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Abstract

We prove the following results. Let w be a multilinear commutator word.
If G is a profinite group in which all w-values are contained in a union of
countably many periodic subgroups, then the verbal subgroup w(G) is locally
finite. If G is a profinite group in which all w-values are contained in a union
of countably many subgroups of finite rank, then the verbal subgroup w(G)
has finite rank as well. As a by-product of the techniques developed in the
paper we also prove that if G is a virtually soluble profinite group in which all
w-values have finite order, then w(G) is locally finite and has finite exponent.
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1. Introduction

Let w be a group-word in n variables, and let G be a group. The verbal
subgroup w(G) of G determined by the word w is the subgroup generated by
the set consisting of all values w(g1, . . . , gn), where g1, . . . , gn are elements of
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G. In the present paper we deal with the so called multilinear commutators
(otherwise known under the name of outer commutator words). These are
words which are obtained by nesting commutators, but using always different
variables. Thus the word [[x1, x2], [x3, x4, x5], x6] is a multilinear commutator
while the Engel word [x1, x2, x2, x2] is not. An important family of multilinear
commutators are the simple commutators γk, given by

γ1 = x1, γk = [γk−1, xk] = [x1, . . . , xk].

The corresponding verbal subgroups γk(G) are the terms of the lower cen-
tral series of G. Another distinguished sequence of multilinear commutator
words is formed by the derived words δk, on 2k variables, which are defined
recursively by

δ0 = x1, δk = [δk−1(x1, . . . , x2k−1), δk−1(x2k−1+1, . . . , x2k)].

Of course δk(G) = G(k), the kth derived subgroup of G.
In recent years the situation where the set of w-values in G is covered by

finitely many subgroups of a specified type has been given some attention.
In this direction we mention the following result that was obtained in [13].

Let w be either the lower central word γk or the derived word δk. Suppose
that G is a group in which all w-values are contained in a union of finitely
many Chernikov subgroups. Then w(G) is Chernikov. Recall that a group
is Chernikov if and only if it is a finite extension of a direct sum of finitely
many Prüfer groups Cp∞ .

Another result of this nature was established in [5]: If G is a group
in which all commutators are contained in a union of finitely many cyclic
subgroups, then G′ is either cyclic or finite. Later Cutulo and Nicotera
showed that if G is a group in which all γk-values are contained in a union
of finitely many cyclic subgroups, then γk(G) is finite-by-cyclic. They also
showed that γk(G) might not be cyclic or finite [4].

The paper [1] deals with profinite groups in which all w-values are con-
tained in a union of finitely many subgroups with certain prescribed proper-
ties.

A profinite group is a topological group that is isomorphic to an inverse
limit of finite groups. The textbooks [12] and [17] provide a good introduction
to the theory of profinite groups. In the context of profinite groups all the
usual concepts of group theory are interpreted topologically. In particular,
in a profinite group the verbal subgroup corresponding to the word w is the
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closed subgroup generated by all w-values. More generally, throughout this
paper by a subgroup of a profinite group we always mean a closed subgroup
and by a quotient we mean a quotient over a normal closed subgroup. The
following theorem was proved in [1].

Let w be a multilinear commutator word and G a profinite group that
has finitely many periodic subgroups whose union contains all w-values in G.
Then w(G) is locally finite.

A group is periodic (torsion) if every element of the group has finite order
and a group is called locally finite if each of its finitely generated subgroups
is finite. Periodic profinite groups have received a good deal of attention in
the past. In particular, using Wilson’s reduction theorem [16], Zelmanov has
been able to prove local finiteness of periodic compact groups [18]. Earlier
Herfort showed that there exist only finitely many primes dividing the orders
of elements of a periodic profinite group [6]. It is a long-standing problem
whether any periodic profinite group has finite exponent. Recall that a group
G has exponent e if xe = 1 for all x ∈ G and e is the least positive integer
with that property. Another result obtained in [1] is as follows.

