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Disturbance Decoupling with Closed-loop Modes Stability
in Switched Linear Systems

Elena Zattoni∗, Anna Maria Perdon�, and Giuseppe Conte�

Abstract—This work deals with the problem of rendering the output
of a switched linear system insensitive to a disturbance input, with the
requirement that the dynamics of the closed-loop system be exponentially
stable for all switching signals with a sufficiently large dwell time. A
necessary and sufficient condition for the problem to have a solution
is shown. A complete computational procedure to check the solvability
condition and to synthesize the compensation scheme is provided. A
worked-out example is presented with the aim of showing the effectiveness
of the devised method.

Index Terms—Disturbance decoupling, switched linear systems, dwell
time, exponential stability.

I. INTRODUCTION

In the last decades, switched systems have proved to be a powerful
tool to handle control problems stated for systems featuring different
modes of operation and a signal designating the active mode at each
instant of time. H2 and H∞ control, LQR optimal control, and
output regulation are classic synthesis problems recently solved for
switched systems [1]–[4]. In addition to these problems, disturbance
decoupling, which, in its various formulations — depending on the
information available on the to-be-decoupled signals [5], [6] — has
been the object of a wide literature, has lately been considered for
switched linear systems as well [7]–[10].

To be more specific, all the works just mentioned solve the
problem of structural decoupling: i.e., they provide conditions on
which the system output is zero for any admissible disturbance, on the
assumption that the system initial state is the origin of the state space.
As to stability, the issue lends itself to various approaches. Thus, a
different solution can be found in each of the papers mentioned above
except [9], which is exclusively focused on structural decoupling
and introduces both a mode-dependent and a mode-independent
static state feedback. In particular, [7] and [8] take into account
the requirement that quadratic stability of the resulting closed-loop
system be obtained with a suitable choice of the switching rule: in [7]
a sufficient condition is shown, while in [8] an obstruction is pointed
out, so that a necessary condition for the problem to be solvable
with stability is provided. In [10], constructive, sufficient conditions
for quadratic stability under arbitrary switching of the closed-loop
dynamics are proved.

However, quadratic stability under arbitrary switching is only a
sufficient condition for asymptotic stability and it can be rather
conservative [11]. Hence, in order to reduce the level of conservatism
intrinsic in the search for common quadratic Lyapunov functions,
scientific research has developed along various directions, still in the
framework of Lyapunov theory [12]. On the other hand, it has been
shown that switched systems may not be asymptotically stable under
arbitrary switching, but may enjoy this property for some classes
of switching signals, such as those satisfying specific time-domain
restrictions [13]–[16]. These considerations motivate the investigation
of the disturbance decoupling problem carried out in this work,
where exponential stability of the closed-loop dynamics is achieved
for all switching signals with a sufficiently large dwell-time [17],
by ensuring that all the closed-loop modes are made asymptotically
stable by the same state feedbacks that render the output insensitive
to the disturbance.
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The methodology developed in this work ensues from the geo-
metric approach [18], [19]. Indeed, the use of geometric tools has
been the mainstream in extending the solution of the disturbance
decoupling problem from linear time-invariant systems [18], [19]
to different classes of dynamical systems, like nonlinear systems,
implicit systems, systems over rings, time-delay systems, and LPV
systems [20]–[24]. In this context, the contribution of this paper
is to provide a necessary and sufficient condition that, in the case
of switched linear systems, completely and concisely characterizes
solvability of the disturbance decoupling problem, with exponential
stability of the closed-loop dynamics for all switching signals whose
dwell time is large enough. Such condition involves a new geometric
subspace, whose definition stems from elaborating further the geo-
metric notions of robustness and internal stabilizability of a controlled
invariant subspace. This subspace — which, to be precise, is the
maximal robust controlled invariant subspace with the property of
being internally exponentially stabilizabile for all switching signals
with a sufficiently large dwell time — proves to fit with the hybrid
nature of a switched linear system perfectly. As will be shown in the
work, robustness of the controlled invariant subspace is a structural
property that masters the multiplicity of the modes, while internal
stabilizability handles the occurrence of switches and its impact
on stability. The introduction of this new geometric object and the
statement of a necessary and sufficient condition for the problem
solution, relying on the structural and stability properties of this
subspace, substantially distinguishes the contribution of this work
from that of [25], where the condition provided was only sufficient,
being based on a subspace which only featured structural properties.

The paper is organized as follows. In Section II, the disturbance
decoupling problem with exponential stability under sufficiently slow
switching is stated. The geometric notions functional to the problem
solution are presented in Section III. The necessary and sufficient
condition for the existence of a solution is shown in Section IV. A
numerical example is worked out in Section V. Section VI contains
the conclusions.

Notation: R, R+, and Z
+ stand for the sets of real numbers, non-

negative real numbers, and nonnegative integer numbers, respectively.
Matrices and linear maps are denoted by slanted capital letters, like
A. The image and the kernel of A are denoted by imA and kerA,
respectively. The transpose of A is denoted by A�. Sets, vector
spaces, and subspaces are denoted by calligraphic letters, like X .
The restriction of a linear map A to an A-invariant subspace J is
denoted by A|J . The map induced by A on the quotient space X/J
is denoted by A|X/J . The symbols I and O respectively denote an
identity matrix and a zero matrix of appropriate dimensions. The
symbol � denotes the union with repetition count.

