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Output Regulation by Error Dynamic Feedback in
Hybrid Systems with Periodic State Jumps
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Abstract

This work deals with output regulation in multivariable hybrid systems featuring a continuous-time linear dynamics periodically affected
by instantaneous changes of the state. More precisely, given a hybrid linear plant and a hybrid linear exogenous system, with periodic state
jumps, the problem consists in finding a hybrid feedback regulator, with the same characteristics, achieving global asymptotic stability of
the closed-loop dynamics and asymptotic tracking of the reference generated by the exogenous system for all the initial states. Starting
from a general, necessary and sufficient condition for the existence of a solution, the discussion leads to a more specific, sufficient condition
which outlines the computational framework for a straightforward synthesis of the compensator. The internal model principle is shown to
hold in a more general formulation than the original one, adapted to the hybrid systems considered. A numerical example is worked out with
the aim of illustrating how to implement the devised technique. The geometric approach is the key methodology in attaining these results.

Key words: hybrid systems; output regulation; global asymptotic stability; geometric approach.

1 Introduction

Hybrid systems with state jumps are dynamical systems
which exhibit a continuous-time behavior (the so-called flow
dynamics) interrupted by state discontinuities (jump dynam-
ics). These dynamical systems have drawn an increasing
amount of research effort during the last decade, mainly be-
cause they are particularly effective in representing the pe-
culiar way some real systems, occurring in various fields of
science and engineering, operate (see, e.g., Goebel et al.,
2009, 2012). Indeed, many classes of jump hybrid systems
can be distinguished on the basis of several characteristics,
such as the flow and jump dynamics being linear or nonlin-
ear, the jumps being time driven or state driven, and so on.
Thus, the control synthesis raises a number of typical issues
and requires ad-hoc devised methodologies, depending on
the features of the hybrid systems addressed. In particular,
this work is focused on hybrid systems with a continuous-
time linear dynamics subject to periodic state jumps and in-
vestigates the output regulation problem.
Output regulation is a classic problem of control theory and
it essentially consists in finding a feedback regulator which,
for a given plant and a given exogenous system, ensures sta-
bility of the closed-loop dynamics and asymptotic tracking
of the reference generated by the exogenous system for all
the initial states. A less basic formulation of this problem
(including decoupling of a disturbance generated by the ex-
ogenous system and directly affecting the plant) has been
studied for scalar hybrid systems with periodic state jumps
in (Marconi and Teel, 2010, 2013) and for multivariable hy-

� Corresponding author
Email addresses: elena.zattoni@unibo.it

(Elena Zattoni), perdon@univpm.it (Anna Maria Perdon),
gconte@univpm.it (Giuseppe Conte).

brid systems of the same class in (Carnevale et al., 2012a,
2013, 2016).
The works by Carnevale et al. (2012a, 2013, 2016) — which,
referring to the multivariable case, are closer to this one —
give a necessary and sufficient condition for the existence of
a solution to the considered problem in terms of solvability
of a set of differential linear matrix equations. This result
is derived by elaborating further on the regulator equations
that originally characterized solvability of the output reg-
ulation problem for linear time-invariant systems (Francis,
1977). In principle, the hybrid regulator can be obtained by
solving the so-called hybrid regulator equations (Carnevale
et al., 2016, Section III). However, as acknowledged by the
same authors (Carnevale et al., 2016, Remark 2), this method
presents serious difficulties due to the infinite number of
constraints implied in such equations. For this reason, the
analysis is deepened so as to define a viable, valid in gen-
eral, synthesis procedure, based on the solution of two finite-
dimensional Francis equations, which are algebraic matrix
equations (Carnevale et al., 2016, Section IV-C).
In this work, the output regulation problem for multivari-
able hybrid systems with periodic state jumps is considered
from a different perspective. Namely, new solvability condi-
tions are derived by employing the methodologies of the ge-
ometric approach (Wonham, 1985; Basile and Marro, 1992).
More specifically, the results presented herein are obtained
by exploiting the geometric interpretation of the output reg-
ulation problem that was first developed by Marro (1996)
and that has lately inspired the solution of the same prob-
lem for more complex dynamical systems, such as linear pa-
rameter varying systems (Zattoni, 2008), linear time-delay
systems (Conte et al., 2012), and linear switching systems
(Zattoni et al., 2013). This methodology requires that some
fundamental concepts of the geometric approach (e.g., in-
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variance and controlled invariance) be generalized to hybrid
systems with state jumps. Indeed, some of these notions have
proven to be instrumental in analyzing the structure of the
considered hybrid systems in (Medina, 2007; Medina and
Lawrence, 2009) and, to some extent, in (Carnevale et al.,
2014a). However, in this work, as in (Perdon et al., 2015,
2016), structural notions are used in combination with qual-
itative notions such as stability, thus allowing all the aspects
of the problem to be handled in the geometric framework.
A main contribution of this work is establishing a new neces-
sary and sufficient condition for problem solvability in strict
geometric terms (Theorem 1). The geometric necessary and
sufficient condition is perfectly consistent with the neces-
sary and sufficient condition based on the hybrid regulator
equations of (Carnevale et al., 2016, Proposition 3), as will
be explained in Remark 1. Meanwhile, the geometric condi-
tion has the merit of giving insight into the way the overall
regulated system works, since, in particular, it points out the
subspace of the admissible state motions. However, the nec-
essary and sufficient geometric condition cannot be directly
used as a design tool, since, referring to the overall compen-
sated system, it involves the feedback regulator. Nonetheless,
the geometric condition can be exploited to derive a more
specific, sufficient solvability condition which provides par-
ticularly straightforward synthesis tools (although not appli-
cable to the whole generality of solvable problems).
Hence, the subsequent contribution of this work is a ge-
ometric sufficient condition for problem solvability, solely
involving the problem data (Theorem 2). In fact, such suffi-
cient condition is centred on the output-difference connec-
tion between the plant and the exogenous system (the so-
called hybrid extended system) and requires the existence
of a subspace with the property of being both controlled in-
variant for the flow dynamics and invariant for the jump dy-
namics (in addition to that of being contained in the kernel
of the output map). Indeed, such sufficient condition may be
rather conservative, a main reason being that it respectively
demands controlled invariance and invariance under the lin-
ear maps of the flow and jump dynamics (i.e., hybrid con-
trolled invariance) instead of a combination of the two. On
the positive side, since such condition disregards the time
period between two consecutive state jumps, it ensures the
existence of a solution for any finite time period. Further, un-
der such condition, the compensator synthesis is extremely
simple. In fact, as will be shown in the proof of the theo-
rem, the synthesis procedure amounts to the computation of
a stabilizing friend for the resolving hybrid controlled in-
variant subspace and of a stabilizing output injection for the
dynamics of the hybrid extended system.
In order to shed light on the conflict between conservative-
ness and constructiveness of the considered conditions, an-
other sufficient condition for problem solvability is estab-
lished (Theorem 3). Actually, Theorem 3 is focused on the
dynamics obtained as the combination over one period of
the flow and jump dynamics of the hybrid output-difference
system and, as such, has a broader scope compared to The-
orem 2. Namely, the condition of Theorem 3 implies that of
Theorem 2, while the converse is not true in general, as will
be made clear in Remark 5. Nevertheless, it is worth noting
that the flow dynamics combined with the jump dynamics in
the statement of Theorem 3 is assumed to be compensated
by state feedback, so as to take into account the available

control input in the way compatible with the compensation
scheme considered in the general necessary and sufficient
condition. Thus, the interplay between such unknown state
feedback and the unknown controlled invariant subspace,
which has the role of resolving subspace, makes the condi-
tion of Theorem 3 difficult to ascertain and nonconstructive.
As mentioned above, the compensator synthesis performed
according to the proof of Theorem 2 presupposes that the
resolving hybrid controlled invariant subspace be known.
However, the geometric sufficient condition does not con-
tain any hint on how to compute such subspace. Hence, in
order to provide a complete synthesis tool for the whole set
of problems whose solvability is ensured by Theorem 2, a
necessary and sufficient constructive condition for a hybrid
controlled invariant subspace to satisfy the requisites of The-
orem 2 is established in Theorem 4.
The paper is organized as follows. In Section 2, the output
regulation problem for multivariable hybrid linear systems
with periodic state jumps is presented. In Section 3, a neces-
sary and sufficient condition for problem solvability, refer-
ring to the overall compensated hybrid system, is stated in
geometric terms. A geometric sufficient condition, focused
on the hybrid extended system, is proven in Section 4. In the
same section, a more extensive, yet nonconstructive, suffi-
cient condition is also discussed. A necessary and sufficient
condition for the existence of a subspace fulfilling the re-
quirements of the constructive sufficient condition is shown
in Section 5. A numerical example illustrating how to im-
plement the devised synthesis procedure is worked out in
Section 6. Section 7 contains the conclusions. The appendix
discusses some results on the stabilization of a hybrid dy-
namics via a state feedback or via an output injection, each
one acting on the flow dynamics only.
Notation: The symbols Z, Z+

0 , Z+, R, R+
0 , R+, and C stand

for the sets of integer numbers, nonnegative integer num-
bers, positive integer numbers, real numbers, nonnegative
real numbers, positive real numbers, and complex numbers,
respectively. The symbol i stands for the imaginary unit
and, given a complex number λ=λa +iλb , |λ| denotes
its modulus and Arg (λ) its argument. Matrices and linear
maps are denoted by slanted capital letters, like A. The im-
age, the kernel, the inverse, and the transpose of A are de-
noted by ImA, KerA, A−1, and A�, respectively. Vector
spaces and subspaces are denoted by calligraphic letters,
like V . The notation W/V stands for the quotient space of
a subspace W⊆X over a subspace V ⊆W . The expression
V ⊕W =X stands for V +W =X and V ∩W = {0}. The
symbol A|J denotes the restriction of a linear map A to an
A-invariant subspace J , while A|X/J denotes the map in-
duced by A on the quotient space X/J . The symbol ‖x‖,
where x∈R

n, denotes the 2-norm of x, while ‖A‖, where
A∈R

m×n, denotes the norm induced on A by the vector
2-norm: i.e., ‖A‖= supx∈Rn, x �=0 (‖Ax‖/‖x‖). Moreover,
‖A‖F denotes the Frobenius norm of A (i.e., the square root
of the sum of the squares of all entries). The symbols In
and 0m×n denote an identity matrix of dimension n and an
(m×n)-zero matrix (subscripts are omitted when the size is
clear from the context). The symbol diag {d1, . . . , dn} de-
notes a diagonal matrix with the elements d1, . . ., dn on the
main diagonal. The notation [t0 t1), with t0, t1 ∈R, stands
for the real right-open interval delimited by t0 and t1.
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2 The Output Regulation Problem for Hybrid Systems
with Periodic State Jumps

