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Reversibility in the higher-order π-calculus
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Abstract

The notion of reversible computation is attracting increasing interest because
of its applications in diverse fields, in particular the study of programming
abstractions for reliable systems. In this paper, we continue the study un-
dertaken by Danos and Krivine on reversible CCS by defining a reversible
higher-order π-calculus, called rhoπ. We prove that reversibility in our cal-
culus is causally consistent and that the causal information used to support
reversibility in rhoπ is consistent with the one used in the causal semantics
of the π-calculus developed by Boreale and Sangiorgi. Finally, we show that
one can faithfully encode rhoπ into a variant of higher-order π, substantially
improving on the result we obtained in the conference version of this paper.

Keywords: reversible computation, process algebra, π-calculus

1. Introduction

Motivation. The notion of reversible computation has already a long history
[1]. It has its origin in physics with the observation by Landauer that only
irreversible computations need to consume energy [2]. It has since attracted
interest in diverse fields, including e.g. hardware design [3], computational
biology [4], program debugging [5], and quantum computing [6]. Of partic-
ular interest is its application to the study of programming abstractions for
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3Partly funded by the Italian MIUR PRIN Project CINA Prot. 2010LHT4KM.
4Partly funded by the COST Action IC1405.
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reliable systems. For instance, Bishop advocates using reversible comput-
ing as a means to achieve fail-safety in a sequential setting [7]. Moreover,
most fault-tolerant schemes exploiting system recovery techniques [8], includ-
ing exception handling [9], checkpoint/rollback [10] and transaction manage-
ment [11], rely on some form of undo or another. All this suggests it can be
worthwhile to formally investigate reversibility in concurrent systems, with
the hope that reversible computing ideas can lead us to more systematic and
more composable abstractions for the design and construction of recoverable
systems.

The seminal work of Danos and Krivine on reversible CCS (RCCS) con-
stitutes a first step on this research programme. They develop in [12] a
basic reversible concurrent programming model in the form of a reversible
variant of CCS, and introduce the notion of causal consistency as the least
constraining correctness criterion for reversing a concurrent system. Requir-
ing a concurrent system to go back in a computation by undoing actions in
the inverse order with respect to the one described by its interleaving se-
mantics for the forward computation is too restrictive, since forward actions
could have executed concurrently. Causality constraints should be respected,
however: first the consequences have to be undone, then the causes. Causal
consistency captures exactly this: when reversing a computation, actions are
undone in reverse order up to causal equivalence, i.e. up to swaps of con-
current actions. In [13] Danos and Krivine show how to leverage RCCS for
the design of transactional systems. They provide an interpretation of dis-
tributed transactions as “ballistic” processes, that freely explore the state
space defined by their reversible part until they commit by performing irre-
versible actions, and they show how reversibility can help in the design and
proof of correctness of complex transactional systems. Later on, Phillips and
Ulidowski [14] showed how to devise causally consistent reversible extensions
for process calculi specified by SOS rules in a subset of the path format.

A reversible CCS, or a process calculus defined by operators in the path
format, remains limited as a reversible programming model, however. The
same reasons that motivated the introduction of the π-calculus [15] apply to
motivate the study of a reversible π-calculus. As a first contribution in that
study, we introduced in [16] a causally-consistent reversible extension of an
asynchronous variant of the higher-order π-calculus [17], where we showed
how to preserve the usual properties of the π-calculus operators (e.g., as-
sociativity and commutativity of parallel composition), and that one could
faithfully encode (up to weak barbed bisimilarity) our reversible higher-order
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π, called rhoπ, into a variant of the higher-order π-calculus with abstractions
and join patterns. The operational semantics of rhoπ was given in [16] by
way of a reduction semantics. We then showed how to leverage the reversible
machinery in rhoπ for a calculus with explicit rollback [18] called rollπ, and
further, building on rollπ, how to faithfully encode certain kinds of com-
municating transactions [19]. Very recently, Cristescu, Krivine and Varacca
have proposed in [20] a reversible π-calculus, called Rπ, and defined a la-
belled transition system semantics for it. In addition, they showed their LTS
semantics for Rπ to be as liberal as possible in the sense that the causality
relation between labelled transitions is the smallest relation that is consistent
with the structural causality between reductions.

Contributions. In this paper, we revisit our work on rhoπ. Apart from provid-
ing proofs that where omitted from [16] for lack of space, we discuss in more
detail notions of barbed bisimilarity for rhoπ, and we study the relationship
between the notion of causality that emerges from our reversibility machin-
ery and that introduced by Boreale and Sangiorgi in their causal π-calculus
[21]. Our discussion of barbed bisimilarity shows that the usual notion of
weak barbed bisimilarity, not distinguishing between forward and backward
reductions, is very coarse in rhoπ since it identifies processes that have the
same weak observables. Weak barbed bisimilarity remains a non-trivial re-
lation since the question of knowing whether two rhoπ processes have the
same weak observables is undecidable. However, since it was used to show
the faithfulness of our encoding of rhoπ in higher-order π, one can wonder
whether the result would still hold with a finer bisimilarity, in particular one
that could distinguish between forward and backward reductions. We show
in this paper that this is indeed the case, at the cost of minor tweaks in our
encoding, and at the expense of a much more complex proof.

Outline. The paper is organized as follows. Section 2 defines the rhoπ cal-
culus. We explain the main constructions of the calculus and we contrast
our way of handling reversibility with that of Danos and Krivine. We also
define and discuss barbed equivalences in rhoπ. Section 3 is devoted to the
proof of our first main result, namely that reversibility in rhoπ proceeds in a
causally consistent way. We also show that the notion of causality built in the
rhoπ operational semantics agrees with that of Boreale and Sangiorgi. Sec-
tion 4 presents a compositional encoding of the rhoπ calculus into a variant
of HOπ and proves its faithfulness. Section 5 discusses related work. Sec-
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tion 6 concludes the paper. Main proofs and auxiliary results are collected
in Appendix.

This paper constitutes a revised and extended version of our conference
paper [16]. While the rhoπ calculus and its reversible machinery are un-
changed, the analysis in Section 3 of the relationship between our notion of
causality and that provided by Boreale and Sangiorgi for the π-calculus is
new. The material in Section 4, which makes up the bulk of the paper, is
also entirely new.

2. The rhoπ calculus

2.1. Informal presentation
Building a reversible variant of a process calculus involves devising ap-

propriate syntactic representations for computation histories. As already
hinted at in the Introduction, since a process models a concurrent system,
asking for a deterministic reverse execution, which traverses the exact same
states of the forward execution, is too restrictive. In fact, those states de-
pend on the chosen interleaving of concurrent actions. An approach more
suitable for a concurrent system is causally consistent reversibility, where
states that are reached during a backward computation are states that could
have been reached during the computation history by just performing in-
dependent actions in a different order. In RCCS [12], Danos and Krivine
achieve this with CCS without recursion (an extension dealing with recur-
sion is presented in [22]) by attaching a memory m to each process P , in
the monitored process construct m : P . A memory in RCCS is a stack of
information needed for processes to backtrack. Thus, if two processes P1

and P2 can synchronize on a channel a in order to evolve into P ′
1 and P ′

2,
respectively, (e.g., P1 = a.P ′

1 and P2 = a.P ′
2) then the parallel composition of

monitored processes m1 : (P1+Q1) and m2 : (P2+Q2) can evolve, according
to RCCS semantics, as follows:

m1 : (P1 +Q1) | m2 : (P2 +Q2) → 〈m2, a,Q1〉 ·m1 : P
′
1 | 〈m1, a,Q2〉 ·m2 : P

′
2

In the reduction above, a memory of the form 〈m2, a, Q1〉 · m1 represents
the fact that its monitored process has performed an input on the channel
a (a represents an output), interacting with a process monitored by the
memory m2, and discarded the alternative process Q1. By exploiting all
the information stored in the memories, the above synchronization can be
reverted as follows:

〈m2, a, Q1〉 ·m1 : P
′
1 | 〈m1, a, Q2〉 ·m2 : P

′
2 → m1 : (P1 +Q1) | m2 : (P2 +Q2)
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Additionally, Danos and Krivine rely on the following rule:

m : (P | Q) ≡ 〈1〉 ·m : P | 〈2〉 ·m : Q

so as to ensure that each primitive thread, i.e. some process with no par-
allel composition at top level, gets its own unique identity. Since this rule
stores the exact position of a process in a parallel composition, it is not com-
patible with the usual structural congruence rules for the parallel operator,
namely associativity, commutativity, and 0 as neutral element. Danos and
Krivine suggest that it could be possible to work up to tree isomorphisms on
memories, but this would indeed lead to a more complex syntax, as well as
additional difficulties (see Remark 5).

We adopt for rhoπ a different approach: instead of associating each thread
with a stack that records, essentially, past actions and positions in parallel
branches, we rely on simple thread tags, which act as unique identifiers but
have little structure, and on new process terms, which we call memories,
which are dedicated to undoing a single (forward) computation step.

More precisely, a forward computation step in rhoπ (denoted by arrow
�) consists in the receipt of a message (rhoπ is an asynchronous calculus).
The receipt of a message a〈P 〉 on channel a by a receiver process (or trigger)
a(X) � Q takes in rhoπ the following form:

(κ1 : a〈P 〉) | (κ2 : a(X) � Q) � νk. k : Q{P/X} | [M ; k]

Each thread (message and trigger) participating in the above computation
step is uniquely identified by a tag: κ1 identifies the message a〈P 〉, and κ2

identifies the trigger a(X) � Q. The result of the message receipt consists in
a classical part and two side effects. The classical part is the launch of an
instance Q{P/X} of the body of the trigger Q, with the formal parameter
X instantiated by the received value, i.e. the process P (rhoπ is a higher-
order calculus). The two side effects are: (i) the tagging of the newly created
process Q{P/X} by a fresh new key k (ν is the standard restriction operator
of the π-calculus), and (ii) the creation of a memory process [M ; k]. M
is simply the configuration on the left hand side of the reduction, namely
M = (κ1 : a〈P 〉) | (κ2 : a(X) � Q).

In this setting, a backward computation step takes the form of an interac-
tion between a memory and a process tagged with the appropriate key: when
a memory [M ; k] is put in presence of a process tagged with k, a backward
reduction (denoted by arrow �) can take place. Such a reduction kills the
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process tagged with k and reinstates the configuration M :

(k : P ) | [M ; k] � M

We thus have:

M � νk. k : Q{P/X} | [M ; k] � νk.M

Since k is fresh, νk.M is actually structurally equivalent to M . We thus
have a perfect reversal of a forward computation: M �� M .

Remark 1. Following Danos and Krivine [13], one could consider also taking into

account irreversible actions. We do not do so in this paper for the sake of simplicity.

Adding irreversible actions to rhoπ would be conceptually straightforward.

Remark 2. Using memories as presented here to enable reversibility simplifies

the formal development but leads to a space explosion of computations in rhoπ. We

do not consider implementation and related space efficiency issues in this paper.

This issue has been analysed in [23] in the context of the Oz language.

2.2. Syntax

Names, keys, and variables. We assume the existence of the following de-
numerable infinite mutually disjoint sets: the set N of names, the set K of
keys, and the set V of process variables. The set I = N ∪K is called the set
of identifiers. N denotes the set of natural integers. We let (together with
their decorated, e.g. primed or indexed, variants): a, b, c range over N ; h, k, l
range over K; u, v, w range over I; X, Y, Z range over V . We denote by ũ a
finite set of identifiers {u1, . . . , un}.
Syntax. The syntax of the rhoπ calculus is given in Figure 1 (in writing rhoπ
terms, we freely add balanced parenthesis around terms to disambiguate
them). Processes of the rhoπ calculus, given by the P,Q productions in
Figure 1, are the standard processes of the asynchronous higher-order π-
calculus [24]. A receiver process (or trigger) in rhoπ takes the form a(X)�P ,
which allows the receipt of a message of the form a〈Q〉 on channel a.

We call primitive thread process, a process that is either a message a〈P 〉
or a trigger a(X) � P . We let τ and its decorated variants (e.g., τ1, τ

′ and so
on) range over primitive thread processes.
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P,Q ::= 0 | X | νa. P | (P | Q) | a〈P 〉 | a(X) � P

M,N ::= 0 | νu.M | (M | N) | κ : P | [μ; k]

κ ::= k | 〈h, h̃〉 · k
μ ::= ((κ1 : a〈P 〉) | (κ2 : a(X) � Q))

u ∈ I a ∈ N X ∈ V h, k ∈ K κ ∈ T

Figure 1: Syntax of rhoπ

Processes in rhoπ cannot directly execute, only configurations can. Con-
figurations in rhoπ are given by the M,N productions in Figure 1. A config-
uration is built up from threads and memories.

A thread κ : P is just a tagged process P , where the tag κ is either a
single key k or a pair of the form 〈h, h̃〉 · k, where h̃ is a set of keys, with
h ∈ h̃. A tag serves as an identifier for a process. A tag 〈h, h̃〉 · k brings the
information that a process with key k has been split into primitive thread
processes, where h identifies the particular primitive thread process and h̃
allows one to recover the other primitive thread processes created by the split.
Indeed, all these primitive thread processes have tags of the form 〈hi, h̃〉 · k
for different hi ∈ h̃.