II. PROBLEM STATEMENT

Consider the continuous-time switched linear system

Σσ(t) ≡
{

ẋ(t) = Aσ(t) x(t) +Bσ(t) u(t) +Hσ(t) h(t),
e(t) = Eσ(t) x(t),

(1)

where t∈R
+ is the time variable, x∈X =R

n is the state,
u∈U =R

p is the control input, h∈R
m is the disturbance input,

and e∈R
q is the to-be-controlled output, with p,m, q≤n.

The modes of Σσ(t) are the linear time-invariant systems

Σi ≡
{

ẋ(t) = Ai x(t) +Bi u(t) +Hi h(t),
e(t) = Ei x(t),

i ∈ I, (2)

of the finite set {Σi, i∈I}, where I = {1, 2, . . . , N}. The matrices
Ai, Bi, Hi, and Ei, with i∈I, are constant real matrices of suitable
dimensions. Moreover, Bi, Hi, and Ei are assumed to be full-rank
for all i∈I. The sets of the admissible controls and disturbances are



2

respectively defined as the sets of all piecewise continuous functions
u(t) and h(t), t∈R

+, with finite values in R
p and R

m.
The switching signal is a piecewise constant function σ :R+ →I,

t→ i, so that the active mode at any time t∈R
+ is Σi, with i=σ(t).

The discontinuity points of the switching signal — i.e., the switching
times — are assumed to be in finite number in any finite time interval.
The sequence of the switching times is denoted by {t�, �∈Z

+} and
τ = inf�∈Z+{t�+1 − t�} is a positive real number called dwell time
(τ =∞ is assumed for the special case of constant switching signals).
Moreover, the set of all switching signals with τ ≥ τd, where τd is a
finite positive real constant, is denoted by Sτd . The switching signal
is assumed to be accessible for measurement — hence, available to
the compensation scheme.

Let Fσ(t) :X →U denote the switched state feedback defined by
the indexed set {Fi :X →U , i∈I} and the switching signal σ(t).
Hence, the closed-loop system is described by the continuous-time
switched linear system

ΣF,σ(t) ≡
{

ẋ(t) = (Aσ(t) +Bσ(t) Fσ(t))x(t) +Hσ(t) h(t),
e(t) = Eσ(t) x(t),

(3)
with the modes

ΣF,i ≡
{

ẋ(t) = (Ai +Bi Fi)x(t) +Hi h(t),
e(t) = Ei x(t),

i ∈ I. (4)

The continuous-time switched linear system Σσ(t) is said to be
exponentially stable (exponentially stabilizable by state feedback,
respectively) over Sτd if it is exponentially stable (if there exists
a switched state feedback Fσ(t) such that the closed-loop system
ΣF,σ(t) is exponentially stable, respectively) for all switching signals
in Sτd . This property will be briefly referred to as exponential
stability (exponential stabilizability, respectively) under dwell-time
switching. Hence, the problem of disturbance decoupling with expo-
nential stability of the closed-loop system under dwell-time switching
is stated as follows.

Problem 1: Given the switched linear system Σσ(t), find a switched
state feedback Fσ(t), such that

R 1. the closed-loop switched system ΣF,σ(t), with initial state
x(0)= 0, has identically zero output, for all admissible dis-
turbance inputs, and

R 2. the closed-loop modes ΣF,i, with i∈I, are asymptotically
stable.

In Problem 1, Requirements R 1 and R 2 express the structural
and the stability specifications, respectively. As to Requirement R 1,
it is worth noting that perfect decoupling can still be achieved when
the initial state is not zero, but belongs to a certain subspace of the
state space. Such subspace will be exactly determined and pointed
out in Remark 7. As to Requirement R 2, it is worth noting that
closed-loop asymptotic stability of all modes implies that there exists
a positive constant τd such that the closed-loop switched system
ΣF,σ(t) is exponentially stable over Sτd , by virtue of [17, Lemma 2].
Moreover, as to Requirement R 2, that — as observed above —
expresses exponential stability under dwell-time switching, it is worth
mentioning that when the switching signals are time-driven (i.e., they
are independent of the state trajectory), which is the case considered
in this work, exponential stability of the switched linear system is
equivalent to uniform asymptotic stability [26].

III. USEFUL NOTIONS OF THE GEOMETRIC APPROACH FOR

SWITCHED LINEAR SYSTEMS

The purpose of this section is to introduce the notions of the
geometric approach useful to solve Problem 1. For the reader’s
convenience, some basic concepts are first reviewed [18], [19]. Then,

new geometric notions are presented, like those of internal and
external switched dynamics of a robust controlled invariant subspace
and, above all, that of maximal robust controlled invariant subspace
contained in a given subspace, with the property of being internally
exponentially stabilizable over Sτd , for some finite positive real τd.
Indeed, such subspace will play a crucial role in the necessary and
sufficient condition shown in the next section.

