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Abstract: Machine learning is the discipline of learning commands in the computer machine to
predict and expect the results of real application and is currently the most promising simulation
in artificial intelligence. This paper aims at using different algorithms to calculate and predict the
compressive strength of extrusion 3DP concrete (cement mortar). The investigation is carried out
using multi-objective grasshopper optimization algorithm (MOGOA) and artificial neural network
(ANN). Given that the accuracy of a machine learning method depends on the number of data
records, and for concrete 3D printing, this number is limited to few years of study, this work develops
a new method by combining both methodologies into an ANNMOGOA approach to predict the
compressive strength of 3D-printed concrete. Some promising results in the iteration process are
achieved.

Keywords: multi-objective optimization; artificial neural network; compressive strength; 3DP mortar;
additive manufacturing

1. Introduction

Extrusion 3DP is known as one of the most promising techniques for the con-struction
industry. Therefore, it is also referred to as “number one 3DP technology in Additive
Manufacturing (AM) for construction” [1,2]. AM is a digital manufacturing technique to
produce 3D printed parts and works based on a layer by layer printing which is supported
by CAD files. This technique could help to construct complicated geometries which are
hard to fabricate by formwork. In recent years, AM techniques endeavour to produce great
structural members which can be suitable to build on Earth and beyond planet Earth.

Although there are many studies on predicting concrete mechanical strength for
conventional concrete casting, there is not any convenient study or only a few on ma-chine
learning (ML) for 3D printing concrete. For example, Dutta, et al. [3] used 1200 dataset
samples for the evaluation of the concrete compressive strength of mix designs with coarse
aggregates smaller than 20 mm. In their study, they have developed three models and
they have selected the best suited model which can be applicable to use in predicting the
compressive strength. According to their investigation, the cement con-tent in the concrete
matrix has a major influence on the concrete compressive strength.

ML is another tool of digital transformation in the 21st century ML allows the computer
to learn automatically from the entry data and make the decision and pre-dictions without
having been specifically programmed [4].

Having ML technology with a large number of collected data would be beneficial
to use as an Artificial Intelligence (AI) to prove the quality of production and predicting
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mechanical strength. [5]. It is vital to address that the data alone cannot provide enough
information without having it analysed and interpreted correctly [6].

According to an earlier study by Obermeyer and Emanuel [6], AI includes three main
AM applications, namely Powder-Bed Fusion, Directed Energy Deposition and Material
Extrusion. However, it can be stated that all types of AM could be part of AI as long as
sufficient information and data on them is available [7].

According to the study of Meng, et al. [8], all types of neural networks refer to ar-tificial
neural networks (ANN). Usually, a neural network (NN) comprises an input layer which
is usually one or more hidden layers and one or more output layers. The layer is created
of numerous neurons and the data of each neuron is spread to the next layer based on
different weights. In ANN, categorized under regular NN, the spreading neurons form
as a cycle and are fed through NN. Moreover, while it is under training condition, each
neuron’s weight would be optimized by the learning instruction and new information is
imported into the NN. The most popular learning rule for NN is the Back-Propagation (BP)
algorithm [9,10] which controls weight based on the gradient descent.

Zhang, et al. [11] used NN in the AM process to predict the tensile strength for the
printed part, the RMSE value recorded only 2%. Figure 1 describes the NN which was
performed made during training when the output of each input is spreading backward in
the NN to adjust the relevance of each input feature. After training, a new combina-tion
of input features is spreading forward to guess the tensile strength value. Generally, NN
displayed excellent performance in regression tasks, but it still requires to have some
essential tuning of some hyperparameters, such as the number of hidden neurons and
layers. Therefore, in this paper, a multi-objective optimization algorithm is used to find the
optimal structure of the ANN for predicting compressive strength of 3DP concrete.
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Figure 1. Propagation trained neural network for the filament polymer in fused filament fabrica-tion
(FFF) 3DP: propagation forward to predict tensile strength (top) and propagation backward training
to verify each input feature (bottom) reproduced with permission from Zhang et al., 2019 (Computers
in Industry) published by Elsevier, 2019 [11].

2. Research Significance

The present study investigates and interprets the use of ML to be suitable for the
AM-based process in 3D printing concrete/mortar applications. The study has collected
data from 26 studies that have mentioned a mixed proportion of cementitious materials
properly. In particular, the paper discusses the best-suited algorithm method for pre-dicting
the mechanical strength of 3DP concrete, among which the most suited method in ML is
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selected. Then, literature studies are gathered in the mix design and are in-tensely used as
input to predict the mechanical strength of concrete.

