, (3.11)

XtEu? Xt{a?

for all s € [t,T], where P7*

Knéa denotes the regular conditional distribution of the random variable

Xb 0. Q) R with respect to FY'. We also define (E denotes the P-expected value)

T
J(t,x,m d) = E[/t f(s, XLoma thw ds) ds + g(X55™°, thga) :

and
V(t,z,7) = sup J(t,z, 7, Q).
GEAB 1o
Let us prove that V (¢, z,7) = V(t, 2, 7).
The inequality V(t,z,7) < V(t,z,7) is obvious. Indeed, every o € A admits an obvious
extension &(w,w’) := a(w) to Q. Notice that & € AB’“N We also observe that X% (w,w’) =
X55%(w), for P-almost every (w,w’) € . Therefore P7*

i is equal P-a.s. to Pytea. Then,
XEomA (W) = XEPPTY(w), for P-almost every (w,w’) €0 Asa consequence, we see that
J(t,z,m a) = J(t, z, T, d).

To prove the other inequality, let & € AB#e. Then, there exists an A-valued (FEe F )s>0
progressive process &: ) x [0,T7] — A satisfying & = @, dPds-a.e., so that j(t,x,ﬂ V) =
J(t,z,m,&). Moreover, for every w' € € the process o', given by a¥ (W) = ds(w,w’), i
FB-progressive.
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Now, for every o’ € €, consider the solution (X525 xL=me” )serr] to (2.3)-(2.4) with o
replaced by o , namely

dxtée = p(s, xt6 p ) ds + o (s, Xt p

yteae’ s s
s

") dB,

w’,as

t,€,
XS,E,CX

/ !/ /
tx,mav t,x,m,a% w’ t,x,m,a% w’
dX! = b(s, X! P il ) ds +o(s, X P /,08") dBs.

t,&,a% )
xbhe«

On the other hand, since (Xé’g’d,)v(;’x’”’d)se[tﬂ is the solution to (3.10)-(3.11), we have, for
P-ae. ' €,

dXﬁ’g’d(-,w') = b(s,Xﬁ’é’d(-,w’) P’ (-,w'),d5(~,w’)) ds

) nga
+0 (s, X040 W), PTE (- w), ds(-,w')) dBs,
AXEPmE( W) = b(s, XEPTE(L W), PTE (W), ds(, W) ds

i
Xbea

+ o (s, XEPTE (W), PTE (W), ds(-, ) dBs.

X;,,E,d

Notice that, for P-a.e. w’ € Q' we have that ]P’f(i:,g,&(-,w’) is equal P-a.s. to ]P’Xz,g,d(,ym, the law
under P of the random variable X’é’g’d(, W)= R

Recalling the identity 0" = ¢,(-,w’), we see that, for P-a.e. ' € @, (Xﬁ’g’ad , Xﬁ’x’w’aw/)se[tﬁp]
and (Xﬁ’é’d(',w/),Xﬁ’w’”’&(-,w’))se[t,ﬂ solve the same system of equations. Then, by path-

wise uniqueness, for P-a.e. ' € , we have XL5 (w) = X’?g’&(w,w’) and X5Hme” (w) =
XP5™%(w, W), for all s € [t, T], P(dw)-almost surely. Therefore, by Fubini’s theorem,

T 4 ’ W’
J(t,z,m,&) = /,E[/t f(s,X;’:”’W’O‘w ,ngrmu,a‘;)dSJFQ(Xfp’x’ﬂ’a ’th,g,aw’) P'(dw)

T

= [ Jt,z,ma )P (d') < V(t,z, ).
Q/

Recalling that J(t,z, 7, &) = J(t,z, 7, &), we deduce that J(t,z, 7, &) < V(t,z,7). Taking the
supremum over & € AB#~ we conclude that V (¢, z,7) < V(t,z, ).

Substep 3. Proof of the inequality V (t,x,7) > VR(t,2z,7). Let ¥ € V. By Lemma 4.3 in [4]
there exists a sequence (77, A),>1 on (@, F',P') such that:

o (T, A7) takes values in (0,00) x A;
o Ty <T} 4 /oo
e 77 is an F# -stopping time and A” is FT’f;—measurable;

e the law of (77, A%),>1 under P’ coincides with the law of (T},, A, ),>1 under P7.

Let &”: Q x [0,T] — A be given by (a was introduced in (3.3))

6 (w,6) = @s() g 15 () + (AW ant (@) gy 7, o) (9)

n>1

Notice that a7 € AP#H<. For every n > 1, set dys(w,w’) = (A, (w'))s(w) and & (w,w') =
(A%(w"))s(w), for all s € [0,T]. Notice that the law of (cins)scpo. 7] under P” coincides with the
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law of (0'47’2075) sefo,7) under P (to see this, we can suppose, by an approximation argument, that
the A-valued random variables A, and A” take only a finite number of values). It follows that
the law of I under P coincides with the law of & under P.

More generally, for every n > 1, the law of (E,B,dn,.) under P” is equal to the law
of (f,B,dZ’_) under P. Therefore, the law of (£, B,I) under P” coincides with the law of
(£, B,&”) under P. This implies that the law of (Xt¢, Xt®™ ) under P” is equal to the law of
(Xt’é’dD,Xt’x7”76‘D,d‘7) under P. Tt follows that J®(t,z, 7, ) = J(t,z,7,&”). In particular, we

have
sup JR(t,x,m,0) = supJ(t,z, 7, &").
vey &
vey

Since the left-hand side is equal to VR(¢,z,7), while the right-hand side is clearly less than or
equal to V(t,z,7), we get VR(t,z,7) < V(t,z, 7). Recalling from step I that VR(t,z,7) =
VR(t,z,n) and from substep 2 that V(t,z,7) = V(t,z,7), we conclude VR(t,z,7) < V(t,z, ).

Step III. Proof of the inequality V(t,z,m) < VR(t,z,m). The proof of this step is based on
Proposition A.1 in [4] (notice, however, that we will need to use some results from the proof of
this Proposition, not only from its statement). More precisely, the set {2 appearing in Proposition
A.1 of [4] is the empty set 2 = () in our context, so that the product probability space (Q, F, Q)
coincides with (', 7', P'), which is some suitably defined probability space (see Appendix A in
[4] for the definition of (€, F',P'); here, we do not need to know the structure of (', F',P')).
Fix & € A and denote by a: [0,7] — A the map a; = &, for every s € [0,T]. By Proposition
A.1 in [4] we have that, for every £ € N\{0}, there exists a marked point process (7%, A)n>1
on (€, F',P") such that (& was introduced in (3.3))

¢ = 0, A = a, W) = Z‘Afl(w/) 1[%(&),)7#“@,))(5), for all s >0
n>0
and
T 1
E/U ﬁ(If,as)ds} < 5 (3.12)
0

where E’ denotes the P’-expected value. Set py = > o>t O(7¢, A¢) the random measure associated
to (T%, A%)y>1, and denote P = (F£¢) > the filtration generated by pp. Then, by Proposition
A.1 of [4] we have that the F*¢-compensator of i, under P’ is given by v(a) A(da) ds for some
P(F*) @ B(A)-measurable map v*: Q' x Ry, x A — R, satisfying

0 < inf 5 < sup ¥ < oo (3.13)

Wx[0T]xA rx[0,T]xA

Noting that the definition of v¥ on ' x (T, 00) x A is not relevant in order to guarantee (3.12),
we can assume that v =1 on @ x (T, 00) x A.
Observe that

T TE AT T 1
E/[/o ﬁ(If,as)ds] = ZE/[l{T£<T} /T‘-’ E[/o p((’Aﬁ)r,&r)dr]ds] < VA

n>0

On the other hand, let

Iw,w') = ;)(Af;(w'))m(w) Lirenrt, @y(s),  foralls >0.
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Our aim is to prove that

R a) = E [E[/()Tp(ff,dr)dr” = . (3.14)

Digression. Estimate for the series ), P/(T. < T). We recall from the proof of Proposition
A.1 in [4] that the sequence (7)), is the disjoint union of (R™),>1 and (T¥),>0 (we refer to
the proof of Proposition A.1 in [4] for all unexplained notations), namely

SP(T<T) = > P(Ry<T)+ > P(IF<T). (3.15)

n>0 n>1 n>0

We also recall that T% — T | has an exponential distribution with parameter k= 'A(A). Then,
it is easy to prove by induction on n, the estimate

P(TF <T) < (1—e % AT, (3.16)

On the other hand, concerning the sequence (R]"),>1, we begin noting that since v is constant
and identically equal to &, the sequence of deterministic times (¢, ),>0 appearing in the proof of
,:,)le/\T), and t, =T +n — 2 for
every n > 2. Therefore R} > T for all n > 2, while R}* = t; + V], where V|™ is an exponential

random variable with parameter Ay, > m. In particular, we have

Proposition A.1 in [4] can be taken as follows: tp = 0, t; € (0

P(RP<T) = P(V"<T—t) = 1—e MmT-0) <, (3.17)
Plugging (3.16) and (3.17) into (3.15), we obtain

STP(TE<T) < 143 (1= PN < 1 AT < g AT (318)
n>0 n>0

Continuation of the proof of Step III. We can now prove (3.14). In particular, we have,
using (3.18),

it = e /()Tp(ff,éar)dr” S E |1z [ ; 1ATp<<Af;>r,ar>drH

n>0
1 T, AT T£+1/\T ,
= ZE [ {Te<T}W/ E[/Tz p((An)r,dT)dr} ds}
n>0 e
1 T£+1AT Tn+1/\T ;
!/
= ,;)E [ {T} AT~ T£>1/\/Z}1{T£<T}W/T£ E[/T,’{ p((AS, )r,ozr)dr] ds]
B\ 1 ! T o i Al dr|ds
+nz>:0 [ {T¢  AT-TE<1/VE} {T’€<T}W/Tg [/Tf{ p((An)rs ) r} }
n+1/\T T ; X L
< \[ZE {TF<T}/ / p((AR)r, Gr) dr|ds Z[P (T < T)
n=0 0 \/>n>0
B \/EEI[/ T e dS] > P(TL<T)
0 \/>n>0
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T, ] 14 ANAT 9 L AT

< VIE [/0 (T, as)ds| + /i < i
which yields (3.14).

