
19 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

On the regularizing behavior of the SDA and SDC gradient methods in the solution of linear ill-posed
problems / De Asmundis, Roberta; Di Serafino, Daniela; Landi, Germana. - In: JOURNAL OF
COMPUTATIONAL AND APPLIED MATHEMATICS. - ISSN 0377-0427. - STAMPA. - 302:(2016), pp. 81-93.
[10.1016/j.cam.2016.01.007]

Published Version:

On the regularizing behavior of the SDA and SDC gradient methods in the solution of linear ill-posed problems

Published:
DOI: http://doi.org/10.1016/j.cam.2016.01.007

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/589924 since: 2017-05-20

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.cam.2016.01.007
https://hdl.handle.net/11585/589924


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

De Asmundis, R., D. Di Serafino, and G. Landi. "On the Regularizing Behavior of the 
SDA and SDC Gradient Methods in the Solution of Linear Ill-Posed Problems." 
Journal of Computational and Applied Mathematics, vol. 302, 2016, pp. 81-93. 

The final published version is available online at : http://dx.doi.org/10.1016/j.cam.2016.01.007 

 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the 
publishing policy. For all terms of use and more information see the publisher's website.   

 

https://cris.unibo.it/
http://dx.doi.org/10.1016%2Fj.cam.2016.01.007


On the regularizing behavior of the SDA and SDC gradient

methods in the solution of linear ill-posed problems

Roberta De Asmundis∗, Daniela di Serafino†, Germana Landi‡

Abstract

We analyze the regularization properties of two recently proposed gradient meth-
ods applied to discrete linear inverse problems. By studying their filter factors, we
show that the tendency of these methods to eliminate first the eigencomponents of
the gradient corresponding to large singular values allows to reconstruct the most
significant part of the solution, thus yielding a useful filtering effect. This behavior
is confirmed by numerical experiments performed on some image restoration prob-
lems. Furthermore, the experiments show that, for severely ill-conditioned problems
and high noise levels, the two methods can be competitive with the Conjugate Gra-
dient (CG) method, since they are slightly slower than CG, but exhibit a better
semiconvergence behavior.

Keywords: discrete linear inverse problems, least squares problems, iterative reg-
ularization, gradient methods.

AMS subject classifications: 65F22, 65K10, 90C20.

1 Introduction

We consider discrete linear inverse problems of the form

b = Ax + n, (1)

where A ∈ Rp×n and b ∈ Rp (p ≥ n) are known data, n ∈ Rp is unknown and represents
perturbations in the data, and x ∈ Rn represents an object to be recovered. We assume
that A is ill-conditioned, with singular values decaying to zero; we also assume that
A is full rank. Such problems often arise from the discretization of Fredholm integral
equations of the first kind, which are used, e.g., to model instrument distortions in the
measure of unknown functions in a variety of application fields, including statistical in-
ference, geophysics, inverse scattering, and image processing [18]. For example, in image
processing, A may model the blurring effect produced by the image acquisition process,
as in image deblurring, or it may represent the discretization of a tomographic linear
operator, as in computed tomography, or a partial Fourier transform, as in magnetic
resonance imaging.
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Because of the ill-conditioning of A, computing the solution of the least squares
problem1

min
x∈Rn

1

2
‖b−Ax‖2 (2)

does not provide a meaningful solution of (1), since it amplifies the noise contained
in the data. Therefore, a regularization method is applied to compute a reasonable
approximation to the exact solution. Roughly speaking, a regularization method replaces
the original problem with a family of “close” better-conditioned (regularized) problems,
depending on a parameter, such that, for an appropriate choice of the parameter, the
solution of the corresponding regularized problem converges to the exact solution when
the noise tends to zero [18]. The regularized problems can be obtained by adding to
the objective function in (2) a penalty term based on some norm or seminorm of the
solution, such as in the Tikhonov and l1 regularizations, or by exploting the truncated
SVD and GSVD decompositions, or by applying iterative methods (for more details see,
e.g., [6, 18, 19, 29] and the references therein).

As observed in [6], iterative regularization methods for the solution of (2) are very flex-
ible (e.g., they can be efficiently applied to both spatially variant and invariant blurs), al-
low easy integration of other regularization techniques, and easy treatment of constraints
such as non-negativity. These methods generally show a semiconvergence behavior of the
relative error, i.e., this error decreases in the early iterations and then begins to increase.
Therefore a suitable early stop of the iterations is needed to obtain a good approximation
to the solution. The choice of the iteration index where the method has to be stopped
plays a fundamental role and it is based on further information on the problem. For
example, the Morozov’s discrepancy principle [34] requires terminating the iterations as
soon as

‖Axk − b‖ ≤ τδ,

where δ is an available estimate of the noise norm ‖n‖ and τ > 1. Other popular
criteria for stopping the iterations are the L-curve method [28] and the Generalized
Cross Validation method [23], which do not require any a priori estimates of δ.

The regularizing properties of the classical Landweber, steepest descent (SD) and
conjugate gradient (CG) methods have been widely investigated (see, e.g., [24, 18, 36]).
In particular, it is well known that the Landweber and SD methods generally exhibit very
slow convergence and thus they are rarely used in practice, despite their “stable” conver-
gence behavior, unless they are coupled with ad hoc preconditioners (see, e.g., [36]). Con-
versely, CG methods such as CGLS and LSQR rapidly compute a good approximation to
the solution and for this reason are usually preferred in practical applications. However,
as pointed out in [36], the fast convergence of CG methods makes them very sensitive to
the stopping criterion, and an early or late stopping may give a low-quality approximate
solution. On the other hand, starting from the innovative Barzilai-Borwein approach [3],
several new gradient methods have been developed that use suitable steplengths to
achieve a significant speedup over SD [22, 13, 14, 12, 39, 40, 21, 20, 17, 16]. This has
motivated the interest toward the possible use of these gradient methods as regulariza-
tion methods, and recent work has been devoted to understand the behavior of some of
them in the solution of discrete inverse problems [2, 10].