Let w be a multilinear commutator word and G a profinite group that has
finitely many subgroups of finite rank whose union contains all w-values in
G. Then w(G) has finite rank.

Recall that a profinite group is said to be of finite rank r if each subgroup
of G can be generated by at most r elements.

In the present paper we study profinite groups in which all w-values are
covered by countably many subgroups. In particular, we will prove the fol-
lowing theorems.

Theorem 1. Let w be a multilinear commutator word and G a profinite
group that has countably many periodic subgroups whose union contains all
w-values in G. Then w(G) is locally finite.

Theorem 2. Let w be a multilinear commutator word and G a profinite
group that has countably many subgroups of finite rank whose union contains
all w-values in G. Then w(G) has finite rank.

In the particular case where w = [x, y] both above theorems were earlier
obtained in [2].
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It is easy to see that if w is a multilinear commutator word and G is
an abstract soluble group in which all w-values have finite order, then w(G)
is locally finite (see for example [15, Lemma 4.2]). As a by-product of the
techniques developed in the present paper we obtain a profinite version of
this fact.

Theorem 3. Let w be a multilinear commutator word and G a virtually
soluble profinite group in which all w-values have finite order. Then w(G) is
locally finite and has finite exponent.

It seems an interesting open problem whether the assumption that G is
virtually soluble can be dropped from the hypothesis of Theorem 3. In other
words, let G be a profinite group in which all w-values have finite order. Is
w(G) necessarily locally finite?

A close inspection of the proof of Theorem 1 reveals that if G is a profi-
nite group that has countably many subgroups of finite exponent whose union
contains all w-values, then w(G) has finite exponent as well. It seems plau-
sible that if G is a profinite group in which all w-values are contained in a
union of countably many subgroups of finite exponent dividing e, then w(G)
has an open subgroup of finite exponent dividing e. We were unable to prove
the latter statement, though. Similarly, if G is a profinite group in which
all w-values are contained in a union of countably many subgroups of finite
rank at most r, we conjecture that w(G) necessarily has an open subgroup
of rank at most r.

In the next section we develop some technical tools which will be of crucial
importance in the proofs of the main results. The proofs will be given in
Section 3.

2. Combinatorics of commutators

Throughout this section, G will be an abstract group. Some results given
here were obtained in an unpublished work by the second author and G.
Fernández-Alcober.

Lemma 4. Let w = w(x1, . . . , xn) be a multilinear commutator word on n
variables, and let k ∈ {1, . . . , n}. Let M,A1, . . . , An be normal subgroups of a
group G such that w(A1, . . . , Ak−1,M,Ak+1, . . . , An) = 1 and choose elements
ai ∈ Ai for i = 1, . . . , n, and m ∈M . Then

w(a1, . . . , ak−1, akmk, ak+1, . . . , an) = w(a1, . . . , ak−1, ak, ak+1, . . . , an).
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Proof. If n = 1, the result is obvious. Assume that n > 1 and write
w(x1, . . . , xn) = [ϕ(x1, . . . , xr), ψ(xr+1, . . . , xn)] where ϕ and ψ are multi-
linear commutator words.

Suppose that k ≤ r. For short, let

u = ϕ(a1, . . . , ak−1, ak, ak+1, . . . , ar) and v = ψ(ar+1, . . . , an).

Since r < n, by induction we have

ϕ(a1, . . . , ak−1, akmk, ak+1, . . . , ar) = zu,

where z ∈ ϕ(A1, . . . , Ak−1,Mk, Ak+1, . . . , Ar). Then

w(a1, . . . , ak−1, akm, ak+1, . . . , an) =

[ϕ(a1, . . . , ak−1, akm, ak+1, . . . , ar), ψ(ar+1, . . . , an)] = [zu, v] = [z, v]u[u, v].