The aim of this section is to introduce the output regulation
problem for hybrid systems with a continuous-time linear
dynamics subject to periodic state jumps.
The given plant is the hybrid linear system

ΣP ≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋP (t) = AP xP (t) +BP u(t), with

t ∈ [k τ, (k + 1) τ), k ∈ Z
+
0 ,

xP (t) = JP x−
P (t), with t = k τ, k ∈ Z

+,

y(t) = CP xP (t),

(1)

where t∈R
+
0 is the time variable, τ ∈R

+ is a finite time
constant, xP ∈XP =R

nP is the state, u∈U =R
p is the

control input, and y ∈Y =R
q is the regulated output, with

p, q≤nP . AP , BP , JP , and CP are constant real matri-
ces. BP and CP are assumed to be full-rank. The initial
state is xP 0. The set of the admissible input functions is
the set of all piecewise-continuous functions with values
in R

p. According to (1), the state trajectory xP (t) on the
time interval [k τ, (k+1) τ), with k∈Z

+
0 , is the solution of

the system of differential equations with the initial condi-
tion xP (k τ) and the input function u(t), t∈ [k τ, (k+1) τ),
while the state xP (k τ), with k∈Z

+, is the image by JP
of x−

P (k τ)= limt→kτ− xP (t). It is worth mentioning that
a hybrid linear system like ΣP is globally asymptotically
stable if and only if the state transition matrix between two
consecutive jump time instants — i.e., JP eAP τ — is Schur
stable (i.e., all the eigenvalues lie inside the open unit disc
of the complex plane). It is also worth noting that, in the
case of hybrid linear systems subject to time-driven, periodic
state jumps, the notation in (1) is equivalent to that estab-
lished in (Goebel et al., 2009). However, since this notation
does not include the differential equation of the clock vari-
able (redundant in this case), it is better suited to the scope
of this work and will be adopted henceforth.
The given exogenous system is the hybrid linear system

ΣE ≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋE(t) = AE xE(t), with

t ∈ [k τ, (k + 1) τ), k ∈ Z
+
0 ,

xE(t) = JE x−
E(t), with t = k τ, k ∈ Z

+,

r(t) = CE xE(t),

where xE ∈R
nE is the state and r∈R

q is the reference, with
q≤nE . AE , JE , and CE are constant real matrices. CE is
assumed to be full-rank. The initial state is xE 0. Moreover,
in order to leave apart from consideration the trivial case
where the reference goes to zero as the time approaches
infinity, it is assumed that the state transition matrix between
two consecutive jumps, JE eAE τ , is Schur antistable (i.e.,
all the eigenvalues lie outside the open unit disc).
The to-be-designed feedback regulator is the hybrid linear
system

ΣR ≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋR(t) = AR xR(t) +BR e(t), with

t ∈ [k τ, (k + 1) τ), k ∈ Z
+
0 ,

xR(t) = JR x−
R(t), with t = k τ, k ∈ Z

+,

u(t) = CR xR(t),

where xR ∈R
nR is the state and e∈R

q , defined as e(t) =
r(t)− y(t), is the regulation error. The initial state is xR 0.
In order to state the output regulation problem, the closed-
loop connection of the plant and the feedback regulator, with
the additional input r(t), is defined as

ΣL ≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋL(t) = AL xL(t) +BL r(t), with

t ∈ [k τ, (k + 1) τ), k ∈ Z
+
0 ,

xL(t) = JL x−
L (t), with t = k τ, k ∈ Z

+,

e(t) = CL xL(t) + r(t),

where

AL =

[
AP BP CR

−BR CP AR

]
, BL =

[
0

BR

]
, (2)

JL =

[
JP 0

0 JR

]
, (3)

CL =
[
−CP 0

]
. (4)

Problem 1 (Output Regulation with Global Asymptotic
Stability of the Closed-loop Dynamics) Given the plant ΣP

and the exogenous system ΣE , find a feedback regulator ΣR

such that the system ΣL satisfies the following requirements:
R 1. (global asymptotic stability of the closed-loop dynam-

ics) the state transition matrix between two consecutive
jump time instants, JL eAL τ , is Schur stable;

R 2. (asymptotic tracking of the reference) limt→∞ e(t) =
0, for all xP 0, xR 0, and r(t) generated by ΣE .

3 A Geometric Necessary and Sufficient Condition

In this section, a necessary and sufficient condition for the
existence of a solution to Problem 1 is derived by exploiting
the geometric properties of the so-called hybrid autonomous
system. The hybrid autonomous system Σ̂ is defined as the
connection of the closed-loop system ΣL and the exogenous
system ΣE described below:

Σ̂ ≡

⎧⎪⎪⎨
⎪⎪⎩

˙̂x(t) = Â x̂(t), with t ∈ [k τ, (k + 1) τ), k ∈ Z
+
0 ,

x̂(t) = Ĵ x̂−(t), with t = k τ, k ∈ Z
+,

e(t) = Ê x̂(t),

where

Â=

[
AL BL CE

0 AE

]
, (5)

Ĵ =

[
JL 0

0 JE

]
, (6)

Ê =
[
CL CE

]
. (7)

The state space R
n̂ =R

nL+nE of Σ̂ is denoted by X̂ ; the
kernel of Ê is denoted by Ê ; the unobservable subspace of
(Â, Ê) is denoted by Ô or, equivalently, by maxJ (Â, Ê)
— i.e., the maximal Â-invariant subspace contained in Ê .
Moreover, the maximal Ĵ eÂ τ -invariant subspace contained
in Ô — namely, maxJ (Ĵ eÂ τ , Ô) — is denoted by Q̂. It
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is worth noting that any state trajectory of Σ̂ starting from
a state in Q̂ gives zero output for all t∈R

+
0 .

In order to state the necessary and sufficient condition, the
subspace P̂ ⊆ X̂ is introduced through the following defini-
tion and characterized by the subsequent property. Namely,

P̂ = Im P̂ = Im
[
I 0

]�
, (8)

where the partition of P̂ is consistent with that of (5)–(7).

Property 1 The subspace P̂ is invariant under the linear
map Ĵ eÂ τ . The restriction of Ĵ eÂ τ to P̂ and the linear map
induced by Ĵ eÂ τ on the quotient space X̂/P̂ respectively
are

Ĵ eÂ τ
∣∣
P̂ = JL eAL τ , (9)

Ĵ eÂ τ
∣∣
X̂/P̂ = JE eAE τ . (10)

Proof. Note that, in light of (5) and (6),

Ĵ eÂ τ =

[
JL eAL τ ∗

0 JE eAE τ

]
, (11)

where ∗ stands for a matrix block of no interest to this
discussion. Hence, the upper block-triangular structure of
(11) proves invariance of P̂ , while the matrix blocks on the
main diagonal respectively prove (9) and (10).

In view of the proof of the following theorem, it is worth
noting that ΣL is a subsystem of Σ̂ and P̂ is its state space.

Theorem 1 Problem 1 has a solution if and only if there
exists a subspace V̂ ⊆ X̂ , invariant under the linear map
Ĵ eÂ τ , such that

C 1. V̂ ⊕ P̂ = X̂ ;

C 2. V̂ ⊆ Q̂;

C 3. Ĵ eÂ τ
∣∣
X̂/V̂ is Schur stable.

Proof. Only if. Let Problem 1 have a solution. Let V̂ be the
sum of the generalized eigenspaces of Ĵ eÂ τ associated to
the eigenvalues lying outside the open unit disc of the com-
plex plane. Hence, the subspace V̂ is invariant under the lin-
ear map Ĵ eÂ τ by definition. Moreover, for the same reason,
Ĵ eÂ τ

∣∣
V̂ is Schur antistable, while Ĵ eÂ τ

∣∣
X̂/V̂ is Schur sta-

ble — i.e., Condition C 3 holds. On the other hand, Require-
ment R 1 of Problem 1, which is met by assumption, and
(9) in Property 1 imply that Ĵ eÂ τ

∣∣
P̂ is Schur stable. Mean-

while, (10) in Property 1 and the assumption that JE eAE τ is
Schur antistable, imply that Ĵ eÂ τ

∣∣
X̂/P̂ is Schur antistable.