We consider now the product probability space (2 x Q' F®@ F',P®P’), which we still denote

(Q, F,Q) (by an abuse of notation, since according to Proposition A.1 in [4], (Q, F,Q) coincides
with (', F',P")). We complete the probability space (Q,f ,Q) and, to simplify the notation,
we still denote by (Q,f ,Q) its completion. Let é , B, ! be the canonical extensions of ¢, B,
V! to Q. On the other hand, we still denote by s, the extension of g to Q. We denote by
fig(dsda) = py(dsda) — vt(a)X(da)ds the compensated martingale measure associated to .
We also denote by FB#e = (FP#) oo (resp. F# = (FF),>0) the Q-completion of the filtration
generated by B and juy (resp. ju). For every £ € N\{0}, we define the Doléans exponential

</ / 1) fie(dr da)) for all s € [0, 7).

By (3.13) we see that (& )se[o 7] is an FBoe martmgale under Q, so that we can define on (€2, F)
a probability P, equivalent to Q by dPy, = K,T dQ. By the Girsanov theorem, pu, has [FBome.

compensator given by A(da)ds under P,. Moreover, B remains a Brownian motion under Py,
and ™ = IP’é~ under Py.

Let G be the canonical extension of G to € and denote (Xt’g’g f(t’x’w’z)se[t 7) the unique
continuous (]}f’w V G)-adapted solution to equations (3.4)-(3.5) on (€, F,P) with &, B, I, F
replaced by &, B, I, F!*. Finally, we define in an obvious way the following objects: V, }P’g,
E’g, ng(t,m,w,u), Ve (t,z, 7).

For every ¢ we have constructed a new probabilistic setting for the randomized problem,
where the objects (QY, 71, PY), (Q, F,P), G, B, ii, I, X’t’g, Xtem Y JR(t,x, ), VR(t,z,7)

are replaced respectively by (<, ', '), (Q, F,P), G, B, u’, I, X6l xtamt ), JR(t, x, T, D),
VE(t,x, ).

Now, let us prove that jgz(t,x,ﬁ, ) — J(t,z,m &) as £ — oo. To this end, notice that
ng = Q. Therefore jf(t, z,m, ") can be written in terms of EQ as follows:

)ds—}—g(Xt:“Te P tu) .

X1Ee0 78

T
JR(t,z,m, %) = E@[/ (s, Xbomt P2
t

On the other hand, let FP = (]}B)8>0 be the Q-completion of the filtration generated by B,

S
and & the canonical extension of & to . Then, we denote by (Xs té’ , X ﬁ’x’ﬂ’d) se[t,7) the unique
continuous (FZ v G)-adapted solution to equations (2.3)-(2.4) on (Q,]:", Q) with &, B, «a re-
placed by 5 ., B, &. Notice that (X?E’d,)?ﬁ’x’”’&) seft,7] coincides with the obvious extension of
(xbea xbe ”a)se[tﬂ to Q. Hence, we have

T .
J(t,$7ﬂ’@) = IE:Q|:/Y f( Xtmﬂ—a P]:fia’ )d8+g(th7ra7P]jT["“) .
t

xXheo
Then, it follows that Jg (t,z,m — J(t,x,m, &) as £ — oco. Indeed, this is a direct consequence

@, 7, )
of Lemma C.1, with F#o := ({( Q})520~being the trivial filtration, Rl .= (FP# VG) s> for every
¢>1,F0:= (.7-'B VG0, 10 := @, X460 .= X164 and Xtom0 .= Xboma,
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We conclude that for every € > 0 there exists some L. € N such that, for every ¢ > L., we
have
Step I
J(t,z,m b)) —e < jgz(t, x, T, ﬁe) < sup jZR(t,x, T, V) =: %R(t,a:,w) 2 VR(t,z, 7).
veV,
From the arbitrariness of €, we see that J(t,z, 7, &) < VR(t, 2, 7). The claim follows taking the

supremum over & € A. O

Remark 3.4 Let Vi, C V be the set of v € V such that v =1 on Q x [0,¢) x A. Then
V(t,z,m) = sup JX(t,x,m,v), (3.19)

veVl ¢
for all (¢,z,7) € [0,T] x R™ x Z,(R™). Indeed, by step II of the proof of Theorem 3.1, we have

V(t,z,m) > VR(t,z,7) > SUP,ey, , JR(t,x,m,v). Let us prove the other inequality. We begin
noting that in Lemma C.1, the convergence EQ| ft (I¢,1%) ds] — 0 as £ — oo is needed, rather

§17s

than EQ[ fo (I¢,1%)ds] — 0. In other words, the behavior of (I )86[0 7] on the interval [0,1) is

CREne-]

not relevant. Therefore, proceeding as in step III of the proof of Theorem 3.1, we see that we can
take 7/ = 1 on Q x [0,%) x A, in order to guarantee the convergence EQ| ft It G4y)ds] — 0 as
£ — co. Then, from the same proof of Lemma C.1, we conclude that JR(t, T, W,V ) — J(t,x,m, &)
as £ — oo. This implies the validity of the other inequality V (¢, z,m) < sup,¢y, , JR(t,x, ) and
proves (3.19). , O

4 Feynman-Kac representation: randomized equation

In the present section we introduce, for every (¢,,&) € [0,T] x R* x L?(Q,G,P;R"), a forward-

backward stochastic differential system of equations, which provides a probabilistic represen-

tation for the value V(¢,z,7), with 7 = P, under P. In other words, we derive a nonlinear

Feynman-Kac formula for the value function V' in (2.7) of the McKean-Vlasov control problem.
We firstly introduce the following spaces, for every ¢ € [0, T].

e S%(t,T), the set of real-valued cadlag F#-adapted processes Y = (Y)sep 7, with Y: QF x
[t,T] — R, satisfying HYH‘QSQ(LT) = E! [SUPtgng ]Yslz] < 00.

. L/Ql(t’ T), the set of real-valued P(F*) @ B(A)-measurable maps U = (Us(a))seft,17, acA>
with U: Q! x [t,T] x A — R, satisfying HU||L2(tT) El[ft J41Us(x @)2A(de) ds] < oo.

e K2(t,T), the set of nondecreasing F*-predictable processes K = (Ks)seft,r)> with K: Qb x
[t,T] — Ry, satisfying K € S?(¢,T) and K; = 0.

Given (t,z,€) € [0, T]xR"x L*(Q, G, P; R"), with 7 = P, under P, consider on (Q!, 71, F# P1)

the following backward stochastic differential equation with constrained jumps over [¢, T

_ T
Y, = Bt PO + [ B[ X P ) dr o+ K - K,
S

/ / wu(drda), s € [t,T), (4.1)

dP' ds A(da)-a.e. on Q' x [t,T] x A.

Us(o)

21

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



Notice that E[g(X5L"" BT
(QL, FLPY).

Equations (3.3)-(3.4)-(3.5)-(4.1) constitute a forward-backward stochastic differential system
of equations. We also observe that equation (4.1) depends on £ only through its law 7 = P,.
We now prove that there exists a unique solution (Y4%™ Ut*™ Ktxm) ¢ S2(t T) x L%(t, T) x
K2(t,T) to (4.1), which is minimal in the following sense: if (Y,U, K) € S?(t,T) x L%L(t,T) X
KC2(t,T) is another solution to (4.1), then the inequality Y™ <Y holds on Q! x [t,T], up to
a Pl-evanescent set.

™)), as well as E[f(r, X" PTE

,tg,I )], is a random variable on

,t§

Theorem 4.1 Under Assumption (A1), for every (t,z,£) € [0,T] x R" x L*(Q, G, P;R™), with
7 = P. under P, there exists a unique minimal solution (Y5*™ Ube™ Kbem) ¢ S+ T) x
L%(t,T) X K2(t,T) to (4.1), with Y,"™™ equal P'-a.s. to a constant. In addition, V admits the
Feynman-Kac representation

V(t,z,m) = Y"T (4.2)

Pl-a.s., for all (t,z,n) € [0,T] x R" x Z,(R"). Moreover, we have

S
yhem = supE”[/ E[f(r, X7, P ls, )] dr+YtI7r] (4.3)
vey

s
= SupEV|:/ f thﬂ P rrga )dr+}/"9t,z,w:|’
vey t

P'-a.s., for all s € [t,T).

Proof. Eristence and uniqueness of the minimal solution to (4.1). Fix (t,z,£) € [0,T] x R™ x
L?*(Q,G,P;R"), with 7 = P, under P. Consider, for every n € N, the following unconstrained
backward stochastic differential equation on [t, T:

i, T
Y, = E[g(X3"T, IPF{@)H/ E[f(r, X257 ngg, dr+n/ / da) dr

/ / p(drda). (4.4)

By Lemma 2.4 in [30], there exists a unique solution (Y™b®™ Untam) ¢ S2(¢, T) x L%(t,T) to
the above equation.