As we will see below, together with memories tags help capture the flow
of causality in a computation.

Amemory is a process of the form [μ; k], which keeps track of the fact that
a configuration μ was reached during execution, that triggered the launch
of a thread tagged with the fresh tag k. In a memory [μ; k], we call μ
the configuration part of the memory, and k the thread tag of the memory.
Memories are generated by computation steps and are used to reverse them.
The configuration part μ = (κ1 : a〈P 〉) | (κ2 : a(X) � Q) of the memory
records the message a〈P 〉 and the trigger a(X) � Q involved in the message
receipt, together with their respective thread tags κ1, κ2.

P denotes the set of rhoπ processes, and C the set of rhoπ configurations.
We call agent an element of the set A = P ∪ C. We let (together with their
decorated variants) P,Q,R range over P ; L,M,N range over C; and A,B,C
range over agents.

Remark 3. We have no construct for replicated processes, output prefixing, or

guarded choice in rhoπ: as in the asynchronous HOπ, also in rhoπ these can be

easily encoded.
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Free names and free variables. Notions of free identifiers and free (process)
variables in rhoπ are classical. It suffices to note that constructs with binders
are of the forms: νa. P , which binds the name a with scope P ; νu.M , which
binds the identifier u with scopeM ; and a(X)�P , which binds the variable X
with scope P . We denote by fn(P ), fn(M) and fn(κ) the set of free names,
free identifiers, and free keys, respectively, of process P , of configuration M ,
and of tag κ. Note in particular that fn(κ : P ) = fn(κ)∪fn(P ), fn(k) = {k}
and fn(〈h, h̃〉 · k) = h̃ ∪ {k}. We say that a process P or a configuration
M is closed if it has no free (process) variable. P• denotes the set of closed
processes, C• the set of closed configurations, and A• the set of closed agents.

Remark 4. In the remainder of the paper, we adopt Barendregt’s Variable Con-

vention: If terms t1, . . . , tn occur in a certain context (e.g. definition, proof), then

in these terms all bound identifiers and variables are chosen to be different from

the free ones.

Initial and consistent configurations. Not all configurations allowed by the
syntax in Figure 3 are meaningful. For instance, in a memory [μ; k], tags oc-
curring in the configuration part μ must be different from the key k. Thus, in
the following we concentrate on consistent configurations, defined below. We
will show later on that consistent configurations indeed satisfy the syntactic
property above and other relevant structural properties.

Definition 1 (Initial and consistent configurations).
A configuration is initial if it does not contain memories and all tags are
distinct and simple (i.e., of the form k). A configuration is consistent if it
can be derived using the rules of the calculus from an initial configuration.

2.3. Operational semantics

The operational semantics of the rhoπ calculus is defined via a reduction
relation →, which is a binary relation over closed configurations → ⊂ C• ×
C•, and a structural congruence relation ≡, which is a binary relation over
processes and configurations ≡ ⊂ P2 ∪ C2.

Definition 2 (Contexts). We define configuration contexts, also called eval-
uation contexts, as “configurations with one hole ·” given by the following
grammar:

E ::= · | (M | E) | νu.E
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(E.ParC) A | B ≡ B | A (E.ParA) A | (B | C) ≡ (A | B) | C

(E.NilM) A | 0 ≡ A (E.NewN) νu.0 ≡ 0 (E.NewC) νu. νv.A ≡ νv. νu.A

(E.NewP) (νu.A) | B ≡ νu. (A | B) (E.α) A =α B =⇒ A ≡ B

(E.TagN) κ : νa. P ≡ νa. κ : P

(E.TagP) k :
n∏

i=1

τi ≡ νh̃.
n∏

i=1

(〈hi, h̃〉 · k : τi) h̃ = {h1, . . . , hn} n > 1

Figure 2: Structural congruence for rhoπ

General contexts C are “processes or configurations with one hole ·”, and
are obtained from processes or configurations by replacing one occurrence of
0 (either as process or as configuration) with ·.

In general contexts, the hole may represent either a process or a configura-
tion. Also, the term obtained by replacing the hole with the corresponding
syntactic category (process or configuration) may be either a process or a
configuration. General contexts where the hole stands for a configuration
correspond to configuration contexts. We refer to configuration contexts also
as evaluation contexts, to highlight that reductions are closed under this kind
of context (see below).

A congruence on processes and configurations is an equivalence relationR
that is closed for general contexts: P RQ =⇒ C[P ]RC[Q] andM RN =⇒
C[M ]RC[N ].

The relation ≡ is defined as the smallest congruence on processes and
configurations that satisfies the rules in Figure 2. We write t =α t′ when
terms t, t′ are equal modulo α-conversion. If ũ = {u1, . . . , un}, then νũ. A
stands for νu1. . . . νun. A (there is no need to indicate the order of binders
thanks to rule E.NewC). We write

∏n
i=1 Ai for A1 | . . . | An (as before, there

is no need to indicate how the latter expression is parenthesized because the
parallel operator is associative by rule E.ParA). In rule E.TagP, processes
τi are primitive thread processes (i.e., messages or triggers). Recall the use
of the variable convention in these rules: for instance, in the rule (νu.A) |
B ≡ νu. (A | B) the variable convention makes implicit the condition u 
∈
fn(B). The structural congruence rules are the usual rules for the π-calculus

9



(R.Fw) (κ1 : a〈P 〉) | (κ2 : a(X) � Q) � νk. (k : Q{P /X}) | [(κ1 : a〈P 〉) | (κ2 : a(X) � Q); k]

(R.Bw) (k : P ) | [M ; k] � M

Figure 3: Reduction rules for rhoπ

(E.ParC to E.α) without the rule dealing with replication, and with the
addition of two new rules dealing with tags: E.TagN and E.TagP. Rule
E.TagN is a scope extrusion rule to push restrictions to the top level. Rule
E.TagP allows one to generate unique tags for each primitive thread process
in a configuration. An easy induction on the structure of terms provides us
with a kind of normal form for configurations (by convention

∏
i∈I Ai = 0 if

I = ∅):

Lemma 1 (Thread normal form). For any closed configuration M , we
have:

M ≡ νũ.
∏
i∈I

(κi : ρi) |
∏
j∈J

[μj ; kj ]

with ρi = 0, ρi = ai〈Pi〉, or ρi = ai(Xi) � Pi.

We say that a binary relation R on closed configurations is evaluation-
closed if it satisfies the inference rules:

(R.Ctx)

M R N

E[M ] R E[N ]
(R.Eqv)

M ≡ M ′ M ′ R N ′ N ′ ≡ N

M R N

The reduction relation → is defined as the union of two relations, the forward
reduction relation � and the backward reduction relation �: → = � ∪ �.
Relations � and � are defined to be the smallest evaluation-closed binary
relations on closed configurations satisfying the rules in Figure 3 (note again
the use of the variable convention: in rule (R.Fw) the key k is fresh).

The rule for forward reduction (R.Fw) is the standard communication
rule of the higher-order π-calculus with two side effects: (i) the creation
of a new memory to record the configuration that gave rise to it, namely
the parallel composition of a message and a trigger, properly tagged (tags
κ1 and κ2 in the rule); (ii) the tagging of the continuation of the message
receipt with the fresh key k. The rule for backward reduction (R.Bw) is
straightforward: in presence of the thread tagged with key k, memory [M ; k]
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reinstates the configuration M that gave rise to the tagged thread. We use
�∗, �∗ and ⇒ to denote the reflexive and transitive closure of �, � and
→, respectively. With the reduction rules and the structural laws in place,
we can see how the structural rule E.TagP is used by the reduction. In
particular, the rule is used from left to right after a forward step, when the
continuation of the trigger is a parallel composition, to enable its execution
by splitting the parallel components. On the other side, when used from right
to left, E.TagP gathers back all the primitive thread processes belonging to
the same parallel composition identified by a particular key. An example of
execution will make it clear. Let M = (k1 : a〈P 〉) | (k2 : a(X) � b〈X〉 |
b(X) � 0), we have that:

M � νk. k : (b〈P 〉 | b(X) � 0) | [M ; k] (1)

≡ νk, h1, h2. (〈h1, h̃〉 · k : b〈P 〉) | (〈h2, h̃〉 · k : b(X) � 0) | [M ; k] (2)

� νk, h1, h2, k3. (k3 : 0) | [M ; k] | [M1; k3] (3)

� νk, h1, h2. (〈h1, h̃〉 · k : b〈P 〉) | (〈h2, h̃〉 · k : b(X) � 0) | [M ; k] (4)

≡ νk. k : (b〈P 〉 | b(X) � 0) | [M ; k] (5)

� νk. (k1 : a〈P 〉) | (k2 : a(X) � b〈X〉 | b(X) � 0) (6)

with h̃ = {h1, h2}, M1 = (〈h1, h̃〉 · k : b〈P 〉) | (〈h2, h̃〉 · k : b(X) � 0). We can
note in (2) the use of the rule E.TagP from left to right, in order to allow
the two primitive processes to execute (3). On the other side, we use the rule
in the opposite way in (5) in order to build back the parallel composition
and enable the backward reduction in (6).

Remark 5. One could have thought of mimicking the structural congruence rule
dealing with parallel composition in RCCS [12], using a monoid structure for tags:

(E.TagP
∗
) κ : (P | Q) ≡ νh1, h2. (h1 · κ : P ) | (h2 · κ : Q)

Note that E.TagP∗ (differently from what happens in RCCS) ensures commutativ-
ity of parallel composition, since h1 and h2 are bound and can thus be α-converted.
However, (as in RCCS) it does not ensure associativity or having 0 as a neutral
element.

As a consequence, using E.TagP
∗ instead of E.TagP would introduce some

undesired non-determinism, which would later complicate our definitions (in rela-
tion to causality) and proofs. For instance, let M = k : a〈Q〉 | (h : a(X) � X). We
have:

M → M ′ = νl. (l : Q) | [M ; l]
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Now, assuming E.TagP
∗, we would have:

M ≡ (k : (a〈Q〉 | 0)) | (h : a(X) � X) ≡
νh1, h2. ((h1 · k : a〈Q〉) | (h2 · k : 0)) | (h : a(X) � X)

Let M1 = (h1 · k : a〈Q〉) | (h : a(X) � X). We would then have: M → M ′′,
where M ′′ = νh1, h2, l. (l : Q) | [M1; l] | (h2 · k : 0). Clearly M ′ 
≡ M ′′, which
means that a seemingly deterministic configuration, M , would have in fact two
(actually, an infinity of) derivations towards non structurally equivalent configu-
rations. By insisting on tagging only primitive thread processes, E.TagP avoids
this unfortunate situation.

We can characterize this by proving a kind of determinacy lemma for rhoπ,
which fails if we replace rule E.TagP with rule E.TagP

∗. Since rhoπ is however
non-deterministic, we need to consider only transitions where the same primitive
thread processes interact. To fix them we introduce a notion of marked primi-
tive thread process. Extend the grammar of rhoπ with marked primitive thread
processes of the form τ∗. This extended calculus has exactly the same struc-
tural congruence and reduction rules as rhoπ, but with possibly marked primitive
thread processes. Now call marked a closed configuration M with exactly two
marked processes of the form a〈P 〉∗ and (a(X) � Q)∗. By extending ≡ and → to
marked configurations we have:

Lemma 2 (Determinacy). Let M be a marked configuration such that M ≡
M1 = E1[κ1 : a〈P 〉∗ | κ2 : (a(X) �Q)∗] and M ≡ M2 = E2[κ

′
1 : a〈P 〉∗ | κ′2 : (a(X) �

Q)∗]. Assume M1 → M ′
1 and M2 → M ′

2 are derived by applying rule (R.Fw) with
configurations κ1 : a〈P 〉∗ | κ2 : (a(X) � Q)∗, and κ′1 : a〈P 〉∗ | κ′2 : (a(X) � Q)∗,
respectively, followed by rule (R.Ctx). Then M ′

1 ≡ M ′
2.

Proof. By induction on the form of E1, and case analysis on the form of κ1 and
κ2. �

We can now come back to the notion of consistent configuration. As
we already said, consistent configurations are the ones which make sense
for us. However, Definition 1 is difficult to work with. To simplify the
following development, we define below well-formed configurations, which are
configurations that enjoy various structural properties useful for proving our
results. Then, we show that consistent configurations are well formed, thus
when working with consistent configurations we can exploit these properties.
Note that not all the well-formed configurations are consistent.
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Definition 3 (Well-formed configuration).
Let M ≡ νũ.

∏
i∈I(κi : ρi) | ∏

j∈J [μj; kj], with ρi = 0 or ρi a primitive
thread process, μj = δj : Rj | γj : Tj, Rj = aj〈Pj〉, Tj = aj(Xj) � Qj be
a configuration. Let K be the multiset containing all the tags κi for i ∈ I,
δj, γj for j ∈ J . M is said to be well formed if the following conditions are
met:

1. K is a set (i.e., all the elements in K are distinct)

2. For each j ∈ J , kj 
= δj and kj 
= γj
3. For all j1, j2 ∈ J , j1 
= j2 =⇒ kj1 
= kj2
4. For each complex tag 〈h, h̃〉 · k ∈ K:

• for each hl ∈ h̃ there is 〈hl, h̃〉 · k ∈ K

• k /∈ K

• for each h̃ 
= h̃′ and for each h′
l, 〈h′

l, h̃
′〉 · k /∈ K

5. For each j ∈ J , there exist E ⊆ I, D ⊆ J \{j}, G ⊆ J \{j}, such that:

νũ. kj : Qj{Pj/Xj
} ≡ νũ.