In this work we analyze the regularization properties of two gradient methods re-
cently proposed in [17] and [16], named SDA and SDC, which have shown to be highly
competitive with the currently available fastest gradient methods. Both SDA and SDC
share the idea of fostering a selective elimination of the components of the gradient along
the eigenvectors of the Hessian matrix, thus pushing the search in subspaces of smaller

1Here and henceforth ‖ · ‖ denotes the Euclidean norm.
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dimensions and speeding up the convergence of the method. This is achieved by us-
ing suitable steplength selection rules, which alternate, in a cyclic way, some Cauchy
steplengths with some constant steplengths containing spectral information on the Hes-
sian. Following [36], we perform a filter factor analysis of the two methods applied to
problem (2). In particular, we show that the above-mentioned tendency to selective
elimination of the gradient components corresponds to a progressive approximation of
the components of the solution along the right singular vectors of the matrix A, starting
from those associated with the largest singular values. Therefore, SDA and SDC have
filtering properties. This behavior is confirmed by numerical experiments performed on
some image restoration problems. The experiments also confirm that SDA and SDC re-
alize a good tradeoff between convergence speed and regularization properties, and thus
they can be competitive with CG, especially for large noise and severely ill-conditioned
problems.

This article is organized as follows. In Section 2 we briefly describe the SDA and
SDC gradient methods for problem (2), highlighting their main features. In Section 3
we study the filter factors of the two methods. We also compare these filter factors with
those of other gradient methods and CG on a test problem from Hansen’s Regularization
Tools [25]. In Section 4 we discuss the results of numerical experiments concerning the
application of the SDA and SDC methods to image restoration problems widely used
to test regularization methods. In particular, we compare SDA and SDC with other
gradient methods and CG, in terms of speed and relative error behavior. Finally, we
draw some conclusions in Section 5.

2 The SDA and SDC methods

Gradient methods for problem (2) generate a sequence of iterates {xk} as follows:

xk+1 = xk − αkgk, k = 0, 1, 2, . . . , (3)

where
gk = AT (Axk − b) (4)

is the gradient at xk of the objective function in (2) and αk > 0 is a steplength computed
by applying a suitable rule.

In order to analyze the behavior of some gradient methods, we consider the singular
value decomposition of A,

A = UΣV T , (5)

where U = [u1,u2, . . . ,up] ∈ Rp×p, V = [v1,v2, . . . ,vn] ∈ Rn×n, and Σ = diag(σ1, σ2,
. . . , σn) ∈ Rp×n. Note that the squares of the singular values σi are the eigenvalues of
the Hessian matrix of the objective function in (2), and the right singular vectors vi are
a set of associated orthonormal eigenvectors. By using (3) and (4), it is easy to verify
that if g0 =

∑n
i=1 µ

0
ivi, then

gk =

n∑
i=1

µk
i vi, µk

i = µ0
i

k−1∏
j=0

(1− αjσ
2
i ). (6)

It follows that if at the k-th iteration µk
i = 0 for some i, then for l > k it will be µl

i = 0,
i.e., the component of the gradient along vi will be zero at all subsequent iterations.
The condition µk

i = 0 holds if and only if µ0
i = 0 or αj = 1/σ2

i for some j < k. In the
following, without loss of generality (see, e.g., [16, Section 1]) we assume that

σ1 > σ2 > · · · > σn (7)
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and
µ0
1 6= 0, µ0

n 6= 0. (8)

It is well known that the SD method, which uses the Cauchy steplength

αSD
k =

gT
k gk

gT
kAgk

,

generally shows very slow convergence. Specifically, SD eventually performs its search in
the two-dimensional subspace generated by v1 and vn, producing a zigzag pattern which
is the main reason for its convergence behavior [1, 37].

As mentioned in Section 1, different steplength strategies have been developed to
overcome this difficulty, leading to gradient methods that may be competitive with CG,
especially when low accuracy in the solution is required. Here we focus on two gradient
methods recently proposed in [17] and[16], called SDA and SDC, respectively (the mean-
ing of these names is explained later in this section). In both methods the choice of the
steplength can be described as follows:

αk =

{
αSD
k if mod(k, h+m) < h,

ᾱs otherwise, with s = max{i ≤ k : mod(i, h+m) = h},
(9)

where h ≥ 2 and ᾱs is a “special” steplength computed at a certain iteration s by
exploiting information from previous SD steps. In other words, the methods make h
consecutive exact line searches and then compute a different steplength, which is kept
constant and applied in m consecutive gradient iterations.

In [17] the new steplength

α̃s =

(
1

αSD
s−1

+
1

αSD
s

)−1
(10)

is proposed and used in (9) as ᾱs, obtaining the SDA method. Actually, the original
version of SDA performs a dynamical choice of the number h of steps where αSD

k is
applied, by exploiting a so-called switch condition; however, in this work we use fixed
values of h, as explained later. The steplength (10) is related to the largest and smallest
singular values of A as shown next.