For every n € N, let V™ denote the set of P(F*) ® B(A)-measurable maps 7: Q' x Ry x A —
(0,n], which are not necessarily bounded away from zero. Then, let us prove the following
formula: .
an’t’x’“ = esssAupE’g[/ E[f(r Xtem ]P’fté,

peyn t
for all #,s € [t,T], with # < s. Let # € V (see Remark 3.2 for the definition of V). Then,
considering (4.4) between ¢ and s, and taking the P”-conditional expectation with respect to
ftﬂ , we obtain

[)] dr + Y05 ]—““] (4.5)

S
an,tm,ﬂ' — Eu|:/ E[f(r thw P Ttg’ )] dT._|_Yn,t,m7r (4.6)
t

+/t /A [n(Ur(a)™557) 4 = U0 ()b () | Mder) dr

7).
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Since () € (0,n], the last term inside the expectation is nonnegative. Therefore

an’t’x’w > esssAupEﬁ[/t E[f(r, X0"T IF’X%,I )] dr + Yuhor
veyn

f“] (4.7)

To prove the other inequality, define, for every € € (0,n], the map 0™ as

~ATLE €

VT (a) =N 1{U77‘1,t,:c,7r(a)20} + e 1{71§Ulz,t,a:,7r(a)<0} + m 1{U;1,t,ac,7r(a)<71},
I8

on Q' x [t,T] x A, and 9™ = 1 on Q' x ([0,1) U (T,00)) x A. Notice that ¢ belongs to V",
and it is not necessarily bounded away from zero. Taking © equal to 2™ in (4.6), we obtain

Y_n,t,:v,ﬂ S Egn,s[/ E[f(T Xt:):7r ]P) [
t

t ’tﬁ?

)} dr+Ynt:p7r

fll:| +e(T —t)A(A) (4.8)

S
< asssup | [ B[ XET P )] dr g v
peyn t

f”] +e(T — t)A(A).

From the arbitrariness of € we get the reverse inequality of (4.7), from which we deduce the
validity of (4.5). In particular, when s = 7" in (4.5), we obtain

T £
yRher = es:siupE”[/t E[f(r, X", P e, )] dr +Eg g(X7" " P )] ]—'til}, (4.9)
veyn
for all t € [¢t,T]. Then, it is easy to see that the following estimate holds:
sup YT < oo, forall f € [t,T. (4.10)

Hence, the existence and uniqueness of the minimal solution to equation (4.1) follows from
Theorem 2.1 in [21] (apart from the fact that K} = 0, as required in the definition of (¢, T),
which will be proved later). Indeed, (4.1) can be seen as an equation on the entire interval
[0, 7], with terminal condition E[g(Xy t o ]P’ )] and generator E[f(r, X;™7 IP’Q & 1)) ey (r).
Assumption (HO) in [21] holds under Assumptlon (A1). Moreover, Assumption (H1) in [21] is
imposed only to guarantee the validity of (4.10), which in our case follows directly from formula
(4.9), since f does not depend on Y™L&™ nbE™ Tt only remains to prove that Km7r = 0.
This is clearly true if we show that Yf’x’” is equal P'-a.s. to a constant (as a matter of fact, if
V7" is equal P'-a.s. to a constant, then, by uniqueness, Y™™ = Y;"*™ on [0,1], so that K&™"
is also constant on [0, ¢], and, in particular, equal to K b, = 0). This latter property is proved
below. Finally, for later use, we notice that, according to Theorem 2.1 in [21], the sequence
(Y"""™) >0 is nondecreasing (this is a direct consequence of formula (4.9), since V" C V1)
and converges pointwise Pl-a.s. to th’x’ﬂ, for all ¢ € [t,T].

Proof of (4.2), in particular Y;""™ is equal P'-a.s. to a constant. Notice that V""" is F'-
measurable, therefore it is not a priori clear that it is P'-a.s. a constant. For every n € N,
consider (4.5) with ¢ =t and s =T

T
YT = esssupIED[/ E[f(r, X\, P7*
t

A xt &9
veyn

I)] dr + E[g(X5"7, IP’,tE ‘f;‘]
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Letting n — oo, recalling that ;""" A Y™™ Pla.s., and noting that V,, C V11 C UV, = V,
we obtain

T s
I S ML

N Xt &
vey

]-"4 . (4.11)

Reasoning as in Remark 3.2, we can show that the right-hand side of (4.11) does not change if
we take the supremum over V. In other words, (4.11) can be equivalently written as follows:

T u
Yo = esseslljlpE”[/t E[f(r, X7, P Tt{’ )] dr +E[g (X", P Qs)]
y T

]—"4 : (4.12)

From Corollary D.1 it follows that the right-hand side of (4.12) is equal P!-a.s. to V (¢, z,7),
which yields ;""" = V (¢, z, ), Pl-a.s..

Proof of formula (4.3). Let v € V. Consider (4.1) between ¢ and s, and take the expectation
with respect to E”, then (recalling that K“®7 is nondecreasing and U™ is nonpositive)

s
tht,x,Tr Z El/|:/ E[f(?’ Xt:L‘ﬂ' IP; r
t

*rga

L)) dr + Y. (4.13)

From the arbitrariness of v € V, we get the first inequality. To prove the reverse inequality,
considering (4.8) with # = ¢, and taking the expectation E*"", we obtain

t

< supEﬂ[/tsE[f( xtom pr L)) dr+Y“”_ +e(T —t)A(A)

- Xt &
vey

= supE”[/tsE[f(r xtom P L)) dr+Y“”r_ +e(T —t)A(A),

Xt £
vey

where the last equality can be proved arguing as in Remark 3.2. From the definition of 7%, we
see that k7" = 1, therefore E”"°[v;*"*7] = E![Y;""™™]. Hence

S

El[}/tn,t,xﬂr] S Sup]E”[/ E[f( thw ]P)ftga )} dT+YtCEW:| +€(T—t))\(./4)
vey t

Recall that the sequence (Y;""*™), > is nondecreasing and converges pointwise P'-a.s. to ¥;""™.

In particular, Y,""" < ¥/"b5T < YT for every n € N. Therefore, letting n — oo and using

Lebesgue’s dominated convergence theorem, we obtain

}/tt,SCﬂr — El [Yttvxﬂr] S SupEy[/ E[f( thﬂ— ]P),”;E, ):| dr_’—thﬂ—} +E(T_t))\(~/4)'
vey t
Sending € — 0, we get
tht,x,Tr < supIE”[/ E[f(?’ thfr IP,’;U )] dr+thﬂ:|
t

vey

which, together with (4.13), gives formula (4.3) and concludes the proof. O
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5 Randomized dynamic programming principle

The present section is devoted to the proof of the dynamic programming principle for V' in the
randomized framework. Firstly, we prove the flow properties of X € and X7, These in turn
imply the identification E[V(S,Xﬁ’x’ﬁ,[@?:f)] = YI"" P! -as., for all s € [t,T]. Then, (4.3)
allows to derive the randomized dynamic programming principle for V.

5.1 Flow properties

We begin considering the solution to system (3.4)-(3.5) with more general initial conditions.
More precisely, concerning equation (3.4), for every (¢,7) € [0,T] X Lz(Q,]:'tB’“ vV G, P;R"),
consider the following equation:

) ds + o (s, Xt7, P75 1) dBs,

gt
XS

dXtT = b(s, X0, PT,

79
XS

X" =g, (5.1)

for all s € [t,T]. Concerning equation (3.5), we begin recalling that (Pifn) selt,r) stands for the

stochastic process (IP’Z’;’W) seft,r] introduced in Lemma 3.2, with 7 = P, under P. In the sequel,
when considering equation (3.5), it is more convenient to adopt the notation PL™ instead of
P74 . For every (t,7) € [0,T] x L2(Q, FP* v G, P;R™) and II: Q) — 2,(R™), with II measurable
with respect to F!' and such that E[||TI||?] < oo, consider the following equation:

s
7.
XS

dXE = p(s, X P L) ds + o (s, XU PUTL ) dB, Pl (5.2)

for all s € [t,T], where

PLL(@) = Pi’ﬁ(@)(wl), for all (@, s) = (w,w’,s) € Q x [t,T). (5.3)

Notice that, thanks to Lemma 3.2, the stochastic process (Pi’ﬁ) se[t,7] is well-defined. In particu-

lar, for every s € [t, T], ]P’?ﬁ is Ft-measurable. Under Assumption (A1), we have the following
result, whose standard proof is not reported.

Lemma 5.1 Under Assumption (A1), for every (t,n) € [0,T] X L2(Q,ftB’“ vV G,P;R") and
I: Q — 2,(R"), with I1 measurable with respect to F}' and such that E[||T1||2] < oo, there exists
a unique (up to indistinguishability) pair (X7, X’E’ﬁ’n)se[tﬂ of continuous (FE'GVo (i, TI))s-
adapted processes solution to equations (5.1)-(5.2), satisfying

E| sup (|X7
s€t,T)

2 >t.7.0012
+ X)) < oo
Moreover, there exists a positive constant C' such that

IE[ sup | XL — XL
s€[t,T]

| < C(Ell - 7P+ BV ), (5.4)
for every t € [0,T], 7,77 € L%Q,ff’” vV G, P;R"), and any ILIT: Q — P,(R™), with 11,11
measurable with respect to F|' and such that E[||TL]|2], E[||TI'||?] < oo.