3. Methodology

The research’s methodological approach is discussed in this section. The method-
ology of ANN is presented after introducing the GOA and MOGOA. Afterwards, a model
is proposed which is a mix of ANN and MOGOA.

3.1. Grasshopper Optimization Algorithm

Grasshoppers are a species of insects that live in large hordes, despite being ob-served
individually [12]. Their swarming activity begins while they are nymphs and continues
throughout maturity [13]. Nymph grasshoppers migrate by hopping and leaping in a
cylinder-like pattern [14]. Their colony travels slowly and in little incre-ments throughout
this period. Therefore, the grasshopper’s algorithm is based on the nature of the grasshop-
per’s life exploration. This algorithm, like some other evolution algorithms, begins with
inquiry and ends with exploitation. Whilst agents seek in the distance during the discovery
phase, they explore the nearest region during the ex-ploitation phase. The following is the
Equation (1) that models of grasshopper swarming attitudes:

Pi = x2Fgi + x1Si + x3Awi, (1)

where Awi and Fgi represent wind advection and force of gravity on the grasshopper in
position i, Si indicates social contact as indicated in Equation (2), Pi represents the ith search
agent’s position, and x1, x2, and x3 are values that are chosen randomly in [0, 1] to provide
random behaviour.

Si =
N

∑
k = 1
k 6= i

s (dik) d̂ik (2)

Here, the distance between both the ith and jth grasshopper is dik, which is calculated
by Equation (3); d̂ik is just the unit vector again from ith towards jth grasshopper, as
obtained by Equation (4), where s is indeed a function to characterize the intensity of the
social forces, as calculated by Equation (5).

dij =
∣∣∣pj − pi

∣∣∣; (3)

d̂ij =
pj − pi

dij
; (4)

s(l) = be
−l
m − e−l, (5)

where m stands for the appealing length scale and b indicates attractive intensity. With
Equation (5) for f = 0.5 and l = 1.5 is illustrated in Figure 2, where the force of social in-
teraction is equal to zero for a distance of 2.079 units, and negative and positive for distances
below and above 2.079 units, respectively. To put it another way, every grasshopper attracts
grasshoppers that are further away than 2.079 units and repulses those that are closer. The
safety zone is defined as 2.079 units in which neither soaking up nor disgust occurs. This
function is approximately zero for distances greater than 4 units. As illustrated in Figure 2,
implying that grasshoppers cannot impact those that are further away. Equations (6) and
(7) are used to determine the Fgi and Awi.

Fgi = −gĥg; (6)

Awi = uĥw, (7)
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where ĥw and ĥg indicate unity vectors in the direction of wind toward the centre of the
earth, respectively, and g is the gravitational constants and u is the drift’s constant.
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The formula in Equation (1) cannot be proposed for solving optimization issues since
the search agents reach the comfort zone quickly and the swarm is not able to converge to
a specific point. As a result, that model may be updated to:

Pn
i = m


N

∑
k = 1
k 6= i

rc
ubn − lbn

2
s
(∣∣∣pn

j − pn
i

∣∣∣)pj − pi

dik

+ D̂n (8)

Here, rc is a reduction coefficient to reduce the comfort zones, D̂n is the target’s
nth dimension value, and ubn is the nth dimension’s upper bound, and lbn is the nth
dimension’s lower bound.

To equalize the exploration and exploitation phases, the rc a variable must be decreased
as the number of steps increases. To put it another way, the rate of investigation in the
early phases must be higher than that of the later ones. As a result, rc may be calculated as
follows:

rc = rcmax − r
rcmax − rcmin

R
(9)

rcmax and rcmin are 1 and 0.00001, respectively, while R is the number of greatest
iterations, and r is the number of the current iteration, respectively. The GOA’s specific
processes are depicted in Figure 3.
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3.2. Multi-Objective Grasshopper Optimization Algorithm (MOGOA)

Single-objective and multi-objective optimization issues are two types of optimi-zation
problems. Finding the optimum solution amongst these search agents is simple in single-
objective algorithms. However, finding the optimum results in multi-objective algorithms
(MOA) is quite difficult. As a result, MOGOA employs the dominance strategy. The two
following agents A and B were required to apply. Agent A, according to this theory, has
the upper hand against agent B if the following criteria are met:

∀i ∈ (1, 2, . . . , k) : fi(
→
Q) ≤ fi(

→
Y) & ∃i ∈ (1, 2, . . . , k) : fi(

→
Q) < fi(

→
Y) (10)

Here, Q and Y are the problem’s solution vectors. All non-dominated solutions (NDS)
are collected in a repository termed Pareto optimal using a multi-objective op-timization
method. For example, in Figure 4, the black solutions (dots) are known as non-dominated,
whereas the green solutions (dots) are known as a dominated (DS). The Pareto front is a
collection of NDSs.
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Finding the target in each cycle of an MOA counted as another difficulty. Sin-gle-
optimization algorithms pick the best solution as its goal with ease, while MOAs have
no best solution and instead have a group of NDSs. First, the region is split into several
identical neighbourhoods to solve this problem. The chance of selecting the target from
each neighbourhood is then calculated as follows:

Zi =
1
Ci

, (11)

where Zi denotes the likelihood of selecting the ith neighbourhood, and Ci represents the
variety of solutions in that neighbourhood. During the last phase, a roulette wheel is used
to select a target based on its probability. The repository’s capacity must be restricted;
else, the computational cost would rise. Every incoming NDS will also be checked to the
solution inside the old archive at each cycle. There are three possibilities in this case. If
at least one archival solution dominates a new NDS, it is discarded. They are swapped
whenever a fresh NDS takes over a stored solution. Eventually, a new NDS should be
uploaded to the archive if it neither dominates nor is dominated by any existing stored
solution. Introducing a new solution to the repository, on the other hand, might be an
issue if the repository was already full. In this scenario, a procedure similar to the one
used to choose the target with an opposing scoring system is employed to select a solution.
Figure 5 represents the different MOGO steps.
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3.3. Artificial Neural Network (ANN)

Throughout the 1940s, an artificial neural network (ANN) model based on the human
brain and neural system was created to learn machines. In comparison to tradi-tional
computers, the human brain is significantly better at solving new problems and processing
information, while being slower [15]. ANNs are developed to do tasks like those performed
by the human brain, utilizing data gathered from previous experiences. To address issues,
ANNs use a variety of methods, the most prominent of which being feed-forward back-
propagation (FFBP) [16]. FFBPs are the most often utilized ANNs in prior studies [17] due
to their ease of application and ability to forecast.

FFPBs are made up of several layers, each with a distinct number of neurons. The first
layer among these networks is the “input layer,” which receives inputs from the database
and provides output values, while the last layer is the “output layer,” which produces
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output values. Neurons have the same number as the number of input and output values.
In addition, between such two levels, there may be one or more hidden layers that do the
processing. Every neuron in the following layer is connected to all the other neurons in the
layer below via weighted connections one by one. Neurons and hidden layers’ number
determines the ANN’s accuracy; nevertheless, as the network’s complexity increases, thus
the accuracy increases [15,16,18]. Figure 6 illustrates a mul-ti-layer ANN with a hidden
layer.
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Figure 6. General schematic of multi-layer ANN.

Each neuron in the hidden layers gets several weighted inputs and a bias collects
them and applies an activation function to produce a final value that is an input in the
next layer. The input layer’s neurons have no purpose other than to receive data from
the dataset, while the neurons of the output layer return their output (network output).
Typically, linear activation functions are employed in the output layer for neurons, while
hyperbolic tangent sigmoid activation functions are used in the hidden lay-ers(Kandiri,
Mohammadi Golafshani, and Behnood 2020). An ANN’s schematic neuron is shown in
Figure 7.
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Figure 7. A schematic illustration of the neuron at an ANN.

The flux of information in Feed-forward ANNs flows from the input layer to the
output layer, and the ANN predictions link weights throughout this process. In the
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backpropagation phase, meanwhile, learning algorithms such as gradient descent newton
method, conjugate gradient, Levenberg-Marquardt algorithm, and qua-si-Newton method,
to mention a few, are used to enhance the projected weights. In this research, Levenberg-
Marquardt (LM) is employed since it performs better in the topic and is faster than other
algorithms [16]. The revised weights and bias in the LM algo-rithm are computed as
follows in Equation (12):

Wbi+1 = Wbr − [Jm
rJm + αIm]−1Jm

Rε, (12)

where Wbi+1 is the updated biases and weights, Jm is the Jacobian matrix that considers
the biases and weights for the first derivatives of the network errors, and Im, ε, and α
are identity matrix, vector of ANNs error, and positive real numbers damping factor,
respectively.