The definitions and properties reviewed below are referred to
the generic i-th mode Σi of the switched system Σσ(t). Short
notations for images and null spaces of input and output matrices,
respectively, are used: Bi = imBi, Hi = imHi, and Ei =kerEi,
with i∈I. A subspace J ⊆X is said to be an Ai-invariant subspace
if Ai J ⊆J . A subspace V ⊆X is said to be an (Ai,Bi)-controlled
invariant subspace if Ai V ⊆V +Bi. The subspace V ⊆X is an
(Ai,Bi)-controlled invariant subspace if and only if there exists a
state feedback Fi :X →U , such that (Ai +Bi Fi)V ⊆V . The set
of all (Ai,Bi)-controlled invariant subspaces contained in a given
subspace K⊆X is an upper semilattice with respect to the sum
and the inclusion of subspaces. The maximum of the semilattice
is denoted by V∗(K) or by maxV(Ai,Bi,K) — the latter nota-
tion being adopted when the linear map Ai and the subspace Bi

need to be explicited. An algorithm for computing V∗(K) can be
found in [19, Algorithm 4.1-2]. Moreover, an (Ai,Bi)-controlled
invariant subspace V ⊆X is said to be internally asymptotically
stabilizable if there exists a state feedback Fi such that V is
an (Ai +Bi Fi)-invariant subspace and the restricted linear map
(Ai +Bi Fi)|V is asymptotically stable. Likewise, V is said to be
externally asymptotically stabilizable if there exists a state feedback
Fi such that V is an (Ai +Bi Fi)-invariant subspace and the induced
linear map (Ai +Bi Fi)|X/V is asymptotically stable. The set of
all internally asymptotically stabilizable (Ai,Bi)-controlled invariant
subspaces contained in a given subspace K⊆X has a maximal
element, which is called the maximal good (Ai,Bi)-controlled in-
variant subspace contained in K and is denoted by V∗

g (K) or by
maxVg(Ai,Bi,K). The subspace V∗

g (K) was introduced through
a heuristic approach, including the computational algorithm [18,
Section 5.6].

The definitions and properties revised above can be generalized to
the set {Σi, i∈I} of the modes of the switched system Σσ(t) by
resorting to the notions of robust invariance and robust controlled in-
variance of a subspace, first introduced for a generic set of linear time-
invariant systems in [27]. A subspace JR ⊆X is said to be a robust
Ai-invariant subspace if it is an Ai-invariant subspace for all i∈I. A
subspace VR ⊆X is said to be a robust (Ai,Bi)-controlled invariant
subspace if it is an (Ai,Bi)-controlled invariant subspace for all
i∈I. Consequently, VR is a robust (Ai,Bi)-controlled invariant
subspace if and only if there exists an indexed set of state feedbacks
{Fi :X →U , i∈I}, such that (Ai +Bi Fi)VR ⊆VR for all i∈I.
The set of all robust (Ai,Bi)-controlled invariant subspaces contained
in a given subspace K⊆X is an upper semilattice with respect to
the sum and the inclusion. The maximum is denoted by V∗

R(K) or,
equivalently, by maxVR(Ai,Bi,K). A double recursion algorithm
for computing V∗

R(K) was given in [27, Algorithm 1]. Since a
robust (Ai,Bi)-controlled invariant subspace VR is an (Ai,Bi)-
controlled invariant subspace for each mode of the set {Σi, i∈I},
the definitions of internal and external asymptotic stabilizability with
respect to each mode apply to VR in the same terms considered above.
The check on internal and external asymptotic stabilizability of VR,
with respect to each mode of the set {Σi, i∈I}, can be done by
distinguishing the assignable and the fixed internal and, respectively,
external dynamics of VR with respect to each mode. How to make
such kind of distinctions is described in [25, Sections 3.1–3.2], though
with reference to a specific robust controlled invariant subspace,
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which is the maximal one contained in E = ∩i∈I Ei — i.e., V∗
R(E).

As to the maximal good (Ai,Bi)-controlled invariant subspace
contained in a given subspace, the following original, recursive
construction shows how this notion extends to {Σi, i∈I}, thus
capturing robustness and stabilizability in one new geometric object.

Proposition 1: Consider the set {Σi, i∈I} of the modes of the
switched linear system Σσ(t) and a subspace K⊆X . The maximal
robust (Ai,Bi)-controlled invariant subspace contained in K, with the
property of being internally asymptotically stabilizable with respect to
Σi for all i∈I — henceforth denoted by V∗

R,g(K) — is the last term
of the sequence Vj

R, with j=0, 1, . . . , �, generated by the recursive
algorithm⎧⎨

⎩
K0 = K,
W0 =

⋂
i∈I maxVg(Ai,Bi,K0),

V0
R = maxVR(Ai,Bi,W0),⎧⎨

⎩
Kj = Vj−1

R ,
Wj =

⋂
i∈I maxVg(Ai,Bi,Kj),

Vj
R = maxVR(Ai,Bi,Wj),

j = 1, 2, . . . , �,

where �, with 0≤ �≤ dimK, is the least integer such that V�
R is

internally asymptotically stabilizable with respect to Σi for all i∈I.
Proof: First, note that the sequence of subspaces Vj