Proof. The proof of the existence and uniqueness of (X;*ﬁ,X;ﬁ’ﬁ)se[t,T] is standard under
Assumption (A1), and can be done as usual by a fixed point argument. Concerning estimate
(5.4), the proof can be done proceeding as in Lemma 3.1 in [9)]. O
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Remark 5.1 When in equation (5.2) the random variables 77 and II are equal P-a.s. to some z €
R™ and 7 € 2,(R™), respectively, then (X5 selt,r] coincides (up to indistinguishability) with

the stochastic process (Xﬁ’x’ﬂ)se[tﬂ defined in Section 3. Indeed, ()_(;’ﬁ’n)se[t,ﬂ and (Xﬁ’x’“)se[tﬂ
solve the same equation, therefore the claim follows from the uniqueness of the solution. O

Remark 5.2 Suppose that 7 and IT in Lemma 5.1 takes only a finite number of values, namely

K K
N = > wlp, 0 =) mlg,
k=0 k=0

for some K € N, z, € R", m, € Z,(R"), Ey € .EB’” V G, with (Ek)k=1,..k being a partition
of . Then, by definition of P4 (formula (5.3)), we have P4 = PE™ 15 4 ... 4 PLY™ 155, .
Therefore, the stochastic processes (X5™™ 1g, + - - - 4+ X L7 1By )sep,r) and (Xé’ﬁ’n)se[tj]
are indistinguishable, since they solve the same stochastic differential equation. O

Lemma 5.2 Under Assumption (A1), for every (t,s,x,&) € [0, T]x [0, T|xR"x L*(Q, G, P; R"),
with t < s and ™ = P¢ under P, we have the flow properties:

— g€ — .7

X;Xs = XUt (5.5)
~ S,Xé’z W7P§§_§— _
X o= XU (5.6)

for all v € [s,T)], P-almost surely.

,t,é
Proof. Flow property (5.5). Consider the process ( o Xs

)refs,r) solution to equation (5.1) with

initial conditions ¢t = s and ) = X%*. Since (Xﬁ c[s,7) solves the same equation, by pathwise

)r
_ K3 _
uniqueness we deduce that (X{f’Xg )refs,r) and (Xﬁ’g)re[sj] are indistinguishable, namely (5.5)
holds.
Flow property (5.6). Recall that (]P’f:({,g)se[t,ﬂ stands for the stochastic process (Pi’ﬂ)se[tﬂ

introduced in Lemma 3.2. In the present proof it is more convenient to adopt the notation PL”
yail] t,m —

instead of Pi:s Notice that, by (5.5), we have PE™ = PS™=" for all r € [s, T, P-almost surely.

Therefore

. r
Xﬁ’x’ﬂ _ X?x,ﬂ +/ b(u,XZ’x’”,IP’i;”, ju) du +/ U(qubxﬂr’P%W’ ju) dBu
s s
- r
_ Xg’x7ﬂ + / b(u, XZ,J?,T(’ PZ,]P’? ,fu) du + / O'(U, X&wﬂr’ PZJP? 7fu) dBu)
s s

_ _ vt,r, ™ pt,T
for all r € [s,T], P-a.s.. On the other hand, consider the process (X5~ )refs,r] solu-
tion to equation (5.2) with initial conditions t = s, 7 = X", II = P4™. Then, we see that

_ vt,x, ™ pt, T _
(X5 )refs,r) and (Xﬁ’x’”)re[sj] solve the same equation. It follows that they are indis-

tinguishable, namely (5.6) holds. O

5.2 Randomized dynamic programming principle

We begin proving the following identification result between V and Y%%T,
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Lemma 5.3 Under Assumptions (A1) and (A2), for every (t,z,€) € [0, T|xR"x L?(Q, G, P;R"),
with © = P¢ under P, we have

E[V (s, Xt P )] = vior,

Pl-a.s., for all s € [t,T).

Proof. Fix (t,s,2,€) € [0,T] x [0,T] x R* x L*(Q,G,P;R"), with t < s and 7 = Pz under
P. Using the same notations as in the proof of Theorem 4.1, let us consider, for every n € N,
formula (4.5) with ¢ and s replaced respectively by s and T*:

T
yntar esssﬁupEV[/ E[f(r, XboT [thg, [,)] dr + E[g(X3"T, P,tg ‘J-"é‘]
peyn s
Letting n — oo, we obtain
T
Y;t"r’ﬂ— _ esssupEy[/ ]E[f( Xtrﬁﬂ' ]P) 267 )] dT‘"‘]E[ (thﬂ' -tf ’]:”:|
ey s

Reasoning as in Remark 3.2, we can show that the right-hand side of (4.11) does not change if
we take the supremum over V. In other words, (4.11) can be equivalently written as follows:

T
Yst’I’Tr = esssupEy[/ E[f( Xt“r Py fﬁ’_)] dT+E[ (X7 X7 P ]’}—4
vey S

Then, we see that the claim follows if we prove the following equality: P'-a.s.

E[V (s, Xt®m P78 )] :esssupE”[/:ﬁ[f( Xtem P L) dr + E[g(XE5T P Zg)]‘ﬂ]- (5.7)

Xt 3 Xt &9
vey

As in the proof of Lemma 5.2, it is more convenient to adopt the notation PL™ instead of IP’?:5

(recall that (P : 5) se[t,7] stands for the stochastic process (P57 sclt,r) introduced in Lemma 3.2).
Then, from the flow properties (5.5) and (5.6), we have

T — vt, T, , T N t,m
}/st,xﬂr —_ eSSGS]ljlp EV|:/E [f("", X;?,Xﬁ ,P’; ’ Pi,l{”é )] dr + E[ (Xs X TPy ’ )]
v S

7| 53

Now, notice that X2 € L?(9Q, ff’“, P;R™), so that it is the L2-limit (and also pointwise P-a.s.)
of a sequence (X,,)m>0 C L*(1, .7:"5’“, P; R™), where each X, takes only a finite number of values.
Similarly, P4 is a random variable P5™: Q — 22,(R™) such that E[||PY™||2] < co. Therefore, by
Lemma A.3 there exists a sequence (Pp,)m>0 of FP#_measurable maps Pp,: Q — Z,(R"), with
E[||P,n||?] < oo and each Py, takes only a finite number values, such that E[W,(P,,, P¥™)?] — 0 as
m goes to infinity (and also W, (P, }P’g’”) — 0 pointwise P-a.s.). In particular, for every m > 0,

K K,
= E LT,k 1Em7ka P, = § T,k 1Em7k7
k=0 k=0

for some K, € N, 2y € R", mpp € Po(R"), By € .7:'33’“, with (E,, 1) being a partition

we have

of Q. For every m > 0, consider the process (X,f’Xm’P’"),.E[S’T}, solution to equation (5.2) with
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initial conditions t = s, 1) = X, I = P,,,. Recall from Remark 5.2, we have that the stochastic
processes (X';f’Xm’Pm)re[s’T] and ( kK:% X maka Tk 1E,, 1 )refs,r) are indistinguishable.

Notice that, for every v € V, we have, from Corollary D.1, Pl-a.s.,

Km

E[V(S,Xm,Pm)] = ZE[V(&xm,k,ﬂ'm,k) lEm,k]
k=0

Km T
= Z E [lEmﬁkess sup E” [/ E[f(r, X prmedoTmk prmk I)] dr
vey s

T _ _
= esssupE” [/ E[f(r, Xf’Xm’Pm,]P’i’Pm, I;)] dr + E[g(X?Xm’Pm,IP’?Pm)} ‘]—"ﬁ] . (5.9)
vey s

From the continuity of the map (y,v) — V(s,y,7) stated in Proposition 2.1, and the growth
condition (2.8), we see that

U m—00
—

E[V (s, Xm,Pm)] e E[V (s, X7"™ PoT)]. (5.10)

On the other hand, using estimate (5.4) and proceeding as in the proof of inequality (2.18) in
Proposition 2.1, we can prove the following convergence:

T _ _
esssupE" [ [ Rl XS By )] dr Bl (G )] ‘]—";‘] (5.11)

vey

T ot,x, T T T — _ ot,x,m \TT T
o esseslljlpE”[ / E[f (r, X255 BT P L] dr 1 E[g(R3 5P Bt )]’]—'ﬁ].

Hence, by (5.10) and (5.11), together with equalities (5.8) and (5.9), we see that (5.7) holds,
therefore the claim follows. O

We can now state the main result of this section.