3.4. Proposed Model

The architecture of an ANN influences both speed and accuracy. ANN architectures
are often characterized through trial and error. Nonetheless, a technique for achieving
the optimum architecture must be developed. As a result, many optimal ANNs with
varying amounts of hidden layers and neurons are required. MOGOA is crossed with an
ANN in this research for that purpose. Figure 8 shows the various stages of MOGOA’s
hybridization with ANN (ANNMOGOA) with further explanation:
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- Data Normalization

Because the network error increases when multiple types of input with varying ranges
are used, all data should be standardized. The following equation was being used to adjust
inputs and outputs in the [−1, 1] range in this investigation.

enorm =
2(e− emin)

(emax − emin)
− 1 (13)

enorm, emin, and emax are the normal, minimum, and maximum values of e, respec-
tively.

- Cross-validation using K-fold

Every ANN requires data collection to comprehend the output and input rela-tionship
and anticipate undiscovered patterns. Furthermore, its performance must be confirmed
during this procedure, and it must be tested in the end phase. As a result, the dataset is
divided into three categories: training, validating, and testing. The k-fold cross-validation
method is used in this study to reduce network over-fitting [19–22]. Following randomizing
the dataset, it is split into k distinct folds of equally sized and the network is run for k
times in this approach. Its first fold is utilized as a validating and testing dataset, while
the remaining folds will be used as a training dataset. The second fold is then used to
validate and test the network for the second time. Eventually, in the kth iteration, the kth
fold is used to validate and test the ANN while the other folds are used to train it. The
final result is the mean of all these k times of executing the ANN’s outputs. Every one of
the patterns is being used for testing, validating, and training purposes as a result of this
technique, making the ANN more accurate. The k-fold cross-validation approach is shown
in Figure 9.
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- Initializing MOGOA’s parameters

Every grasshopper position in this research is split into two halves, as shown in
Figure 10. The first component is a binary coding system that assigns a numerical value
to the numbers of hidden layers. To put it another way, if the first part’s ith value is one,
then ith hidden layer is active, and if its number is zero, the hidden layer is inactive. The
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number of hidden neurons in each hidden layer is indeed the subject of the second section.
For example, part two of the position’s ith value reflects the number of neurons in the ith
hidden layer.
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- Grasshopper’s positions initializing

Grasshoppers’ starting positions are produced at random using upper and lower
limits.

- Grasshopper’s performance computation

ANNMOGOA is a method for simultaneously reducing complexity and errors to the
minimum level. A network error is defined as the mean error of the k-fold cross-validation
technique. OBJ is also useful for comparing network performance be-cause it displays
the mean absolute error (MAE), Pearson correlation coefficient (R), and root mean square
(RMSE).

R =
Pd ∑Pd

i=1 ReRm

(Pd ∑Pd
i=1 R2

e − (∑Pd
i=1 Re)

2
)(Pd ∑Pd

i=1 R2
m − (∑Pd

i=1 Rm)
2
)

; (14)

RMSE =

√
1

Pd
∑Pd

i=1(Re − Rm)2; (15)

MAE =
1

Pd
∑Pd

i=1|Re − Rm|; (16)

OBJ =
(

Tt − Tvt

Tt + Tvt

)
RMSEt + MAEt

Rt + 1
+

(
2Tvt

Tt + Tvt

)
RMSEvt + MAEvt

Rvt + 1
(17)

Here, Tvt is the number of patterns in the validation and testing part, Tt is the number
of patterns in the training part, and Pd is the number of patterns in the dataset. The
experimental analysis’ result is Re, and the model result is Rm, which is connected to the
dth record [23,24]. The network’s complexity is defined in this study as the total of its
weights and biases, which is calculated as follows:

Zwb = ∑T
i=0

[
UiQi

(
Qi−Ui+1+2 + 1

)]
+ Qi+1 −Q0 (18)
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Here, U0 and Ui+1 are both 1, Q0 is the number of neurons in the ANN’s input layer,
Qi is the number of neurons in the ANN’s ith hidden layer, and Qi+1 is the number of
neurons in the ANN’s output layer [25].