R, with
j=0, 1, . . . , �, is monotone nonincreasing (i.e., Vj+1

R ⊆Vj
R for all

j=0, 1, . . . , �− 1) and it converges in �=dimK steps at most,
the worst case occurring when V∗

R,g(K)= {0} and the dimension
of the subspaces subsequently generated decreases by one at each
iteration. Also note that V∗

R,g(K) is a robust (Ai,Bi)-controlled
invariant subspace, with the property of being internally asymptoti-
cally stabilizable with respect to Σi for all i∈I and that of being
contained in K, by construction. Then, in order to prove maximality
of V∗

R,g(K), a generic robust (Ai,Bi)-controlled invariant subspace
V ⊆K, with the property of being internally stabilizable with respect
to Σi for all i∈I, is considered and shown to be contained in
V∗
R,g(K). The subspace V , as an internally asymptotically stabilizable

(Ai,Bi)-controlled invariant subspace for all i∈I, with the property
of being contained in K, is contained in maxVg(Ai,Bi,K0) for
all i∈I, which implies that V ⊆W0. Moreover, V , as a robust
(Ai,Bi)-controlled invariant subspace contained in W0 is contained
in maxVR(Ai,Bi,W0), by the maximality of the latter. Then, by
iterating this reasoning, one gets that V ⊆Vj

R for all j=0, 1, . . . , �,
which implies V ⊆V∗

R,g(K).
Definition 1: The maximal robust (Ai,Bi)-controlled invariant

subspace contained in K, with the property of being internally
asymptotically stabilizable with respect to all modes of the set
{Σi, i∈I} — namely, the subspace V∗

R,g(K) — is called the
maximal good robust controlled invariant subspace contained in K
for the set {Σi, i∈I}.

Concerning the definition of the subspace V∗
R,g(K) and the related

recursive algorithm — i.e., Definition 1 and Proposition 1, the
following aspects are worth being highlighted.

Remark 1: The notion of maximal good robust controlled invariant
subspace contained in K captures at one time the feature of robust
controlled invariance and that of internal asymptotic stabilizability
with respect to each mode of the switched linear system. This
peculiarity is clearly pointed out by the fact that the construction of
V∗
R,g(K) proceeds with the iteration of two stages, which respectively

involve internal stabilizability with respect to each mode Σi (con-
struction of the subspaces maxVg(Ai,Bi,Kj)) and robust controlled
invariance with respect to the set {Σi, i∈I} (construction of the
subspaces maxVR(Ai,Bi,Wj)). As will be shown in the remainder
of this work, this double nature of the subspace V∗

R,g(K) is crucial
when dealing with switched systems, to the extent that a special

subspace of this kind — namely V∗
R,g(E), where E = ∩i∈I Ei —

will play a key role in the necessary and sufficient condition to solve
Problem 1.

Remark 2: From the computational point of view, it is relevant
that the recursive algorithm of Proposition 1 can be implemented
in Matlab by using software specifically developed for the geo-
metric approach [28]. In particular, the Matlab functions vstarg
and robcoin can respectively be used to compute the subspaces
maxVg(Ai,Bi,Kj) and maxVR(Ai,Bi,Wj), while stabv is an
effective means to check on internal and external stabilizability of a
controlled invariant subspace.

Remark 3: An interesting variant of the algorithm of Proposition 1
is presented in Appendix, where the algorithm is modified in such a
way that the generated subspace is the maximal robust controlled
invariant subspace contained in K, whose internal dynamics is
assignable with respect to each mode of the set {Σi, i∈I}.

The remainder of this section is aimed at establishing the needed
relations between the properties of robustness and stabilizability
considered above and the property of exponential stabilizability over
Sτd , for some positive real τd, which applies to switched dynamics.

The definitions and properties considered above with reference to
the set of the modes {Σi, i∈I} can directly be referred to the
switched linear system Σσ(t), so that it makes sense to refer to a
robust invariant subspace or to a robust controlled invariant subspace
for Σσ(t). In particular, the characterization of a robust controlled
invariant subspace VR for Σσ(t) can be expressed in terms of the
existence of a switched state feedback Fσ(t), such that VR is a robust
invariant subspace for the closed-loop system ΣF,σ(t). Such switched
state feedback Fσ(t) is called a friend of VR. In this framework, the
definitions of internal and external switched dynamics associated to
VR by Fσ(t) are stated as follows.

Definition 2: Let VR be a robust controlled invariant subspace for
the switched linear system Σσ(t) and let the switched state feedback
Fσ(t) be a friend of VR:

i) the switched dynamics (Aσ(t) + Bσ(t) Fσ(t))|VR is called the
internal switched dynamics associated to VR by Fσ(t);

ii) the switched dynamics (Aσ(t) +Bσ(t) Fσ(t))|X/VR
is called the

external switched dynamics associated to VR by Fσ(t).

Hence, the definitions of internal and external stabilizability over
Sτd of a robust controlled invariant subspace VR for the switched
linear system Σσ(t) are stated as follows. A characterization of each
property is given next.