Theorem 5.1 Suppose that Assumptions (A1) and (A2) hold. Then, for every (t,s,z,§) €
[0,T] x [0,T] x R* x L*(Q,G,P;R"), with t < s and T = P¢ under P, we have

s ’ = = K
V(t,x,m) = ilelg E¥ [/t E[f(r, Xﬁ,z,w,P;’%g, L)) dr + E[V(‘S’X;’I’W,Pj;z,é)]] .
Proof. Fix (t,s,2,€) € [0,T] x [0,T] x R* x L*(Q,G,P;R"), with t < s and 7 = P¢ under P.
Recall that by (4.3) we have, Pl-a.s.,

s T —
Y;t,m,ﬂ' = sup EY |:/ E[f(T7 X;E,:v,ﬂ"]P)J-‘ﬁ I )} dr + Yt,;v,ﬂ':| ]
t

Xt,f? s S
vey "

Then, the claim follows from Lemma 5.3. O

Remark 5.3 Hamilton-Jacobi-Bellman equation for V and Vykyv. Let us derive, in a formal
way, the dynamic programming equation for the value function V. We proceed as usual, starting
from the dynamic programming principle of Theorem 5.1 and applying It6’s formula (see the
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Appendix in [12]) to the process V (s, X-™™ P7* ), supposing that V is smooth enough. Then,

XtE
it is easy to see that the Hamilton-Jacobi-Bellman equation for V' takes the following form (see

Section 6 of [10] for the definition of Or):

OV (t,z, ) + sup {f(t, x,ma)+b(t,x,m a). [GxV(t, x,m) +

0.V (¢, 2, w)(x)w(da;')}
acA

R"

+%tr(aaT(t,x,W,a)[8§V(t,x,7r)+ 3x8ﬂV(t,x/77r)(x)7r(dx’)}} _—

]Rn
for all (¢,z,7) € [0,T) x R™ x Z,(R™), with terminal condition

V(T,z,m) = g(z,n), for all (z,7) € R" x Z,(R").

We can also derive the Hamilton-Jacobi-Bellman equation for the value function V. defined
by (2.19). From Proposition 2.2, we have

Ve (1,6) = E[V(L€,m)] = / V(t, 2, 7) 7(dz),

n

for all (t,&) € [0,7] x L?(Q, G, P; R"™), with 7 = P, under P. From the above formula we see that
Vuxv depends on £ only through its law 7. In other words, Viky (¢, &) = Vakv(t, §’) whenever £
and ¢ have the same law w. Then, by an abuse of notation, we suppose that Vi is defined on
[0,T] x Z,(R™) with Vv (t, ) given by Vyky(t, ), for some & such that 7 = P.. Now, recalling
the definition of the derivative d;, we obtain
OVuxv(t,m) = E[0V(t,&, )],
OxVaxv(t,m)(x) = 0,V (t,x,m) +E[0-V(t,& 7)(x)],
D0 Vo (t, ) () = 02V (t,x,7) + E[0,0,V (t,& 7)(x)].

Integrating with respect to 7 in the Hamilton-Jacobi-Bellman equation of V', we obtain the
following dynamic programming equation for Vyy:

O Vanew (£, 7) + / sup [(t, 2,7, @) + b(t, 2, 7, a). 0 Ve (£, 7) (@) (5.12)
R” a€A

1
+ §tr(007(t,x,77,a)ax&rVMKv(t,w)(m))]ﬂ(d:c) = 0,
for all (¢,7) € [0,T] x Z,(R"), with terminal condition
Vuxv (T, ) = / g(x,m) m(dz), for all m € Z2,(R").

Notice that if the supremum inside the integral in (5.12) is attained at some a(x), for some map
a: R™ — A Lipschitz continuous in z, then the above equation can be written as (we denote by
L(R™; A) the set of Lipschitz continuous maps from R" into A)

OVav (t, ™)+ sup [f(t, x,m,a(x)) + b(t, z, 7, &(x)).0x Vary (¢, ) (2)
GEL(R™;A) JRn

+%tr(afﬂ(t,x,7r,&(x))@maﬁ%mv(t,ﬂ)(x))]w(d:r) _

This latter is the Hamilton-Jacobi-Bellman equation obtained in [26] under the assumption that
the optimization in the McKean-Vlasov control problem is performed only over the class of
Lipschitz continuous closed-loop controls. O
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A Some convergence results with respect to the 2-Wasserstein metric W,

Lemma A.1 (Skorohod’s representation theorem for JV,-convergence) Let (7, )m be a
sequence in Py (R™) such that Wy(mm, ) — 0, for some m € P, (R™). Then, there exists a
sequence of random variables (&,)m C L%(Q,G,P;R™), with P, = w1, converging pointwise
P-a.s. and in L*(2,G,P;R™) to some & € L*(Q, G, P;R"), with P, = .

Proof. By Theorem 6.9 and point (i) of Definition 6.8 in [31], we have that W, (my,, 7) — 0 is
equivalent to:

Tm m;kjo ™ and / || 70 (dez) mj@/ || 7 (dx). (A.1)
weakly n n

Then, by the classical Skorohod representation theorem for weak convergence, there exist random
variables &, & € L?(Q,G,P;R"), with P, = 7, and P, = 7, such that &,, converges pointwise
P-a.s. to &. It remains to prove the convergence in L2(€2, G, P;R™). To this end, we notice that
(A.1) implies E[|¢,|%] — E[|€]?]. Therefore, by Theorem I1.6.5 in [28], the sequence (|&]%)m is
uniformly integrable. Then, it follows that &, — & in L?(Q, G, P;R"). O

Lemma A.2 There ezists a countable convergence determining class (¢x)k>1 C Co(R™) for the
W,-convergence. In other words, given m,ma,...,m € P,(R™), we have:

W (o, m) =520 if and only if / () T (d) ™50 / or(z)w(dx), for all k.

Proof. Let 71, mo,...,m € Z,(R™). We recall from Theorem 6.9 and point (i) of Definition 6.8
in [31] that

Wa(ftm,m) "™=5° 0 if and only if 7, miflo 7 and / 2|2 7t (da) ™57 / |z|? 7 (dz).
weakly n n

Now, it is well-known that there exists a countable convergence determining class (¢ )p>1 C

Cy(R™) (the set of real-valued continuous and bounded functions) for the weak convergence (see,

for instance, Theorem 2.18 in [3]). In other words, we have

Tm =5 if and only if Yn(z) Tm (d) e Yp(x) m(dz), for all h.
weakly Rn R”

Then, the claim follows taking ¢1(z) := |z|?, for every x € R", and ¢y := 9_1, for every k > 2.
O

Lemma A.3 Let (Q, F,P) be a probability space and let T1: Q — P,(R™) be a measurable map.
Suppose that (E denotes the P-expected value)

B3] < oo (A-2)

Then, there exists a sequence (Il,)m>1 of measurable maps IL,, : Q- P, (R™) such that:

m—ro0 m—ro0

W, (I (@), TL(&)) 0, P(d)-a.s., and E[W,(I,, )?] ™= 0,
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where, for every m > 1,
Km
I,(0) = Zﬂm,k 1g,, (@), for every @ € €,
k=1

for some finite integer Ky, > 1, mpp € P2(R"), Enp € F, with (B k)k=1,...K,, being a
partition of .

Proof. Recall from Theorem 6.18 in [31] that (Z2,(R™),W,) is a complete separable metric
space. Then, there exists a sequence (73,)p>1 dense in Z,(R™). Now, for every ¢,h > 1, define
the measurable set B&h eF by

B&h = {(:J S QZ WQ(H(@),T(}L) < 1/6}

We also define the disjoint measurable sets: By := Bf,l and By, := Bz’h\(B[’l u---U Bg’h_l),
for any h > 2. Notice that Q= Un>1Bep. In particular, for every £ > 1, there exists K, > 1
such that P(Up>x,+1Ben) < 1/€%. Finally, we set

K,
(@) = D 71,04, (@) + 60 (LU, 11 Ben)na (@) + Lag(@)),  for every @ € Q,
h=1

where

A = {0 e Q: I@))2 < ¢}.
Then, we see that (recall from (2.2) that W, (do, II(w)) = ||II(©)][2)

_ _ 1 5 5 B B
WQ(HZ(W)7 H(CU)) S z l(uhKilBZ,h)ﬁAé (w) + HH(w>H2 (1(U}LZKZ+IBZ,}L)0A£ (U)) + 1A; (UJ)),

for all & € Q. Therefore (recalling that P(Up>x,+1Ben) < 1/%)

EW,(IL, %] < 75 + E[I@)13 L0ps sy i1 Bew)nar] + E[TI@)]3 1ag]

< gt CP((Unzr,+1Ben) N Ag) + E[|[IL@)]13 Lac]

1 1 ~ ~ f—r00
< g+l TR(I@)E 1] =30,

where the convergence INE[HH(&))HE 1 Az] — 0 follows from the Lebesgue dominated convergence
theorem, using (A.2) and noting that 1 Ag converges pointwise P-a.s. to zero.