Since [z, v]u ∈ w(A1, . . . , Ak−1,M,Ak+1, . . . , An) = 1, we deduce that

w(a1, . . . , ak−1, akm, ak+1, . . . , an) = w(a1, . . . , ak−1, ak, ak+1, . . . , an)

and the case k ≤ r is proved.
If k > r, the result follows from the previous case and the fact that

[y1, y2] = [y2, y1]
−1 for every y1, y2 ∈ G.

Let n ≥ 1. We denote by I the set of all n-tuples (i1, . . . , in), where all
entries ik are non-negative integers. We will view I as a partially ordered set
with the partial order given by the rule that

(i1, . . . , in) ≤ (j1, . . . , jn)

if and only if i1 ≤ j1, . . . , in ≤ jn.
Given a multilinear commutator word w = w(x1, . . . , xn) and i = (i1, . . . , in) ∈

I, we write
w(i) = w(G(i1), . . . , G(in))

for the subgroup generated by the w-values w(g1, . . . , gn) with gj ∈ G(ij).
Further, set

w(i+) =
∏

w(j),

where the product is taken over all j ∈ I such that j > i.
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Lemma 5. Let w = w(x1, . . . , xn) be a multilinear commutator word and
i ∈ I. For every j = 1, . . . , n choose aj ∈ G(ij). Let x ∈ G(s) for some
integer s. Then

w(a1, . . . , an)x ≡ w(a1, . . . , an) (mod w(i+)),

where ak = ak if ik ≤ s and ak = axk otherwise.

Proof. We have w(a1, . . . , an)x = w(ax1 , . . . , a
x
n). Assume that ik ≤ s. Then

axk = ak[ak, x] and [ak, x] ∈ [G(ik), G(ik)] ≤ G(ik+1). Now an application of
Lemma 4 with mk = [ak, x] completes the proof.

Corollary 6. Let w = w(x1, . . . , xn) be a multilinear commutator word and
i ∈ I. If w(i+) = 1, then w(i) is abelian.

Proof. Let aj, bj ∈ G(ij) for every j = 1, . . . , n. Since w(i+) = 1 and
w(b1, . . . , bn) ∈ G(s) where s = max{i1, . . . , in}, by Lemma 5 it follows that
[w(a1, . . . , an), w(b1, . . . , bn)] = 1, and the result follows.

Proposition 7. Let w = w(x1, . . . , xn) be a multilinear commutator word
on n variables and let i ∈ I. For every j = 1, . . . , n, consider an element
aj ∈ G(ij), and for a fixed value k, let bk ∈ G(ik). If w(i+) = 1, then

w(a1, . . . , ak−1, bkak, ak+1, . . . , an) =

w(a1, . . . , ak−1, bk, ak+1, . . . , an)w(a1, . . . , ak−1, ak, ak+1, . . . , an),

where aj is a conjugate of aj and moreover aj = aj if ij ≤ ik.

Proof. We argue by induction on n. If n = 1, then the result is obvious so
we assume that n ≥ 2.

For short, we will write a to indicate an element which is conjugate to
a in G. We can write w(a1, . . . , an) = [ϕ(a1, . . . , ar), ψ(ar+1, . . . , an)] where
ϕ and ψ are multilinear commutator words. Moreover, we write i = (i1, i2)
where i1 = (i1, . . . , ir) and i2 = (ir+1, . . . , in).

Assume first that k ≤ r. Let

u = ϕ(a1, . . . , bkak, . . . , ar),

and
v = ψ(ar+1, . . . , an).
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As r < n, we can apply the inductive hypothesis to conclude that there exists
an element z ∈ ϕ(i+1 ) such that

u = u1u2z,

with

u1 = ϕ(a1, . . . , ak−1, bk, ak+1, . . . , ar)

u2 = ϕ(a1, . . . , ak−1, ak, ak+1, . . . , ar),

where aj = aj if ij ≤ ik, for j = 1, . . . , r.
Since [ϕ(i+1 ), ψ(i2)] ≤ w(i+) = 1 and z ∈ ϕ(i+1 ), it follows from Lemma 4

applied to the word [x1, x2] that

[u, v] = [u1u2, v]. (1)

Observe that

[u1u2, v] = [u1, v]u2 [u2, v] = [uu21 , v
u2 ][u2, v].