Therefore, the comparison between the spectra of the re-
striction of the linear map Ĵ eÂ τ to V̂ and P̂ and the spectra
of the linear maps respectively induced by Ĵ eÂ τ on X̂/V̂
and X̂/P̂ shows that Condition C 1 holds. In order to show
that Condition C 2 is fulfilled, first note that Q̂ is defined as
the maximal Ĵ eÂ τ -invariant subspace contained in Ô and
that, as was proven above, V̂ is a Ĵ eÂ τ -invariant subspace.
Hence, showing that V̂ ⊆ Q̂ reduces to showing that V̂ ⊆ Ô.
To this aim, note that any vector x̂∈ V̂ can be written as

x̂=

h∑
i=1

ji∑
j=1

cij vij +

h′∑
i′=1

ji′∑
j′=1

(αi′j′ wi′j′ + ᾱi′j′ w̄i′j′),

where h is the number of Jordan blocks in the Jordan form
of Ĵ eÂ τ corresponding to real eigenvalues that lie out-
side the open unit disc of the complex plane and ji is the
dimension of the i-th Jordan block; similarly, 2h′ is the
number of Jordan blocks corresponding to complex eigen-
values that lie outside the open unit disc of the complex
plane and ji′ is the dimension of the i′-th Jordan block;
the coefficients cij are real numbers and the vectors vij
are real vectors that, for j=1, . . . , ji, form a Jordan chain
of generalized eigenvectors associated to the i-th Jordan
block; the coefficients αi′j′ , ᾱi′j′ are conjugate complex
numbers and the vectors wi′j′ , w̄i′j′ are conjugate complex
vectors that, for j′ =1, . . . , ji′ , form two Jordan chains of
generalized eigenvectors respectively associated to the i′-th
and to the (i′ +h′)-th Jordan blocks — it is assumed that
the Jordan blocks are ordered in such a way that the i′-th
and the (i′ +h′)-th blocks correspond to a pair of conjugate
complex eigenvalues. Let λi, denote the real eigenvalue
associated to i-th Jordan block, with i=1, . . . , h. Then,
recall that the corresponding real generalized eigenvectors
satisfy Ĵ eÂ τ vi1 =λi vi1 and (Ĵ eÂ τ −λi I) vij = vi(j−1)

with i=1, . . . , h and j=2, . . . , ji. Moreover, let λi′

and λ̄i′ denote the pair of conjugate complex eigenval-
ues respectively associated to the i′-th and (i′ +h′)-th
Jordan blocks. Then, the corresponding conjugate com-
plex generalized eigenvectors satisfy Ĵ eÂ τ wi′1 =λi′ wi′1,
(Ĵ eÂ τ −λi′ I)wi′j′ =wi′(j′−1), Ĵ eÂ τ w̄i′1 = λ̄i′ w̄i′1,

and (Ĵ eÂ τ − λ̄i′ I) w̄i′j′ = w̄i′(j′−1), with i′ =1, . . . , h′

and j′ =2, . . . , ji′ . Consider the Jordan chain of real
generalized eigenvectors corresponding to the i-th Jor-
dan block and to the real eigenvalue λi and, by drop-
ping the index i to simplify the notation, represent it
by {v1, ..., vji}. Let x̂(t), with t∈R

+
0 , denote the state

trajectory of Σ̂ starting from x̂(0)∈ V̂ and consider
the corresponding output, e(t)= Ê x̂(t). Let x̂(0)= v1.
Then, with k τ ≤ t< (k+1) τ , the output is given by
e(t)= Ê eÂ (t−k τ)(Ĵ eÂ τ )k v1 =λk Ê eÂ (t−kτ) v1. Since
|λ|> 1, Requirement R 2 of Problem 1, which is satisfied
by assumption, implies that Ê eÂ (t−kτ) v1 = Ê eÂ t′ v1 =0
for all t′ =(t− kτ)∈ [0, τ), which, in turn, im-
plies that v1 belongs to Ô. Hence, let x̂(0)= v2.
Then, with k τ ≤ t< (k+1) τ , the output is given by
e(t)= Ê eÂ (t−kτ) (Ĵ eÂ τ )k v2 = Ê eÂ (t−kτ) (k λk−1 v1 +

λk v2), which implies that e(t)=λk Ê eÂ (t−kτ) v2, by the
previous result. As before, it follows that v2 belongs to Ô
and, in the same way, it follows that vj belongs to Ô for
all the remaining values of j. Hence, the conclusion is that
the real eigenvector vij belongs to Ô for any ij. Next, con-
sider the Jordan chain of complex generalized eigenvectors
corresponding to the i′-th Jordan block and to the complex
eigenvalue λi′ and, by dropping the index i′ to simplify
the notation, represent it by {w1, ..., wji′ }. Also consider
the Jordan chain of conjugate complex generalized eigen-
vectors corresponding to the (i′ +h′)-th Jordan block and
to the conjugate complex eigenvalue λ̄i′ , and, similarly,
represent it by {w̄1, . . . , w̄ji′ }. Let x̂(0)=α1 w1 + ᾱ1w̄1.
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Then, with k τ ≤ t< (k+1) τ , the output is given by
e(t)= Ê eÂ (t−kτ) (Ĵ eÂ τ )k x̂(0)= Ê eÂ (t−kτ) (α1 λ

k w1+
ᾱ1 λ̄

k w̄1). With reference to the notation λ= |λ| eiArg(λ),
where i denotes the imaginary unit, let us first consider
the case where Arg(λ)/2π is a rational number: i.e., let
Arg(λ)/2π= l′/l, with l, l′ integer numbers (and l posi-
tive). Hence, λkl = |λ|kl eiklArg(λ) = |λ|kl ei2kl′π = |λ|kl
and λ̄kl = |λ̄|kl eiklArg(λ̄) = |λ|kl e−i2kl′π = |λ|kl.
Therefore, with k l τ ≤ t< (k l+1) τ , the output is
e(t)= |λ|kl Ê eÂ (t−k lτ) (α1 w1 + ᾱ1 w̄1). Since |λ|> 1,
Requirement R 2 of Problem 1 (met by assumption) im-
plies that Ê eÂ (t−k lτ) (α1 w1 + ᾱ1 w̄1)= Ê eÂ t′ (α1 w1 +
ᾱ1 w̄1)= 0 for all t′ =(t− k l τ)∈ [0, τ) and, therefore,
α1 w1 + ᾱ1 w̄1 belongs to Ô for any α1 ∈C. Other-
wise, if Arg(λ)/2π is not a rational number, it is pos-
sible to find a sequence of integers {kn; n∈Z

+}, with
limn→+∞ kn =+∞, such that, given a neighborhood
of radius ε of x̂0 =α1 w1 + ᾱ1 w̄1, say S(x̂0, ε), the
(real) points x̂n =α1 e

iknArg(λ) w1 + ᾱ1 e
iknArg(λ̄)w̄1

belong to S(x̂0, ε) for any n∈Z
+. In particular,

since for any t′ ∈ [0, τ) the linear map Ê eÂ t′ : X̂ →Y
is continuous, it is possible to choose ε in such a
way that ‖Ê eÂ t′ x̂n‖≥‖Ê eÂ t′ x̂0‖/2. Therefore, with
kn τ ≤ t< (kn +1) τ , the output is given by e(t) =

|λ|kn Ê eÂ (t−knτ)(α1 e
iknArg(λ) w1 + ᾱ1 e

iknArg(λ̄) w̄1) =

|λ|knÊ eÂ t′ x̂n, where t′ =(t− kn τ)∈ [0, τ), and ‖e(t)‖ ≥
|λ|kn ‖Ê eÂ t′ x̂0‖/2. Since |λ|> 1, Requirement R 2 im-
plies that Ê eÂ t′ x̂0 = Ê eÂ t′(α1 w1 + ᾱ1 w̄1)= 0 for all
t′ =(t− kτ)∈ [0, τ) and any α1 ∈C and, therefore, also in
this case, α1 w1 + ᾱ1 w̄1 belongs to Ô for any α1 ∈C.
If. Let the subspace V̂ ⊆ X̂ be invariant under the linear map
Ĵ eÂ τ and satisfy Conditions C 1–C 3. Then, Conditions C 1
and C 3, in light of Property 1, imply that Requirement R 1

of Problem 1 is met. In fact, the spectra of Ĵ eÂ τ |X̂/V̂
and Ĵ eÂ τ |P̂ are equal. Moreover, Conditions C 1, C 2, and
C 3, in light of Property 1, imply that Requirement R 2 of
Problem 1 is also met. In fact, by Condition C 1, any state
x̂0 ∈ X̂ can be written, in a unique way, as x̂0 = x̂1 + x̂2

with x̂1 ∈ P̂ and x̂2 ∈ V̂ . Thus, the corresponding trajec-
tory x̂(t) of Σ̂, with t∈ [k τ, (k+1) τ), can be written as
x̂(t)= eÂ (t−k τ)(Ĵ eÂ τ )kx̂0 = eÂ (t−kτ) (Ĵ eÂ τ )k(x̂1 + x̂2)

= eÂ (t−kτ) ((Ĵ eÂ τ )kx̂1 +(Ĵ eÂ τ )kx̂2), where
(Ĵ eÂ τ )k x̂1 belongs to P̂ and (Ĵ eÂ τ )k x̂2 belongs to
V̂ , because P̂ and V̂ are Ĵ eÂτ -invariant. Then, by Con-
dition C 2, e(t)= Ê x̂(t)= Ê eÂ (t−kτ)(Ĵ eÂ τ )k x̂1 and

lim
t→+∞ ‖Ê x̂(t)‖≤ ( max

t′∈[0,τ ]
‖Ê eÂ t′‖)( lim

k→∞
‖(Ĵ eÂ τ )k x̂1‖).

Since, as noticed above, the spectra of Ĵ eÂ τ
∣∣
X̂/V̂ and

Ĵ eÂ τ
∣∣
P̂ are equal, it follows that limk→∞(Ĵ eÂ τ )k x̂1 =0

by Condition C 3 and, therefore, limt→∞ e(t)= 0 for all
x̂0 = [x�

P 0 x�
R 0 x�

E 0]
� ∈ X̂ or, equivalently, for all xP 0,

xR 0 and r(t) generated by ΣE .

Remark 1 The result of Theorem 1 is in accordance with
the conditions for the solution of Problem 1 given in

(Carnevale et al., 2016). This can be seen by noting that,
given a matrix V̂ whose columns span V̂ , by Condition C 1,
one can assume that

V̂ =
[
V �
1 V �

2 I
]�

,

where the partition is consistent with that of (5)–(7), where
(2)–(4) have been taken into account. Comparing with
the proof of Proposition 3 in (Carnevale et al., 2016),
one can see that the steady-state solutions of Σ̂, with
k τ ≤ t< (k+1) τ , can be written as

x̂(t) =⎡
⎢⎢⎣
xP (t)

xR(t)

xE(t)

⎤
⎥⎥⎦= eÂ (t−kτ)

⎡
⎢⎢⎣
xP (kτ)

xR(kτ)

xE(kτ)

⎤
⎥⎥⎦= eÂ (t−kτ)

⎡
⎢⎢⎣
V1

V2

I

⎤
⎥⎥⎦xE(kτ).