Let Yy: © — [0, 00) be the nonnegative random variable given by Y, := W, (I, IT). We know
that Yy — 0, as £ — oo, in L2(f~2,.7:" , IP’) Then, it is well-known that this implies the existence of
a subsequence (Y, )m>1 such that Yy, = W,(I,, , II) — 0, as m — oo, pointwise P-a.s. and in
L2(Q, F,P). Then, (IL,,)m>1, with II,,, := I, , is the desired sequence. O

B Proofs of Lemma 3.1 and Lemma 3.2

Proof of Lemma 3.1. Recall that, by construction, the map X*: ([t,T] x Q x Q1. B([t,T]) ®

F) — (R™,B(R™)) is measurable. Therefore, up to indistinguishability, we can suppose that

XU (8, T) x Qx QY B([t, T]) @ F @ F') — (R™, B(R™)) is measurable. Since (X5*) e 7 is also
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(FPHVG)-adapted, we deduce that, for every s € [t, T], the map X2%: (xQL, (GVFB)@FF) —
(R™, B(R™)) is measurable. Therefore, by estimate (3.6) and Fubini’s theorem, we see that, for
every ¢ € %,(R"), the map i
wh —s E[@(X?S(-,wl))},
from Q! into R, is F4-measurable. In particular, when ¢ € C,(RY), the continuous process
(E[w(Xﬁ’g)])se[t’T] is F#-predictable. Then, by Remark 2.1 it follows that the process (}fbi’“)se[tﬂ
is F#-predictable.
Finally, we observe that

B (@h)lp] = E[p(X44(,wh)] = E[p(XE9)[F] (") = PRe(@hlyl,

P!(dw!)-a.s., for every ¢ € %,(R"). Let (pr)r C %.(R™) be a countable separating class of
continuous functions, whose existence is guaranteed for instance by Theorem 2.18 in [3] (¢ can
be taken even bounded). Then, there exists a unique P'-null set N* € F! such that

PL™(wh)lpr] = P2

xte

(whew],  for every k,

. . . -~ . . . FH
whenever w! ¢ N'. Since (o) is separating, we conclude that PL™ coincides with }P’;‘}Lg on
. ;

QU\N. In other words, (B5™)yc(; 7y is a version of (P )se1- O

Proof of Lemma 3.2. Fix t € [0,7] and consider a generic m € &,(R"). Let € e L*(Q,G,P;R")
be such that 7 = P under P. We construct X*¢ using Picard’s iterations. More precisely, we
define recursively a sequence of R™-valued processes (X™%¢),, on Q x [t,T] as follows.

Recursive construction of the sequence (va,t,g’)m‘ Definition of XO04E, We set X00€ = 0.
Defining P%*¢ by formula (3.7) with X%¢ in place of X<, we see that P9 = §), the Dirac
delta at zero, for all s € [¢,T]. In other words, up to a version, (P’}

waé) selt,7) is identically equal
to 50. )

Definition of XLt€, The process XLEE §s given by:
_ _ S _ S _ _
XIE = E / b(r, 0,60, ) dr + / o (1.0, 60, 1,)dB, .
t t

for all s € [t,T]. Notice that, by construction, the map X € ([t,T] x Q2 x QY, B([t, T]) ® F) —
(R™, B(R™)) is measurable. Up to indistinguishability, we can suppose that X Ltg ([t,T] x Q2 x
QL B([t, T)) @ Fo F) — (R™, B(R™)) is measurable. As a consequence, by Fubini’s theorem, we
can define the 2,(R")-valued F*-predictable stochastic process (P:"™) selt,r) by formula (3.7)

with X54€ in place of X€. Notice that (Pi7t’ﬂ)se[t7T] is a version of (Pﬁ,f,,g)se[t,ﬂ- Moreover,

from (3.7), we see that (using the definition of X;’t’g, and the independence of G and FZ2)
Pyim(whle] = E[p(Xy"0(,wh)] = / O p(w!, s, z) m(dz),

for every w! € Q! and p € %,(R"™), where ®1,: Q' x [t,T] x R” — R is measurable, with at
most quadratic growth in z uniformly with respect to (w?, s), and it is given by

@1,@(001,3,3;) = E[gp(x—i—/ b(r,O,éO,fr(-,wl))dr—i—/ 0(r,0,50,fr(-,w1))dBT>].
t t
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Then, we see that the map PM"[p]: Q1 x [t,T] x 2,(R") — R is measurable. Indeed, when
P ,(wh,s,2) = L(w!, s)h(z), for some measurable functions ¢ and h, with ¢ bounded and h
with at most quadratic growth (namely h € %,(R")), the result follows from Remark 2.1. The
general case can be proved by a monotone class argument.

Using again Remark 2.1, we conclude that the map P : Q1 x [t, T] x Z2,(R™) — %,(R™)
is measurable.
Definition of XmHtE for every integer m > 1. We define XmHLtg recursively, assuming
that X™%¢ has already been defined. We also assume that the map XmbE: ([t,T] x Q x
QL B([t, T)) ® F® F') — (R*, B(R™)) is measurable and that (P7""" )sele,) 18 the P5(R™)-
valued F#-predictable stochastic process glven by formula (3.7) with X""¢ in place of X% 23
Moreover, we suppose that the map P™"": Q! x [t,T] x P,(R") — Z,(R") is measurable.

Notice that (IP’S )SE[t’T] is a version of (P )—(m,z,g)se[t,T]-

Then, we define X m+1tE as follows:
_ _ S _ — _ S _ F— _ _
P = g Db X BT L) dr o+ [ ofr X BT 1) B
t t

for all s € [t,T]. Notice that, by construction, the map X™14¢: ([¢,T] x Q x Q1 B([t, T]) ®
F) — (R™ B(R")) is measurable. Therefore, up to indistinguishability, we can suppose that
XmALEE: ([5,T) x Q x QY B([t, T)) ® F @ F') — (R, B(R™)) is measurable. Then, by Fubini’s
theorem, we can define the 2, (R")-valued F“-predictable stochastic process (P7"+HH5T) selt,T) by
formula (3.7) with X mH+LtE in place of X4, namely

PrtiTwhle] = Efp(XHEC,wh)],
for every w! € Q! ¢ € %,(R"), s € [t,T]. In particular, we have
preteT (] = E[@<€+ / b(r,E o B (1), () dr

)I@)Tm,tﬂr(wl)) I_’r‘(‘u wl)

a\
q
=
gu |

N———

[

= / (I)m+1,g0(w1737$77r) 7T(d(L‘),

for some measurable ®,,11,: Q' x [t,T] x R x 2,(R") — R, with at most quadratic growth
in (z,7) uniformly with respect to (w',s) (the dependence of ®,,41,, on 7 is due to the pres-
ence of PI™"™). Then, we see that the map P" " [p]: Q! x [¢,T] x 2,(R") — R is measur-
able, as it can be deduced using a monotone class argument, first taking ®,,41,, of the form
Py, p(wh, s, 2, m) = L(wh, s, m)h(z), for some h € %B,(R™), and some measurable function £ with
at most quadratic growth in 7 uniformly with respect to (w',s). Then, by Remark 2.1, we see
that the map P10 Q x [t, T] x 2,(R") — 2,(R") is measurable.

End of the proof of Lemma 3.2. Now that we have constructed the sequence (X m’t’g)m,
we notice that it can be proved (proceeding for instance along the same lines as in the proof of
Theorem 1X.2.1 in [27]) that

sup ‘X';”’t’g th‘ = o, (B.1)

s€[t,T) m—00
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where the convergence holds in probability. Fix s € [t,T] and let us prove that (B.1) implies
the following convergence in probability:

W, (Bt ) B (B.2)

m—0o0

In order to prove (B.2), it is enough to show that every subsequence (P2""™),; admits a subsub-
~m h,t,ﬂ'

sequence (P "), for which (B.2) holds. Let us fix a subsequence (P7**"™),. We begin noting
that, by (B.1), we have, for every ¢ € C,(R"),

~ ]le ~
PPetTle] — Pl

Let (¢r)r € Cy(R™) be a countable convergence determining class for the WW,-convergence,

whose existence follows from Lemma A.2. Then, there exists a unique P'-null set N! € F' and
A 7t9

a subsubsequence (P #"™),, such that, for all w! € QI\N1,

S T

P (wh) k] hooe PYT (W) [or], for every k.
By Theorem 6.9 in [31] it follows that, for all w! € QY\ N1,
WQ (]@);néh,tﬂr (wl)7 Iip'gn,t,w (wl)) hi)o 0.

In particular, the above convergence holds in probability. This concludes the proof of (B.2).

Notice that convergence (B.2) holds for every s € [t,T] and m € Z2,(R"™). Moreover, for every
m € N, P™" is jointly measurable with respect to (w!, s, 7). Then, we deduce (proceeding for
instance as in the first item of Exercise IV.5.17 in [27] or as in Proposition 1 of [29]) that there
exists a measurable map P"': Q! x [t,T] x Z,(R") — 2,(R™) such that

W, (Bt phm) 2 o,

m—o0

for every s € [t,T] and # € Z2,(R™). This implies that P5™ coincides P'-a.s. with P%". By

Lemma 3.1 we conclude that (PY™) selt,7] 1s a version of (}P’Zg) selt,T]- O

C Stability lemma
For the proof of Theorem 3.1, we need the following stability result.
Lemma C.1 Suppose that Assumption (A1) holds.

o Let (Q,]:", Q) be a probability space, on which a d-dimensional Brownian motion B =
(Bt)tzo is defined.

o For every £ € N, let F = (F£)s>0 be a filtration on (Q, F,Q) such that B is a Brownian
motion with respect to .

o For every £ € N, let Tt = (FI) >0, with Fi* € FE, be a filtration on (Q, F,Q) indepen-
dent of B.

o Let (t,x,g) € [0,7] x R x L2(Q, F,Q; R"), where £ is Ft-measurable for every ¢ € N and
T = Pg” under Q.
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For every ¢ € N, consider the system of equations:

dX;vgve = b( thf ]P)]:tgg7-[£) d8+0'( th@ ]P)]:tgu-[g) dB vafaf — g’
dXza-’EﬂT,Z — b(S Xtmﬂ'g ]P)}_tigalﬁ) dS+O'(S thﬂ'é P}_:Zwlg) dB X;;;Cl?,ﬂ;f = z,

for all s € [t,T], where (I )selt,T) 15 an A-valued F-progressive process. Then

T
EQ[/t f( Xta:wé PF?&[’ s)d8+g(Xt$ﬂ€ Pthz):|

T
Eﬂf EQ{/ f(S Xtaer Pftgo,[g)d3+g(Xt$7ro P tgo):|.
t

whenever pR(I¢, 1) := Q| f p(It, 1% ds] — 0 as £ — co.