- Using MOGOA

Non-dominated grasshoppers are described in this phase and evaluated to grass-
hoppers in the established repository. The complete none-dominated grasshoppers are
then stored in the repository, then if the repository is full, a sufficient number of re-
pository representatives are removed by using a technique described in the previous
section. Following that, the location of the target will be adjusted using the method
described above, and then the position of all grasshoppers will be adjusted. This process
will be repeated till the last iteration is completed.

4. Materials and Data Collection
4.1. Mix Proportion of Mortar

In order to define the strength of a concrete or a mortar, it is crucial to understand and
consider its mix design. Many methods exist to accurately design the mix propor-tion of
concrete, such as Building Research Establishment (BRE). However, it can be difficult to
apply to all concrete types, and in particular to zero-slump concrete, which are the most
used ones in 3DP concrete applications.

In this paper four effective parameters were used as ANN’s inputs: water-cement
ratio (W/C), amount of coarse aggregate (CA), amount of fine aggregate (FA), amount of
super-plasticizer (S). The only ANN’s output is the compressive strength (CS). Figure 11
shows the detailed materials and frequency of used materials of cement and supplementary
cementitious materials, such as fly ash (FA) and slag (S).
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4.2. Fresh Properties of Mortar

The fresh state of concrete or mortar is considered the most vital stage in the 3DP
process. The way of handling operations is reflected in the product aesthetics of the printed
structure and mechanical strength properties. Figure 12 shows the general mix process and
experimental programs which is necessary during the process of extrusion 3D printing.
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5. Results and Discussion

Table 1 shows the adjustment parameters determined through the trial-and-error
method prior to running the model. After fitting the model 10 times, the Pareto front
depicted in Figure 13 is the best Pareto front. There are two axes in this graph: com-plexity
and error. The OBJ value was utilized as the error in this study, while the com-plexity was
defined as the number of connecting weights in the ANN. As it can be ob-served, there
are five non-dominated grasshoppers on the Pareto front after generating 150,000 distinct
ANNs, and the complexity is growing as the error reduces. In other words, a more accurate
network comes with a more sophisticated structure. The archi-tectures of the simplest
algorithm (ANNMOGOA-3) and more complex algorithm (ANNMOGOA-1) are shown in
Figure 14, and their weights and biases are listed in the Appendix B.

Table 1. Adjustment parameters of the proposed model.

Parameters Values

The total number of runs 10
Neurons’ maximum number in each hidden layer 16

The maximum hidden layers’ number 3
The size of repository 50

Maximum number of iterations 100
Agent’ number 30

Activation function neurons of hidden layers
Training algorithm of ANNs

Hyperbolic tangent sigmoid
Levenberg–Marquardt

Activation function neurons of output layer Linear
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Figure 14. Architecture of ANNMOGOA-2 and ANNMOGOA-1.

A collection of statistical indicators is utilized to compare the behavior of the var-ious
networks. Aside from the statistical indicators indicated in the technique section, the
following parameters are used: mean bias error (MBE), mean absolute percentage error
(MAPE), and scatter index (SI).

MBE =
1
D ∑D

i=1(Rd −Od); (19)

MAPE =
100
D ∑D

i=1
Rd −O

Rd
; (20)

SI = RMSE/O (21)
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Od and O are the dth pattern’s experimental and average value experimental outcomes,
respectively, D is the total number of patterns, and Rd is the dth pattern’s model result. If
an ANN’s SI value is greater than 0.3, it has “poor performance,”; between 0.2 and 0.3, it
has “fair performance”; between 0.1 and 0.2, it has “good performance”; and for less than
0.1, it has “excellent performance”, according to SI (Li et al., 2013). Table 2 also includes the
designs and complexity of all five networks, as well as statistical indicators for ANNs.

Table 2. Information of NDSs model.

ANN RMSE
(MPa)

MAPE
(%)

MAE
(MPa)

MBE
(MPa) SI R OBJ

(MPa) Complexity Structure

ANNMOGOA-1 4.49 8.75 2.58 0.19 0.11 0.98 4.12 106 5-15-1
ANNMOGOA-2 18.69 52.40 14.47 −1.14 0.44 0.49 23.28 6 5-1
ANNMOGOA-3 7.65 16.66 5.75 −0.70 0.18 0.93 8.167 22 5-3-1
ANNMOGOA-4 6.29 13.17 4.28 −0.01 0.15 0.96 6.99 85 5-12-1
ANNMOGOA-5 5.99 10.37 3.50 0.91 0.14 0.96 7.11 71 5-10-1
ANNMOGOA-6 10.74 20.25 6.58 0.01 0.25 0.87 9.69 15 5-2-1
ANNMOGOA-7 14.61 27.60 9.15 −0.83 0.35 0.73 15.84 8 5-1-1