Letting σ= t− k τ , recalling the block structure of Â, and
noting that xE(k τ)= e−AE σxE(t), one can write

x̂(t) = eÂ σ

⎡
⎢⎢⎣
V1

V2

I

⎤
⎥⎥⎦e−AE σxE(t) =

⎡
⎢⎢⎣
V1(σ) e

−AEσ

V2(σ) e
−AEσ

I

⎤
⎥⎥⎦xE(t),

where V1(σ) and V2(σ) respectively denote the correspond-

ing blocks of rows of the matrix product eÂ σ
[
V �
1 V �

2 I
]�

.
Then, it turns out that V1(σ) e

−AEσ and V2(σ) e
−AEσ re-

spectively coincide with the matrices Π(σ) and Σ(σ) in
(Carnevale et al., 2016). In particular, with the same rea-
soning as in the quoted proof, it can be shown that these ma-
trices verify the so-called hybrid regulator equations given
in formulas (11) of (Carnevale et al., 2016).

In the necessary and sufficient condition for the solution of
the output regulation problem expressed in Theorem 1, the
matrices of the to-be-designed compensator are implicit in
those of the hybrid autonomous system. Hence, the purpose
of the following developments is to find conditions under
which the regulator matrices can be explicitly determined. In
particular, the notion of H -invariant subspace for the hybrid
autonomous system and the relation between H -invariance
and invariance under the linear map ruling the state transition
between two consecutive jump time instants pave the way
to the proof of the explicit, sufficient conditions that will be
presented in the next section.

Definition 1 A subspace Ŵ ⊆ X̂ is said to be an
H -invariant subspace for the autonomous hybrid system Σ̂

if Â Ŵ ⊆Ŵ and Ĵ Ŵ ⊆Ŵ .

Proposition 1 A subspace Ŵ ⊆ X̂ , with a basis matrix Ŵ ,
is an H -invariant subspace for the hybrid autonomous
system Σ̂ if and only if there exist matrices LÂ and LĴ , such
that

Â Ŵ = Ŵ LÂ, (12)

Ĵ Ŵ = Ŵ LĴ . (13)

Proposition 1, which characterizes Ŵ as an H -invariant
subspace for the hybrid autonomous system Σ̂, expresses
the notions of Â-invariance and Ĵ-invariance of Ŵ in a
coordinate-dependent setting.
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It is noteworthy that, since the notion of H -invariance is
merely related to linear maps whose image is in the state
space of Σ̂, it is not affected by the fact that the linear map Â
refers to a continuous-time dynamics, while the linear map
Ĵ does not. In other words, H -invariance of a subspace
with respect to a hybrid system is a structural notion and, as
such, it encompasses the hybrid nature of the system.

Proposition 2 Let the subspace Ŵ ⊆ X̂ be an H -invariant
subspace for the hybrid autonomous system Σ̂. Then, Ŵ is
invariant under the linear map Ĵ eÂ τ .

Proof. Let the basis transformation T̂ = [T̂1 T̂2], where
Im T̂1 = Ŵ , be applied in the state space X̂ of Σ̂. Hence,
with respect to the new coordinates,

Â′ = T̂−1Â T̂ =

[
Â′

11 Â′
12

0 Â′
22

]
,

Ĵ ′ = T̂−1Ĵ T̂ =

[
Ĵ ′
11 Ĵ ′

12

0 Ĵ ′
22

]
,

where the structural zero matrices in Â′ and Ĵ ′ are respec-
tively due to Â-invariance and Ĵ-invariance of Ŵ . Then,

Ĵ ′ eÂ
′ τ =

[
Ĵ ′
11 e

Â′
11 τ ∗

0 Ĵ ′
22 e

Â′
22 τ

]
,

and the upper block-triangular structure proves the thesis.

It is worth noting that, while Proposition 2 states that
H -invariance implies invariance with respect to the linear
map ruling the state transition between two consecutive jump
time instants, the converse is not true in general.

4 Sufficient Conditions for Problem Solvability

The object of this section is the discussion of two different
sufficient conditions for problem solvability, based on the
geometric properties of the so-called hybrid extended sys-
tem. To this aim, the notion of H -controlled invariant sub-
space for a hybrid system with control inputs is first revis-
ited and then characterized through a couple of necessary
and sufficient conditions.
The hybrid extended system — henceforth denoted by Σ —
is defined as the output-difference connection between the
plant ΣP and the exogenous system ΣE : i.e.,

Σ ≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) +B u(t), with

t ∈ [k τ, (k + 1) τ), k ∈ Z
+
0 ,

x(t) = J x−(t), with t = k τ, k ∈ Z
+,

e(t) = E x(t),

where

A=

[
AP 0

0 AE

]
, B =

[
BP

0

]
, (14)

J =

[
JP 0

0 JE

]
, (15)

E =
[
−CP CE

]
. (16)

The state space R
n =R

nP+nE of Σ is denoted by X . The
subspaces ImB and KerE are respectively denoted by B
and E . For the sake of immediacy, the following statements
refer to the hybrid system Σ. However, it is understood that
the peculiar structure of the matrices A, B, J , E shown in
(14)–(16) has no influence on these statements.

Definition 2 A subspace V ⊆X is said to be an
H -controlled invariant subspace for the hybrid system Σ if

AV ⊆ V + B, (17)
J V ⊆ V. (18)

Proposition 3 A subspace V ⊆X , with a basis matrix V , is
an H -controlled invariant subspace for the hybrid system Σ
if and only if there exist matrices LA, LJ , and M , such that

AV = V LA +BM, (19)
J V = V LJ . (20)

Proposition 4 A subspace V ⊆X is an H -controlled in-
variant subspace for the hybrid system Σ if and only if there
exists a linear map F :X →U , such that

(A+B F )V ⊆V (21)

holds along with (18).

The first characterization of V as an H -controlled invari-
ant subspace for the hybrid system Σ expresses simulta-
neous (A,B)-controlled invariance and J-invariance in a
coordinate-dependent setting. The second characterization
is shown to be equivalent to the former via the coordinate-
dependent characterization of (A+B F )-invariance: i.e., it
ensues from (A+B F )V =V LA by picking F such that
F V =−M . It is worth noting that Propositions 1 and 3,
which respectively characterize an H -invariant subspace
and an H -controlled invariant subspace, imply that an H -
invariant subspace is an H -controlled invariant subspace for
anyB. It is also worth noting that, since H -controlled invari-
ance (like H -invariance) only deals with linear maps whose
domain belongs to the state space of the hybrid system, it
is not affected by the fact that the pair (A,B) refers to a
continuous-time dynamics, while the linear map J does not.
In order to state the theorem expressing the explicit, suffi-
cient condition for solvability of the output regulation prob-
lem — as well as the lemma smoothing the way to its proof
— the subspace P ⊆X is introduced through the following
definition and the subsequent property. Namely,

P = ImP = Im
[
I 0

]�
, (22)

where the partition of P is consistent with that of (14)–(16).

Property 2 The subspace P is an H -invariant subspace
for the hybrid system Σ. The restrictions of A and J to P
and the linear maps induced by A and J on the quotient
space X/P respectively are

A|P = AP , J |P = JP , (23)
A|X/P = AE , J |X/P = JE . (24)
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Proof. By taking (14), (15), and (22) into account, one
can show that (19) and (20) hold with V =P , LA =AP ,
M =0, and LJ = JP , which proves (23). Moreover, the
block diagonal structure of A and J proves (24).

Lemma 1 Let V ⊆X be an H -controlled invariant sub-
space for the hybrid extended systemΣ such thatV ⊕P =X ,
with a basis matrix V of the form

V =
[
V �
P I

]�
, (25)

where the partition of V is consistent with that in (14)–(16).
Let F :X →U , accordingly partitioned as

F =
[
FP FE

]
, (26)

be such that (21) holds. Then, the linear map F ′ :X →U ,
given by

F ′ =
[
FP +X FE −X VP

]
, (27)

where VP , FP , FE are as in (25), (26) and X is any matrix
of appropriate dimensions, is such that (A+B F ′)V ⊆V .

Proof. First, note that (25) can be assumed as a basis matrix
of V without loss of generality, since V is a direct summand
of P . Then, (21) is equivalent to the existence of a matrix
LF such that[

AP +BP FP BP FE

0 AE

] [
VP

I

]
=

[
VP

I

]
LF , (28)

where (14), (25), and (26) have been taken into account.
In particular, (28) holds with LF =AE and, therefore, it is
equivalent to

(AP +BP FP )VP +BP FE = VP AE . (29)
A similar reasoning shows that (A+B F ′)V ⊆V holds if
and only if there exists L′

F such that[
AP +BP FP +BP X BP FE −BP X VP

0 AE

] [
VP

I

]
=

[
VP

I

]
L′
F (30)

and (29) implies that (30) is met with L′
F =AE .

Theorem 2 Given the plant ΣP and the exogenous system
ΣE , consider the hybrid extended system Σ. Let (AP , BP )
be reachable and (A,E) be observable. Problem 1 has a
solution if there exists an H -controlled invariant subspace
V ⊆X for the hybrid extended system Σ, such that

S 1. V ⊕P =X ;
S 2. V ⊆E .