Definition 3: A robust controlled invariant subspace VR for the
switched linear system Σσ(t) is said to be

i) internally exponentially stabilizable over Sτd if there exists
a friend Fσ(t) of VR, such that (Aσ(t) + Bσ(t) Fσ(t))|VR is
exponentially stable over Sτd ;

ii) externally exponentially stabilizable over Sτd if there exists a
friend Fσ(t) of VR, such that (Aσ(t) + Bσ(t) Fσ(t))|X/VR

is
exponentially stable over Sτd .

Proposition 2: Let VR be a robust controlled invariant subspace
for the switched linear system Σσ(t). Hence,

i) VR is internally exponentially stabilizable over Sτd , for some
positive real τd, if and only if there exists a friend Fσ(t),
associated to the set {Fi, i∈I}, such that the restricted maps of
the set {(Ai +Bi Fi)|VR , i∈I} are asymptotically stable for
all i∈I;

ii) VR is externally exponentially stabilizable over Sτd , for some
positive real τd, if and only if there exists a friend Fσ(t),
associated to the set {Fi, i∈I}, such that the induced maps
of the set {(Ai +Bi Fi)|X/VR

, i∈I} are asymptotically stable
for all i∈I.
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Proof: The if-part of the statements is a consequence of [17,
Lemma 2]. The converse follows from the fact that, for all i∈I,
the switching signal σ(t)= i for all t∈R

+ belongs to Sτd for any
positive real τd.

Remark 4: Proposition 2 explicitly states that, when the positive
real τd is not a-priori fixed, but can be picked sufficiently large
(depending on the modes of the considered switched dynamics
as shown, e.g., in [17]) — which is the case dealt with in this
work, differently from other literature [29], where τd is given —
then, exponential stabilizability over Sτd is equivalent to asymptotic
stabilizability of each mode of the switched dynamics. Obviously,
this equivalence holds for any considered switched dynamics and the
associated modes.

Remark 5: As a noticeable consequence of Proposition 2, the
subspace V∗

R,g(K), introduced in Definition 1, is also the maximal
robust controlled invariant subspace for Σσ(t), contained in K and
enjoying the property of being internally exponentially stabilizable
over Sτd , for some positive real τd.

IV. PROBLEM SOLUTION

In this section, the necessary and sufficient condition for solving
Problem 1 is stated. Some propositions, functional to the proof
of the main result, are premised. A crucial role in the necessary
and sufficient condition is played by the subspace V∗

R,g(E), where
E = ∩i∈I Ei. Since V∗

R,g(E) is the only maximal internally stabiliz-
able robust controlled invariant subspace considered henceforth, the
shorter notation V∗

R,g is adopted.
Proposition 3: Let the switched linear system Σσ(t) be exponen-

tially stabilizable over Sτd . Then, any robust controlled invariant
subspace VR ⊆X for Σσ(t) is externally exponentially stabilizable
over Sτd . Let VR be a robust controlled invariant subspace for Σσ(t),
both internally and externally exponentially stabilizable over Sτd ,
then Σσ(t) is exponentially stabilizable over Sτd .

Proof: It ensues from Proposition 2, in light of [19,
Property 4.1-16].

Proposition 4: Let VR ⊆X be a robust controlled invariant sub-
space for the switched linear system Σσ(t), with the properties of
being externally exponentially stabilizable over Sτ ′

d
and internally

exponentially stabilizable over Sτ ′′
d

, with τ ′′
d �= τ ′

d. Then, there ex-
ists a friend Fσ(t) of VR, such that (Aσ(t) +Bσ(t) Fσ(t))|VR and
(Aσ(t) +Bσ(t) Fσ(t))|X/VR

are both exponentially stable over Sτd ,
for some positive real τd.

Proof: It follows from Proposition 2, with τd ≥max {τ ′
d, τ

′′
d }.

Lemma 1: Consider the switched linear system Σσ(t), with the
modes {Σi, i∈I}. Consider the subspace V∗

R,g . Let the switched
state feedback Fσ(t), associated with the indexed set {Fi, i∈I}, be
a friend of V∗

R,g . Let Hi ⊆V∗
R,g , for all i∈I. Consider the closed-

loop switched linear system ΣF,σ(t), with the modes {ΣF,i, i∈I}.
Perform the state-space basis transformation T = [T1 T2 ], where
imT1 =V∗

R,g . Then, with respect to new coordinates,

A′
F,i = T−1 (Ai +Bi Fi)T =[

A′
11,i +B′

1,i F
′
1,i A′

12,i +B′
1,i F

′
2,i

O A′
22,i +B′

2,i F
′
2,i

]
, (5)

H ′
i = T−1 Hi =

[
H ′

1,i

O

]
, (6)

E′
i = Ei T =

[
O E′

2,i

]
, (7)

for all i∈I.
Proof: First, note that, with respect to the new coordinates,

V∗
R,g = im (T−1T1)= [ I O ]�. Hence, the zero block in (5), for all

i∈I, is due to V∗
R,g being a robust (Ai +Bi Fi)-invariant subspace.

The zero block in (6), for all i∈I, is due to Hi ⊆V∗
R,g , for all i∈I.

The zero block in (7) is due to V∗
R,g ⊆E , which implies V∗

R,g ⊆Ei,
for all i∈I.