Table 2 shows that ANNMOGOA-2 is the simplest network with 6 connecting weights
and no hidden layers, followed by ANNMOGOA-7 with a single neuron in its hidden
layer and 8 linking weights. ANNMOGOA-6, ANNMOGOA-3, ANNMOGOA-5, and
ANNMOGOA-4 have 15, 22, 71, and 85 connecting weights, respectively. With fif-teen
neurons in its only hidden layer and a complexity score of 106, ANNMOGOA-1 is the
most complicated network. On the other hand, ANNMOGOA-1 is the most accurate
model, with an OBJ value of 4.12, while ANNMOGOA-2 is the least accurate model, with
an OBJ value of 23.28; all other models are in between. The RMSE of ANNMOGOA-
1 is 4.49 MPa, which is about 75% lower than that of ANNMOGOA-2 with a value of
18.69. Furthermore, ANNMOGOA-2 has an MAE value of 14.47 MPa, which is about
six times that of ANNMOGOA-1. Furthermore, when it comes to MAPE, the most ac-
curate model is ANNMOGOA-1, which has a MAPE value of 8.75 percent, followed by
ANNMOGOA-5, which has a MAPE value of 10.37 percent. The following five models are
ANNMOGOA-4, ANNMOGOA-3, ANNMOGOA-6, ANNMOGOA-7, and ANNMOGOA-
2, which have MAPE values of 13.17 percent, 16.66 percent, 20.25 percent, 27.60 percent,
and 52.40 percent, respectively. So, ANNMOGOA-2 is the least accurate model. The Pear-
son correlation coefficient (R) measures the similarity between anticipated and measured
values. This indication might be anything between 0 and 1. ANNMOGOA-1 has very good
R-value that is equal 0.98. ANNMOGOA-2 and ANNMOGOA-7 have “poor performance”,
whereas ANNMOGOA-1, ANNMOGOA-3, ANNMOGOA-4, and ANNMOGOA-5 have
“good performances”, according to the SI value. ANNMOGOA-6 has “fair performances”.
MBE illustrates ANNMOGOA-1, ANNMOGOA-5, and ANNMOGOA-6 overestimate
the compressive strength while ANNMOGOA-2, ANNMOGOA-3, ANNMOGOA-4, and
ANNMOGOA-7 underestimate that. Figure 15 indicates the estimated values of models
against measured values.
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A bar chart is included in Figure 16 to allow for a clearer comparison. They have the
highest and lowest values for OBJ in ANNMOGOA-2 the ANNMOGOA-1, respectively,
according to the bar chart, indicating that ANNMOGOA -1 is the best accurate model
overall.
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Future work is necessary to input further information in the processes of iteration
for machine learning such as admixtures, different types of cement and supplementary
cementitious materials. These materials are factors to change the result of calculation;
however, it could not be always perfect due to the authors and journal publishers not being
mandated to provide all data’s or sometimes due to secrets of production from industry
not being permitted to publish those data. However, the concrete/mortar printing is not
only affected by concrete mix proportion but also affected by other factors while handling
the printing process and after printing processes such as humidity, temperature and curing
condition.

6. Conclusions

Based on the present study, ANN can be used to predict the compressive strength
of 3DP concrete. However, the difficulty of this method is that the accuracy of the model
depends on the number of patterns. Unfortunately, there are still limited studies and
patterns concerning 3DP concrete’s compressive strength. In contrast to the low number of
patterns in the field, proposed model has acceptable results and by increasing the number
of studies through time more accurate models can be developed.

• Seven different networks with different complexities and accuracies are presented.
From these algorithms, users can choose which model suits their project the most
based on their limitations. It is obvious that if they need more accurate results they
need to choose a network with a more complex structure.

• Since the maximum number of hidden layers in this study is three, it is proved that
for predicting 3DP concrete’s compressive strength, with a well-developed method,
the results of a network with only one hidden layer can be accurate enough and there
is no need for more complex net-works.

• The correlation coefficient of three out of seven networks (ANNMOGOA-1, ANNMOGOA-
4, and ANNMOGOA-5) is more than 0.96, which is accurate enough to be accepted.

• Based on SI, four networks have good performance in predicting the compressive
strength of 3DP concrete.