Proposition 2.1 Let {xk} be the sequence of iterates generated by the SD method applied
to problem (2), starting from any point x0, and suppose that (7) and (8) hold. Then

lim
k→∞

α̃k =
1

σ2
1 + σ2

n

. (11)

Proof. The thesis follows straightforwardly from Proposition 3.1 in [17]. �

As discussed in [17], the previous result and the properties of the SD method suggest that
the steplength (9), with ᾱs defined by (10), combines the tendency of the SD method
to choose its search direction in the two-dimensional space spanned by v1 and vn with
the tendency of the gradient method with constant steplength 1/(σ2

1 + σ2
n) to align the

search direction with vn, i.e., to eliminate the components of the gradient along the
other vectors vi. This yields a significant improvement of convergence speed over the
SD method, as shown by the numerical experiments reported in [17]. We note that the
name SDA stands for “Steepest Descent with Alignment”, i.e., it refers to the alignment
property mentioned above.
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The SDC method, proposed in [16], uses as ᾱs the Yuan steplength [39]

αY
s = 2

√√√√( 1

αSD
s−1
− 1

αSD
s

)2

+ 4
‖gs‖2(

αSD
s−1‖gs−1‖

)2 +
1

αSD
s−1

+
1

αSD
s

−1 . (12)

We observe that SDC is different from the Dai-Yuan (DY) method that combines Cauchy
steps with steps using (12) as specified in [14, formulas (5.2) and (5.3)], since in the latter
case αY

s is recomputed every time it is used. We also note that the name SDC was chosen
in [16] to remind that SD steplengths are alternated with (Yuan) Constant steplengths
(more generally, it could be applied to any gradient method using (9)). In order to
explain the effect of setting ᾱs = αY

s , we give a result showing the asymptotic behavior
of the Yuan steplength.

Proposition 2.2 Let {xk} be the sequence of iterates generated by the SD method applied
to problem (2), starting from any point x0, and suppose that (7) and (8) hold. Then

lim
k→∞

αY
k =

1

σ2
1

. (13)

Proof. The thesis follows straightforwardly from Theorem 3.3 in [16]. �

By using (13) and (6), we can conclude that the better the approximation of 1/σ2
1 pro-

vided by αSD
k , the smaller the component along v1 of the gradient computed by using

that steplength. The SDC method is based on the idea of using a finite sequence of
Cauchy steps to force the search in a two dimensional space and to get a suitable ap-
proximation of 1/σ2

1 by computing αY
s . According to (6), a multiple application of this

step is performed to drive toward zero the component of the gradient along the right
singular vector v1, i.e., µk

1 . In the ideal case where the component along v1 is completely
removed, problem (2) reduces to a (n− 1)-dimensional problem, and a new sequence of
Cauchy steps followed by some steps with a fixed value of αY

s can drive toward zero the
component along v2. This procedure can be repeated with the aim of eliminating the
components of the gradient according to the decreasing order of the singular values of A.
The effectiveness of this approach is confirmed by the numerical experiments reported
in [16].

It is worth noting that if problem (2) is ill-conditioned, then

1

σ2
1 + σ2

n

≈ 1

σ2
1

;

in this case, SDA tends to eliminate first the component of the gradient along v1, similarly
to SDC. More generally, SDA fosters the elimination of the components of the gradient
corresponding to σi � σn according to the decreasing size of the singular values.

We note that the steplength selection rule (9), with ᾱs defined by (10) or (12), does
not guarantee monotonicity of the gradient method. A way to enforce monotonicity is
using min

{
ᾱs, α

SD
k

}
instead of ᾱs, as it is done in the original version of SDA presented

in [17] and in a variant of SDC described in [16]; this generally ensures a more “regular”
convergence behavior, but may slightly slow down the methods. However, numerical
experiments reported in [16] have shown that for small values of m, such as m = 2
or m = 4, the SDC method shows monotonicity in practice if the constant steplengths
provide fairly good approximations of the inverses of the squared singular values, i.e., if
h is sufficiently large. On the other hand, too large values of h slow down the method
because of the low efficiency of the Cauchy steps. Furthermore, the choice of h is also
related to the accuracy requirement, and we have verified that small values of h are
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effective when very low accuracy is required, as for the problems considered in this work.
Finally, additional numerical experiments have shown that SDA behaves similarly to
SDC. Based on the previous considerations, we use h = 2 or h = 3, and m = 2, for all
the test problems discussed in the next sections. For these problems we rarely got non-
monotone SDA and SDC iterations and spikes were not observed in the corresponding
error histories (see Sections 3 and 4).

3 Filter factor analysis

In order to analyze the behavior of SDA and SDC as regularization methods, we express
the solution of the least squares problem (2) by using the SVD decomposition (5):

x† = A†b =

n∑
i=1

uT
i b

σi
vi = xtrue +

n∑
i=1

uT
i n

σi
vi, (14)

where xtrue is the “true” solution of (1). Since the singular values of A decay to zero,
the division by small singular values amplifies the corresponding noise components, and
the solution x† results useless. A regularized solution can be obtained by modifying the
least squares solution (14) as

xreg =

n∑
i=1

φi
uT
i b

σi
vi, (15)

where the scalars φi, called filter factors, are such that the components of the solution
corresponding to large singular values are preserved (φi ≈ 1) and those corresponding to
small singular values are filtered out (φi ≈ 0) [29].

The following proposition shows that the iterates of any gradient method can be
written in the form (15). We note that expression (17) given in the proposition has been
reported also in [10].