RN
Proof. We begin noting that, by standard arguments (based on the Burkholder-Davis-Gundy

and Gronwall inequalities), we have

supE?| sup (|XLE 4 [ KLom|7)] < o, (C.1)
leN s€(t,T]

for all ¢ > 1. We also have
& T ~ ) HO
EQ[SEEIC)F] | Xebt - X80P < OE@M (b(s, XSO, PT T — b(s, XL, P TO)

+ o (s, X0 PFL‘;O,If)—a( X0 Pf‘fwfg)y )d], (C.2)

for some positive constant C, independent of . Now, we notice that [)Q(ﬂ,j: 0) — 0 implies
I — 1Y in dQ ds-measure, which in turn implies the convergence to zero in dQ ds-measure of
the integrand in the right-hand side of (C.2). By uniform integrability (which follows from (C.1)
and Assumption (A1)(ii)), we deduce

W, (P P )2 < EC [\ e ;z;,é,of‘ \/ fgoe} =%,

Xt &0 xt:€,0

Q-a.s., for all s € [t,T]. Moreover

He 1o 2 o V4
sup W, (P71, PRL,)° < E2| sup [XLE — XL€0p? )\/Igg} =% 0. (C.3)
s€[t,T) s€[t,T) ¢eN

Similarly, we have

29[ s [Re = Xm0 < ome] [ (ofo, RO
s€[t,T] t

_‘b(s,Xé,x,WO PFTZmIS)‘ —i—‘a(s th7r0 PpY I

't&l’ s)

o (s, XLmmo Pft§0,12)| ) ds ]

Then, by (C.3), the convergence I' — 19 in dQds-measure, estimate (C.1), and Assumption
(A1)(ii), we obtain
E@[ sup |X;w:ﬂvf_5<;:m:0\2} X, (C.4)
s€(t,T]
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Then, by (C.3) and (C.4), we see that f(s, X5"™" Pftu, 1Y = f(s, XE2™0 P72 [0) as ¢ —

Xt gorts
oo in dQds-measure. Therefore, by uniform mtegrablhty (which follows from estimate (C.1)
and Assumption (A1)(ii)), we deduce

T T
EQ[/; f(S thﬂ'é P]:tig,lf)d:| Kjf E@|:/t f(S th7r0 ]P)]:,gogong)d]

Using again (C 3) and (C.4), we obtain the QQ-a.s. pointwise convergence g(Xm ™t pt

g in Assumptlon (A1)(ii), we can apply Lebesgue’s dominated convergence theorem and obtain

t&l) -

) as { — oco. By estimate (2.6) together with the polynomial growth condition of

EQg (X5 )] TF ER[g(X5 ) .

which concludes the proof. O

D On a different randomization of the control

In the present appendix we introduce, following [21], a different kind of randomization, which in
our paper turns out to be useful in the proof of Theorem 4.1. More precisely, for every ¢ € [0,77],
ag € A, consider the A-valued piecewise constant process I = (IZ’“O) s>t on (Q,F,P) given

by:
ww) = > (a0lgp, @<y + (An@"))aar (@) et @) 1) T @) (8), (D1)
n>0
t<T 1 (wh)

for all s > t, where we recall that Ty = 0 and Ag = @. The process I = (Is)s>0 defined in (3.3)
corresponds to 1090 = (I9%) 5, for any ag € A (when ¢ = 0, ag plays no role in (D.1)).

Let FBt = (FP Dot (resp. Tt = (F)4s¢) be the P-completion of the filtration generated
by (Bs — By)s>t (resp. fil(00)x.a), and let FBwt = (FBmt )s>¢ denote the P-completion of the
filtration generated by (Bs — By)s>t and fi 1(; oc)x.4- If we randomize the control in (2.3)-(2.4)
by means of the process 1%, we obtain, for every (z,£) € R™ x L?(Q,G,P;R"), with 7 = P,

under P:
dXLEw0 = p(s, XEEa0 Pffiao,lﬁao)ds—l—a(s XhEao IPP:EQ ,15%) dB,, (D.2)
dX;,xﬂr,ao — b( Xtacwao P]-'i‘fao’];ao) d8+0'( Xt:vwao Pdsa ,Iﬁao) dB (D.3)

for all s € [t,T], with Xf’g’ao € and X" = gz Under Assumption (A1), there exists

tf,ao Xt.’L'TrCLQ)

a unique (up to indistinguishability) pair (Xg selt,r) of continuous (FEHE G-

adapted processes solution to equations (D.2)-(D.3), satisfying

B[ sup (|X160 4 [Khomol)] < o,
s€[t,T)

for all ¢ > 1.
Let Ftt = (]—'ﬁ’t)szt be the P!-completion of the filtration generated by pu L(#,00) x Astep a0
denote by P(F#!) the predictable o-algebra on Q' x [t,00) corresponding to F*4f. Then, we
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define V; as the set of P(F*!) ® B(A)-measurable maps v: Q! x [t,00) x A — (0, 00), with 0 <
INf1x[t00)x AV < SUPQI [t 00)x AV < 00. Given v € Vi, we define v* € V as v* = lgixo x4 +
v 1gixjt,o0)xa- We denote PV (resp. P¥) the probability PY" (resp. P”"), and E¥ (resp. E¥) the
expectation E¥" (resp. E”"). Then, for every v € V;, we define the gain functional (notice that
JR(t,z, 7, ag,v) does not depend on the value of v* on Q! x [0,%) x A)

T
= - Fuct otamao it
JR(t,x, 7 a0,v) = E"[ /t f(s,Xé’x’”’ao,IP’;zéao,Iﬁ’ao)ds+g(XTx”a°,PXZé:aO)

and the value function

VR(t, z,m a0) = sup JX(t,x, 7, a9,v).

vEV:

Finally, let FB! = (]—'f’t)szt be the P-completion of the filtration generated by (Bs— B;)s>t, and
let A; denote the set of FP'-progressive processes a: Q x [t,T] — A. Given a € A, we define
a* € Aas o = algyoy + aloxpr), for some deterministic and fixed point @ € A. Then,
we denote J(t,x, 7, ") simply by J(t,z,m, ) (notice that J(t,z, 7, a*) does not depend on the
value of a* on Q x [0,¢), namely on a).

Theorem D.1 Under Assumption (A1), we have the following identities:

V(t,z,m) = sup J(t,z,m,a) = sup J(t,z,m o) = sup JN(t, x, m, a0, v) = VE(t,z,m, a0)

acA acA; VeV,
= sup J®(t,x,m,v) = VR(t,z,7), (D.4)
vey

for all (t,x,m, ap) € [0,T] x R™ x Z,(R") x A.

Remark D.1 From Theorem 3.1 we conclude that the function VR(t, x,m, ap) does not depend
on ag € A and coincides with the function V?(¢,z, ) defined in (3.8). O

Proof. When t = 0, we see that, for every ag € A, we have %% =], Ay = A, and V, = V.
Therefore, V*(0,z,7,ag) coincides with V®(0,x,7), so the result follows from Theorem 3.1.
When t > 0, we proceed along the same lines as in the proof of Theorem 3.1 for the case t = 0,
with (Bs)s>0, FP = (FP)s>0, A, fi, FBH = (f"f’“)szg, V replaced respectively by (Bs — By)s>t,
FBt = (fSB’t)szt, Aby il o0y xa, FP#E = (ff’“’t)szt, V. Then, we obtain

sup J(t,xz,m, o) = sup JX(t, T, ap,v).
acA; veVY
This implies that VR (¢, 2,7, ag) does not depend on ag € A, since the left-hand side of the above
inequality does not depend on it.
By Theorem 3.1, equivalence (D.4) follows if we prove the following inequalities

V(t,z,m) > sup J(t,z, 7 a), sup JR(t,x,Tr,ao,V) > VR(t,LU,T('). (D.5)
acAy veEV:

Since for every a € A; we have, by definition, J(t,z, 7, a) = J(t,, m,a*), where o = a 1o o)+
aloypr), we see that sup,e 4, J(t, 2,7, ) < supaeq J(t, 2, 7,0) = V(t,2,7). Therefore, the
first inequality in (D.5) is proved.
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In order to establish the second inequality in (D.5), we fix (t,2,&,m) € [0,T] x R"® x
L?(Q,G,P;R") x Z,(R"), with 7 = P, under P, and we take a particular probabilistic set-
ting for the randomized McKean-Vlasov control problem. More precisely, we first consider an-
other probabilistic framework for randomized problem, where the objects (2, F,P), (Q!, F1 P1),
(Q, F,P), B, ii, (T,,, A,), I are replaced respectively by (Q°, FO,P%), (Q, F1,PY), (Q, F,P), B,
ot o o

Let Q = Q x Q, F the P® P-completion of F ® F, P the extension of P® P to F, and E the
P-expected value. Let also G be the canonical extension of G to 2. Define £(w, @) := £(@) and

By(@0,@) = By(®) Lis<sy + (Bs(@) — Bl(@) + By(@)) 1oney,
f(w,w;dsda) = j(w;dsda) i<y + p(w; dsda) Ty