∏
e∈E

κe : ρe |
∏
d∈D

δd : Rd |
∏
g∈G

γg : Tg

Roughly, well-formed configurations enjoy two properties: (i) uniqueness
of tags (conditions 1 to 4) and (ii) that for each memory [μ; k] there are pro-
cesses corresponding to the continuation of μ in the configuration (condition
5). In more detail, condition 1 ensures that processes (inside or outside mem-
ory) have unique tags. Condition 2 ensures that the thread tag of a memory
never occurs in its own configuration part. Condition 3 states that all thread
tags of memories are distinct. Condition 4 ensures that if a process (inside or
outside memory) has a complex tag 〈h, h̃〉 · k then there are processes tagged
with all the tags 〈hl, h̃〉 · k with hl ∈ h̃, and that no process is tagged by k or
by a different complex tag with the same suffix key k. Condition 5 is the most
tricky one. It requires that for each memory [δj : aj〈Pj〉 | γj : aj(Xj) �Qj; kj]
there are threads in the configuration (indexed by i ∈ I or j ∈ J) whose
composition gives the continuation νũ. kj : Qj{Pj/Xj

}. Note that there are
only two possibilities: either the continuation is a unique thread tagged with
key kj, or it has been split into many threads by one application of rule
E.TagP. In this second case, these threads have complex tags having kj
as a suffix. In both the cases, each thread may be either at top level, or
inside the configuration part of another memory (as participant to another
communication).

13



To better understand well formedness let us consider a few examples:

k1 : a〈0〉 | [(k1 : a〈0〉) | (k2 : a(X) � b〈0〉); k] (1)

k : a〈0〉 | [(k1 : a〈0〉) | (k2 : a(X) � b〈0〉); k] (2)

k : a〈0〉 | [(k1 : a〈0〉) | (k2 : a(X) � a〈X〉); k] (3)

(〈h1, h̃〉 · k : a〈0〉) | (k : b〈0〉) (4)

Configuration (1) is not well formed since it violates condition 1 on key k1
and condition 5 on the memory. Indeed, the unique thread with a tag with
suffix k, k : a〈0〉, is not structural congruent to the continuation of the
memory, k : b〈0〉. Configuration (2) is not well formed because it violates
condition 5. Configuration (3) is well formed since all the tags are unique
and k : a〈X〉{0/X} ≡ k : a〈0〉. In this case the continuation of the memory is
a unique top-level thread tagged with k. Configuration (4) is not well formed
since it violates condition 4. Note that well formedness is a global property,
so the composition of well-formed configurations may be a non well-formed
configuration, and subterms of well-formed configurations may not be well
formed.

We can now show that consistent configurations are well formed.

Lemma 3. Each consistent configuration M is well formed

Proof. See Appendix A.1. �

Remark 6. The presented semantics and machinery for reversing HOπ can be

easily adapted to define reversibility in first order π-calculus. In general, the com-

bination of memories and identifiers should be enough to define reversibility in

calculi with implicit substitutions. Indeed, the structure of memories strongly de-

pends on the fact that substitution is not a bijective, hence reversible, function:

the only way to reverse a substitution is to record additional information to recover

the exact form of the process before the substitution was applied. Actually, to ap-

ply our approach to calculi without substitutions, such as CCS, simpler memories

would be enough.

2.4. Basic properties of reduction in rhoπ

In this section we show two main properties of rhoπ: (i) that rhoπ is a
conservative extension of HOπ, and (ii) that each rhoπ reduction step can
indeed be reversed.

14



We first recall HOπ syntax and semantics. The syntax of HOπ processes
coincides with the syntax of rhoπ processes in Figure 1 (but HOπ has no
concept of configuration). HOπ structural congruence, denoted ≡π, is the
least congruence generated by rules in Figure 2 (restricted to processes) but
E.TagN and E.TagP. Evaluation contexts in HOπ are given by the follow-
ing grammar:

E ::= · | (P | E) | νu.E

HOπ reduction relation →π is the least binary relation on closed processes
closed under HOπ structural congruence and HOπ evaluation contexts de-
fined by the rule:

(HO.Red) a〈P 〉 | a(X) � Q →π Q{P/X}

In order to show (i) we define the erasing function γ : C → P , which maps a
rhoπ configuration to its underlying HOπ process.

Definition 4 (Erasing function). The erasing function γ : C → P is de-
fined inductively by the following clauses:

γ(0) = 0 γ(νa.M) = νa. γ(M) γ(νk.M) = γ(M)

γ(M | N) = γ(M) | γ(N) γ(κ : P ) = P γ([μ; k]) = 0

Let us note that γ directly deletes the creation of new keys (νk) since they
have no meaning in HOπ (they are not names). Moreover it deletes all the
extra machinery (tags and memories) used to reverse HOπ.

Lemma 4 below shows that rhoπ forward computations are indeed deco-
rations on HOπ reductions.

Lemma 4. For all closed configurations M,N , if M � N then γ(M) →π

γ(N)

Proof. See Appendix A.2. �

We can prove a converse of Lemma 4. More precisely, Lemma 5 shows
that for each HOπ process R, each HOπ reduction R →π S and each rhoπ
configuration M such that γ(M) = R we have a forward reduction in rhoπ
corresponding to R →π S.
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Lemma 5. For all closed HOπ processes R, S if R →π S then for all closed
configurations M such that γ(M) = R there is N such that M � N and
γ(N) = S.

Proof. See Appendix A.2.

Remark 7. A canonical way of lifting a closed HOπ process P to a closed well-
formed configuration in rhoπ is by defining δ(P ) = νk. k : P . As a corollary of
Lemma 4 we have:

Corollary 1. For each closed HOπ process P , if δ(P ) � N then P →π γ(N).

We now prove the Loop Lemma, which shows that forward and backward
reductions in rhoπ are really the inverse of each other.

Lemma 6 (Loop Lemma). For all closed well-formed configurations M,N
if M � N then N � M , and if M � N then N � M .

Proof. Let us start from the first implication. From Lemma 38 (see Ap-
pendix A.1) we have M ≡ M ′ and N ′ ≡ N with M ′ = νũ. κ1 : a〈P 〉 |
κ2 : a(X) � Q | ∏

i∈I κi : ρi | ∏
j∈J [μj; kj] and N ′ = νũ, k. k : Q{P/

X} | [κ1 : a〈P 〉 | κ2 : a(X) � Q; k] | ∏
i∈I κi : ρi | ∏

j∈J [μj; kj]. Then by
applying rules (R.Bw), (R.Ctx) and (R.Eqv) we have N � M , as desired.

For the other direction from Lemma 39 (see Appendix A.1) we have M ≡
M ′ with M ′ = νũ, k. k : R | [κ1 : a〈P 〉 | κ2 : a(X) � Q; k] | ∏

i∈I κi : ρi |∏
j∈J [μj; kj] and νũ. κ1 : a〈P 〉 | κ2 : a(X) � Q | ∏i∈I κi : ρi | ∏j∈J [μj; kj] ≡ N .

Since M is a well-formed configuration and well formedness is preserved by
structural congruence also M ′ is well formed. From well formedness we know
that k : R is the only thread tagged by k and that νũ, k. k : R ≡ νũ, k. k :
Q{P/X}. Then the result follows by applying rules (R.Fw), (R.Ctx) and
(R.Eqv). �

An easy induction on the length n of the sequence of reductions M ⇒ N
shows that:

Corollary 2. For all closed well-formed configurations M,N if M ⇒ N
then N ⇒ M .
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2.5. Contextual equivalence in rhoπ

We discuss now different notions of contextual equivalence for rhoπ. The
main aim of this discussion is to find a contextual equivalence suitable for
proving the correctness of our encoding of rhoπ into a variant of higher-
order π presented in Section 4. To better justify our choice, we consider and
compare different possible notions.

Barbed congruence. We can classically complement the operational semantics
of the rhoπ calculus with the definition of a contextual equivalence between
configurations, which takes the form of a barbed congruence. We first define
observables in configurations. We say that name a is observable in configu-
ration M , noted M ↓a, if M ≡ νũ. (κ : a〈P 〉) | N , with a 
∈ ũ. Note that
keys are not observable: this is because they are just an internal device used
to support reversibility. We write MR ↓a, where R is a binary relation on
configurations, if there exists N such that MRN and N ↓a. The following
definitions are classical:

Definition 5 (Barbed bisimulation and congruence). A relation R ⊆
C• ×C• on closed configurations is a strong (resp. weak) barbed simulation if
whenever M RN

• M ↓a implies N ↓a (resp. N ⇒↓a)
• M → M ′ implies N → N ′, with M ′RN ′ (resp. N ⇒ N ′ with M ′RN ′)

A relation R ⊆ C• ×C• is a strong (resp. weak) barbed bisimulation if R and
R−1 are strong (resp. weak) barbed simulations. We call strong (resp. weak)
barbed bisimilarity and write ∼ (resp. ≈) the largest strong (resp. weak)
barbed bisimulation. The largest congruence (with respect to configuration
contexts) included in ∼ (resp. ≈) is called strong (resp. weak) barbed con-
gruence and is denoted ∼c (resp. ≈c).

A direct consequence of the Loop Lemma is that each closed consistent
configuration M is weakly barbed congruent to any of its descendants or
predecessors.

Lemma 7. For all closed consistent configurations M,N , if M ⇒ N , then
M ≈c N .
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Proof. We show that the relation

R = {(E[M ],E[N ]) | M ⇒ N,E is a configuration context}

is a weak barbed bisimulation. Since R is symmetric by the corollary of the
Loop Lemma (Corollary 2), we only need to show that it is a weak barbed
simulation. Consider a pair (E[M ],E[N ]) ∈ R. We have M ⇒ N , and hence
by Corollary 2 N ⇒ M . Since a configuration context E is an evaluation
context, i.e. if M → N then E[M ] → E[N ], then we also have E[N ] ⇒ E[M ].
We now check easily the two barbed simulation clauses:

• if E[M ] ↓a, then E[N ] ⇒ E[M ] ↓a, and hence E[N ] ⇒↓a as required.

• if E[M ] → M ′, then E[N ] ⇒ E[M ] → M ′, and hence E[N ] ⇒ M ′, as
required.

Since R is a congruence by construction the thesis follows. �

Lemma 7 shows that weak barbed congruence is not very discriminative
among configurations: if N is derived from M then M ≈c N . Weak barbed
bisimilarity is even less discriminative: a configuration M is weak barbed
bisimilar to a dummy configuration that shows directly all the possible barbs
of M .

Lemma 8. For each closed consistent configuration M let S be the set of
weak barbs of M . Then M ≈ MD =

∏
a∈S(ka : a〈0〉).

Proof. Let R = {(N,MD) | M ⇒ N,MD =
∏

a∈S(ka : a〈0〉)}. We show
thatR is a weak barbed bisimulation. All the challenges from N are matched
byMD by staying idle, since it has by construction all the required barbs. MD

performs no actions to be matched. Let a be a barb of MD. By construction
a is a weak barb of M , and also of N since N ⇒ M by Corollary 2. �

As shown by the results above, weak barbed bisimilarity and congruence
are not very discriminative. Thus, the correctness result for the encoding of
rhoπ into a variant of higher-order π presented in [16], based on weak barbed
bisimilarity, is weak. In order to improve it, we look for more discrimina-
tive equivalences, in particular to equivalences able to distinguish between
backward and forward reductions.
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Back and Forth Bisimulations. Notions of back and forth bisimulation, re-
quiring essentially that forward moves are matched by forward moves and
backward moves by backward moves, have already been studied in the lit-
erature (see [25, 26, 14, 27]). However, those works consider only strong
equivalences, and use backward actions as an auxiliary tool to better under-
stand forward calculi, while we are interested in reversible calculi. The reason
why backward actions are useful to understand forward calculi is that back
and forth bisimulations can distinguish true concurrency aspects of forward
calculi while other equivalences such as classical strong bisimulation cannot.
For example, the two (CCS) processes:

P = a | b Q = a.b+ b.a

are strongly bisimilar, but they are not back and forth bisimilar. Suppose
that P performs the computation ab and then it undoes a. This computation
cannot be matched by Q: if Q does the computation ab (left part of the
choice) then it cannot undo a before b, since b causally depends on a.

The definition of back and forth bisimulation for rhoπ is the following
one.

Definition 6 (Bf barbed bisimulation and congruence).
A relation R ⊆ C• × C• on closed configurations is a back and forth barbed
simulation (or bf barbed simulation for brevity) if whenever M RN

• M ↓a implies N ↓a
• M � M ′ implies N � N ′, with M ′RN ′

• M � M ′ implies N � N ′, with M ′RN ′

A relation R ⊆ C• × C• is a bf barbed bisimulation if R and R−1 are bf
barbed simulations. We call bf barbed bisimilarity, denoted by

·∼, the largest
bf barbed bisimulation. The largest congruence included in

·∼ is called bf
barbed congruence and is denoted by

·∼c.