Proof. Let V ⊆X be an H -controlled invariant subspace
for the hybrid system Σ satisfying Conditions S 1 and S 2.
Let F :X →U , partitioned as in (26), be such that V is
(A+B F )-invariant and JP e(AP+BP FP ) τ is Schur stable.
Note that the two requirements on F are compatible by
Lemma 1 and that stabilization of JP e(AP+BP FP ) τ is fea-
sible by reachability of (AP , BP ) and Proposition 6 in the
Appendix. Let G :Y→X be such that J e(A+GE) τ is Schur
stable — stabilization of J e(A+GE) τ is feasible by observ-
ability of (A,E) and Proposition 7 in the Appendix. Then,
it will be shown that the hybrid regulator ΣR, where

AR =A+B F +GE, BR = −G, (31)
JR = J, (32)
CR = F, (33)
solves Problem 1. To this aim, it will be shown that there
exists a subspace V̂ which is invariant under the linear map
Ĵ eÂ τ and which satisfies Conditions C 1–C 3 of Theorem 1,
provided that the hybrid autonomous system Σ̂ includes the
specific regulator thus devised. By replacing (31)–(33) in
(2)–(3), one gets

AL =

[
AP BP F

GCP A+B F +GE

]
, BL =

[
0

−G

]
, (34)

JL =

[
JP 0

0 J

]
. (35)

Then, by replacing (34), (35), and (4) in (5)–(7), one gets

Â=

⎡
⎢⎢⎣

AP BP F 0

GCP A+B F +GE −GCE

0 0 AE

⎤
⎥⎥⎦ , (36)

Ĵ =

⎡
⎢⎢⎣
JP 0 0

0 J 0

0 0 JE

⎤
⎥⎥⎦ , (37)

Ê =
[
−CP 0 CE

]
. (38)

As noted earlier, since V is a direct summand of P , there is
no loss of generality in assuming that a basis matrix V of
V has the structure shown in (25). Hence, it will be shown
that a subspace V̂ satisfying the required conditions is

V̂ = Im V̂ = Im
[
V �
P V � I

]�
, (39)

where the partition is consistent with that in (36)–(38). By
applying the state space basis transformation

T̂ =

⎡
⎢⎢⎣
I 0 0

0 0 I

0 I 0

⎤
⎥⎥⎦ ,

partitioned accordingly, for the matrices of the hybrid au-
tonomous system Σ̂ in the new coordinates, one gets

Â′ = T̂−1 Â T̂ =

⎡
⎢⎢⎣

AP 0 BP F

0 AE 0

GCP −GCE A+B F +GE

⎤
⎥⎥⎦, (40)

Ĵ ′ = T̂−1 Ĵ T̂ =

⎡
⎢⎢⎣
JP 0 0

0 JE 0

0 0 J

⎤
⎥⎥⎦ , (41)

Ê′ = Ê T̂ =
[
−CP CE 0

]
, (42)

and, as far as the basis matrix of V̂ , one gets

V̂ ′ = T̂−1 V̂ =
[
V �
P I V �

]�
. (43)

Hence, by taking (14)–(16) into account, (40)–(42) can be
written in a more compact form as
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Â′ =

[
A B F

−GE A+B F +GE

]
, (44)

Ĵ ′ =

[
J 0

0 J

]
, (45)

Ê′ =
[
E 0

]
. (46)

Consistently, the basis matrix V̂ ′ can be written as

V̂ ′ =
[
V � V �

]�
. (47)

With reference to these coordinates, it is easy to show that
V̂ is an H -invariant subspace for Σ̂. In fact: i) (12), where
Â and Ŵ are respectively replaced by Â′, given by (44),
and V̂ ′, given by (47), holds with LÂ =AE , by virtue of
(A+B F )-invariance of V , in light of (14), (25), and (26);
ii) (13), where Ĵ and Ŵ are respectively replaced by Ĵ ′,
given by (45), and V̂ ′, given by (47), holds with LĴ = JE ,
by virtue of J-invariance of V , in light of (15) and (25).
Consequently, V̂ is invariant under the linear map Ĵ eÂ τ

by Proposition 2. In order to show that Condition C 1 of
Theorem 1 is satisfied, note that, with respect to the original
coordinates, the subspace P̂ is defined by (8). By applying
the state space basis transformation T̂ to the consistent, more
detailed partition of P̂ , one gets

P̂ ′ = T̂−1P̂ = T̂−1

[
I 0 0

0 I 0

]�

=

[
I 0 0

0 0 I

]�

.

Taking (22) into account, P̂ ′ can be written in a more com-
pact form as

P̂ ′ =

[
P 0

0 I

]
. (48)

The comparison between the basis matrices V̂ ′ and P̂ ′ —
respectively shown in (47) and (48) — in light of Condi-
tion S 1, proves that Condition C 1 of Theorem 1 is ful-
filled. In order to show that Condition C 2 of Theorem 1 is
also met, first, note that Ê V̂ =E V =0, by virtue of (38),
(39), (16), (25), and Condition S 2, which means that V̂ ⊆ Ê .
Hence, V̂ , as an Â-invariant subspace contained in Ê is also
contained in Ô, which is the maximal Â-invariant subspace
contained in Ê . Therefore, V̂ , as a Ĵ eÂ τ -invariant subspace
contained in Ô, is contained in Q̂, which is the maximal
Ĵ eÂ τ -invariant subspace contained in Ô. In order to show
that Condition C 3 of Theorem 1 is satisfied, first note that
X̂/V̂ = P̂ , since, as was shown above, V̂ and P̂ are direct
summands. Hence, in light of Property 1, proving that Con-
dition C 3 holds reduces to proving that JL eAL τ is Schur
stable. To this aim, a more detailed partition of (34) and
(35) is considered, where F is partitioned as in (26) and G
is consistently partitioned as

G =
[
G�

P G�
E

]�
. (49)

Thus,
AL =⎡
⎢⎢⎣

AP BP FP BP FE

GP CP AP +BP FP −GP CP BP FE +GP CE

GE CP −GE CP AE +GE CE

⎤
⎥⎥⎦ ,

JL =

⎡
⎢⎢⎣
JP 0 0

0 JP 0

0 0 JE

⎤
⎥⎥⎦ ,

where (14)–(16), (26), and (49) have been considered. Then,
by performing the state space basis transformation

SL =

⎡
⎢⎢⎣
I 0 0

I I 0

0 0 I

⎤
⎥⎥⎦ ,

one gets
A′

L = S−1
L AL SL =⎡

⎢⎢⎣
AP +BP FP BP FP BP FE

0 AP −GP CP GP CE

0 −GE CP AE +GE CE

⎤
⎥⎥⎦ , (50)

J ′
L = S−1

L JL SL = JL. (51)
Again, in light of (14)–(16), (26), and (49), (50) and (51)
can be written in a more compact form as

A′
L =

[
AP +BP FP BP F

0 A+GE

]
, (52)

J ′
L =

[
JP 0

0 J

]
. (53)

Therefore, from (52) and (53), it ensues that

J ′
L eA

′
L τ =

[
JP e(AP+BP FP ) τ ∗

0 J e(A+GE) τ

]
,

where ∗ stands for a matrix block of no interest to this
discussion. Finally, the upper block-triangular structure of
J ′
L eA

′
L τ and Schur stability of the matrix blocks on the

main diagonal imply Schur stability of JL eAL τ .

Remark 2 The hybrid regulator ΣR devised in the proof
of Theorem 2 satisfies a more general version of the inter-
nal model principle, compared to that originally given in
(Francis et al., 1974), naturally adapted to hybrid systems
with a continuous-time linear dynamics subject to periodic
state jumps. In fact, the continuous-time dynamics of ΣR

— represented by AR in (31) — includes the eigenstruc-
ture of the continuous-time dynamics of the exogenous sys-
tem. This is shown by the fact that the subspace V , as an
(A+B F )-invariant subspace contained in E , is also an
(A+B F +GE)-invariant subspace and, for the same rea-
son, (A+B F +GE)|V =(A+B F )|V , where the latter
has been proven to coincide with AE — i.e., the continuous-
time dynamic matrix of the exogenous system. Moreover, the
jump dynamics of ΣR — represented by JR in (32) — in-
cludes that of the exogenous system — namely, JE .

Remark 3 The sufficient condition expressed by Theorem 2
is equivalent to the existence of matrices VP and M , of ap-
propriate dimensions, which solve the set of linear algebraic
matrix equations

AP VP = VP AE +BP M, (54)
JP VP = VP JE , (55)
CP VP =CE , (56)
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with AP , BP , JP , CP , AE , JE , and CE given. In fact, the
condition that V is a direct summand of P allows the struc-
ture of a basis matrix of V to be assumed as in (25). Hence,
(54), (55) express the condition of H -controlled invariance
in a coordinate-dependent setting. Further, (56) expresses
the condition that V is contained in E . Note that (55) gener-
ically has the unique solution VP =0, but VP =0 does not
solve (56) except in the trivial case where CE =0. However,
if JP and JE have some common eigenvalue, (55) has in-
finitely many solutions and some of them may be solutions
of (56) and, for some matrix M , of (54) too.
By using the vectorization operator, denoted by vec(·), and
the Kronecker product, denoted by ⊗, (54)–(56) can be
written as the system of nE × (2nP + q) linear algebraic
scalar equations in nE ×nP unknowns expressed, in com-
pact form, as⎡
⎢⎢⎣
(InE

⊗AP )− (A�
E ⊗ InP

)

(InE
⊗ JP )− (J�

E ⊗ InP
)

(InE
⊗ CP )

⎤
⎥⎥⎦ vec(VP ) =

⎡
⎢⎢⎣
(InE

⊗BP )vec(M)

0

vec(CE)

⎤
⎥⎥⎦ , (57)

where vec(M) is a vector of nE × p free parameters. Any
solution of the system of linear equations (57), for some
choice of the free parameters, gives the matrix VP to be used
to construct — according to (25) — the basis matrix V of
an H -controlled invariant subspace V contained in E .

Remark 4 The major interest of the solvability condition
expressed by Theorem 2 is connected to the synthesis of
the hybrid feedback regulator. In the first place, provided
that a subspace V satisfying the requirements of Theorem 2
exist and be known, the proof exactly and straightforwardly
shows how to construct the hybrid regulator. Secondly, the
time period between two consecutive jumps is not involved
in the solvability condition expressed by Theorem 2. This
means that, if such solvability condition is satisfied, then
Problem 1 is solvable for any time period τ (of finite length).
Nonetheless, the sequence of jump times is supposed to
be available to the hybrid feedback regulator consequently
designed.

A more extensive (as will be clear from the following) and
yet only sufficient condition to solve Problem 1 is established
by the next theorem.

Theorem 3 Given the plant ΣP and the exogenous sys-
tem ΣE , consider the hybrid extended system Σ. Let (A,E)
be observable. Problem 1 has a solution if there exists a
J e(A+B F ) τ -invariant subspace V ⊆X such that Condi-
tions S 1 and S 2 hold — F being a linear map, partitioned
as in (26), which makes JP e(AP+BP FP ) τ Schur stable.