By Corollary 6
uu21 ≡ u1 (mod ϕ(i+1 )),

and by Lemma 5, since u2 ∈ G(ik),

vu2 ≡ ψ(ar+1, . . . , an) (mod ψ(i+2 ))

where aj = aj if ij ≤ ik. Therefore, as [ϕ(i+1 ), ψ(i2)][ϕ(i1), ψ(i+2 )] ≤ w(i+) =
1, we have

[uu21 , v
u2 ] = [u1, v

u2 ] =

[ϕ(a1, . . . , ak−1, bk, ak+1, . . . , ar), ψ(ar+1, . . . , an)] =

w(a1, . . . , ak−1, bk, ak+1, . . . , an),

hence (1) becomes

[u, v] = w(a1, . . . , ak−1, bk, ak+1, . . . , an)w(a1, . . . , ak−1, ak, ak+1, . . . , an),

where aj = aj whenever ij ≤ ik, and this completes the proof in the case
where k ≤ r.

The proof of the case k > r is similar.
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3. Proofs of the main results

We will first prove Theorems 1 and 2 for soluble groups. In this case, the
result is stated in a more general setting.

Let Σ be a property of profinite groups such that:

1. Every finite group is a Σ-group;

2. The class of all Σ-groups is closed under taking subgroups, quotients
and extensions.

For example Σ can be the property of being of finite rank, of finite expo-
nent, or periodic. The next lemma proves Theorems 1 and 2 in the soluble
case.

Lemma 8. Suppose that w is a multilinear commutator word. Let G be a
soluble profinite group that has countably many subgroups G1, G2, . . . whose
union contains all w-values in G. If every subgroup Gu has the property Σ,
then also w(G) has the property Σ.

Proof. Let n be the number of variables involved in w. We will assume that
w(G) 6= 1. As G is soluble, there exist only finitely many i ∈ I such that
w(i) 6= 1. The lemma will be proved by induction on the number of such
tuples i.

Choose i = (i1, . . . , in) ∈ I such that w(i) 6= 1 while w(j) = 1 whenever
i < j. By Corollary 6 it follows that w(i) is abelian. We will now show that
w(i) has the property Σ.

Let us consider the subgroups Ys obtained as a product of the intersections
of the first s subgroups Gu with w(i):

Ys =
s∏

u=1

(Gu ∩ w(i)).

Since w(i) is abelian and Σ is closed under taking subgroups and extensions,
the subgroups Ys are Σ-groups and they cover the set of w-values lying in
w(i). Moreover Ys ≤ Yt if s ≤ t. These are the only properties of the
subgroups Ys that will be used in what follows.

Let π be a permutation of the set {i1, . . . , in} satisfying the condition that
iπ(1) ≤ iπ(2) ≤ . . . ≤ iπ(n). We wish to show that for every k = 0, 1, . . . , n
and every choice of aπ(1) ∈ G(iπ(1)), aπ(2) ∈ G(iπ(2)), . . ., aπ(k) ∈ G(iπ(k)) there
exists an index s such that every w-value w(x1, . . . , xn), where xj ∈ G(ij)
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and xj = aj whenever j ∈ {π(1), . . . , π(k)}, is contained in Ys. This will be
shown by induction on n− k.

If n − k = 0, there is only one element w(x1, . . . , xn) of the required
form, namely, w(a1, . . . , an). So we only need to show that the element
w(a1, . . . , an) belongs to one of the subgroups Yj, which it true by the hypoth-
esis. Thus, we assume that n− k ≥ 1 and that the elements aπ(1) ∈ G(iπ(1)),
aπ(2) ∈ G(iπ(2)), . . ., aπ(k) ∈ G(iπ(k)) are fixed. According to the induction
hypothesis for every choice of a = aπ(k+1) ∈ G(iπ(k+1)) there exists an index
ma (depending on the choice of a) such that the set

X(a) =
{
w(x1, . . . , xn) | xj ∈ G(ij), xj = aj if j ∈ {π(1), . . . , π(k + 1)}

}
is contained in Yma . Of course, the set of all such w-values is also contained
in the abelian subgroup w(i).