Bf barbed bisimilarity is more discriminative than strong barbed bisimilarity
(Definition 5), since it is able to distinguish the direction of reductions. In
fact, one forward (backward) step has to be matched by one forward (back-
ward) step. The same for congruences. Formally,

·∼⊆∼ and
·∼c⊆∼c. We

show below that both the inclusions are strict.
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Let us start from barbed bisimilarities. Consider:

M = νk1, k2. (k1 : a〈0〉) | (k2 : a(X) � b〈0〉)
N = νk1, k2, k. [(k1 : b〈0〉) | (k2 : b(X) � a〈0〉); k] | k : a〈0〉

Both the configurations have a barb at a, a reduction to a configuration with
a barb at b and its inverse, and no other reduction nor barb, thus M ∼ N .
However, the reduction creating the barb at b is forward in M and backward
in N , thus M 
 ·∼ N .

For congruences, consider:

M = νk1, k2, a, b. (k1 : a〈0〉) | (k2 : a(X) � b〈0〉)
N = νk1, k2, k, a, b. [(k1 : a〈0〉) | (k2 : a(X) � b〈0〉); k] | k : b〈0〉

The two configurations have no barbs, and they cannot interact with their
contexts. Thus M ∼c N , since they can both do infinitely many steps, by
doing and undoing the same action. However M 
 ·∼c N , since M can perform
a forward step while N cannot.

Back and forth barbed bisimilarity and congruence are useful equivalences
to reason on reversible calculi, but they are too discriminative for our aim.
Indeed, the encoding of rhoπ relies on some auxiliary steps for managing
bookkeeping information, which have no correspondence in the original rhoπ
computation, and are used both together with forward steps and together
with backward steps. We call such steps administrative reductions.

Thus, we adapt back and forth bisimulation by defining an ad-hoc notion
of behavioral equivalence, called backward, forward and administrative bisim-
ulation (bfa bisimulation for short) allowing also administrative reductions.
While we think that such a notion is useful for reasoning on our encoding, we
do not claim that it is a good candidate to become a canonical equivalence
on reversible calculi. Indeed, when used to relate processes of calculi with
no administrative reductions, e.g. two rhoπ processes, then bfa bisimilarity
coincides with bf bisimilarity.

In order to formally define bfa bisimulation we need to introduce ad-
ministrative reductions. We consider calculi allowing forward, backward and
administrative reductions. We write ↪→ to denote an administrative step, and
↪→∗ for its reflexive and transitive closure. From now on, → is � ∪ � ∪ ↪→
(⇒ is updated accordingly). Note that in rhoπ relation ↪→ is empty.
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Definition 7 (Bfa barbed bisimulation and congruence).
A relation R ⊆ C• × C• on closed configurations is a backward, forward
and administrative barbed simulation (or bfa barbed simulation for brevity)
if whenever M RN

• M ↓a implies N ↪→∗↓a
• M � M ′ implies N ↪→∗�↪→∗ N ′ with M ′RN ′

• M � M ′ implies N ↪→∗�↪→∗ N ′ with M ′RN ′

• M ↪→ M ′ implies N ↪→∗ N ′ with M ′RN ′

A relation R ⊆ C• ×C• is a bfa barbed bisimulation if R and R−1 are bfa

barbed simulations. We call bfa barbed bisimilarity, denoted by
·≈, the largest

bfa barbed bisimulation. The largest congruence included in
·≈ is called bfa

barbed congruence and is denoted by
·≈c.

Bfa barbed bisimulation requires to match forward reductions with for-
ward reductions, and backward reductions with backward reductions, thus
showing that the encoding correctly preserves the behavior of rhoπ processes,
but allows the execution of administrative steps at any moment. Note that
when comparing rhoπ processes, bf barbed bisimilarity and bfa barbed bisim-

ilarity coincide, that is
·≈ =

·∼.

From the definitions, it is clear that
·≈⊆≈, and

·≈c⊆≈c, i.e., bfa barbed
bisimilarity and congruence are more discriminative than weak barbed bisim-
ilarity and congruence. We show below that both the inclusions are strict.

Let us start from bfa barbed bisimilarity. We can use the same counterex-
ample used to distinguish between bf barbed bisimilarity and strong barbed
bisimilarity:

M = νk1, k2. (k1 : a〈0〉) | (k2 : a(X) � b〈0〉)
N = νk1, k2, k. [(k1 : b〈0〉) | (k2 : b(X) � a〈0〉); k] | k : a〈0〉

Both the configurations have a barb at a, a reduction to a configuration with
a barb at b and its inverse, and no other reduction nor barb, thus M ≈ N .
However, the reduction creating the barb at b is forward in M and backward

in N , thus M 
 ·≈ N .
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Let us consider now congruences. Consider the following configurations:

M = νk1, k2, k3. (k1 : a〈0〉) | (k2 : a(X) � b〈0〉) | (k3 : a(X) � c〈0〉)
N = νk1, k2, k3, k4. (k4 : b〈0〉) | (k3 : a(X) � c〈0〉) |

[(k1 : a〈0〉) | (k2 : a(X) � b〈0〉); k4]
M ′ = νk1, k2, k3, k5. (k5 : c〈0〉) | (k2 : a(X) � b〈0〉) |

[(k1 : a〈0〉) | (k3 : a(X) � c〈0〉); k5]

Since M � N by Lemma 7 M ≈c N , but M 
 ·≈ N and hence M 
 ·≈c N . To
prove this last part, assume that there exists a bfa barbed bisimulation R
between M and N , i.e. such that (M,N) ∈ R. We have M � M ′, and we
have no N ′ such that N � N ′ nor N ↪→ N ′, thus the reduction cannot be
matched.

3. Causality in rhoπ

We now proceed to the analysis of causality in rhoπ. We first show that
reversibility in rhoπ is causally consistent. We then show that the causal-
ity information in rhoπ is at least as fine as the causality information from
Boreale and Sangiorgi’s causal semantics [21].

3.1. Causal consistency

In order to prove causal consistency, we mostly adapt the terminology
and arguments of [12].

We call transition a triplet of the form M
m�−−→ M ′, or M m�−−→ M ′, where

M,M ′ are closed consistent configurations, M → M ′, and m is the memory
involved in the reduction M → M ′. We say that a memory m is involved
in a forward reduction M � M ′ if M ≡ E[κ1 : a〈P 〉 | κ2 : a(X) � Q],
M ′ ≡ E[νk. (k : Q{P/X}) | m], and m = [κ1 : a〈P 〉 | κ2 : a(X) �Q; k]. In this
case, the transition involving m is denoted by M

m�−−→ M ′. Likewise, we say
that a memory m = [N ; k] is involved in a backward reduction M � M ′ if
M ≡ E[(k : Q) | m], M ′ ≡ E[N ]. In this case, the transition involving m is
denoted by M

m�−−→ M ′. We let η and its decorated variants range over labels
m� and m�. If η = m�, we set η• = m� and vice versa. In a transition
M

η−→ N , we say that M is the source of the transition, N is its target, and
η is its label (of the form m� or m�, where m is some memory).
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Definition 8 (Name-preserving transitions). We say a transition t is
name preserving if:

• t is derived without using α-conversion;

• if t creates a new memory, the thread tag of the memory is chosen using
a fixed function from the tags of the interacting threads;

• if t is derived using rule E.TagP from left to right, the new keys are
generated and assigned to threads using a fixed function.

Intuitively, name-preserving transitions ensure that a given tag is always
attached to the same process. In particular, if a memory is generated with
thread tag k by a forward name-preserving transition involving threads with
tags κ1 and κ2, removed by a backward name-preserving transition, and
re-generated by a forward name-preserving transition involving again the
threads with tags κ1 and κ2, its memory tag is again k. Similarly, if a pro-
cess is split using rule E.TagP, the generated threads are recollected and
then split again, each thread preserves its tag. In the rest of this section we
only consider name-preserving transitions and “transition” used in a defini-
tion, lemma or theorem, stands for “name-preserving transition”. Note that
working with name-preserving transitions only is licit because of the deter-
minacy lemma (Lemma 2) and a corresponding result that can be proved for
backward transitions.

Two transitions are said to be coinitial if they have the same source,
cofinal if they have the same target, composable if the target of the first one
is the source of the other. A sequence of pairwise composable transitions is
called a trace. We let t and its decorated variants range over transitions, σ
and its decorated variants range over traces. Notions of target, source and
composability extend naturally to traces. We note εM the empty trace with
source M , σ1; σ2 the composition of two composable traces σ1 and σ2. The
stamp λ(m�) of a memory m = [κ1 : a〈P 〉 | κ2 : a(X) �Q; k] is defined to be
the set {κ1, κ2, k}; we set λ(m�) = λ(m�).

Definition 9 (Concurrent transitions). Two coinitial transitions t1 =

M
η1−→ M1 and t2 = M

η2−→ M2 are said to be in conflict if at least one
of the following conditions holds:

• there is a tag κ such that κ ∈ λ(η1) and κ ∈ λ(η2),
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• there is a tag κ ∈ λ(η1) which is a key k and there is a complex tag
with suffix k in λ(η2), or the symmetric, swapping η1 and η2.

Two coinitial transitions are concurrent if they are not in conflict.

Remark 8. Note that the stamp of a memory [M ; k] includes its tag k. This is
necessary to take into account possible conflicts between a forward action and a
backward action, as in the following example. The configuration

M = νl, k, h. (k : a〈P 〉) | [N ; k] | (h : a(X) � Q)

has two possible transitions t = M
m�−−→ νl, k, h.N | (h : a(X) � Q), where m =

[N ; k], and t′ = M
m′�−−→ νl, k, h. [N ; k] | m′ | l : Q{P /X}, where m′ = [(k : a〈P 〉) |

(h : a(X) � Q); l]. The two transitions t and t′ are in conflict over the use of the
resource k : a〈P 〉.

Consider now the configuration

M = νl, k, h, h1, h2. (〈h1, h̃〉 · k : a〈P 〉) | (〈h2, h̃〉 · k : b〈0〉) | [N ; k] | (h : a(X) � Q)

where h̃ = {h1, h2}. Again we have a conflict, since the backward action involving

memory [N ; k] is in conflict with any forward action by descendants of k, even if

not all of them are involved.

The Loop Lemma ensures that each transition t = M
η−→ N has a reverse

one t• = N
η•−→ M . The above definition of concurrent transitions makes

sense:

Lemma 9 (Square lemma). If t1 = M
η1−→ M1 and t2 = M

η2−→ M2 are
two coinitial concurrent transitions, then there exist two cofinal transitions
t2/t1 = M1

η2−→ N and t1/t2 = M2
η1−→ N .

Proof. By case analysis on the form of transitions t1 and t2. See Appendix
B.1 for details. �

We are now in a position to show that reversibility in rhoπ is causally
consistent. Following Lévy [28] we define first the notion of causal equivalence
between traces that abstracts away from the order of causally independent
transitions. We define � as the least equivalence relation between traces
closed under composition that obeys the following rules:

t1; t2/t1 � t2; t1/t2 t; t• � εsource(t) t•; t � εtarget(t)
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Intuitively � states that if we have two concurrent transitions, then the
two traces obtained by swapping the order of their execution are the same,
and that a trace composed by a transition followed by its inverse is equivalent
to the empty one.

The proof of causal consistency proceeds along the exact same lines as
in [12], with simpler arguments because of the simpler form of our memory
stamps.

Lemma 10 (Rearranging Lemma). Let σ be a trace. There exist forward
traces σ′ and σ′′ such that σ � σ′

•; σ
′′.

Proof. The proof is in Appendix B.1. �

Lemma 11 (Shortening Lemma). Let σ1, σ2 be coinitial and cofinal tra-
ces, with σ2 forward. Then, there exists a forward trace σ′

1 of length at most
that of σ1 such that σ′

1 � σ1.

Proof. The proof is in Appendix B.1. �

Theorem 1 (Causal consistency). Let σ1 and σ2 be coinitial traces, then
σ1 � σ2 if and only if σ1 and σ2 are cofinal.

Proof. The proof is in Appendix B.1. �

3.2. Causality in rhoπ and in the causal higher-order π-calculus

From what precedes, it should be clear that the core of the reversibility
machinery in rhoπ is the causality information built during execution. The
question therefore arises of the relationship between this notion of causality
and the one found in several studies on the causal semantics of the π-calculus,
e.g. [21, 29, 30, 31]. In this section we limit ourselves to the study of the
relationship between the causality information used in rhoπ and that used by
Boreale and Sangiorgi in their analysis of causality for the π-calculus [21].

For a meaningful comparison, we first adapt the causality apparatus from
that paper to the asynchronous higher-order π-calculus. We call “causal
higher-order π” (choπ for short) the resulting calculus. Processes of choπ
coincide with the processes of rhoπ (see Figure 1). Following [21], causal
processes in choπ, ranged over by A,B, are processes decorated with causality
information, defined by the following grammar:

A ::= K :: A | A | A | νa. A | P
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(E-par) K :: A | B ≡ K :: A | K :: B (E-cau) K1 :: K2 :: A ≡ K1 ∪K2 :: A

(E-res) K :: νa.A ≡ νa.K :: A (E-void) ∅ :: A ≡ A (E-nil) K :: 0 ≡ 0

Figure 4: Structural congruence for choπ

where K ranges over finite sets of keys, i.e. K ⊆fin K. Informally, a causal
process K :: P identifies the set of causes K that gave rise to process P .