Proof. The proof follows the same lines as that of Theorem 2.
In particular, the hybrid feedback regulator ΣR is defined
according to (31)–(33), with the only difference that the
linear map F is picked as specified in the statement of
Theorem 3.

Remark 5 The condition of Theorem 3 is less restrictive
than that of Theorem 2, since any subspace V satisfying

the requisites of Theorem 2 also satisfies the requisites of
Theorem 3, while the converse is not true in general. Actu-
ally, if V is an H -controlled invariant subspace of the hy-
brid extended system Σ, on the assumptions of Theorem 2,
there exists a linear map F such that (A+B F )V ⊆V
and JP e(AP+BP FP ) τ is Schur stable. Hence, the subspace
V , which is simultaneously (A+B F )-invariant and J-
invariant, can also be shown to be invariant under the lin-
ear map J e(A+B F ) τ , for any given positive real constant
τ , by applying the same arguments considered in the proof
of Proposition 2.

In light of the previous remarks, the comparison between
Theorem 2 and Theorem 3 shows that the counterpart of re-
laxing the condition of H -controlled invariance to a condi-
tion of invariance with respect to the state transition matrix
over one period is that of including the to-be-designed linear
map F in the condition itself, which is a circumstance simi-
lar (although less manifest) to that presented in Theorem 1,
where all the to-be-designed linear maps defining the regu-
lator are included in the necessary and sufficient condition.

5 A Constructive Condition for the Resolving Subspace

This section introduces a necessary and sufficient condition
to compute the H -controlled invariant subspace V that plays
a key role in Theorem 2. To this aim, the maximal H -
controlled invariant subspace contained in the null space of
the output of the hybrid system Σ is defined through the
following reasoning.

Proposition 5 The set of all H -controlled invariant sub-
spaces contained in the null space of the output of the hybrid
system Σ is an upper semilattice with respect to the sum and
the inclusion of subspaces — such semilattice is denoted by
ΦH (E).
Proof. First, note that H -controlled invariance involves si-
multaneous (A,B)-controlled invariance and J-invariance.
Concerning (A,B)-controlled invariance, standard argu-
ments of linear algebra show that the set of all (A,B)-
controlled invariant subspaces contained in a subspace E is
an upper semilattice with the sum as binary operation and
the inclusion as partial ordering relation. As to J-invariance,
it can likewise be shown that the set of all J-invariant
subspaces contained in E is an upper semilattice with re-
spect to the sum and the inclusion. Consequently, the set
of all subspaces contained in E , with the property of being
both (A,B)-controlled invariant and J-invariant, is an upper
semilattice with respect to the sum and the inclusion.

Definition 3 The supremum of ΦH (E) is called the maxi-
mal H -controlled invariant subspace contained in the ker-
nel of the output of the hybrid system Σ and is denoted by V∗.

The subspace V∗, introduced in Definition 3, can be com-
puted through the algorithm presented below. As to the for-
malization of the algorithm, maxJ (J,K), where K denotes
a subspace of X , stands for the maximal J-invariant sub-
space contained in K. Moreover, maxV(A,B,W), where
B and W denote subspaces of X , stands for the maximal
(A,B)-controlled invariant subspace contained in W . The
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subspaces maxJ (J,K) and maxV(A,B,W) can be re-
spectively computed as in (Basile and Marro, 1992, Algo-
rithms 3.2-2 and 4.1-2).

Algorithm 1 The maximal H -controlled invariant sub-
space contained in the kernel of the output of the hy-
brid system Σ — namely, V∗ — is the last term of
the sequence J0 =maxJ (J, E), Vi =maxV(A,B,Ji−1),
Ji =maxJ (J,Vi), i=1, .., k, where k≤n− 1 is the least
integer such that Jk =Vk.

The following statements will show how the subspace V∗,
which has been introduced by Definition 3 and which can
be computed by means of Algorithm 1, can be used, under
certain conditions, to compute an H -controlled invariant
subspace V , satisfying the conditions of Theorem 2.

Lemma 2 Consider the hybrid extended system Σ, the sub-
space P , and the subspace V∗. Let

V∗ +P =X (58)
hold. Let the linear map F :X →U be such that
(A+B F )V∗ ⊆V∗. Perform the state space basis
transformation Q= [Q1 Q2 Q3 ], where ImQ1 =V∗ ∩P ,
Im [Q1 Q2 ] =V∗, and Im [Q1 Q3 ] =P . Then, with re-
spect to the new coordinates,

A′ +B′ F ′ = Q−1 (A+B F )Q =⎡
⎢⎢⎣
A′

11 +B′
1 F

′
1 A′

12 +B′
1 F

′
2 A′

13 +B′
1 F

′
3

0 A′
22 0

0 0 A′
33 +B′

3 F
′
3

⎤
⎥⎥⎦ , (59)

J ′ = Q−1 J Q =

⎡
⎢⎢⎣
J ′
11 J ′

12 J ′
13

0 J ′
22 0

0 0 J ′
33

⎤
⎥⎥⎦ . (60)

Proof. H -invariance of P and the inclusion B⊆P ac-
count for the zero matrices in the second block of rows of
A′ +B′ F ′ and J ′, respectively. H -controlled invariance
of V∗ accounts for the zero matrices in the last block of
rows of J ′, and, in particular, (A+B F )-invariance of V∗
accounts for the zero matrices in the last block of rows of
A′ +B′ F ′.

Theorem 4 Given the plant ΣP and the exogenous system
ΣE , consider the hybrid extended system Σ, the subspace
P , and the subspace V∗. There exists an H -controlled
invariant subspace of Σ satisfying Conditions S 1 and S 2
of Theorem 2 if and only if (58) holds and there exixts a
matrix X that solves the linear matrix equations

(A′
11 +B′

1 F
′
1)X −X A′

22 = −A′
12 −B′

1 F
′
2, (61)

J ′
11 X −X J ′

22 = −J ′
12, (62)

where the A′
11, A′

22, A′
12, J ′

11, J ′
22, J ′

12, B′
1, F ′

1, and F ′
2

were introduced in Lemma 2.

Proof. If. Let (58) hold and let X satisfy (61) and (62). It
will be shown that the subspace

V = ImV ′ = Im
[
X� I 0

]�
, (63)

where the partition considered in (63) is consistent with that
shown in (59) and (60), is an H -controlled invariant sub-
space of Σ satisfying Conditions S 1 and S 2 of Theorem 2.

To this purpose, first, observe that (A′ +B′ F ′)V ′ =V ′ LF

holds with LF =A′
22 by virtue of (61), which implies that

V is an (A+B F )-invariant subspace or, equivalently, an
(A,B)-controlled invariant subspace. Secondly, note that
J ′ V ′ =V ′ LJ holds with LJ = J ′

22 by virtue of (62), which
implies that V is a J-invariant subspace. Thus, V , as an
(A,B)-controlled invariant subspace and a J-invariant sub-
space, is an H -controlled invariant subspace of Σ. In ad-
dition, the comparison between the basis matrices of V and
P with respect to the coordinates introduced in Lemma 2
shows that Condition S 1 of Theorem 2 is met. Furthermore,
the comparison between the basis matrices of V and V∗
shows that V ⊆V∗ and, consequently, also Condition S 2 of
Theorem 2 is fulfilled.
Only if. Let V be an H -controlled invariant subspace of
Σ satisfying Conditions S 1 and S 2 of Theorem 2. Hence,
V∗, which contains V , satisfies (58). Then, consider the sim-
ilarity transformation Q introduced in Lemma 2 and choose
Q2 as a basis matrix of V . Therefore, A′

12 − B′
1 F

′
2 =0 in

(59), which implies that (61) is satisfied with X =0. For the
same reason, J ′

12 =0 in (60), which implies that X =0 also
satisfies (62).

It is worth noting that Theorem 4 and, more generally, all
the arguments developed in this section only deal with struc-
tural notions, thus leaving stability apart from considera-
tion. In fact, the only requirement on the linear map F con-
sidered in Lemma 2 and Theorem 4 is to render V∗ an
(A+B F )-invariant subspace — no stabilization properties
are required. Therefore, once the subspace V has been de-
termined, if possible, according to Theorem 4, V can be
used to synthesize the feedback regulator according to The-
orem 2, which means, in particular, that a different linear
map F can be determined to this aim. Namely, a differ-
ent linear map F , partitioned as in (26), can be used to
render JP e(AP+BP FP ) τ Schur stable and to render V an
(A+B F )-invariant subspace.

6 A Numerical Example

The aim of this section is to illustrate the devised synthesis
procedure through a worked out numerical example. Numer-
ical computations are made with Matlab and Matlab-based
software for the geometric approach available with (Basile
and Marro, 1992), while symbolic computations are done
with Maple. Let Problem 1 be stated for the plant ΣP , where

AP =

⎡
⎢⎢⎣
−4 1 0

5 −3 1

1 0 −4

⎤
⎥⎥⎦, BP =

⎡
⎢⎢⎣
1 −1

0 1

0 0

⎤
⎥⎥⎦, JP =

⎡
⎢⎢⎣
5 0 0

0 5 0

0 0 5

⎤
⎥⎥⎦,

CP =

[
−1 −3 2

0 −3 0

]
,

and the exogenous system ΣE , where

AE =

[
0 1

0 0

]
, JE =

[
5 0

0 5

]
, CE =

[
−2 0

0 3

]
.

Let τ =1. Note that the spectrum of JE eAE τ is {5, 5} and,
as required, lies outside the open unit disc of C.
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In order to check on whether the sufficient conditions for
the output regulation problem to be solvable are satisfied, the
hybrid extended system Σ is constructed. With reference to
the sufficient conditions stated in Theorem 4, the subspace
V∗ is computed through Algorithm 1, while the subspace P
is defined according to (22). Hence,

V∗ = Im

⎡
⎢⎢⎣
2 0 1 0 0

4 0 1 1 0

5 −1 1 0 1

⎤
⎥⎥⎦
�

and P =Im [ I3 03×2 ]
�. As is easy to check, V∗ +P =X

and V∗ ∩P �= {0}. Moreover, (61)–(62) have a solution and
it can be shown that an H -controlled invariant subspace V ,
contained in E and such that V ⊕P =X is

V = Im

[
4 0 1 1 0

5 −1 1 0 1

]�

.