Proposition 7 implies that for any a, a′ ∈ G(iπ(k+1)) we have

X(a′a) ⊆ X(a′)X(a); (2)

X(a) ⊆ X(a′)−1X(a′a). (3)

For example, to prove the inclusion in (3) we set π(k + 1) = q and we take
an element w(a1, . . . , aq−1, a, aq+1, . . . , an) ∈ X(a). Then by Proposition 7
we have:

w(a1, . . . , aq−1, a
′a, aq+1, . . . , an) =

w(a1, . . . , aq−1, a
′, aq+1, . . . , an)w(a1, . . . , aq−1, a, aq+1, . . . , an),

where aj is a conjugate of aj and moreover aj = aj if ij ≤ iq. As q = π(k+1),
we have ij ≤ iq whenever j ∈ {π(1), . . . , π(k), π(k + 1)},
so w(a1, . . . , aq−1, a

′, aq+1, . . . , an) ∈ X(a′). Now (3) follows.
For every integer t we denote by St the set of all possible a ∈ G(iπ(k+1))

such that X(a) ⊆ Yt. The sets St are closed sets and they cover G(iπ(k+1)).
So by the Baire Category Theorem [7, p. 200] there exist an index m, an
element b ∈ G(iπ(k+1)) and an open normal subgroup H ≤ G(iπ(k+1)) such that
for every h ∈ H we have X(bh) ⊆ Ym. By (3) we have X(h) ⊆ X(b)−1X(bh),
so X(h) ⊆ Ym for every h ∈ H.

Let b1, . . . , bl be a transversal of H in G(iπ(k+1)) and let mj = mbj be the
indexes such that X(bj) ⊆ Ymj for j = 1, . . . , l. Take an arbitrary element

g ∈ G(iπ(k+1)) and write g = bjh for suitable bj ∈ {b1, . . . , bl} and h ∈ H;
then X(g) ⊆ X(bj)X(h) ⊆ YmjYm ⊆ Ymj+m. We conclude that for every
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g ∈ G(iπ(k+1)) the set X(g) is contained in the Σ-subgroup Ym1+...+ml+mand
the inductive step is complete.

Thus, for every k = 0, 1, . . . , n and every choice of aπ(1) ∈ G(iπ(1)), aπ(2) ∈
G(iπ(2)), . . ., aπ(k) ∈ G(iπ(k)), there exists an index s such that every w-value
w(x1, . . . , xn), where xj ∈ G(ij) and xj = aj whenever j ∈ {π(1), . . . , π(k)},
belongs to Ys. In the case where k = 0 this means that w(i) ≤ Ys, for some
index s, and so w(i) has the property Σ.

We can now pass to the quotient G/w(i): as the property Σ is closed
under taking quotients, the group G/w(i) satisfies the assumption of the
lemma. The induction on the number of j ∈ I such that w(j) 6= 1 leads us
to the conclusion that w(G/w(i)) satisfies property Σ. As the property Σ is
extension closed, w(G) satisfies property Σ. The proof is now complete.

We will use without any further reference two more results. The first one
is well-known (see for example [15, Lemma 4.1]).

Lemma 9. Let G be a group and let w be a multilinear commutator word on
n variables. Then each δn-value is a w-value.

Lemma 10. A periodic virtually soluble profinite group G is locally finite
and has finite exponent.

Proof. The fact that a periodic abelian profinite group has finite exponent
(and therefore is locally finite) is well-known (see for instance Exercise 10
of Chapter 2 in [17]). The general case follows easily by induction on the
derived length of an open soluble normal subgroup of G.