We denote by k(A) the set of keys of a causal process A.
We define a reduction semantics5 for choπ (see Appendix B.2 for a com-

parison between this reduction semantics and a labelled transition system
semantics directly adapted from [21]), via a reduction relation that oper-
ates modulo structural congruence. The structural congruence relation ≡ is
the least congruence relation on causal processes that obeys the structural
congruence rules on HOπ processes given in Figure 2 and the rules in Fig-
ure 4. The reduction relation → is the least binary relation on closed causal
processes that is closed under structural congruence and evaluation contexts
defined by the rule:

(C-red) K1 :: a〈P 〉 | K2 :: a(X) � Q → K1 ∪K2 :: Q{P/X}

Evaluation contexts for causal processes are given by the following grammar:

E ::= • | A | E | νa.E

As for rhoπ, we can inductively define a function γ that erases the causal-
ity information from a causal process to get a standard HOπ process via the
following clauses:

γ(P ) = P γ(νa. A) = νa. γ(A)

γ(A | B) = γ(A) | γ(B) γ(K :: A) = γ(A)

We can now present the relationship between causal information in causal
processes and in rhoπ configurations. This relationship takes the form of a

5Moving from the labelled semantics considered in [21] to the reduction semantics
considered here makes part of the causal dependences considered in [21], the so called
object dependences, unobservable.
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bisimulation which we call causal correspondence. Informally, causal corre-
spondence asserts that, during execution, a causal process and its “corre-
sponding” rhoπ process ascribe the same causes to the same sub-processes.

We first define causal barbs on causal processes and rhoπ configurations.
For causal processes, a causal barb K :: a corresponds to the ability to

communicate on a channel a due to causes in K. More precisely:

Definition 10 (Causal barbs for causal processes). A choπ causal pro-
cess A has a causal barb K :: a, noted A ↓K::a, if and only if A ≡ νc̃.K ::
a〈P 〉 | B, with a 
∈ c̃, for some c̃, P, B. A choπ causal process A has a causal
barb K :: a, noted A ↓K::a, if and only if A ≡ νc̃.K :: a(X) � P | B, with
a 
∈ c̃, for some c̃, P, B.

For configurations, the notion of causal barb depends on a causality de-
pendence relation between tags.

Definition 11 (Causal dependence). Let M be a configuration and let
TM be the set of tags occurring in M . The binary relation <M on TM is
defined as the smallest relation satisfying the following clauses:

• 〈hi, h̃〉 · k <M k;

• k <M κ1 and k <M κ2 if [κ1 : a〈P 〉 | κ2 : a(X) � Q; k] occurs in M .

The causal dependence relation <:M is the reflexive and transitive closure of
<M .

κ <:M κ′ reads “κ is a causal descendant of κ′ according to M”. When
configuration M is clear from the context, we write κ <: κ′ for κ <:M κ′.
When K is a set of keys, we write κ <: K if for all h ∈ K, we have κ <: h.
We denote by fk(M) the set of free keys of a configuration M . Note that
fk(M) ⊆ fn(M).

Definition 12 (Causal barbs for configurations). A rhoπ configuration
M has a causal barb K :: a where K ⊆ fk(M), noted M ↓K::a, if and only
if M ≡ νũ. (κ : a〈P 〉) | N , with a 
∈ ũ and κ <: K. Likewise, M ↓K::a where
K ⊆ fk(M), if and only if M ≡ νũ. (κ : a(X) � P ) | N , with a 
∈ ũ and
κ <: K.
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Definition 13 (Causal correspondence). A relation R is a causal cor-
respondence between rhoπ configurations and choπ causal processes if the
following condition holds: if 〈M,A〉 ∈ R, then

1. γ(M) ≡ γ(A) and fk(M) = k(A);

2. if M ↓K::α, then there exists K ′ such that K ⊆ K ′ and A ↓K′::α;

3. if M � N , then there exists B such that A → B and 〈N,B〉 ∈ R.

4. if A ↓K::α, then M ↓K::α;

5. if A → B, then there exists N such that M � N and 〈N,B〉 ∈ R;

A configuration M and a causal process A are said to be in causal correspon-
dence if there exists a causal correspondence R such that 〈M,A〉 ∈ R.

A rhoπ configuration M can be mapped to a choπ causal process by
applying to it the syntactic transformation χM that replaces configurations
k : P in M with causal processes K :: P , where K includes all k′ ∈ fk(M)
such that k <:M k′. χM is defined inductively as follows:

χM(0) = 0 χM(κ : P ) = {k′ ∈ fk(M) | κ <:M k′} :: P

χM(νa.N) = νa. χM(N) χM(N1 | N2) = χM(N1) | χM(N2)

χM(νk.N) = χM(N)

We can now state our causal correspondence theorem:

Theorem 2. Let M be a rhoπ configuration. Then M and χM(M) are in
causal correspondence.

Proof. The proof shows that the relation

R = {〈M,χM(M)〉 | M is consistent}

is a causal correspondence. Let us consider the different conditions:

1. by construction;

2. by definition M ↓K::α means that there is a trigger or a message in M
with key κ such that κ <:M K with K ⊆ fk(M). From the definition of
χM , the trigger or the message are mapped to a corresponding trigger
or message with set of causes K ′ ⊇ K, thus A ↓K′::α as required;
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3. from Lemma 38 (see Appendix A.1), we have

M ≡ νã, h̃. κ1 : a〈P 〉 | κ2 : a(X) � Q |
∏
i∈I

κi : ρi |
∏
j∈J

[μj; kj] �

νã, h̃, k. k : Q{P/X} | [κ1 : a〈P 〉 | κ2 : a(X) � Q; k] |∏
i∈I

κi : ρi |
∏
j∈J

[μj; kj] ≡ N

By definition, we have:
χM(M) ≡ νã.K1 :: a〈P 〉 | K2 :: a(X) � Q | ∏i∈I Ki :: ρi
χN(N) ≡ νã, k.K :: Q{P/X} | ∏i∈I Ki : ρi
To conclude we need to show that K = K1 ∪K2. We have:
K = {k′ ∈ fk(N) | k <:N k′}
K1 = {k′ ∈ fk(M) | κ1 <:M k′}
K2 = {k′ ∈ fk(M) | κ2 <:M k′}
Note that fk(N) = fk(M). Also, thanks to the memory [κ1 : a〈P 〉 |
κ2 : a(X) � Q; k], the fact that k is bound and the properties of keys
we have k <:N k′ iff κ1 <:M k′ or κ2 <:M k′;

4. similar to item 2;
5. similar to item 3. �

4. Encoding rhoπ in HOπ

This section shows that rhoπ can be encoded in a variant of HOπ, which
we call HOπ+, that allows the use of bi-adic channels, join patterns [32,
33], sub-addressing, abstractions and applications. This particular variant
was chosen for convenience, because it simplifies our encoding. All HOπ+

constructs are well understood in terms of expressive power with respect to
HOπ (see [34, 35] for abstractions in π-calculus).

The encoding presented here is slightly different from the one presented
in [16], in order to obtain a finer correspondence result. Indeed [16] shows
that a rhoπ configuration and its translation are weak barbed bisimilar. Such
result allows us to encode reversibility in an already existing calculus, with-
out introducing any new ad-hoc primitive. Even if the result is quite sur-
prising, because of the coarseness of weak barbed bisimilarity (as emerged in
Section 2.5), it does not establish a strong enough correspondence between
rhoπ and its encoding. Therefore, here we base our results on a more dis-
criminative equivalence, bfa barbed bisimilarity, able to distinguish forward
reductions from backward ones.
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P,Q ::= 0 | X | νu. P | (P | Q) | u〈F, v〉 | J � P | (F V )

F ::= (u)P | (X)P | (u)F | (X)F

V ::= u | F

J ::= u(X, v) | u(X, \v) | J | J
u, v ∈ I ∪ {�}

Figure 5: Syntax of HOπ+

The remainder of the section is organized as follows: first we introduce
the syntax and the semantics of HOπ+, then we introduce our encoding and
show that a rhoπ consistent configuration M and its translation in HOπ+

are bfa barbed bisimilar. To ease the reading of the section, some proofs and
auxiliary results are reported in Appendix C.

4.1. HOπ+

The syntax of HOπ+ is given in Figure 5. Channels in HOπ+ are bi-adic in
the sense that they carry pairs of the form F, v, that is an abstraction F and a
name v. A trigger always receives a message F,w on a given channel u, but it
can pose the additional constraint that the name w indeed coincides with the
name v in the trigger (sub-addressing). The trigger prefix is written u(X, v)
if it poses no constraint on w, u(X, \v) otherwise. Actually triggers use Join
patterns, i.e. they specify a set of messages that are read atomically. Join
patterns are linear, i.e. all the names of the channels from which messages
are read are distinct. HOπ+ supports abstractions over names (u)P and over
process variables (X)P , and applications (F V ), where a value V can be a
name or an abstraction. We take the set of names of HOπ+ to be the set
I ∪ {�} where I is the set of rhoπ identifiers (I = N ∪ K). Thus both rhoπ
names and rhoπ keys are names in HOπ+. The set of (process) variables of
HOπ+ is taken to coincide with the set V of variables of rhoπ. Moreover we
let B to range over processes P and abstractions F .

The structural congruence for HOπ+, denoted by ≡, obeys the same rules
as those of rhoπ processes (see Figure 2), except for the rules E.TagN and
E.TagP, which are specific to rhoπ. Evaluation contexts in HOπ+, as in
HOπ, are given by the following grammar:

E ::= · | (P | E) | νu.E
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(Red)

match(Fi, Xi) = θ′i match(vi, ψi) = θi(
n∏

i=1

ui〈Fi, vi〉
)
|
(Å n∏

i=1

ui(Xi, ψi)
ã
� P

)
→ Pθ′1 . . . θ

′
nθ1 . . . θn

(App)

match(V, ψ) = θ

((ψ)B V ) → Bθ

Figure 6: Reduction rules for HOπ+

The reduction relation for HOπ+, also denoted by →, is defined as the least
relation on closed processes closed under HOπ+ structural congruence and
HOπ+ evaluation contexts that satisfies the rules in Figure 6, where ψ is
either a name v, a process variable X or an escaped name \u. The function
match in Figure 6 is the partial function which is defined in the cases given
by the clauses below, and undefined otherwise:

match(u, v) = {u/v} match(u, \u) = {u/u} match(F,X) = {F/X}

Note that an escaped name \u will match just with name u. Rule Red is
a generalization (in the sense of join patterns) of the usual communication
rule for HOπ. If there are enough messages (left-hand side of the reduction
in the conclusion) satisfying a certain input process, then they are consumed
at once and the continuation of the input process is triggered with the nec-
essary substitutions. Rule App mimics the well known β-reduction of the
λ-calculus [36]. We use ⇒ to denote the reflexive and transitive closure of
→.

Remark 9. Even if HOπ+ allows the use of arbitrary join patterns, our
encoding will use just binary join patterns (and unary join patterns, i.e.
normal inputs).

Conventions. In writing HOπ+ terms, u〈v〉 abbreviates u〈(X)0, v〉, u abbre-
viates u〈(X)0, �〉 and u〈F 〉 abbreviates u〈F, �〉. Likewise, a(u) � P abbre-
viates a(X, u) � P , where X 
∈ fv(P ), a � P abbreviates a(X, �) � P , where
X 
∈ fv(P ), and a(X) � P abbreviates a(X, �) � P . We adopt the usual con-
ventions for writing applications and abstractions: (F V1 . . . Vn) stands for
(((F V1) . . .) Vn), and (X1 . . . Xn)F stands for (X1) . . . (Xn)F . When there
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�0� = Nil �X� = X

�a〈P 〉� = (l)(Msg a �P � l) �νa. P � = (l)νa. �P � l

�P | Q� = (l)(Par �P � �Q� l) if P,Q 
≡ 0 �P | 0� = �P �

�a(X) � P � = (l)(Trig ((X c)c〈�P �〉) a l) �0 | P � = �P �

Nil = (l)(l〈Nil〉 | (Rew l))

Msg = (a X l)a〈X, l〉 | (KillM a l)

KillM = (a l)(a(X, \l) � l〈(h)Msg aX h〉 | Rew l)
Par = (X Y l)νh, k.X h | Y k | (KillP h k l)

KillP = (h k l)(h(W ) | k(Z) � l〈(l)ParW Z l〉 | Rew l)
Trig = (Y a l)νt. t | (a(X, h) | t �f νk, c. (Y X c) | (c(Z) � (Z k)) |

(Mem Y a X h k l)) | (KillT Y t l a)

KillT = (Y t l a)(t � l〈(h)TrigY a h〉 | Rew l)
Mem = (Y a X h k l)k(Z) �b (Msg a X h) | (Trig Y a l)

Rew = (l)(l(Z) � Z l)

Figure 7: Encoding rhoπ processes

is no potential ambiguity, we often write F V for (F V ). When defining
HOπ+ processes, we freely use recursive definitions for these can be encoded
using, e.g., the Turing fixed point combinator Θ defined as Θ = (A A), where
A = (X F )(F (X X F )) (cf. [36, p. 132]).