Hence, V is a subspace satisfying Conditions S 1 and S 2 of
Theorem 2. Therefore, going ahead with the design of the
hybrid regulator ΣR as specified in the proof of Theorem 2,
a linear map F , partitioned as in (26), has to be found,
so that JP e(AP +BP FP ) τ , with τ =1, is Schur stable and
(21) holds. Note that JP eAP is not Schur stable, since its
spectrum is {1.6090, 0.0175, 0.0742}. However, as is easy
to check, the pair (AP , BP ) is reachable. Therefore, FP can
be obtained by applying the procedure shown in the proof
of Proposition 6 in the Appendix. By exploiting cyclicity of
(AP , BP ) with respect to the first column, say bP , of BP

and letting

FP =

[
f1 f2 f3

0 0 0

]

be the feedback that assigns the spectrum of (dis-
tinct) eigenvalues {λ1, λ2, λ3} to (AP +BP FP ), it fol-
lows that ‖JP e(AP +BP FP ) τ‖ = ‖JP S−1Q−1 eΛ τ QS‖,
where Λ=diag{λ1, λ2, λ3}, S is such that the pair
(S−1AP S, S−1 bP ) is in controllable canonical form and

Q =

⎡
⎢⎢⎣

1 1 1

λ1 λ2 λ3

λ2
1 λ2

2 λ2
3

⎤
⎥⎥⎦ .
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Fig. 2. Function f(λ) – Zoomed plot

Letting λi =−λ− i+1 for i=1, 2, 3, it ensues that, with
τ =1,

‖JP e(AP +BP FP )‖ ≤
‖JP ‖‖S−1‖‖S‖‖Q−1‖F‖Q‖F e−λ = f(λ).

By using Maple to get a symbolic expression of Q−1 and of
the Frobenius norms of Q and Q−1, it is possible to derive
an explicit expression of the function f(λ) and to plot it for
λ∈R (see Fig. 1 and Fig. 2). Note that the motivation for
the use of the Frobenius norm is to limit the complexity of
such expression. In particular, the inspection of the zoomed
plot (Fig. 2), shows that, for instance,

‖JP e(AP +BP FP )‖ ≤ f(21) ≤ 1.

Clearly, the choice λ=21 is conservative, due to the way
the upper bound f(λ) for ‖JP e(AP +BP FP )‖ has been con-
structed and, as a matter of fact, the order of magnitude
of the eigenvalues of JP eAP+BP FP , with that choice, is
10−7. However, in order to reduce conservativeness, one
can use, e.g., an iterative dichotomic method on the inter-
val [0, 21] to modify λ, evaluating at each step the eigen-
values of JP e(AP +BP FP ) to check Schur stability. In this
way, λ=2 is found to be a possible choice, while λ=1 is
not. The resulting feedback FP is obtained by letting f1 =2,
f2 =− 1, f3 =0. Thus, the spectrum of JP e(AP +BP FP ) is
{0.6767, 0.2489, 0.0916}. Then, by imposing (21), one gets

F =

[
2 −1 0 −13 −15

0 0 0 −21 −29

]

with simple computations. Then, a linear map G has to be
found, such that J e(A+GE) τ , with τ =1, is Schur stable.
Again, it is easy to check that (A,E) is observable, which
means that Proposition 7 applies. By searching for a map
G that assigns the spectrum {−λ,−λ− 1, . . . ,−λ− 4} to
A+GE and by applying the same techniques as before,
it is possible to find a function g(λ) that gives a (conser-
vative) upper bound for ‖J e(A+GE) τ‖, with τ =1. The
inspection of the plot of g(λ) for λ∈R shows that, e.g.,
‖J e(A+GE)‖≤ g(36)≤ 1 (this plot is qualitatively similar
to that of f(λ) and has not been reported here for the sake
of space). By applying the dichotomic procedure mentioned
above, λ=3 is obtained. Then, the resulting map G is
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G =
1

891

[
−3305 −9467 −1157 −8459 41580

0 0 0 0 0

]�

,

and the spectrum of J e(A+GE) τ is
{0.2489, 0.0916, 0.0046, 0.0124, 0.0337}. Thus, all the el-
ements for determining the hybrid regulator ΣR, according
to (31)–(33), have been computed.
Finally, it is shown how the hybrid regulator thus devised

actually achieves the design objectives. As to global asymp-
totic stability of the closed-loop dynamics (Requirement R 1
of Problem 1), by computing AL and JL according to (2)
and (3), one can see that the spectrum of JL eAL τ is the
union (with repetition count) of those of JP e(AP +BP FP ) τ

and J e(A+GE) τ , which implies that JL eAL τ is Schur
stable. As to asymptotic tracking of the reference (Require-
ment R 2 of Problem 1), the performance of the feedback
hybrid system thus designed can be illustrated, for instance,
by running the simulation described below. The simulation
time is assumed to be 10 s. The initial state of the hybrid
autonomous system Σ̂, defined as in (5)–(7), is assumed to
be x̂0 = [0 0 0 0 0 0 0 0 0 0.5]

�, so that the continuous-
time dynamics of the exogenous system generates a ramp at
the first output component and a step at the second output
component. Moreover, these reference signals are affected
by discontinuities as a consequence of the fact that the
components of the state are multiplied by 5 every 1 s. The
behavior of the two components of the regulation error,
converging to zero as the time increases, is shown in Fig. 3:
the first and the second component are represented by the
solid and the dashed line, respectively.
To conclude this section, it is worth analyzing some numer-
ical examples available from the literature — in particular,
the example worked out in (Marconi and Teel, 2010), also
revisited in (Carnevale et al., 2012a), and the one described
in (Carnevale et al., 2016) — in light of the results presented
in this work. As to the numerical example of (Marconi and
Teel, 2010; Carnevale et al., 2012a), this does not lend itself
to be solved with the techniques devised in this work for
the following reason. As mentioned in the Introduction, the
problem formulation considered in the abovementioned pa-
pers concerns not only asymptotic tracking of the reference

generated by the exogenous system, but also decoupling of
another signal, still generated by the exogenous system but
directly affecting the plant. Actually, the numerical example
at issue refers to a special case of that problem statement,
which reduces to the sole decoupling of the signal acting
on the plant, while the to-be-tracked reference is zero. Con-
sequently, the assumptions under which such decoupling
problem makes sense are different from those under which
the problem dealt with in this work, which just concerns
asymptotic tracking, is meaningful. In particular, the as-
sumption that the pair (A,E) is observable is not true for
the considered numerical example. Consequently, the arbi-
trary assignment of the spectrum of A+GE required in
the constructive proof of Theorem 2 (see also Proposition 7
in the Appendix) is prevented. As far as the numerical ex-
ample worked out in (Carnevale et al., 2016) is concerned,
this is indeed formulated as a typical asymptotic reference
tracking problem. However, there is a structural obstruction
to achieving a solution through the method devised in this
work. As it turns out, the dimension of the subspace V∗ is
equal to 1, which implies that the subspace V , contained in
V∗, cannot be a direct summand of P , whose dimension
is 3, in the state space X of dimension 5. This means that
Condition S 1 of Theorem 2 is not satisfied. Nevertheless,
it is worth remarking that the structure of the regulators
considered in the papers cited above (not only the method-
ology devised to design them) is noticeably more complex
than the one postulated in this work.

7 Conclusions

In this work, the problem of achieving output regulation with
closed-loop global asymptotic stability in hybrid systems
with a continuous-time linear dynamics subject to periodic
state jumps, by means of a feedback regulator with the
same characteristics, has been investigated. Starting from
a necessary and sufficient condition where the matrices of
the to-be-designed regulator are implicitly considered, the
discussion develops so as to lead to sufficient conditions on
which a complete and viable synthesis procedure is based. A
numerical example has been worked out in order to illustrate
how to apply the devised method.

A Appendix. Stabilization of Hybrid Systems with Pe-
riodic State Jumps

Reachability of the flow dynamics of the hybrid plant and ob-
servability of the flow dynamics of the hybrid extended sys-
tem are technical assumptions that, in Theorem 2, guarantee
asymptotic stabilizability by means, respectively, of a time-
invariant state feedback or a time-invariant output injection
which only act on the flow dynamics at issue. This makes it
possible to synthesize the feedback regulator, whose defin-
ing matrices, in the formulation of Problem 1, are required
to be time-invariant. Although different assumptions, milder
than reachability and observability of the flow dynamics, are
known to assure stabilizability of the hybrid system (see,
e.g., Medina and Lawrence, 2009; Carnevale et al., 2012b),
they cannot be used in herein, since either they lead to the
synthesis of a time-varying stabilizing feedback or they re-
quire that the stabilizing feedback also acts on the jump dy-
namics.
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Indeed, the fact that reachability of the flow dynamics im-
plies stabilizability by a time-invariant feedback that acts
only on the flow dynamics has been shown in Carnevale et al.
(2014b). In Proposition 6, a different proof of the same re-
sult is given by using inequalities between matrix norms and
eigenvalue assignment (instead of linear matrix inequalities
as in the above quoted paper). The main motivation for pro-
viding a new proof is the fact that it defines a quite practical
synthesis procedure, which makes it possible to assign the
eigenvalues of the compensated flow dynamics while stabi-
lizing the hybrid system. Likewise, observability of the flow
dynamics ensures that global asymptotic stability of the hy-
brid dynamics can be achieved via output injection, as can
be shown by dual arguments. The computational procedure
outlined in the main part of this paper is therefore completed.
To avoid notation clutter, these results will be stated with
direct reference to the hybrid systems whose stabilization
ensures global asymptotic stability of the closed-loop hybrid
dynamics considered in the output regulation problem.