Proposition 3.1 Let {xk} be the sequence of iterates generated by the SD method applied
to problem (2) starting from x0 = 0. Then

xk+1 =

n∑
i=1

φk+1
i

uT
i b

σi
vi, (16)

where

φk+1
i = 1−

k∏
l=0

(
1− αlσ

2
i

)
, i = 1, . . . , n. (17)

Proof. The proof is by induction. By (3), (4) and (5) we get

x1 = α0A
Tb = α0V ΣTUTb

=

n∑
i=1

α0σ
2
i

uT
i b

σi
vi =

n∑
i=1

(
1−

(
1− α0σ

2
i

)) uT
i b

σi
vi;

thus (16) and (17) hold for k = 0. Now we assume that the thesis holds for k > 0. By
using again (3), (4) and (5), we have
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xk+1 = xk − αkA
T (Axk − b) = (I − αkA

TA)xk + αkA
Tb

= (I − αkA
TA)

n∑
i=1

(
1−

k−1∏
l=0

(
1− αlσ

2
i

)) uT
i b

σi
vi + αk

n∑
i=1

σ2
i

uT
i b

σi
vi

=

n∑
i=1

(
1−

k−1∏
l=0

(
1− αlσ

2
i

)) uT
i b

σi

(
1− αkσ

2
i

)
vi +

n∑
i=1

αkσ
2
i

uT
i b

σi
vi

=

n∑
i=1

(
1−

k∏
l=0

(
1− αlσ

2
i

)) uT
i b

σi
vi,

i.e., (16) and (17) hold for k + 1. This completes the proof. �

Proposition 3.1 shows that the scalars (17) play the role of filter factors associated with
the (k + 1)-th iterate. From (17) it follows that if αl = 1/σ2

i for some l ≤ k, then
φk+1
i = 1 at the (k + 1)-th iteration and all subsequent ones. More generally, the

better αl approximates 1/σ2
i the closer φk+1

i will be to 1; furthermore, multiple values
of αl close to 1/σ2

i push φk+1
i to go toward 1 quickly. We also note that 1/αl � σ2

i

implies φki ≈ 0. Therefore, the SDA and SDC methods, thanks to the use of their
own constant steplengths, are expected to (approximately) reconstruct the components
of the pseudoinverse solution (14) according to the decreasing order of the associated
singular values. In other words, the tendency of the two methods to push toward zero
the components of the gradient, following the decreasing order of the singular values,
translates into the approximation of the most significant components of the solution,
thus yielding a useful regularization effect.

In order to illustrate this behavior, in Figure 1 we plot the filter factors of SDA and
SDC at the k-th iteration, with k = 5, 10, 20, 40, for the heat test problem from Hansen’s
Regularization Tools [25]. We consider the ill-conditioned instance of the problem for
p = n = 64 (its condition number is about 1028) and add Gaussian random noise, scaled
to get noise level nl = ‖n‖/‖Axtrue‖ = 0.01. In SDA and SDC we set h = 3 and m = 2.
For comparison purposes, we plot also the filter factors of the CGLS method (henceforth
called simply CG) and other gradient methods, i.e., the SD method, the Barzilai-Borwein
(BB) method [3] with steplength αBB

k = αSD
k−1, and the most efficient DY method [14],

which uses the steplength

αDY
k =

{
αSD
k if mod(k, 4) = 0, 1,

αY
k otherwise,

where, as already observed, αY
k is recomputed every time it is applied. BB and DY are

included in the comparison because they are among the fastest gradient methods for
quadratic programing problems. For the sake of readability, for each value of k we do
not represent all the filter factors in the same picture, but we plot on the left the filter
factors associated with SDA, SDC, SD and CG, and on the right those associated with
SDA, SDC, DY and BB. Furthermore, in the pictures on the right we zoom on the first
20 filter factors, to better see the differences among the methods considered there.

We see that the filter factors of SDA and SDC behave as expected, i.e., as the number
of iterations increases, there is an increasing number of filter factors that are about 1.
Both methods are faster than SD in generating filter factors close to 1, i.e., they are
faster in reconstructing the significant components of the solution, and SDC is slightly
faster than SDA. The filter factors of DY and BB are similar to those of SDA and SDC,
but show small oscillations; furthermore, as k grows, SDC appears to generate a larger

7



10 20 30 40 50 60
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

i

φ
i

heat − k=5

 

 

 SDA

 SDC

 SD

 CG

5 10 15 20

0

0.2

0.4

0.6

0.8

1

i

φ
i

heat − k=5

 

 

 SDA

 SDC

 DY

 BB

10 20 30 40 50 60
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

i

φ
i

heat − k=10

 

 

 SDA

 SDC

 SD

 CG

5 10 15 20

0

0.2

0.4

0.6

0.8

1

i

φ
i

heat − k=10

 

 

 SDA

 SDC

 DY

 BB

10 20 30 40 50 60
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

i

φ
i

heat − k=20

 

 

 SDA

 SDC

 SD

 CG

5 10 15 20

0

0.2

0.4

0.6

0.8

1

i

φ
i

heat − k=20

 

 

 SDA

 SDC

 DY

 BB

10 20 30 40 50 60
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

i

φ
i

heat − k=40

 

 

 SDA

 SDC

 SD

 CG

5 10 15 20

0

0.2

0.4

0.6

0.8

1

i

φ
i

heat − k=40

 

 

 SDA

 SDC

 DY

 BB

Figure 1: Filter factors of gradient and CG methods applied to heat problem, at itera-
tions 5, 10, 20 and 40. Left: comparison of SDA, SDC, SD and CG; right: comparison
of SDA, SDC, DY and BB.
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Figure 2: Relative errors of gradient and CG methods applied to heat problem. Left:
comparison of SDA, SDC, SD and CG; right: comparison of SDA, SDC, DY and BB.

number of filter factors close to 1 than the other methods. As well known, the filter
factors of CG become soon oscillating.