In the rest of the paper we denote by PHOπ+ the set of HOπ+ processes,
by Crhoπ the set of rhoπ configurations and by Prhoπ the set of rhoπ processes.

4.2. Encoding of rhoπ

The encoding �·� : Prhoπ → PHOπ+ of processes of rhoπ in HOπ+ is defined
inductively in Figure 7. It extends to an encoding �·� : Crhoπ → PHOπ+

of configurations of rhoπ in HOπ+ as given in Figure 8. The encoding of
processes features two labelled triggers, �b and �f . They will be introduced
later on, in Definition 14. For now, they can be considered as normal triggers
�.

32



�0� = 0

�M | N� = �M� | �N�

�νu.M� = νu. �M�

�k : P � = (�P � k)

�〈hi, h̃〉 · k : P � = (�P � hi) | Kill〈hi,h̃〉·k
�[κ1 : a〈P 〉 | κ2 : a(X) � Q; k]� = (Mem ((X c)c〈�Q�〉) a �P � �κ1� k �κ2�) |

Killκ1 | Killκ2

�k� = k

�〈hi, h̃〉 · k� = hi

Kill〈hi,h̃〉·k =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

KillP h1 h2 k if i = 1, n = 2

νl̃. (KillP h1 l1 k) |
n−2∏
i=2

(KillP hi li li−1) |
(KillP hn−1 hn ln−2)

if i = 1, n > 2

0 if i 
= 1

where n is the size of h̃

Killk = 0

Figure 8: Encoding rhoπ configurations

We present below the two main ideas underlying the encoding of pro-
cesses, and then go deeper into its details. First, a tagged process l : P is
interpreted as a process equipped with a special channel l (we may refer to it
as its key channel) on which to send itself upon successful rollback. This in-
tuition leads to the encoding of a rhoπ process as an abstraction which takes
this rollback channel l (its own key) as a parameter. Second, each rhoπ pro-
cess translation generates also the process killer, that is a process in charge
of rolling it back. We have three kinds of such processes: KillM, KillT and
KillP, representing respectively the killer of a message, of a trigger and of a
parallel composition of processes.

As we already said, all the translations of rhoπ processes are abstractions
over a channel, and this channel is the tag of the process (or part of it in the
case of a complex tag, as we will see in the encoding of configurations). The
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null process 0 is translated as a message on the abstracted channel along with
a Rew process. This translation, as well as translations of other processes, is
by itself diverging. Consider the encoding of the rhoπ process l : 0:

l〈Nil〉 | (Rew l) → l〈Nil〉 | l(Z) � (Z l) → (Nil l) → l〈Nil〉 | (Rew l)

Divergence here could be avoided by removing the Rew process from the trans-
lation of 0, and considering it as just a message on its abstracted channel.
That is:

�0� = (l)l〈Nil〉
We stick however to the first translation to preserve the symmetry with
the translations of the other primitive processes (messages and triggers),
since this simplifies the statement of some invariants of our encoding. Also,
divergence here is not a relevant issue, since any reversible process which is
not stuck can always diverge.

The translation of a message k : a〈P 〉 after a few applications becomes a
process of the form:

a〈�P �, k〉 | (KillM a k)

consisting in a message on channel a carrying a pair (here we can see why we
use bi-adic channels) in parallel with its killer process. The message carries
the translation of the original message content P along with the abstracted
channel. Let us see how the message above can rollback by sending itself on
channel k.

Example 1 (Rollback of a message). Let us consider the tagged mes-
sage k : a〈P 〉. It can rollback as follows:

�k : a〈P 〉� = �a〈P 〉�k = (l)(Msg a �P � l)k ⇒ a〈�P �, k〉 | (KillM a k) ⇒
a〈�P �, k〉 | (a(X, \k) � k〈(h)Msg aX h〉 | Rew k) → k〈(h)Msg a �P �h〉 | Rew k
Since (h)Msg a �P �h = �a〈P 〉�, we have that k〈(h)Msg a �P �h〉 = k〈�a〈P 〉�〉.
Thus a message can rollback by sending itself on its key channel.

The abstracted channel k inside the message is needed to ensure that the
message will be rolled back only by its own KillM. Indeed, the process
(KillM a k) consumes a message on the channel a only if it carries the name
k. This is why the KillM process is an abstraction over two channels, and
explains the need of sub-addressing. The need for the Rew process will be
explained later on.
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The translation of a parallel composition is quite straightforward: two
new key channels are created and given to the translations of the two sub-
processes. A KillP process awaits on these two channels the rollback of the
two sub-processes, in order to notify its rollback by sending the entire parallel
process along its key channel. This is why we use binary join patterns (the
translation of triggers uses binary join patterns too).

Example 2 (Rollback of a parallel process). Let us consider the paral-
lel composition of two messages k : (a〈P 〉 | b〈Q〉). We have that

�k : (a〈P 〉 | b〈Q〉)� = (h)(Par �a〈P 〉� �b〈Q〉� h)k ⇒
νl, r. �a〈P 〉�l | �b〈Q〉�r | (l(W ) | r(Z) � k〈ParW Z k〉 | Rew k)

where l, r are, respectively, the left and the right process key. If both �a〈P 〉�l
and �b〈Q〉�r rollback (as shown in Example 1), that is

�a〈P 〉�l ⇒ l〈(h1)Msg a �P �h1〉 | Rew l
�b〈Q〉�r ⇒ r〈(h2)Msg b �Q�h2〉 | Rew r

we have that the parallel composition can rollback too:

l〈(h1)Msg a �P �h1〉 | Rew l | r〈(h2)Msg b �Q�h2〉 | Rew r |
(l(W ) | r(Z) � k〈(h)ParW Z h〉 | Rew k) →

k〈(h)Par ((h1)Msg a �P �h1) ((h2)Msg b �Q�h2)h〉 | Rew k | Rew l | Rew r

Note that (h1)Msg a �P �h1 = �a〈P 〉� and (h2)Msg b �Q�h2 = �b〈Q〉�, hence we
have k〈(h)Par ((h1)Msg a �P �h1) ((h2)Msg b �Q�h2)h〉 = k〈�a〈P 〉 | b〈Q〉�〉.

The translation of a trigger l : a(X) � Q is a process of the form:

νt. t |
Ä
a(X, h) | t �f νk, c. (Y X c) | (c(Z) � (Z k)) | (Mem Y a X h k l)

ä
|

(KillT Y t l a)

with Y = ((X c)c〈�Q�〉). Here, a token t is used as a lock. Indeed either
the trigger itself or its killer can acquire this lock and then execute, thus
leaving the other process blocked forever. The token allows us to avoid to
use primitives such as passivation (see [37, 38]) or mixed choice to kill input
processes. Since all the messages on channel a ∈ N are translated into bi-
adic messages, triggers are translated in order to read such messages. The
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continuation of a translated trigger mimics the rhoπ forward rule: it creates
a new key channel k, and it substitutes the process variable X with the
message content (which is an abstraction) in the trigger continuation. This
substitution is performed by the application (Y X c). A memory process
Mem is also created.

Example 3 (Encoding of a communication). Let us show how a com-
munication is mimicked by the encoding. Take a configuration M = k1 :
a〈P 〉 | k2 : a(X) � Q. We want to match the forward reduction M � νk. k :
Q{P/X} | [M ; k]. With Y = ((X c)c〈�Q�〉), we have that:

�M� = �k1 : a〈P 〉� | �k2 : a(X) � Q� = �a〈P 〉�k1 | �a(X) � Q�k2 =

(l)(Msg a �P � l)k1 | (l)(Trig Y a l)k2 ⇒
a〈�P �, k1〉 | (KillM a k1) | (l)(Trig Y a l)k2 ⇒
a〈�P �, k1〉 | (KillM a k1) | νt. t |Ä
a(X, h) | t �f νk, c. (Y X c) | (c(Z) � (Z k)) | (Mem Y a X h k k2)

ä
|

(KillT Y t k2 a)

Messages t and a〈�P �, k1〉 can interact with the process (a(X, h) | t �f R),
leading to:

νt, k, c. (Y �P � c) | (c(Z) � (Z k)) | (Mem Y a �P � k1 k k2) |
(KillM a k1) | (KillT Y t k2 a)

By performing the application (Y �P � c) we obtain:

νt, k, c. c〈�Q�{�P �/X}〉 | (c(Z) � (Z k)) | (Mem Y a �P � k1 k k2) |
(KillM a k1) | (KillT Y t k2 a)

As one can see, the application above mimics the substitution Q{P/X}. This
is possible since the variable X is free in Q and consequently in �Q�.

The next step is a communication on channel c. This is needed in order
to instantiate the process �Q�{�P �/X} with its channel key k, and leads to:

νt, k. �Q�{�P �/X}k | (Mem Y a �P � k1 k k2) | (KillM a k1) | (KillT Y t k2 a)

Let us compare the process above with the corresponding rhoπ configuration,
νk. k : Q{P/X} | [M ; k]. The process �Q�{�P �/X}k is the translation of k :
Q{P/X}. Memory [M ; k] is represented by the process (Mem ((X c)c〈�Q�〉) a
�P � k1 k k2). The processes (KillM a k1) and (KillT Y t k2 a) are garbage
generated by the translation.
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We show now how triggers rollback.

Example 4 (Rollback of a trigger). Let us consider the configuration k1 :
a(X) � P . With Y = ((X c)c〈�P �〉), we have that

�k1 : a(X) � P � = �a(X) � P �k1 → (Trig Y a k1) ⇒
νt. t | (KillT Y t k1 a) |Ä
a(X, h) | t �f νk, c. (Y X c) | (c(Z) � (Z k)) | (Mem Y a X h k k1)

ä
⇒

νt. t |
Ä
t � k1〈(h)(Trig Y a h)〉 | Rew k1

ä
|Ä

a(X, h) | t �f νk, c. (Y X c) | (c(Z) � (Z k)) | (Mem Y a X h k k1)
ä
→

νt.
Ä
a(X, h) | t �f νk, c. (Y X c) | (c(Z) � (Z k)) | (Mem Y a X h k k1)

ä
|

k1〈(h)(Trig Y a h)〉 | Rew k1
Note that the process νt. (a(X, h) | t �f R) is now deadlocked, since t is
no more available after the KillT consumed it. Thus we can consider it as
garbage. Instead, the process k1〈(h)(Trig ((X c)c〈�P �〉) a h)〉 is k1〈�a(X) �
P �〉 as required.

Let us now describe the encoding of configurations given in Figure 8. A
null configuration 0 is encoded as the null HOπ+ process 0. The parallel
and the restriction operator are mapped to the corresponding operators of
HOπ+. There are two ways of encoding a tagged process κ : P , depending
on whether κ is a key or a complex tag. If κ is a key k, then the translation
is the application of the encoding of P to the name k, that is �P �k. If κ is a
complex tag, of the form 〈hi, h̃〉 · k, then the translation is the application of
the translation of P to the name hi, in parallel with the killer of the complex
tag. We want to generate at once a tree of killer processes able to revert an
entire parallel composition made of n elements, with n being the size of h̃.
The tree has root in k and leaves in h1, . . . , hn. We opt for the translation of
〈h1, h̃〉 · k to generate it. Said otherwise, a killer of a complex tag 〈hi, h̃〉 · k
is the null process if i 
= 1, otherwise it is a parallel composition of killer
processes able to rollback all the branches in which the key k has been split.
Hence, the killer of the complex tag 〈h1, h̃〉 · k is in charge of mimicking the
behavior of the rhoπ structural rule E.TagP (see Figure 2 in Section 2.3)
used (from right to left) to rebuild a tagged parallel composition from a
parallel composition of related threads.
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Example 5 (Rollback of a parallel configuration). Let us consider the
following configuration (with h̃ = {h1, h2, h3}):

M = 〈h1, h̃〉 · k : a〈0〉 | 〈h2, h̃〉 · k : b〈0〉 | 〈h3, h̃〉 · k : c〈0〉

and consider its translation:

�a〈0〉�h1 | KillP〈h1,h̃〉·k | �b〈0〉�h2 | KillP〈h2,h̃〉·k | �c〈0〉�h3 | KillP〈h3,h̃〉·k =

�a〈0〉�h1 | KillP〈h1,h̃〉·k | �b〈0〉�h2 | �c〈0〉�h3

since KillP〈h2,h̃〉·k = 0 and KillP〈h3,h̃〉·k = 0. From the examples above we
know that a message can rollback, so we have

�a〈0〉�h1 ⇒ h1〈(h)Msg a �0�h〉 | Rewh1

�b〈0〉�h2 ⇒ h2〈(h)Msg b �0�h〉 | Rewh2

�c〈0〉�h3 ⇒ h3〈(h)Msg c �0�h〉 | Rewh3

From the definition of the translation we have KillP〈h1,h̃〉·k = (KillPh1 l1 k) |
(KillPh2 h3 l1), with

(KillPh1 l1 k) = h1(W ) | l1(Z) � k〈(h)ParW Z h〉 | Rew k
(KillPh2 h3 l1) = h2(W ) | h3(Z) � l1〈(h)ParW Z h〉 | Rew l1

By executing the reductions above we reach the following process

h1〈(h)Msg a �0�h〉 | h2〈(h)Msg b �0�h〉 | h3〈(h)Msg c �0�h〉
(h1(W ) | l1(Z) � k〈(h)ParW Z h〉 | Rew k) |
(h2(W ) | h3(Z) � l1〈(h)ParW Z h〉 | Rew l1) |

∏
hi∈h̃

Rewhi

Note that there are two messages on channels h2 and h3. Thus a commu-
nication with trigger h2(W ) | h3(Z) � R can occur, leading to the following
process:

h1〈(h)Msg a �0�h〉 | (h1(W ) | l1(Z) � k〈(h)ParW Z h〉 | Rew k) |
l1〈(h)Par ((h)Msg b �0�h) ((h)Msg c �0�h)h〉 | Rew l1 |

∏
hi∈h̃

Rewhi
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Let S = ((h)Par ((h)Msg b �0�h) ((h)Msg c �0�h)h), i.e. the translation of the
parallel composition of messages on b and c. By performing the communica-
tion on h1 and l1 we get:

k〈(h)Par ((h)Msg a �0�h) S h〉 | Rew k | Rew l1 |
∏
hi∈h̃

Rewhi

where the content of the message on k is �a〈0〉 | b〈0〉 | c〈0〉� as required.