Notice that 7 = P under P, B = (B,)s>0 is a Brownian motion on ({2, F,P), and /i is a Poisson
random measure with compensator A(da) ds under I@’, with respect to its natural filtration. We
also define as in (3.3) the A-valued piecewise constant process I= (f s)s>0 associated to fi, which
in the present case takes the following form:

js(w’w) = fs(w) 1{s§t}

+ ) (L@ g @ry<ay + (An(@")sar (@) Lt @i)) L @) Tog (@) (8) s>ty
n>0
t<Tny1(w?h)

In particular, I; = I;. We define FB+ = (.7:"5’“)520 (resp. T = (F#)4>0) as the P-completion
of the filtration generated by B and ji (resp. fi). We denote (Xﬁ’é,f(é’x’ﬁ)se[t’r[] the unique
(up to indistinguishability) continuous (F2* v G),-adapted solution to equations (3.4)-(3.5) on
(Q, F , I@’) with &, B, I, F" replaced respectively by é , B , I , F*. For later use, we also consider,
for every @ € €, the unique (up to indistinguishability) continuous (FZ**vG),-adapted solution

(X;’é’jt(w),X’ﬁ’m’mb(w))se[tﬁp] to equations (D.2)-(D.3) with ag replaced by I;(). Then, we see

that, for P-a.e. @ € Q, (X024, ), X" (w, ))sefe,r) and (X'é’g’lt(w),Xﬁ’x’ﬂ’h(w))se[tﬂ solve the
same system of equations. Therefore, by pathwise uniqueness, for P-ae. @ € Q, we have
X (w,w) = X;’g’]t(w)(@) and X0 (0, @) = Xﬁ’x’w’h(a))(a)), for all s € [t,T], P(d)-almost
surely.

Let P(I@‘ #) be the predictable o-algebra on Q x R corresponding to [F#. In order to define the
randomized McKean-Vlasov control problem on (Q, F, I@’), we introduce the set V of all 73(1@'“) ®
B(A)-measurable maps : Q x Ry x A — (0, 00), satisfying 0 < info g, A ? < SUPG R, gV <
o0. Then, we define in an obvious way ”, P? , E? , jR(t,:c, m, V), and the corresponding value
function VR(t,z, 7). We recall from step I of the proof of Theorem 3.1 that VR(t,z,7) =
VRt z, 7).

We can now prove the second inequality in (D.5), namely

VRt z,m) = VR(t,a:,W) = sup jR(t,;r,ﬂ,ﬁ) < sup JR(t, x, 7, ap,v). (D.6)
pey VeV,
Fix 7 € V. We begin noting that, since 7 is P(I@‘“) ® B(A)-measurable, up to a P-null set, ¥
depends only (@', w!). Now, by a monotone class argument, we see that there exists a P!-null
set N1 e F! such that % = 12" (w!, a): O x [t,00) x A — (0, 00), given by

Vfl(wl,a) = Dy(@0t,wh, a), for all (@', w!,s,a) € Q! x Q! x [t,00) x A,
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is an element of V;, for every @' ¢ N'. In other words, for every w! ¢ N1, 12" is a P(F4)QB(A)-
measurable map satisfying 0 < infoi, [ c0)xa o< SUPQI x[t,00) x A V¥' < oo. Therefore, by
Fubini’s theorem,

T £
JR(, @, 7, D) = E[ﬁ%(/t f(s, Xtor, p* 2né )ds—l—g(th7r Piﬁ;&))}

_ o1 T 3 . . - . )
= /(ZE |:/€'?“ ([ f(57 X;v(l%ﬂ',[t(w),]P)}:t 3 It(w)?'[; It( )) dS + g(th It(w)7P§zﬁjt(@))):| P(d&))

_ /JR(t,x,ﬂ,ft(w),u‘z’l)IP’(dw) < sup JR(t, 7, a0,v),
Q vEV:

for any ap € A (recall that sup,cy, JR(t,x,m, ag,v) does not depend on ay € A). From the
arbitrariness of 7 € V, we deduce that SUp;,y) jR(t,ZC,ﬂ', v) < sup,ey, JR(t,x, 7, ag,v), hence
establishing (D.6), and consequently the second inequality in (D.5). O

Corollary D.1 Under Assumption (A1), we have
’ t, t, f_“
V(t,z,m) = eSSGSBpEV[/t E[f(s, Xtom pw, [,)] ds + E[g(X73" ng)]‘ft“], (D.7)
Pl-a.s., for all (t,x,€) € [0,T] x R® x L*(Q,G,P;R"), with T = P¢ under P.

P;R
Proof. Fix (t,z,£) € [0,T] x R* x L*(Q,G,P;R"), with 7 = P, under P. We have

fu} }

T _
E! [esssupIE”[/ E[f(s, XLom IP’;U I)] ds + E[g(X3, ,tg)]
vey t

T -
> E! [esssupE”{/ E[f(s X““T ]P’th,f)}ds—i-E[ (X;lx’w,lp’f;,g)}‘ff”
veV: ¢ t T
T
> o & o] [ Bl R B s Blo(R ] ]|
t

veV: ¢
By the Bayes formula, and recalling that 7 = 1 whenever v € V; ;, we obtain

sup El[E”[/tTE[f( Xorm P L)) ds + E[g (X, Zg)]‘f;‘”

veEV1 ¢

= swp [ ([l xtm ) ds 4 sl L) ) |2
t

V€V1,t

T £ p
~ s IE[/ E[f (s, Xt= P . 1)] ds + E[g (X", pgs)}] — Vit,am),
veEV1 ¢ t T

where the last equality follows from Remark 3.4. Then, we conclude that

T _
El[esssupE”[/ E[f (s, Xbom Pf‘ts,‘)] ds + E[g(X3"7, ifg)]’ft“” > V(t,z,m). (D.8)
vey t T

Let us now prove the following inequality: for every v € V, Pl-a.s.,
T
E”[/ E[f (s, X0"7 P,tg, [,)] ds +E[g(X3", P,tg ‘ff] < V(t,z,m). (D.9)
t
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Suppose we have already proved (D.9). Hence, P'-a.s.,

T S
esssupw[/ E[f(s, Xb"7 BT 1,)] ds + E[g(X5°" BT )]
vey t T

]:t“] < V(t,z,m).

From the above inequality and (D.8), it is then easy to see that equality (D.7) holds. It remains
to prove (D.9). To this end, we notice that (D.9) holds if and only if the following inequality
holds: for every v € V, P-a.s.,

T _
B [ (s X0 ) s g (X

]:“] < V(t,z,m). (D.10)

Now, consider the same probablhstlc setting introduced in the proof of Theorem D.1: (Q, F,P),
G, B, i, BB = (FPM) oo, T = (FW)yso, I, XtE, Xtom D, Vi, PP E?, JR(t 2,7, 0),
VR(t, x,m). Observe that (D.10) holds if and only if the following mequahty holds: for every
Ve f), ]@’—a.s.,

~ T S FH

Ji“t“] < V(t,z, ). (D.11)

Indeed, let us prove that if (D.11) holds then (D.10) holds as well (the other implication has a
similar proof). Fix v € V. Then, proceeding as in step I of the proof of Theorem 3.1, we see
that there exists & € V such that

=V T

K x,m t,x,m _
f(/t f(s, X Pth,I)dstg(X ]P’Xt&)> B, [i
and

K r t,x,m >t mpF A~
o\ f(sX P tg,I)ds—i-g(XT’ ,]P’X;é) , B, [
have the same joint law. As a consequence,

- ]
EY / f(s, Xbom IP’,té,I)ds—Fg(Xt“r thg) F
LJt i

and

- 3 i
E? / f(s, Xbom 7 tg,I)ds—i—g(X;ix”r,IP’;fé) Fl
LJt T i

have the same law. In particular, we have

T "
P(]El/[/ f(S Xt337r th@ )dSJrg(Xt:rﬂ’ P;fg)
. T

;ﬂ < V(t, x,w))

T S
— P(E”[/t f(s X“”Pig, 5) ds + g(X2™T, Zg)

where the last equality follows from the assumption that (D.11) holds. This implies that (D.10)
also holds for v. Since v was arbitrary, the claim follows.

.7:"4 < V(t,x,w)) =1,

Let us now prove that (D.11) holds. For every i € Vv, by the Bayes formula, and proceeding
as in the proof of Theorem D.1, we find

T 71
E'/u f(s, Xbom P7E e )ds—l—g(X%x’”,IPi;)
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19 T ymd o4 A
:E[“TU Flo. X2 BT 1) ds 4 g (K55, ;jé)ﬂff}
t T

Ki
v T

= E[%(/ f(S th?r[t Pit&I”IﬁIﬂ)ds—&— (thﬂ'lt P’“It >‘]:—£uj|
K‘t t

Then, by the freezing lemma (see for instance Proposition 10.1.2 in [32]), we obtain

v T
B[ ([ o X B 1 s (BT ) |2
Ky t

ol T S [ [ ST, T Fr
— E[R% (/ f(S7X§:x,7T,It( @) ]pf_t“t(w),I;t Je(w )) dS—i—g(Xt i (@) Ip)f_;gjf(@)))]
t T

= JR(t,z, 7 (@), ) < sup JR(t 2,7 a0,v),
veYy

P-a.s., for any ag € A (recall from Theorem D.1 that sup,,cy, JR(t,z, 7, ag,v) does not depend
on ap € A). Then, since by Theorem D.1 we have that sup,cy, J*(¢, 2,7, ao,v) = V(t,z,T), we
deduce that (D.11) holds, which concludes the proof. O
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