• Considering MAPE, the accuracy of ANNMOGOA-1 is about 92%, which is a high
value of accuracy.
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Appendix A

Table A1. The table shows the content of the material in the mix design of 3DP concrete or mortar.

Ref. Cement
(kg/m3)

Water
(kg/m3) W/C

Coarse Aggregate
(kg/m3)

Fine Aggregate
(kg/m3)

Superplasticizer
(kg/m3)

Compressive Strength
(MPa) (28 days)

Shakor, et al. [26] 300 112 0.37 360 1.499852 50.82

Shakor, et al. [27] 300 1000 3.33 300 2.5 59.7
300 1032 3.44 300 3.33 59.7
300 1032 3.44 100 300 2.5 59.7

Nerella and Mechtcherine
[28]

627 263.3 0.42 1391 4.7 71.8
391 164.2 0.42 1260 7.82 99.9

Kazemian, et al. [29]

600 259 0.43 1379 0.3 44.7
540 259 0.43 1357 0.864 49.9
600 259 0.43 1379 0.36 45.1
600 259 0.43 1379 0.9 45.9

Sanjayan, et al. [30]

300 114 0.38 450 13
300 114 0.38 450 8
300 114 0.38 450 16.8
300 114 0.38 450 16
300 114 0.38 450 13.9
300 114 0.38 450 22.8
300 114 0.38 450 14.5
300 114 0.38 450 10.6
300 114 0.38 450 19

Assaad, et al. [31]
615 0.43 1340 6.46 30.8

26.9

Annapareddy, et al. [32]

21.6 slag

120 243 18.1
122.4 FA

12
SF
138 906.9 221.7 23.1

Ding, et al. [33]

300 105 300 0.83 31
300 108.375 300 1.03 30
300 81.75 300 1.25 24.5
300 118.5 300 1.85 23.3

Ting, et al. [34]
300

197.1429 514.2857 3043 SF
86 FA

Malaeb, et al. [35]

37.5 144 48 0 40.6
37.5 126 48 0.15 41.5
37.5 117 48 0.3 42.3
37.5 114 48 0.33 43.5
37.5 108 48 0.39 55.4

Le, et al. [36] 300 111 642.8571 3 102
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Table A1. Cont.

Ref. Cement
(kg/m3)

Water
(kg/m3) W/C

Coarse Aggregate
(kg/m3)

Fine Aggregate
(kg/m3)

Superplasticizer
(kg/m3)

Compressive Strength
(MPa) (28 days)

Panda, et al. [37]

572.34 FA

144.09 1219.74 10.05 36
35.52 Slag
101.86 SF

140.739 K-Si

Weng, et al. [38]
300

90 0.3 150 1.3 49.7300 FA
30 SF

Panda, et al. [39]
83.55 FA

124.8 148.65 2.64 355.04 Slag
10.08 SF

Khalil, et al. [40]
682.75 236.25 850 1.76 87

675 236.25 800 1.76 86

Ma, et al. [41] 300 115.7143 514.2857 1.242857 43.1
300 115.7143 514.2857 1.242857 41
300 115.7143 514.2857 1.242857 41
300 115.7143 514.2857 1.242857 43
300 115.7143 514.2857 1.242857 53
300 115.7143 514.2857 1.242857 42

Hack, et al. [42] 500 160 0.32 1180 5 59.3

Rushing, et al. [43] 300 0.47 300 690 975 40.5

Panda, et al. [44]
300

350 1220 54675 FA
250 SF

Van Der Putten, et al. [45] 620.5 226.5 1241 0.93 62

Lee, et al. [46]
580

232 1146
8.29

66166 FA
83 SF

Dressler, et al. [47] 600 270 1258

1.8 59.9
64.8
66

65.7

Li, et al. [48]
259.2 345.6 864.1

17.3 44.09
41.93

480.2 327.4 589.4
13 17.66

15.02

Joh, et al. [49]
576

240 1154
8.27 23.5

79 SF 31
172 FA

Meurer and Classen [50] 550 280 1172 22 65.8

Álvarez-Fernández, et al.
[51]

100 50 0.5 250 0.5 26.3
100 46 0.46 250 1 28.7
100 46 0.46 250 1 26.6
100 46 0.46 250 0.5 27.2

Appendix B

(1) Biases and weights of the ANNMOGOA-1 model

Input layer weights (IW)