The Mem process mimics the backward rule of rhoπ: it awaits the rollback
of its continuation (a message on the key channel k that the memory bears)
and then it releases again the translations of the original rhoπ message and
trigger who gave rise to the communication (and to the memory).

Example 6 (Backward reduction). Consider the following configuration:
M = k : b〈0〉 | [k1 : a〈Q〉 | k2 : a(X)� b〈0〉; k]. We have that M � k1 : a〈Q〉 |
k2 : a(X) � b〈0〉. Let us consider the encoding of M :

�M� = �b〈0〉�k | (Mem ((X c)c〈�b〈0〉�〉) a �Q� k1 k k2)

since Killk1 = 0 and Killk2 = 0. If �b〈0〉�k1 rollbacks we have:

�b〈0〉�k ⇒ k〈(h)Msg b �0�h〉 | Rew k
Thus:

�M� ⇒ k〈(h)Msg b �0�h〉 | Rew k | (Mem ((X c)c〈�b〈0〉�〉) a �Q� k1 k k2) →
k〈(h)Msg b �0�h〉 | Rew k | (k(Z) �b (Msg a �P � k1) | (Trig (X c)c〈�b〈0〉�〉 a k2))
Since there is a message on k (the rollback of the continuation of the trigger)
the trigger k(Z) �b (Msg . . .) | (Trig . . .) can consume it and re-instantiate
the encoding of the message and of the trigger. We thus obtain the term:

(Msg a �P � k1) | (Trig (X c)c〈�b〈0〉�〉 a k2) | Rew k
The first part of the process is the translation of the original configuration
k1 : a〈P 〉 | k2 : a(X) � 0 from which the communication took place, while
Rew k is garbage.

Let us now explain the need for the Rew process, and the idea behind
it. Killer processes allow a process to rollback, but we have to give also the
possibility to undo a rollback decision. This is due to the fact that at any
moment each process should be given both the possibility to go forward and
to go backward. This is detailed in the example below.
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Example 7 (Why do we need Rew processes?). Consider the configura-
tion:

M = 〈h1, h̃〉 · k : a〈P 〉 | 〈h2, h̃〉 · k : b〈Q〉 | k1 : a(X) � 0 | k2 : b(X) � 0

Suppose that its translation does not include Rew processes. We then have,
assuming Y = ((X c)c〈�0�〉:

�M� =(l)(Msg a �P � l)h1 | (l)(Msg b �Q� l)h2 | KillP〈h1,h̃〉·k
| (l)(Trig a Y l)k1 | (l)(Trig b Y l)k2

Suppose now that the message on a and the corresponding trigger interact:

�M� ⇒ (KillM a h1) | (l)(Msg b �Q� l)h2 | KillP〈h1,h̃〉·k | (l)(Trig b Y l)k2 |
νt, k3. (KillT Y t k1 a) | (Nil k3) | (Mem Y a �P � h1 k3 k1)

Suppose now that the message on b decides spontaneously to rollback. Since
we are not considering Rew processes we have the following reduction:

(l)(Msg b �Q� l)h2 ⇒ h2〈(l)Msg b �Q� l〉
By combining the two sequences of reductions above we have:

�M� ⇒ (KillM a h1) | h2〈(l)Msg b �Q� l〉 | KillP〈h1,h̃〉·k | (l)(Trig b Y l)k2 |
νt, k3. (KillT Y t k1 a) | (Nil k3) | (Mem Y a �P � h1 k3 k1)

Now, the message on channel b, who started to rollback, cannot complete its
rollback unless the communication on a is undone, and cannot interact with
the trigger waiting a message on b, since it already started to rollback. The
Rew process is needed exactly in this case, allowing the message on b to stop
rolling back and compute forward again, performing the communication on
b. Indeed, by adding a process Rewh2 to the above configuration we enable
the following computation:

(KillM a h1) | h2〈(l)Msg b �Q� l〉 | Rew h2 | KillP〈h1,h̃〉·k | (l)(Trig b Y l)k2 |
νt, k3. (KillT Y t k1 a) | (Nil k3) | (Mem Y a �P � h1 k3 k1) ⇒
(KillM a h1) | (l)(Msg b �Q� l)h2 | KillP〈h1,h̃〉·k | (l)(Trig b Y l)k2 |
νt, k3. (KillT Y t k1 a) | (Nil k3) | (Mem Y a �P � h1 k3 k1) ⇒
(KillM a h1) | (KillM b h2) | KillP〈h1,h̃〉·k |
νt, k3. (KillT Y t k1 a) | (Nil k3) | (Mem Y a �P � h1 k3 k1)

νt1, k4. (KillT Y t1 k2 b) | (Nil k4) | (Mem Y b �Q� h2 k4 k2)

which executes the communication on channel b.
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In general, if one branch decides (spontaneously) to rollback (by interact-
ing with its killer process) while the other branches do not, then the process
rolled back would be stuck unless we add the possibility to undo its rollback
decision. This is the purpose of a process of the form (Rew l), whose behavior
is to read an abstraction carried in a message on the key channel l and then
to re-instantiate the abstraction with the same key. Naturally this makes the
encoding divergent, but, as already discussed, divergence is quite natural in
a reversible calculus. Thus the issue is not particularly relevant.

The next sections are devoted to prove that the encoding is faithful, i.e.
that it preserves the semantics of the original rhoπ configuration (proofs not
in the main part can be found in Appendix C). More precisely, we will prove
the following theorem.

Theorem 3 (Faithfulness). For any closed rhoπ process P , νk. k : P
·≈

�νk. k : P �.

Before proving the theorem we give a brief outline of our proof strategy.

Proof outline. The main steps of the proof are the following:

• Since bfa barbed bisimilarity
·≈ (Definition 6) distinguishes three kinds

of reductions, backward, forward and administrative, we partition the
reductions performed by the encoding into these three kinds (Defini-
tion 15).

• We characterize the garbage processes generated by the encoding with
the function addG (Definition 17).

• We give a notion of normal form on HOπ+ processes (Definition 18).
A process is in normal form if all the enabled applications have been
executed.

• We define a structural congruence ≡Ex on HOπ+ processes extending
≡ (Definition 20), to ensure that translations of structurally congruent
rhoπ configurations are structurally congruent.

• We show that each process in the translation can send itself on its key
channel (Lemma 23).

• We prove a kind of Loop Lemma for administrative reductions (Lem-
ma 29).
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• We show that each reduction of a rhoπ process can be matched by the
translation (Theorem 4).

• We show that garbage has no impact on bfa barbed bisimilarity (Lemma
33).

• We show that ≡Ex is a bfa barbed bisimulation (Proposition 1).

• We show that forward and backward steps of the translation are caused
by forward and backward steps of the translated configuration (Lem-
ma 36 and Lemma 37).

• We compose all the pieces to prove our main result.

4.3. Auxiliary relations

This section provides four main tools needed for proving the faithfulness of
the encoding: (i) the reduction system giving to the translation a backward,
forward and administrative structure, (ii) a characterization of the garbage
added by the machinery in the translation, (iii) a normal form for HOπ+

processes, and (iv) a congruence on HOπ+ processes mimicking the one of
rhoπ.

To give a backward, forward and administrative structure to the set of re-
ductions of the translation we classify the reductions into backward, forward
and administrative. The basic idea is that administrative reductions are nei-
ther forward nor backward, and complement both of them. Remember that
in HOπ+ we have two kinds of reductions: applications and communications.
Applications are always administrative reductions. Communications can be
either backward, forward or administrative according to the involved trigger.
To distinguish the triggers, we decorate them with labels. The labels have
no effect on the operational semantics of the calculus.

Definition 14 (Labelled trigger). A labelled trigger is a term of the form
J �b P or J �f P . They are called backward trigger and forward trigger,
respectively.

Note that, in the translation of processes (Figure 7), the trigger inside the
translation of a rhoπ trigger is forward, while the one inside the translation
of a memory is backward.

From now on R? will denote the reflexive closure of a relation R, and R∗

its reflexive and transitive closure. We now define the three reduction rela-
tions, backward �, forward �, and administrative ↪→ on HOπ+ processes.
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Definition 15 (Backward, forward and admin. HOπ+ reductions).
Let � and � denote HOπ+ reductions involving a forward and a backward
trigger, respectively. Let �→ denote HOπ+ reductions involving non-labelled
triggers and ⇁ denote HOπ+ applications. Moreover, let administrative
reductions be ↪→= �→ ∪ ⇁. We define ⇒f=↪→∗�↪→∗ and ⇒b=↪→∗�↪→∗.

To prove our main result, one cannot simply prove that given a (consis-
tent) configuration M , if M � M ′ then �M� ⇒f �M ′�, and similarly for
backward reductions. In fact, this does not hold, since the results of the
translation produce some garbage (in terms of additional processes) during
the execution, and since structural congruent rhoπ processes do not always
have structural congruent translations. Thus we need some auxiliary ma-
chinery to solve these issues.

First, we introduce a notion of consistent HOπ+ process, a process ob-
tained by letting a process of the form �νk. k : R� compute.

Definition 16 (Consistent process). A HOπ+ process P is consistent if
there is a rhoπ process R such that �νk. k : R� ⇒ P .

We note that all the applications in the encoding have the form below.

Lemma 12 (Form of the applications in the encoding).
Let P be a consistent HOπ+ process. Each application in P is either of the
form (h)P v or of the form (X)P �Q� for some rhoπ process Q, or of the
form (X)P ((Z c)c〈�Q�〉) for some rhoπ process Q. In this last case (X)P
is Trig, KillT or Mem.

Proof. By inspection of the encoding definition. �

Then, we characterize the garbage produced by the translation by defining
a function addG(P ) allowing to add arbitrary garbage to a HOπ+ process P .

Definition 17 (Garbage). Let P be a HOπ+ process such that P ≡ νã. P ′.
Then, addG(P ) = {PG | PG ≡ νã. (P ′ | νb̃. Q)}, where Q is a parallel compo-
sition (possibly empty) of processes of one of the forms below, or obtained
from them by applications:

Rew l KillM a l

νc, t. (KillT ((X)c〈�P �〉) t l a) νt. (a(X, k)|t � S)
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In the definition above, we have two kinds of garbage: the blocked one and
the redundant one. Processes of the form νc, t. (KillT ((X)c〈�P �〉) t l a)
and νt. (a(X, k)|t � S) are indeed blocked (but for an application inside the
first one), since the name t is restricted and the token t has been consumed.

Let us see an example of how such garbage is generated.

Example 8 (Generating garbage). Consider the reductions below, where
Q = νl, c. (Y X c) | (c(Z) � Z l) | (Mem Y a X h l k) and Y = (X c)c〈�0�〉.
The translation of a trigger k : a(X) � 0 begins a rollback:

�k : a(X) � 0� = �a(X) � 0�k = ((h)Trig Y a h) k → (Trig Y a k) ⇒
νt. t | (a(X, h)|t � Q) | (t � k〈(h)Trig Y a h〉 | (Rew k)) →
νt. (a(X, h)|t � Q) | k〈(h)Trig Y a h〉 | (Rew k)

Now, the trigger undoes its rollback decision thanks to the process (Rew k):

νt. (a(X, h)|t � Q) | k〈(h)Trig Y a h〉 | (Rew k) →
νt. (a(X, h)|t � Q) | k〈(h)Trig Y a h〉 | (k(Z) � Z k) →
νt. (a(X, h)|t � Q) | ((h)Trig Y a h) k = R

The process νt. (a(X, h)|t � Q) is indeed garbage, in fact we have R ∈
addG(((h)Trig Y a h) k) = addG(�k : a(X) � 0�).

Processes of the form (Rew l) and (KillM a l) are not blocked, but they are
redundant. Indeed, we will show in Lemma 16 and Lemma 17 that such
processes are always available when needed. However, additional copies,
which have no impact on the behavior of the translation, may be created
(see, e.g., Example 3 and Example 6).

We now define a notion of normal form for processes, corresponding to
processes where all the enabled applications have been executed. Thus, a
process in normal form has no enabled applications.