Theorem 1: Consider the switched linear system Σσ(t). Let the
modes {Σi, i∈I} be asymptotically stabilizable. Consider the sub-
space V∗

R,g and the images Hi of the disturbance input matrices Hi,
with i∈I. Then, Problem 1 has a solution if and only if

Hi ⊆ V∗
R,g, ∀ i ∈ I. (8)

Proof: If. First, note that, since the modes {Σi, i∈I}
are asymptotically stabilizable, there exists a positive constant
τd such that Σσ(t) is exponentially stabilizable over Sτd [17,
Lemma 2]. Hence, by virtue of Propositions 3 and 4, there exists
a friend Fσ(t) of V∗

R,g , such that (Aσ(t) +Bσ(t) Fσ(t))|V∗
R,g

and
(Aσ(t) +Bσ(t) Fσ(t))|X/V∗

R,g
are exponentially stable over Sτ̃d ,

with τ̃d ≥ τd. Then, it will be shown that the closed-loop switched
system ΣF,σ(t), obtained by applying to Σσ(t) such switched state
feedback Fσ(t), satisfies Requirements R 1 and R 2 of Problem 1.
In order to show that Requirement R 1 is met, let us refer to
the coordinates introduced in Lemma 1 and consider the state
x(t)= [x1(t)

� x2(t)
� ]�, with t∈R

+, consistently partitioned.
Hence, the modes {ΣF,i, i∈I} of ΣF,σ(t) are described by

ΣF,i ≡

⎧⎪⎪⎨
⎪⎪⎩

ẋ1(t) = (A′
11,i +B′

1,i F
′
1,i)x1(t) +H ′

1,i h(t)
+ (A′

12,i +B′
1,i F

′
2,i)x2(t),

ẋ2(t) = (A′
22,i +B′

2,i F
′
2,i)x2(t),

e(t) = E′
2,i x2(t),

i ∈ I, (9)

where (5)–(8) have been taken into account. In light of (9), the
assumption x(0)= 0, implies x2(t)= 0, for all t∈R

+, which, in
turn, implies e(t)= 0, for all t∈R

+, for any admissible input
signal h(t), with t∈R

+. Note that these considerations hold for
all i∈I, which means that the disturbance input is structurally
decoupled. In order to prove that Requirement R 2 is also met,
note that the dynamic matrix in (9) — i.e., A′

F,i in (5) — has an
upper block-triangular structure for all i∈I. This property and the
special choice of Fσ(t) guarantee that the switched dynamics AF,σ(t),
associated with the set {A′

F,i, i∈I}, is exponentially stable over
Sτ̃d , or, equivalently, that the dynamics of the set {A′

F,i, i∈I} are
asymptotically stable.

Only if. Let Problem 1 have a solution. Then, there exists a
switched state feedback Fσ(t), such that the closed-loop switched
system ΣF,σ(t) satisfies Requirements R 1 and R 2 of Problem 1.
This implies that, for all i∈I, Hi is contained in the maximal robust
invariant subspace contained in E for ΣF,σ(t) and that ΣF,σ(t) is
exponentially stable over Sτd , for some τd. Hence, V is a robust
controlled invariant subspace contained in E for Σσ(t). Moreover,
exponential stability of ΣF,σ(t) over Sτd implies, in particular,
that V is internally exponentially stabilizable over Sτd . Therefore,
V ⊆V∗

R,g , by maximality of the latter, and the conclusion follows.
Remark 6: The if-part of the proof of Theorem 1 is constructive:

i.e., it shows how to choose the switched state feedback achieving
decoupling with stability, under the given condition.

Remark 7: Even if the initial state is not the origin, then identically
zero output is still guaranteed, provided that the initial state belongs
to the subspace V∗

R,g . In fact, if the initial state belongs to V∗
R,g , then

x2(0)= 0. Hence, x2(t)= 0, for all t∈R
+, which implies e(t)= 0,

for all t∈R
+, for any admissible input signal h(t), with t∈R

+.

V. AN ILLUSTRATIVE EXAMPLE

This section aims at illustrating the steps of the synthesis procedure
discussed so far, through a numerical example. The computational
aids consist of the Matlab Control System Toolbox and the Geometric
Approach Toolbox [28]. The variables are displayed in scaled fixed
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point format with five digits, although calculations are made in the
appropriate floating point precision. Consider the switched system
Σσ(t), defined by (1), with the modes {Σi, i∈I}, defined by (2).
Let I = {1, 2} and

A1 =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5.8 0 0 0 0 0 0 0
10 −4 0 0 0 0 0 0
0 0 −0.2 0 −10.4 0 7.6 2.2
0 0 0 −1 0 5 0 0

0 0 0 0 −7.3 0 0 5.5
0 0 0 0 0 −1 0 0
0 0 −10.1 0 −9.9 0 −25.5 4.2
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A2 =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−10.5 0 −0.2 0 1.8 0 −0.2 0
0.3 −13.9 6.8 0 −25.5 0 3.2 −3.1
0 0 −4.4 0 −15.1 0 6.7 0
0 0 0 −1 0 0 0 0
0 0 2 0 −80 0 2.2 0
0 0 0 −3 0 −1 0 0
0 0 −7.8 0 10.1 0 −20.6 0
2.5 0 3.4 0 −1 0 −1.8 −23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B1 = B2 =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 60 0
0 −50 0
1.9 4.8 0
0 0 0