We also show the history of the relative error ek = ‖xk − xtrue‖/‖xtrue‖ for all the
previous methods (Figure 2). As expected, SDC, SDA, DY and BB are much faster
than SD in reducing the error. Of course, the relative error of CG achieves its minimum
faster than the gradient methods and then rapidly increases, according to the well known
CG semiconvergence behavior. Conversely, all the gradient methods but BB exhibit a
much more stable convergence behavior. The error increase observed for BB at some
iterations is due to the non-monotonicity of the method; as expected, SDA and SDC
show in practice a monotone behavior like DY, which is a monotone method. The errors
of SDA, SDC and DY are close each other; however, SDC appears to be slightly faster
in decreasing the error. For SDA and SDC, the “staircase” effect in the error curve is
due to the alternate use of SD steps and constant steps of type (10) and (12). A similar
behavior of the error curve is also observed for DY. By taking into account the previous
analysis, in the numerical experiments discussed in the next section we do not consider
BB for its strong non-monotone behavior.

4 Numerical experiments

As pointed out in [6, 26], iterative regularization is particularly attractive for large-
scale ill-posed problems such as, for example, image restoration problems. Therefore,
we carried out numerical experiments by applying SDA and SDC to image restoration
problems of the form (1), that are widely used as benchmark problems. The esperiments
were aimed at analyzing the behavior of SDA and SDC as regularization methods, as well
as at comparing them with CG and SD, whose regularizing properties have been deeply
investigated, and with DY, which, to the best of our knowledge, has not been analyzed
as a regularizer yet. Here we present the results concerning three problems, which can
be considered representative of the general behavior of the different methods.

All the tests were performed by using the Matlab environment. For each problem,
the perturbed vector b was obtained by adding Gaussian white noise to Axtrue, with
noise level nl = 0.01, 0.025, 0.05, 0.075, 0.1. For each value of nl, 20 realizations of n
were generated by using the Matlab randn function. The gradient and CG methods
were implemented in Matlab and executed by using the zero vector as starting guess;
the iterations were stopped when 500 iterations were achieved. The parameters in SDA
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and SDC were set as follows: h = 2 or h = 3 (depending on the problem, as specified
next) and m = 2. The experiments were run using Matlab v. 8.0.0.783 (R2012b) on a
Macintosh computer with a dual-core Intel Core i5 processor (1.7 GHz), 4 GB of RAM,
3 MB of cache memory, and the OS X 10.8.5 operating system.

For each experiment we computed the relative error, edp, at the first iteration where
‖Axk − b‖ ≤ ‖n‖, and the minimum relative error, emin, achieved within the maximum
number of iterations. Furthermore, in order to provide some measure of the “stability”
of the convergence behavior, we considered the cardinality |Ω| of the following set:

Ω = {k : 0 ≤ k ≤ iters and ek ≤ edp} ,

where iters = 500. The rationale behind this choice is that the larger the value of |Ω| the
“flatter” the error curve should be. Note that if the method does not reach edp within
the maximum number of iterations, then |Ω| = 0 and it cannot provide any information
on the semiconvergence behavior.

The first set of results concerns the blur problem from Hansen’s Regularization Tools,
which is a benchmark for digital image deblurring. We chose a 64 × 64 image, corre-
sponding to a square matrix A of dimension n = 642, and set to 7 and 2 the parameters
controlling the sparsity of A and the width of the Gaussian point spread function, re-
spectively, thus obtaining a highly blurred image. The condition number of the resulting
matrix A is about 1010. According to the observations at the end of Section 2, we chose
h = 3 for SDA and SDC.

In Table 1, we report, for each method and each noise level, the values of the relative
errors edp and emin, along with the corresponding iterations kdp and kmin, and the value
of |Ω|. The data are averaged over the 20 runs associated with the 20 realizations of
noise. All the methods generally provide comparable solutions in terms of relative error.
As expected, SD is much slower than the other methods; in particular, the value of emin

for nl = 0.01 can be further reduced by increasing the maximum number of iterations.
SDA, SDC and DY show similar behaviors in terms of iterations. For nl = 0.01 and
nl = 0.025, SDC appears slightly faster than SDA and DY in reducing the error; on the
other hand, SDA generally achieves the largest value of |Ω|, corresponding to the slowest
error increase. As the noise level grows, SDA, SDC and DY become comparable with CG
in terms of speed, but have the advantage that their error curves increase much slowly.

To further illustrate the behavior of the five methods, in Figure 3 we plot their
relative error histories for two realizations of noise with nl = 0.025, 0.075 (for the sake of
readability we consider only the first 150 iterations; iteration 0 corresponds to the starting
guess). In particular, we see that the error increases more slowly for SDA than for SDC;
this agrees with the fact that on the average SDC is faster than SDA in recovering the
components of the solution according to the decreasing order of the singular values, and
hence it is also faster in reconstructing the components strongly affected by noise.