In Lemma 12 we use same arguments as in [1, Theorem 1.1]. For the
reader’s convenience we provide the proof. Before that, we state a key lemma,
namely Lemma 2.2 of [1].

Lemma 11. Let G be a group and H a normal subgroup of G. Let k be
a positive integer and suppose that a1, . . . , a2k are elements of G such that
δk(a1H, . . . , a2kH) = 1. Then H is soluble with derived length at most k.

Lemma 12. In both Theorem 1 and Theorem 2 it is sufficient to assume
that G is virtually soluble.

Proof. Assume that Theorem 1 (resp. Theorem 2) holds for virtually soluble
groups. Let Σ be the property of being periodic (resp. of being of finite
rank). Let w be a multilinear commutator word and G a profinite group
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that has countably many Σ-subgroups G1, G2, . . . whose union contains all
w-values in G. We wish to prove that these assumptions imply that w(G)
has the property Σ.

Let k be the number of variables involved in w, so that every δk-value is
a w-value. For each positive integer i let

Si = {(x1, . . . , x2k) ∈ G× · · · ×G | δk(x1, . . . , x2k) ∈ Gi}.

Note that the sets Si are closed in G × · · · × G and cover the whole of
G × · · · × G. By the Baire Category Theorem at least one of these sets
contains a non-empty interior. Hence, there exist an open subgroup H of G,
elements a1, . . . , a2k ∈ G and an integer j such that

δk(a1H, . . . , a2kH) ⊆ Gj.

Without loss of generality we can assume that the subgroup H is normal
in G. Let K be the subgroup of G generated by all commutators of the form
δk(a1h1, . . . , a2kh2k) where hi ∈ H. Note that K ≤ Gj and that H normalizes
K. Since Gj is a Σ-group, so is K. Let D = K ∩ H. Then D is a normal
Σ-subgroup of H and the normalizer of D in G has finite index. Therefore
there are only finitely many conjugates of D in G. Let D = D1, D2, . . . , Dr

be all these conjugates. All of them are normal in H and so their product
D1D2 · · ·Dr is a Σ-group. By passing to the quotient G/(D1D2 · · ·Dr) we
may assume that D = 1. Since D = K ∩H and H has finite index in G, it
follows that K is finite. On the other hand, the normalizer of K has finite
index in G and so the normal closure, say L, of K in G is also finite. We
can pass to the quotient group G/L and assume that K = 1. In that case we
have

δk(a1H, . . . , a2kH) = 1.

Now by Lemma 11 the subgroup H is soluble and G is virtually soluble. Our
assumptions imply that w(G) has the property Σ, as required.

Lemma 13. Assume that G is a group and M is a normal abelian subgroup
of G. If G/M is generated by b1M, . . . , bsM , then

[M,G, . . . , G] =
∏

[M, bi1 , . . . , bik ]

where G appears k times and the product is taken over all possible choices of
bi1 , . . . , bik ∈ {b1, . . . bs}.
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Proof. The proof is by induction on k. If k = 1, the result follows from the
fact that [x, yz] = [x, z] [x, y]z for all x, y, z ∈ G, taking into account that
[M, bi]

bj ≤ [M, bi][M, bj]. Suppose that k > 1 and argue by induction on k.
Set H = [M,G, . . . , G], where G appears k − 1 times. By induction

H =
∏

[M, bi1 , . . . , bik−1
],

where the product is taken over all choices of bi1 , . . . , bik−1
∈ {b1, . . . bs}. Now

use the case k = 1 applied to [H,G] and the fact that [h1h2, g] = [h1, g][h2, g]
for every h1, h2 ∈ H and g ∈ G, as H ≤M is abelian.

Lemma 14. Let G be a finitely generated perfect profinite group and let w
be a multilinear commutator word. Then every element of G is the product
of finitely many w-values.