Proposition 6 Consider the hybrid system ΣP . Let
(AP , BP ) be reachable. Then, there exists a linear
map FP :Xp →U , such that the state transition matrix
JP e(AP +BP FP ) τ is Schur stable.

Proof. If JP =0, the proof is obvious. If JP �=0, the state-
ment is proven through the following reasoning. First, note
that, since (AP , BP ) is reachable, there exists a linear map
FP,1 :XP →U , such that AP +BP FP,1 is cyclic with re-
spect to one (nonzero) column of BP — e.g., the first col-
umn, henceforth denoted by bP . Let S be a similarity trans-
formation such that the pair (A′

P +B′
P F ′

P,1, b
′
P ), where

A′
P +B′

P F ′
P,1 =S−1 (AP +BP FP,1)S and b′P =S−1 bP ,

is in controllable canonical form. Moreover, let the lin-
ear map FP,2 :XP →U be such that the spectrum of
AP +BP FP,1 +BP FP,2 is assigned on the negative real
axis as {λi :λi = −λ − i + 1, λ > 0, i = 1, 2, . . . , nP },
and, with respect to the new coordinates,

A′
P +B′

P F ′
P,1 +B′

P F ′
P,2 =

S−1 (AP +BP FP,1 +BP FP,2)S, (A.1)

is in companion form — the two requirements are compat-
ible since A′

P +B′
P F ′

P,1 is cyclic with respect to the first
column of B′

P . Let D=diag {λ1, . . . , λnP
} and

Q =

⎡
⎢⎢⎢⎢⎢⎣

1 1 . . . 1

λ1 λ2 . . . λnP

...
...

...

λnP−1
1 λnP−1

2 . . . λnP−1
nP

⎤
⎥⎥⎥⎥⎥⎦ ,

so that

A′
P +B′

P F ′
P,1 +B′

P F ′
P,2 =QDQ−1. (A.2)

Hence,
AP +BP FP = S QDQ−1 S−1 (A.3)

follows from (A.1) and (A.2), with FP =FP,1 +FP,2. From
(A.3), it follows that

e(AP+BP FP ) τ = S QeD τ Q−1 S−1, (A.4)

for any positive real constant τ . Thus, (A.4) implies that

‖e(AP+BP FP ) τ‖ ≤ ‖S‖‖Q‖‖eD τ‖‖Q−1‖‖S−1‖, (A.5)

for any positive real constant τ . Note that ‖S‖ and ‖S−1‖
in (A.5) are positive real constant, while ‖eD τ‖, ‖Q‖, and
‖Q−1‖ only depend on λ, by virtue of the eigenvalue as-
signment. In particular,

‖eD τ‖ ≤ e−λ τ , (A.6)

since −λ=λ1 is the maximum eigenvalue of the assigned
set, while

‖Q‖ ≤ ‖Q‖F , ‖Q−1‖ ≤ ‖Q−1‖F . (A.7)

Note that the use of the Frobenius norm in the above in-
equalities is motivated by the need to limit the complexity of
such expressions, which will be used in computations aimed
at finding suitable values for λ. In light of (A.6) and (A.7),
(A.5) shows that ‖e(AP+BP FP ) τ‖ can be made arbitrarily
small by picking a sufficiently large λ. In fact, in the worst
case, as λ increases, the product ‖Q‖‖Q−1‖ increases as a
power of λ, while ‖eD τ‖ decreases exponentially. On these
premises, the remainder of the proof is aimed at showing
that the spectrum of JP e(AP+BP FP ) τ can be assigned in-
side the open unit disc of the complex plane by a suitable
choice of the linear map FP . Hence, let FP be such that∥∥∥e(AP+BP FP ) τ x

∥∥∥ < ‖JP ‖−1 ‖x‖ , ∀x ∈ R
n, x �= 0,

(A.8)
which can be done since (AP , BP ) is reachable, as
was shown in the first part of this proof. Then, in
light of (A.8), the inequality

∥∥JP e(AP+BP FP ) τ x
∥∥ ≤

‖JP ‖
∥∥e(AP+BP FP ) τ x

∥∥, for all x∈R
n, implies∥∥JP e(AP+BP FP ) τ x

∥∥ < ‖x‖, for all x ∈ R
n and x �= 0,

or, equivalently,∥∥∥JP e(AP+BP FP ) τ x
∥∥∥/ ‖x‖ < 1, ∀x ∈ R

n, x �= 0.

(A.9)
Hence, in particular, (A.9) implies
supx∈Rn, x �=0

{∥∥JP e(AP+BP FP ) τ x
∥∥/ ‖x‖} < 1, or, by

definition of matrix 2-norm,∥∥∥JP e(AP+BP FP ) τ
∥∥∥ < 1. (A.10)

On the other hand,∥∥∥JP e(AP+BP FP ) τ
∥∥∥ = σM , (A.11)

where σM is the maximal singular value of
JP e(AP+BP FP ) τ . Hence, (A.10) and (A.11) imply that
JP e(AP+BP FP ) τ is Schur stable.

Proposition 7 Consider the hybrid extended system Σ.
Let (A,E) be observable. Then, there exists a linear
map G :Y→X , such that the state transition matrix
J e(A+GE) τ is Schur stable.

Proof. It can be derived from that of Proposition 6 by duality
arguments.

Acknowledgements

The authors gratefully acknowledge the anonymous review-
ers for their constructive comments.

13



References

Basile, G., Marro, G., 1992. Controlled and Conditioned
Invariants in Linear System Theory. Prentice Hall, En-
glewood Cliffs, New Jersey.
URL http://www3.deis.unibo.it/Staff/
FullProf/GiovanniMarro/geometric.htm

Carnevale, D., Galeani, S., Menini, L., 2012a. Output reg-
ulation for a class of linear hybrid systems. Part 1: Tra-
jectory generation. In: 51st IEEE Conference on Decision
and Control. Maui, HI, USA, pp. 6151–6156.

Carnevale, D., Galeani, S., Menini, L., 2012b. Output regu-
lation for a class of linear hybrid systems. Part 2: Stabi-
lization. In: 51st IEEE Conference on Decision and Con-
trol. Maui, HI, USA, pp. 6157–6162.

Carnevale, D., Galeani, S., Menini, L., Sassano, M., 2014a.
Output regulation of hybrid linear systems with unpre-
dictable jumps. In: 19th World Congress of the Inter-
national Federation of Automatic Control. Cape Town,
South Africa, pp. 1531–1536.

Carnevale, D., Galeani, S., Menini, L., Sassano, M., 2016.
Hybrid output regulation for linear systems with periodic
jumps: Solvability conditions, structural implications and
semi-classical solutions. IEEE Transactions on Automatic
Control 61 (9), 2416–2431.

Carnevale, D., Galeani, S., Sassano, M., 2013. Necessary
and sufficient conditions for output regulation in a class
of hybrid linear systems. In: 52nd IEEE Conference on
Decision and Control. Florence, Italy, pp. 2659–2664.

Carnevale, D., Galeani, S., Sassano, M., 2014b. A linear
quadratic approach to linear time invariant stabilization
for a class of hybrid systems. In: 22nd Mediterranean
Conference on Control and Automation. Palermo, Italy,
pp. 545–550.

Conte, G., Perdon, A. M., Zattoni, E., 2012. A geometric
approach to the general autonomous regulator problem in
the time-delay framework. Systems and Control Letters
61 (4), 602–608.

Francis, B., Sebakhy, O. A., Wonham, W. M., 1974. Synthe-
sis of multivariable regulators: The internal model princi-
ple. Applied Mathematics and Optimization 1 (1), 64–86.

Francis, B. A., 1977. The linear multivariable regulator prob-
lem. SIAM Journal on Control and Optimization 15 (3),
486–505.

Goebel, R., Sanfelice, R. G., Teel, A. R., 2009. Hybrid dy-
namical systems. IEEE Control Systems Magazine 29 (2),
28–93.

Goebel, R., Sanfelice, R. G., Teel, A. R., 2012. Hybrid
Dynamical Systems: Modeling, Stability, and Robustness.
Princeton University Press, Princeton, New Jersey.

Marconi, L., Teel, A. R., 2010. A note about hybrid linear
regulation. In: 49th IEEE Conference on Decision and
Control. Atlanta, GA, pp. 1540–1545.

Marconi, L., Teel, A. R., 2013. Internal model principle for
linear systems with periodic state jumps. IEEE Transac-
tions on Automatic Control 58 (11), 2788–2802.

Marro, G., 1996. Multivariable regulation in geometric
terms: Old and new results. In: Colloquium on Automatic
Control. Vol. 215 of Lecture Notes in Control and Infor-
mation Sciences. Springer-Verlag, London, pp. 77–138.

Medina, E. A., 2007. Linear impulsive systems: A geomet-
ric approach. Ph.D. thesis, Ohio State University, School

of Engineering and Computer Science, Columbus, OH,
USA.

Medina, E. A., Lawrence, D. A., 2009. State feedback sta-
bilization of linear impulsive systems. Automatica 45 (6),
1476–1480.

Perdon, A. M., Conte, G., Zattoni, E., 2015. The disturbance
decoupling problem for jumping hybrid systems. In: 54th
IEEE Conference on Decision and Control. Osaka, Japan,
pp. 1589–1594.

Perdon, A. M., Zattoni, E., Conte, G., 2016. Disturbance
decoupling with stability for linear impulsive systems. In:
6th IFAC Symposium on System Structure and Control.
Vol. 49 of IFAC-PapersOnLine. Istanbul, Turkey, pp. 1–6.

Wonham, W. M., 1985. Linear Multivariable Control: A
Geometric Approach, 3rd Edition. Springer-Verlag, New
York.

Zattoni, E., 2008. Perfect elimination of regulation transients
in discrete-time LPV systems via internally stabilizable
robust controlled invariant subspaces. IEEE Transactions
on Automatic Control 53 (6), 1509–1515.

Zattoni, E., Perdon, A. M., Conte, G., 2013. The output regu-
lation problem with stability for linear switching systems:
A geometric approach. Automatica 49 (10), 2953–2962.

14