We also show, in Figure 4, the original blur image to be restored, noisy and blurred
versions of it for nl = 0.025 and nl = 0.075, and the best images reconstructed with SDA
and CG (the best images obtained with the other gradient methods are not shown because
they are practically indistinguishable from these ones). We see that the quality of the
restored images is the same for the two methods. Of course, we did not expect SDA, SDC
or any of the other methods considered here to provide reconstructions of better visual
quality. Actually, other image restoration techniques, using a priori information on the
exact solution, have to be used in order to obtain high quality images, especially when
high noise levels are considered (see [7, 9, 27, 38] and the references therein). We rather
want to show that the regularizing properties of SDA and SDC make them comparable or
preferable to other well-known iterative methods for the solution of large-scale ill-posed
problems, and therefore they can be potentially exploited in combination with gradient
projection techniques (see, e.g., [33, 11, 5]).
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nl method edp kdp emin kmin |Ω|

0.01

SDA 0.355 50 0.344 156 332
SDC 0.355 34 0.344 110 196
DY 0.354 50 0.344 122 143
SD 0.355 205 0.348 500 296
CG 0.354 29 0.345 60 70

0.025

SDA 0.373 19 0.361 61 100
SDC 0.369 21 0.361 48 58
DY 0.372 20 0.361 54 66
SD 0.373 53 0.361 292 448
CG 0.372 15 0.362 29 30

0.05

SDA 0.387 11 0.376 27 44
SDC 0.387 11 0.376 26 21
DY 0.388 10 0.376 30 38
SD 0.388 20 0.376 95 259
CG 0.387 9 0.377 17 16

0.075

SDA 0.395 10 0.387 18 20
SDC 0.397 8 0.387 19 21
DY 0.392 9 0.387 18 21
SD 0.398 12 0.386 49 120
CG 0.395 7 0.388 12 10

0.1

SDA 0.403 7 0.395 15 14
SDC 0.402 7 0.394 15 14
DY 0.405 7 0.395 13 18
SD 0.405 9 0.394 30 69
CG 0.402 6 0.396 9 7

Table 1: Numerical results for the blur test problem (mean values over 20 realizations
of noise).
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Figure 3: Relative error histories of the gradient and CG methods applied to blur. Left:
nl = 0.025; right: nl = 0.075.
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original

nl = 0.025 SDA CG

nl = 0.075 SDA CG

Figure 4: blur test problem – top: original image; middle: blurred and noisy image and
best reconstructions with SDA and CG for nl = 0.025; bottom: blurred and noisy image
and best reconstructions with SDA and CG for nl = 0.075.

The second set of experiments was performed on a parallel-beam tomography test
problem created with the Matlab function paralleltomo from Hansen’s AIR Tools pack-
age [30]. We considered a 50 × 50 image, 36 angles with values from 0 to 179 degrees,
and 75 parallel rays for each angle. The resulting matrix A has dimension 2700 × 2500
and condition number of order 1015. We used h = 3 for SDA and SDC.

The results reported in Table 2 (averaged over 20 realizations of noise) show that
all the methods have the same general behavior as for the blur test case. In summary,
SDA and SDC, as well as DY, are much faster than SD in reducing the error and are
only slightly slower than CG; furthermore, for SDA, SDC and DY the error increase
due to semiconvergence is much slower than it is for CG. For small values of nl, SDC
appears faster than SDA and DY, but SDA shows a better semiconvergence. The relative
error histories plotted in Figure 5, corresponding to two realizations of noise with nl =
0.025, 0.075, confirm the previous findings.

Figure 6 shows the exact image and the best images obtained with CG and SDA
for nl = 0.025. As for the blur test case, the visual quality of the restored images is
comparable; furthermore, they are comparable with the images obtained with the other
gradient methods considered here. The same comments apply to the other noise levels.
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nl method edp kdp emin kmin |Ω|

0.01

SDA 0.313 36 0.274 203 425
SDC 0.316 30 0.275 152 349
DY 0.316 29 0.275 165 378
SD 0.317 144 0.295 500 357
CG 0.316 16 0.277 51 88

0.025

SDA 0.347 17 0.316 72 131
SDC 0.342 16 0.316 59 96
DY 0.337 21 0.316 70 86
SD 0.347 57 0.316 499 444
CG 0.344 9 0.318 23 28

0.05

SDA 0.382 12 0.357 34 55
SDC 0.385 13 0.358 27 36
DY 0.387 13 0.358 28 47
SD 0.389 31 0.357 127 470
CG 0.380 7 0.359 13 14

0.075

SDA 0.408 11 0.394 20 27
SDC 0.416 11 0.397 23 22
DY 0.420 9 0.397 21 30
SD 0.427 22 0.393 64 255
CG 0.411 6 0.399 10 9

0.1

SDA 0.462 10 0.431 15 24
SDC 0.459 8 0.430 15 18
DY 0.440 9 0.429 19 12
SD 0.460 16 0.427 41 127
CG 0.452 5 0.437 7 7

Table 2: Numerical results for the paralleltomo test problem (mean values over 20
realizations of noise).
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Figure 5: Relative error histories of the gradient and CG methods applied to
paralleltomo. Left: nl = 0.025; right: nl = 0.075.
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original SDA CG

Figure 6: paralleltomo test problem (nl = 0.025) – original image and best reconstruc-
tions with SDA and CG.