−8.8 0 −7.1
0 0 0
−2 3.5 −17.7
7.6 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1 1.7 1.6
−1.6 −3.7 0.2
−1 −1 0.5
0 0 0
−2 −2 0.2
0 0 0
0.7 0.7 −2.3
0.5 −2.2 −0.3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

H1 = H2 =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 −3 −0.3
0 0 0
2.1 0 0
0 0 0
0 0 0
0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 −2
0 0 0
2 0 0
0 0 0
0 0 0
0.5 0.25 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

E1 =

⎡
⎢⎢⎣

0 0 0 0 0 0 −3 0
0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0

0 0 0 0 0 1 0 0

⎤
⎥⎥⎦ ,

E2 =

⎡
⎢⎢⎣

0 0 0 0 0 0 −15 0
5 −5 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 0

⎤
⎥⎥⎦ ,

With regard to the given switched system, it is worth noting
that the mode Σ1 is not asymptotically stable, since A1 has one
eigenvalue at 1, but it is stabilizable, since its reachable subspace
is externally stable. Moreover, Σ1 is not minimum-phase, since it
has one zero at 6.2. As to the mode Σ2, this is both asymptotically
stable and minimum-phase. By applying the recursive algorithm of
Proposition 1, one gets that the maximal internally stabilizable robust
(Ai,Bi)-controlled invariant subspace contained in E = E1 ∩E2 —
namely, the subspace V∗

R,g — is given by

V∗
R,g = im

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
1 0 0
0 0 0
0 −1 0
0 0 0
0 0 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The inclusions Hi ⊆V∗
R,g hold for all i∈I, as can be checked

by comparing the basis matrix of the subspace V∗
R,g with H1 and

H2 (basis matrices of H1 and H2, respectively). Hence, Problem 1
has a solution, according to Theorem 1. A set of state feedbacks
{Fi, i∈I} that guarantees state-feedback invariance along with
internal and external asymptotic stability of V∗

R,g with respect to
each mode is given by

F1 =

⎡
⎣ 0.0008 0.0002 0.2473 0 0.1940 0

0.0918 −0.0059 0 0 0 0
0.0066 0.0018 −0.5986 0 −0.5812 0

−0.1481 0.0803
0.0001 0
−1.3109 0.2282

⎤
⎦ ,

F2 =

⎡
⎣ −13.8084 −14.9010 −5.7610 0 −17.6645 0

5.9962 3.6810 4.1188 0 0.7052 0

−2.2195 −3.1276 −3.8911 0 −0.7702 0

−26.1586 −5.5118

11.7625 1.4793
−10.9650 −1.2273

⎤
⎦ .

The set of the eigenvalues of the internal dynamics of V∗
R,g with

respect to each mode respectively are Li,1 = {−0.1,−0.2,−0.3}
and Li,2 = {−5.8166,−34.2142,−39.55}. It is worth mentioning
that the former set, Li,1, has been completely assigned through F1,
while the latter, Li,2, is fixed — i.e., it does not depend on F2. The
set of the eigenvalues of the external dynamics of V∗

R,g with respect
to each mode respectively are Le,1 = {−1,−2,−3,−1,−1} and
Le,2 = {−4,−5,−6,−1,−1}. The former three eigenvalues of each
set, Le,1 and Le,2, have been assigned by F1 and F2, respectively.
Instead, the last two eigenvalues of each set are fixed. Hence, the
linear maps F1 and F2 given above solves Problem 1, as shown in
the if-part of the proof of Theorem 1.

In particular, as to stability of the closed-loop switched dynamics,
it is worth noting that both modes, ΣF,1 and ΣF,2, of the closed-loop
switched system ΣF,σ(t) are asymptotically stable. In fact, the set of
the eigenvalues of AF,1 is given by Li,1 �Le,1, while that of AF,2

is given by Li,2 �Le,2. However, the closed-loop switched system
is not exponentially stable under arbitrary switching. For instance,
it is easy to show that periodic switching between the two modes
with a dwell-time τhp =1 s in each mode generates instability of
the switched system. In fact, the state transition matrix over one
period — i.e., Φ(2 τhp)= eAF,2 τhp eAF,1 τhp — has one eigenvalue
at −1.7489, that is outside the open unit disc of the complex plane.
Nonetheless, by virtue of [17, Lemma 2], there exists a a sufficiently
large τd, such that the closed-loop dynamics is exponentially stable
over Sτd . For instance, by applying the procedure described in the
abovementioned lemma, one can find τd =13.1 s.

VI. CONCLUSIONS

A necessary and sufficient condition for the solution of the dis-
turbance decoupling problem with exponential stability in switched
linear systems subject to switching signals with a sufficiently large
dwell-time has been shown. A complete algorithmic framework for
the synthesis of the compensation scheme has been outlined. An
illustrative example has been worked out with the twofold aim of
describing the single steps of the synthesis procedure and highlighting
the effectiveness of the devised synthesis procedure. The methodolog-
ical background consists of both classic and novel concepts of the
geometric approach, enhanced with notions specifically oriented to
switched linear systems. In particular, the hybrid nature of switched
linear systems is caught by the so-called maximal good robust
controlled invariant subspace contained in the null space of the output
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of the to-be-controlled switched system: this subspace is the one that
plays the key role in the abovementioned necessary and sufficient
condition.