Proof. The proof is by induction on the number n of variables involved in w.
If n = 1 then the result is obvious. Assume that n ≥ 2 and write w = [w1, w2]
where w1 and w2 are multilinear commutator words on fewer variables than
w. As G is finitely generated, the theorem of Nikolov and Segal [11] tells us
that the derived subgroup of G coincides with the abstract subgroup of G
generated by commutators. Since G is perfect, it follows that every g ∈ G is
the product of finitely many commutators, i.e.

g =
n∏
i=1

[ai, bi]

for some ai, bi ∈ G. By induction, each ai (resp. bi) is the product of
finitely many w1-values (resp. w2-values). Using the well-known commutator
identities [xy, z] = [x, z]y [y, z], [x, yz] = [x, z] [x, y]z we can decompose each
commutator [ai, bi] as a product of finitely many w-values, so the lemma
follows.

Lemma 15. Let k be a positive integer. Suppose that a profinite group G
contains a normal abelian subgroup M such that G/M is perfect and finitely
generated. Then every element of [M,G] is a product of finitely many δk-
values, each lying in [M,G].

Proof. As G/M is perfect and finitely generated, by Lemma 14 there exist
finitely many δk−1-values, say b1, . . . bn, such that G = 〈b1, . . . , bn〉M .
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Since M is normal and abelian, by the Three Subgroups Lemma we have
[G,M ] = [G,G,M ] ≤ [M,G,G], so [M,G] = [M,G,G]. It follows that
[M,G] = [M,G, . . . , G] where G is taken k times. By Lemma 13 we have

[M,G] =
∏

[M, bi1 , . . . , bik ]

where the product is over all possible choices of bi1 , . . . , bik in {b1, . . . bn}.
Then, as M is abelian,

[M, bi1 , . . . , bik ] = {[m, bi1 , . . . , bik ] | m ∈M}

and it is easy to see that each element [m, bi1 , . . . , bik ] is a δk-value lying in
[M,G] (cf. Lemma 2.3 in [14]).

Lemma 16. Let G be profinite group covered by countably many subgroups
S1, S2, . . .. Then at least one of them is open.

Proof. By the Baire Category Theorem, there is a subgroup Si with nonempty
interior. This is an open subgroup.

Next result is Lemma 2.4 in [3].

Lemma 17. Let G be a group having a normal soluble subgroup with finite
index n and derived length d. Then G(i) = G(i+1) for some integer i ≤ d+n.

We are now in the position to prove Theorems 1 and 2.

Proof of Theorem 1. Let w be a multilinear commutator word and G a profi-
nite group that has countably many periodic subgroups G1, G2, . . . whose
union contains all w-values in G. We wish to prove that w(G) is locally
finite. By Lemma 12, it is sufficient to prove this in the case where G is
virtually soluble. Thus, we assume that G is virtually soluble.

By Lemma 17 the derived series of G has only finitely many terms, that
is, G(i) = G(i+1) for some positive integer i. It is sufficient to prove that
G(i) is locally finite, because then factoring it out we get the case where G is
soluble and the result is immediate from Lemma 8. So by replacing G with
G(i) we can assume that G is a perfect virtually soluble profinite group. We
will show that G is locally finite.

Among all open normal soluble subgroups of G we choose N with minimal
derived length, say d. The proof is by induction on d. If d = 0, then G is
finite and there is nothing to prove. So let d > 0. Let M be the last nontrivial
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term of the derived series of N . By induction G = G/M is locally finite. For
short, if X is a subgroup of G then X will denote its image in G.

Let T be a subgroup of G containing M with the property that T is a
minimal finite subgroup of G such that G = NT . Note that such T exists
because G/N is finite and G is locally finite. Since G is perfect it follows
that NT = NT ′, hence, by minimality of T , we deduce that T is perfect.

Also, G is the normal closure of T in G because G/T
G

is a perfect group
which is isomorphic to a quotient of the soluble group N .