nl method edp kdp emin kmin |Ω|

0.01

SDA 0.300 194 0.293 360 277
SDC 0.300 170 0.293 321 268
DY 0.301 172 0.293 339 288
SD 0.368 500
CG 0.301 55 0.293 84 55

0.025

SDA 0.327 111 0.319 195 151
SDC 0.328 100 0.319 178 147
DY 0.328 110 0.319 185 157
SD 0.370 500
CG 0.328 37 0.320 49 30

0.05

SDA 0.356 82 0.351 115 55
SDC 0.358 70 0.350 102 58
DY 0.357 82 0.350 115 58
SD 0.375 500
CG 0.358 27 0.351 34 13

0.075

SDA 0.381 60 0.373 86 45
SDC 0.381 58 0.373 83 42
DY 0.380 65 0.374 80 36
SD 0.386 457 0.382 500 44
CG 0.380 23 0.373 27 10

0.1

SDA 0.399 51 0.390 76 44
SDC 0.396 50 0.390 67 29
DY 0.399 55 0.392 75 34
SD 0.405 343 0.393 500 158
CG 0.395 21 0.391 24 6

Table 3: Numerical results for the satellite test problem (mean values over 20 realiza-
tions of noise). “—” indicates that edp was not reached.

The last set of experiments reported here was performed on the well-known satellite

image from Nagy’s RestoreTools package [35]. The observed image was generated by
convolving the original image with the RestoreTools PSF that simulates the blurring
effect of a ground-based telescope, and then adding Gaussian noise. The image size is
256× 256, corresponding to a square matrix A of dimension 2562; the condition number

14



0 50 100 150 200 250
0.33

1

27.7

iteration

re
la

ti
v
e
 e

rr
o
r 

(l
o
g
 s

c
a
le

)

satellite  (nl=0.05)

 

 

 SDA
 SDC
 DY
 SD
 CG

0 50 100 150 200 250
0.33

1

27.7

iteration

re
la

ti
v
e
 e

rr
o
r 

(l
o
g
 s

c
a
le

)

satellite  (nl=0.1)

 

 

 SDA
 SDC
 DY
 SD
 CG

Figure 7: Relative error histories of the gradient and CG methods applied to satellite.
Left: nl = 0.05; right: nl = 0.1.

original nl = 0.05

SDA CG

Figure 8: satellite test problem (nl = 0.05) – original image, noisy and blurred image,
and best reconstructions with SDA and CG.

of A is about 106. For this test problem, which is less ill-conditioned than the previous
ones, using h = 2 instead of h = 3 turned out to be somewhat more effective. The results
shown next were obtained with h = 2.

The data in Table 3 show that SDA and SDC, as well as DY, are much faster than SD
in reducing the error; for nl = 0.01, 0.025, 0.05, SD is not able to achieve the discrepancy
error edp within 500 iterations. On the other hand, SDA, SDC and DY are slower than
CG; on the average, they require about three times the number of iterations of CG
to satisfy the discrepancy principle. From the values of |Ω| we can deduce that the
corresponding errors grow much slowly than the error of CG; this is confirmed by the
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relative error histories reported in Figure 7 for nl = 0.05, 0.1, which are representative
of the semiconvergence behavior obtained with all the noise levels. We also note that
SDC is often slightly faster than SDA and DY, but in practice the three methods can be
considered comparable.

We conclude this section showing the original satellite image, the noisy and blurred
image corresponding to nl = 0.05, and the best SDA and CG reconstructions. Once
again, the SDA image is practically the same as the CG image. This also holds for the
best images obtained with SDC and DY.

5 Conclusions

Our analysis shows that the SDA and SDC methods applied to discrete linear inverse
problems have nice filtering properties. More precisely, the tendency of the two methods
to push toward zero the eigencomponents of the gradient, according to the decreasing
order of the singular values, allows to approximate first the most significant part of
the solution. Therefore, SDA and SDC not only are much faster than the classical SD
method, but also have a regularizing effect. Furthermore, our numerical experiments
show that SDA and SDC are competitive with CG on severely ill-conditioned problems
with high noise levels. In this case, the two methods are slightly slower than CG in
reducing the error, but exhibit a better semiconvergence behavior, i.e., the associated
error increases more slowly after reaching its minimum value. In comparing SDA and
SDC with DY, we also analyzed the regularization properties of DY, which resulted to
behave similarly to SDA and SDC. However, SDC often appears slightly faster than the
other two methods, while SDA generally shows a slightly slower error increase.

Finally, we observe that effective and popular approaches to the numerical treatment
of inverse problems reformulate the original linear inverse problem as a linear least squares
problem with constraints that take into account a priori information on the solution, such
as non-negativity, sparsity, or other statistical properties. Therefore, there has been an
increasing interest in the development of projected methods able to effectively solve
such constrained problems (see, e.g., [8, 19, 32, 4, 5, 31]). For this reason, we intend
to investigate the behavior of SDA, SDC, and other efficient gradient methods with
regularization properties, within projected gradient frameworks such as those discussed
in [33, 15].

Acknowledgments

The authors wish to thank the reviewers for their useful comments. This work was
partially supported by INdAM-GNCS, under the 2013 Project Numerical methods and
software for large-scale optimization with applications to image processing and the 2014
Project First-order optimization methods for image restoration and analysis.

References

[1] H. Akaike. On a successive transformation of probability distribution and its ap-
plication to the analysis of the optimum gradient method. Ann. Inst. Stat. Math.
Tokyo, 11(1):1–16, 1959.

[2] U. M. Ascher, K. van den Doel, H. Huang, and B. F. Svaiter. Gradient descent and
fast artificial time integration. ESAIM: Math. Model. Numer. Anal., 43(4):689–708,
2009.

16



[3] J. Barzilai and J. M. Borwein. Two-point step size gradient methods. IMA J.
Numer. Anal., 8(1):141–148, 1988.