APPENDIX

First, the notion of controllability subspace for the mode Σi is
reviewed [18], [19]. A subspace R⊆X is said to be a controllability
subspace for Σi if there exists a state feedback Fi :X →U , such
that R=<Ai +Bi Fi |Bi ∩R>, where the notation <A,B> stands
for the minimal A-invariant subspace containing B. Moreover, if
V is an (Ai,Bi)-controlled invariant subspace for Σi, the maximal
controllability subspace contained in V , denoted by R∗(V) or by
maxR(Ai,Bi,V), is such that the internal dynamics of R∗(V)
coincides with that part of the internal dynamics of V assignable by
a friend of V (which, as can be shown, is also a friend of R∗(V) —
see, e.g., [19, Chapter 4]). This notion extends to the set {Σi, i∈I}
of the modes of Σσ(t) as described below.

Proposition 5: Consider the set {Σi, i∈I} of the modes of the
switched linear system Σσ(t) and a subspace K⊆X . The maximal
robust (Ai,Bi)-controlled invariant subspace contained in K, with
the property of being a controllability subspace with respect to Σi

for all i∈I — henceforth denoted by R∗
R(K) — is the last term

of the sequence Rj
R, with j=0, 1, . . . , �, generated by the recursive

algorithm⎧⎨
⎩

K0 = K,
W0 =

⋂
i∈I maxR(Ai,Bi,K0),

R0
R = maxVR(Ai,Bi,W0),⎧⎨

⎩
Kj = Vj−1

R ,
Wj =

⋂
i∈I maxR(Ai,Bi,Kj),

Rj
R = maxVR(Ai,Bi,Wj),

j = 1, 2, . . . , �,

where �, with 0≤ �≤ dimK, is the least integer such that R�
R is a

controllability subspace with respect to Σi for all i∈I.
Proof: It follows the same lines of that of Proposition 1.

Definition 4: The subspace R∗
R(K), constructed as in Proposi-

tion 5, is called the maximal robust controllability subspace contained
in K.

Remark 8: If V ⊆X is a robust controlled invariant subspace for
Σσ(t), R∗

R(V) is such that the internal dynamics of V assignable by
a friend of V coincides with the internal dynamics of R∗

R(V): this
latter is completely assignable by the same friend, which, as can be
shown, is also a friend of R∗

R(V).
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[20] A. Banaszuk, M. Kociȩcki, and K. Przyłuski, “The disturbance decou-
pling problem for implicit linear discrete-time systems,” SIAM Journal
on Control and Optimization, vol. 28, no. 6, pp. 1270–1293, 1990.

[21] D. Chu and V. Mehrmann, “Disturbance decoupling for descriptor
systems by state feedback,” SIAM Journal on Control and Optimization,
vol. 38, no. 6, pp. 1830–1858, 2000.

[22] G. Conte and A. M. Perdon, “The disturbance decoupling problem
for systems over a ring,” SIAM Journal on Control and Optimization,
vol. 33, no. 3, pp. 750–764, 1995.

[23] C. H. Moog, R. Castro-Linares, M. Velasco-Villa, and L. A. Marquez-
Martinez, “The disturbance decoupling problem for time-delay nonlinear
systems,” IEEE Transactions on Automatic Control, vol. 45, no. 2, pp.
305–309, February 2000.

[24] G. Conte, A. M. Perdon, and E. Zattoni, “The disturbance decoupling
problem with quadratic stability for LPV systems,” in 1st IFAC Workshop
on Linear Parameter Varying Systems, Grenoble, France, October 7–9,
2015, pp. 1–6.

[25] E. Zattoni, A. M. Perdon, and G. Conte, “Disturbance decoupling with
stability in continuous-time switched linear systems under dwell-time
switching,” in 19th World Congress of the International Federation of
Automatic Control, Cape Town, South Africa, August 24–29, 2014, pp.
164–169.

[26] J. P. Hespanha, “Uniform stability of switched linear systems: Extensions
of LaSalle’s invariance principle,” IEEE Transactions on Automatic
Control, vol. 49, no. 4, pp. 470–482, 2004.

[27] G. Basile and G. Marro, “On the robust controlled invariant,” Systems
& Control Letters, vol. 9, no. 3, pp. 191–195, 1987.

[28] G. Marro. (2015, October) The Geometric Approach Tool-
box. [Online]. Available: http://www3.deis.unibo.it/Staff/FullProf/
GiovanniMarro/geometric.htm#reftools

[29] G. Chesi, P. Colaneri, J. C. Geromel, R. Middleton, and R. Shorten,
“A nonconservative LMI condition for stability of switched systems
with guaranteed dwell time,” IEEE Transactions on Automatic Control,
vol. 57, no. 5, pp. 1297–1302, 2012.