By Lemma 9, there exists an integer k such that every δk-value is a w-
value. We apply Lemma 15 and deduce that every element of [M,T ] is a
product of finitely many δk-values, each lying in [M,T ]. For every integer i
define

Si =
i∏

j=1

(Gj ∩ [M,T ]).

We see that countably many periodic subgroups Si cover [M,T ]. By Lemma
16 at least one of them is open in [M,T ]. As the class of periodic groups is
closed under taking extensions, we deduce that [M,T ] is an abelian periodic
group. Hence by Lemma 10 we obtain that [M,T ] has finite exponent.

It follows that the normal closure of [M,T ] in G has finite exponent.
Factoring it out, we may assume that M centralizes T . So M centralizes the
normal closure of T and as G = TGM it follows that M is contained in the
center Z(G) of G. By induction G/M is locally finite and so by Lemma 10 it
has finite exponent. Hence, G/Z(G) has finite exponent as well. A theorem
of Mann [10] states that if B is a finite group such that B/Z(B) has exponent
e, then the exponent of B′ is bounded by a function depending on e only.
Applying a profinite version of this theorem we deduce that the exponent of
G′ = G is finite. In particular G is locally finite, as required.

Proof of Theorem 2. Let w be an multilinear commutator word and G a
profinite group that has countably many finite rank subgroups G1, G2, . . .
whose union contains all w-values in G. We wish to prove that w(G) has
finite rank. As in the proof of Theorem 1, without loss of generality we
assume that G is perfect and virtually soluble. We will show that G has
finite rank.

Among all open normal soluble subgroups of G we choose N with minimal
derived length d. The proof is by induction on d. If d = 0, the result is
obvious. So we assume that d ≥ 1 and let M be the last nontrivial term of
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the derived series of N . By induction G/M has finite rank. In particular,
G/M is finitely generated. Let k be the number of variables involved in w.
By Lemma 15, every element of [M,G] is a product of finitely many δk-values,
each lying in [M,G]. For every integer i define Si =

∏i
j=1(Gj ∩ [M,G]) and

note that each subgroup Si has finite rank. Since by Lemma 9 every δk-value
is a w-value, [M,G] is covered by the subgroups S1, S2, . . . and by Lemma 16
one of them is open, hence [M,G] has finite rank.

Passing to the quotient G/[M,G], we can assume that [M,G] = 1. As
G/M has finite rank, we deduce that G/Z(G) has finite rank. By a result
of Mann and Lubotzky [9] (see also [8]), this implies that G′ has finite rank.
Since G is perfect, the proof is complete.

We will now give the proof of Theorem 3. First, we need a modification
of Lemma 8.

Lemma 18. Suppose that w is a multilinear commutator word. Let G be a
soluble profinite group in which every w-value has finite order. Then w(G)
has finite exponent.

Proof. We follow the same arguments as in the proof of Lemma 8. Choose
i ∈ I such that w(i) 6= 1 while w(j) = 1 whenever i < j. By Corollary 6 it
follows that w(i) is abelian. We define Ys to be the subgroup generated by
the w-values in w(i) whose order divides s:

Ys = 〈w(x1, . . . , xn) ∈ w(i) | w(x1, . . . , xn)s = 1〉.

Since w(i) is abelian, every element in Ys has order dividing s, hence Ys has
finite exponent. Then we argue as in Lemma 8, where Σ is the property of
having finite exponent, to deduce that w(i) has finite exponent.

Remark that the quotient G/w(i) satisfies the hypothesis of the lemma.
We can therefore pass to the quotient G/w(i). By induction on the number
of j ∈ I such that w(j) 6= 1 we obtain that w(G/w(i)) has finite exponent.
Thus w(G) has finite exponent and the proof is now complete.

Proof of Theorem 3. By Lemma 18 the result holds when G is soluble. Now
we have to prove it when G is virtually soluble. This situation was in fact
considered in the course of the proof of Theorem 1. It is easy to see that only
obvious modifications of the proof of Theorem 1 are required now. Thus, the
result follows.
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