[4] S. Becker, J. Bobin, and E. Candes. NESTA: a fast and accurate first-order method
for sparse recovery. SIAM J. Imaging Sci., 4(1):1–39, 2011.

[5] F. Benvenuto, R. Zanella, L. Zanni, and M. Bertero. Nonnegative least-squares
image deblurring: improved gradient projection approaches. Inverse Problems,
26(2):025004, 2010.

[6] S. Berisha and J. G. Nagy. Iterative methods for image restoration. In R. Chjellappa
and S. Theodoridis, editors, Academic Press Library in Signal Processing: Volume
4. Image, Video Processing and Analysis, Hardware, Audio, Acoustic and Speech
Processing, chapter 7, pages 193–247. Academic Press, first edition, 2014.

[7] M. Bertero and P. Boccacci. Introduction to Inverse Problems in Imaging. IOP
Publishing, Bristol, 1998.

[8] D. Calvetti, G. Landi, L. Reichel, and F. Sgallari. Non-negativity and iterative
methods for ill-posed problems. Inverse Problems, 20(6):1747–1758, 2004.

[9] T. Chan and J. Shen. Image Processing And Analysis: Variational, PDE, Wavelet,
and Stochastic Methods. SIAM, Philadelphia, PA, USA, 2005.

[10] A. Cornelio, F. Porta, M. Prato, and L. Zanni. On the filtering effect of iterative regu-
larization algorithms for discrete inverse problems. Inverse Problems, 29(12):125013,
2013.

[11] Y.-H. Dai and R. Fletcher. Projected Barzilai-Borwein methods for large-scale box-
constrained quadratic programming. Numer. Math., 100(1):21–47, 2005.

[12] Y.-H. Dai, W.W. Hager, K. Schittkowski, and H. Zhang. The cyclic Barzilai-Borwein
method for unconstrained optimization. IMA J. Numer. Anal.. Anal., 26(3):604–
627, July 2006.

[13] Y.-H. Dai and Y. Yuan. Alternate minimization gradient method. IMA J. Numer.
Anal., 23(3):377–393, 2003.

[14] Y.-H. Dai and Y. Yuan. Analysis of monotone gradient methods. J. Ind. Manag.
Optim., 1(2):181–192, 2005.

[15] P. L. De Angelis and G. Toraldo. On the identification property of a projected
gradient method. SIAM J. Numer. Anal., 30(5):1483–1497, 1993.

[16] R. De Asmundis, D. di Serafino, W.W. Hager, G. Toraldo, and H. Zhang. An efficient
gradient method using the Yuan steplength. Comput. Optim. Appl., 59(3):541–563,
2014.

[17] R. De Asmundis, D. di Serafino, F. Riccio, and G. Toraldo. On spectral properties
of steepest descent methods. IMA J. Numer. Anal., 33(4):1416–1435, 2013.

[18] H.W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems, volume
375 of Mathematics and Its Applications. Springer, 2000.

[19] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. Gradient projection for sparse
reconstruction: application to compressed sensing and other inverse problems. IEEE
J. Sel. Top. Signal Process., 1(4):586–597, 2007.

17



[20] R. Fletcher. A limited memory steepest descent method. Math. Program., Ser. A,
135(1–2):413–436, 2012.

[21] G. Frassoldati, L. Zanni, and G. Zanghirati. New adaptive stepsize selections in
gradient methods. J. Ind. Manag. Optim., 4(2):299–312, 2008.

[22] A. Friedlander, J. M. Mart́ınez, B. Molina, and M. Raydan. Gradient method with
retards and generalizations. SIAM J. Numer. Anal., 36(1):275–289, 1999.

[23] G. Golub, M. Heath, and W. Wahba. Generalized Cross-Validation as a method for
choosing a good ridge parameter. Technometrics, 21(2):215–223, 1979.

[24] M. Hanke. Conjugate gradient type methods for ill-posed Problems. Pitman Research
Notes in Mathematics. Longman Scientific & Technical, Harlow, Essex, 1995.

[25] P. C. Hansen. Regularization Tools: A Matlab package for analysis and solution of
discrete ill-posed problems. Numer. Algorithms, 6(1):1–35, 1994.

[26] P. C. Hansen and T. K. Koldborg. Noise propagation in regularizing iteration for
image deblurring. ETNA, 31:204–220, 2008.

[27] P. C. Hansen, J. G. Nagy, and D. P. O’Leary. Deblurring images. Matrices, spectra
and filtering. SIAM, Philadelphia, PA, USA, 2006.

[28] P. C. Hansen and D. P. O’Leary. The use of the L-curve in the regularization of
discrete ill-posed problems. SIAM J. Sci. Comput., 14(6):1487–1503, 1993.

[29] P.C. Hansen. Rank-deficient and discrete ill-posed problems. SIAM, Philadelphia,
1998.

[30] P.C. Hansen and M. Saxild-Hansen. AIR Tools - a MATLAB package of algebraic
iterative reconstruction methods. J. Comput. Appl. Math., 236(8):2167–2178, 2012.

[31] G. Landi and E. Loli Piccolomini. An improved Newton projection method for
nonnegative deblurring of Poisson-corrupted images with Tikhonov regularization.
Numer. Algorithms, 60(1), 2012.

[32] I. Loris, M. Bertero, C. De Mol, R. Zanella, and L. Zanni. Accelerating gradient
projection methods for `1-constrained signal recovery by steplength selection rules.
Applied and Computational Harmonic Analysis, 27(2):247–254, 2009.
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