=


1.25 −1.00 1.35 −0.18 −0.67 4.01 −0.31 −1.07 −0.55 −1.40 0.41 −1.73 1.18 0.03 0.66
1.12 1.55 0.42 0.08 0.86 0.07 −0.48 −0.44 −0.91 −0.79 0.25 1.25 0.80 −0.07 1.01
−0.53 1.57 −0.61 0.47 1.32 −0.88 −1.16 0.91 −2.19 1.71 1.42 0.32 0.88 0.85 1.48
0.24 0.26 −1.29 −2.30 1.95 −0.49 −0.34 −1.54 1.87 0.60 3.65 −1.77 0.35 0.10 1.19
−0.21 0.77 −0.49 −1.46 −0.51 −1.36 −0.93 0.04 0.93 −2.79 −4.55 −1.63 −0.07 −1.18 −2.66
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Input layer bias (IB)
=
[

0.23 −0.11 0.18 −0.44 −0.23 1.02 0.82 −0.59 2.38 −0.37 −1.84 0.30 −0.38 −0.94 −1.05
]

Hidden layer weights (HW)
=
[

1.04 0.50 2.79 −2.40 2.12 −1.49 −0.46 −2.90 −0.13 3.15 −2.69 0.12 0.09 −0.39 −2.17
]

Hidden layer bias (HB) =
[
−1.64

]
(2) Biases and weights of the ANNMOGOA-2 model

Input layer weights (IW) =


−0.05
0.30
−0.07
0.33
0.09


Input layer bias (IB) = [0.05]

(3) Biases and weights of the ANNMOGOA -3 model

Input layer weights (IW) =


−2.79 −0.34 0.10
0.75 −1.41 0.28
−0.34 1.71 0.29
−2.44 2.44 4.32
−6.66 −3.48 −0.80



Hidden layer weights (HW) =

 1.38
−1.54
1.61


Input layer bias (IB) =

[
0.52 −2.45 0.98

]
(4) Biases and weights of the ANNMOGOA -4 model

IW =


0.14 −0.92 −0.31 −0.65 1.52 0.13 1.18 −0.38 −0.53 −2.16 −2.70 −0.43
−0.01 0.09 0.25 −0.03 −0.31 −0.20 −0.27 −0.19 −0.80 0.54 0.08 −0.10
−0.14 −0.31 0.23 −0.18 −0.95 −0.78 1.01 0.06 −1.44 −0.93 0.45 −0.17
0.30 1.93 0.32 −2.00 1.66 −0.19 0.86 0.68 −1.39 −1.12 0.10 −0.21
−0.74 0.38 −2.05 0.10 1.47 0.29 −0.005 1.66 0.33 2.64 0.63 −0.23


IB =

[
0.77 0.87 −0.36 −0.96 −0.02 0.35 0.33 0.79 −0.43 0.51 0.90 0.13

]
HW =

[
0.03 −1.47 2.23 −2.87 −0.96 0.04 −0.77 1.73 0.67 1.80 −1.53 −0.50

]
HB = [−0.59]

(5) Biases and weights of the ANNMOGOA-5 model

IW =


−0.12 −0.48 −0.68 −0.28 1.47 0.07 −1.35 −2.44 2.53 −3.12
0.62 −0.02 −0.52 0.34 0.94 −1.54 1.19 0.38 −1.53 −0.27
−0.75 1.24 −1.52 0.63 0.57 −0.40 −0.22 0.02 0.06 −1.83
−0.24 0.13 −0.10 −1.77 0.08 −0.11 −1.22 −3.13 0.90 −2.41
1.50 0.33 −0.31 0.82 −2.76 3.03 −1.38 0.39 −0.42 4.22


IB =

[
−0.98 −0.98 1.07 −1.15 0.28 1.07 0.34 −1.02 0.62 0.37

]
HW =

[
−0.87 0.27 −0.43 1.32 2.40 2.01 0.06 −2.53 −1.48 2.09

]
HB = [−0.10]
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(6) Biases and weights of the ANNMOGOA-6 model


−0.06 −4.18
−2.70 2.56
1.92 1.35
1.43 17.16
−0.24 −6.02


HW =

[
−1.32
1.22

]
IB =

[
−0.79 1.13

]
HB = [−0.11]

(7) Biases and weights of the ANNMOGOA-7 model

IW =


0.93

80.02
−3.71
0.38
9.29


IB = [85.37]

HW = [0.56]

HB = [−0.42]
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