Definition 18 (Normal form). The function nf(.) from PHOπ+ to PHOπ+

computing the normal form of a given HOπ+ process is defined as follows:

nf(νu. P ) = νu. nf(P ) nf(P | Q) = nf(P ) | nf(Q)

nf(a〈P 〉) = a〈P 〉 nf(a(X) � P ) = a(X) � P

nf((X)P Q) = nf(P{Q/X}) nf((h)P l) = nf(P{l/h})
nf(0) = 0

44



Note that, since reduction to normal form corresponds to execute some en-
abled applications, for each P , P ⇁∗ nf(P ). For the same reason, the
reduction to normal form is the identity on triggers and messages.

We extend the congruence ≡ on HOπ+ processes to match the effect
of rhoπ structural congruence after the translation, in order to show that
congruent rhoπ processes are translated into congruent HOπ+ processes.

Definition 19. Let ≡Ax be the smallest congruence on HOπ+ processes sat-
isfying the rules for structural congruence ≡ plus the axioms below.

(Ax.C) KillP l h k ≡Ax KillP h l k

(Ax.A) νl′. (KillP l1 l2 l
′) | (KillP l′ l3 l) ≡Ax νl′. (KillP l1 l

′ l) | (KillP l2 l3 l
′)

(Ax.P) l1〈�P �〉 | l2〈�Q�〉 | KillP l1 l2 l ≡Ax l〈(h)Par �P � �Q� h〉 | Rew l

(Ax.Adm) νc. (c〈�P �〉 | c(Z) � (Z k)) ≡Ax �P �k

Definition 20. Let≡Ex be the smallest congruence including for each axiom
L ≡Ax R in ≡Ax both L ≡Ex R and nf(L) ≡Ex nf(R).

Axioms Ax.C and Ax.A extend respectively the commutativity and asso-
ciativity of the parallel composition operator to the translation. Note that
α-conversion is not enough to simulate axiom Ax.C. Indeed, if we have
νl, h. (KillP l h k) | �P1�l | �P2�h, we can α-convert the term to have
νl, h. (KillP h l k) | �P1�h | �P2�l, but not νl, h. (KillP h l k) | �P1�l | �P2�h
as we can derive with Ax.C. Also, axioms Ax.C and Ax.A cannot be mim-
icked by administrative reductions since the left- and the right-hand-side do
not reduce to each other. Axioms Ax.P and Ax.Adm, applied from left to
right, capture the effect of some administrative reductions.

We show now a few properties of the relations defined above.
The congruence ≡Ex captures the effect of rhoπ structural congruence ≡

on normal form of translations.

Lemma 13. Let M , N be closed consistent rhoπ configurations. Then M ≡
N implies nf(�M�) ≡Ex nf(�N�).

Proof. By induction on the derivation ofM ≡ N . The proof is in Appendix
C.1. �
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Structural congruence ≡Ex is preserved by normal form.

Lemma 14. If P and Q are consistent HOπ+ processes and P ≡Ex Q then
nf(P ) ≡Ex nf(Q).

The congruence ≡Ex is not influenced by garbage introduced by function
addG(•).

Lemma 15. If nf(P ) ≡Ex nf(P ′) then for each Q ∈ addG(P ) there exists
Q′ ∈ addG(P ′) such that nf(Q) ≡Ex nf(Q

′).

We now prove two invariants on the form of consistent HOπ+ processes,
useful to study properties of the function addG(•).

For each message on a key channel l contained in a translation, there is
also a corresponding process Rew l (or the process l(Z) � Z l obtained by
performing the application).

Lemma 16 (Rew Invariant). If P is a consistent HOπ+ process and P ≡
C[l〈R〉, . . . , l〈R〉] with l ∈ K for some n-ary context C then P ≡ C′[l〈R〉 |
S1, . . . , l〈R〉 | Sn] for some n-ary context C′ with, for each i ∈ {1, . . . , n},
Si = Rew l or Si = l(Z) � Z l.

For each message on a channel a ∈ N contained in the translation, there
is also a corresponding process KillM (or the process obtained by performing
the application).

Lemma 17 (KillM Invariant). If P is a consistent HOπ+ process and P ≡
C[a〈�Q�, l〉, . . . , a〈�Q�, l〉] with a ∈ N for some n-ary context C then P ≡
C′[a〈�Q�, l〉 | S1, . . . , a〈�Q�, l〉 | Sn] for some n-ary context C′ with, for each
i ∈ {1, . . . , n}, Si = (KillM a l) or Si = (a(X, \l) � l〈(h)Msg a X h〉 | Rew l).

Function addG(•) does not add new behaviors.

Lemma 18. Let P be a consistent HOπ+ process and Q ∈ addG(P ). If
nf(Q) ↪→ Q′ then there exists P ′ such that P ↪→∗ P ′ with Q′ ∈ addG(P ′).

Lemma 19. Let P be a consistent HOπ+ process and Q ∈ addG(P ). If
nf(Q) � Q′ then there exists P ′ such that P ⇁∗� P ′ with Q′ ∈ addG(P ′).
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Proof. It is easy to see from the definition of function addG that the added
processes cannot enable � reductions. Hence the reduction � can be done
by nf(P ), and it is sufficient to choose P ′ such that P ⇁∗ nf(P ) � P ′. �

Lemma 20. Let P be a consistent HOπ+ process and Q ∈ addG(P ). If
nf(Q) � Q′ then there exists P ′ such that P ⇁∗� P ′ with Q′ ∈ addG(P ′).

Proof. Similar to the one of Lemma 19. �

4.4. Operational correspondence

This section proves a few results on the behavior of the translation, lead-
ing to the operational correspondence result at the end of the section.

We start by proving a few basic properties of the translation.
The encoding is well-behaved w.r.t. substitutions:

Lemma 21 (Substitution). For each pair of rhoπ processes P,Q:
�P �{�Q�/X} = �P{Q/X}�

Proof. By induction on the structure of P . �

Names corresponding to keys in K are always bound.

Lemma 22. For each consistent HOπ+ process P , fn(P ) ∩ K = ∅.

Proof. By definition of consistency there is a rhoπ process Q such that
�νk. k : Q� ⇒ P . The proof is by induction on the number of steps in ⇒. �

We now prove that, essentially, a translation of a rhoπ process P can
always rollback, and the result of the rollback is a message on the process
key channel. The rollback is not perfect, in the sense that the content of
the message is not exactly equal to the translation of the original process P .
This is due to the fact that, once a name has been created, there is no way to
reverse its creation. However we can prove that the content of the message,
wrapped by restrictions on extruded names, is structural congruent to the
original process P , plus some garbage. Formally we have:

Lemma 23. For each closed rhoπ process P , �P �k ↪→∗ νũ. k〈�Q�〉 | S with
k 
∈ ũ, S =

∏
Ri, Ri = Rew ki or Ri = νt. (a(X, h)|t � R) and P ≡ νũ. Q.

47



Note that in the lemma above, νũ. k〈�Q�〉 | S ∈ addG(νũ. k〈�Q�〉).
The encoding never generates two messages on the same key channel,

never generates two KillP processes waiting for the same rollbacks and never
generates a KillP and a Mem waiting for the same rollback.

Lemma 24. For any consistent HOπ+ process P the following conditions
hold:

1. P 
≡ C[l〈P1〉 | l〈P2〉], with l ∈ K.

2. P 
≡ C[(KillP l1 l2 l3) | (KillP l4 l5 l6)], with l1, l2, l3, l4, l5, l6 ∈ K and
{l1, l2} ∩ {l4, l5} 
= ∅ or l3 = l6.

3. P 
≡ C[(KillP l1 l2 l) | (Mem P a Q h l3 k)], with l, l1, l2, l3, h, k ∈ K
and l1 = l3 or l2 = l3.

Two applications can always be swapped.

Lemma 25. For each HOπ+ process P , if P ⇁ P1 and P ⇁ P2 (by executing
two distinct applications) then there is a HOπ+ process P3 such that P2 ⇁ P3

and P1 ⇁ P3.

More in general, applications can be swapped with arbitrary reductions:

Lemma 26. If P ⇒ P ′ and P ⇁∗ P ′′ then P ′ ⇁∗ Q and P ′′ ⇒ Q.

Proof. By induction on the length of ⇒ and ⇁∗, showing that if P →? P
′

and P ⇁? P
′′ then P ′′ →? Q and P ′ ⇁? Q. �

Processes congruent according to ≡Ex have the same reductions, up to
≡Ex, administrative reductions and garbage.

Lemma 27. If nf(P1) ≡Ex nf(P2) and nf(P1) → P ′
1 then nf(P2) ⇒ nf(P ′

2)
with nf(P ′′

1 ) ≡Ex nf(P ′
2) and P ′′

1 ∈ addG(P ′
1). Furthermore, if → is forward

then ⇒ is ⇒f , if → is backward then ⇒ is ⇒b, if → is administrative then
⇒ is ↪→∗.

Proof. By case analysis on the used axiom P ≡Ex Q and on the structure
of nf(P1). The proof is in Appendix C.2. �

We can generalize Lemma 27 to sequences of reductions as follows.
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Lemma 28. If nf(P1) ≡Ex nf(P2) and nf(P1) ⇒ P ′
1 then nf(P2) ⇒ nf(P ′

2)
with nf(P ′′

1 ) ≡Ex nf(P ′
2) and P ′′

1 ∈ addG(P ′
1). Furthermore, if the first ⇒ is

⇒f , ⇒b or ↪→∗ then the second ⇒ is of the same form.

We now prove a form of Loop Lemma for administrative reductions.
Hence, if P is a translation and P ↪→∗ Q, Q can somehow go back to P .
Reversibility of this computation is however not perfect, but it holds up to
garbage and structural congruence ≡Ex.

Lemma 29. For each consistent HOπ+ process P if P ↪→∗ Q then there
exist Q′ and P ′ such that Q ↪→∗ Q′, P ′ ∈ addG(P ) with nf(P ′) ≡Ex nf(Q

′).

The next theorem proves a form of behavioral correctness for our encod-
ing, showing that the encoding of a configuration can mimic the reductions
of the encoded configuration.

Theorem 4. For each consistent rhoπ configuration M , if M � N then
nf(�M�) ⇒f P and if M � N then nf(�M�) ⇒b P , and there exists P ′ ∈
addG(�N�) such that nf(P ) ≡Ex nf(P

′).

Proof. By induction on the derivation of M → N , with a case analysis on
the last rule applied.

R.Fw: we have that

M = κ1 : a〈P 〉 | κ2 : a(X) � Q �
νk. (Q{P/X} | [κ1 : a〈P 〉 | κ2 : a(X) � Q ; k]) = N

Moreover we have that �M� = �κ1 : a〈P 〉� | �κ2 : a(X) � Q�. We
distinguish four cases, depending on whether κ1, κ2 are complex or
not. Let us consider the case κ1 = k1 and κ2 = k2. Assume Y =
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((X c)c〈�Q�〉). Then:
nf(�M�) = nf((l)(Msg a �P � l)k1) | nf((l)(Trig Y a l)k2) =

νt. a〈�P �, k1〉 | nf(KillM a k1) | t |
(t|a(X, h) �f νk, c. (Y X c) | (c(Z) � Z k) | (Mem Y a X h k k2)) |
nf(KillT Y t k1 a) �

νc, k, t. nf(KillM a k1) | (Y �P � c) | (c(Z) � Z k) | (Mem Y a X k1 k k2) |
nf(KillT Y t k2 a) ⇁

νc, k, t. nf(KillM a k1) | c〈�Q�{�P �/X}〉 | (c(Z) � Z k) |
(Mem Y a X k1 k k2) | nf(KillT Y t k2 a) ↪→

νc, k, t. nf(KillM a k1) | (�Q�{�P �/X} k) | (Mem Y a X k1 k k2) |
nf(KillT Y t k2 a) = R

By using Lemma 21 we have that �Q�{�P �/X} = �Q{P/X}�, thus:
R = νc, k, t. nf(KillM a k1) | (�Q{P/X}� k) |

(Mem Y a X k1 k k2) | nf(KillT Y t k2 a)

We can conclude by noting that:

nf(R) = nf(KillM a k1) | nf(�N�) | νc, t. nf(KillT Y t k2 a)

Since P ′ = (KillM a k1) | �N� | νc, t. (KillT Y t k2 a) ∈ addG(�N�)
and nf(R) ≡Ex nf(P

′) the thesis follows.

Let us consider the case in which κ1 = 〈hi, h̃〉 · k. We have that:

�M� = (l)(Msg a �P � l)hi | Kill〈hi,h̃〉·k | (l)(Trig Y a l)k2

Using the same reductions as above we have that:

nf(�M�) ⇒f

νc, k, t. nf(KillM a k1) | nf(Kill〈hi,h̃〉·k) | �Q�{�P �/X} k |
(Mem Y a X hi k k2) | nf(KillT Y t k2 a) = R

and by using Lemma 21 we have that

R = νc, k, t. nf(KillM a hi) | nf(Kill〈hi,h̃〉·k) | (�Q{�P �/X}� k) |
(Mem Y a X hi k k2) | nf(KillT Y t k2 a)
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We can conclude by noting that P ′ = (KillM a hi) | Kill〈hi,h̃〉·k |
(�Q{�P �/X}� k) | (Mem Y a X hi k k2) | νc, t. (KillT Y t k2 a) ∈
addG(�N�) and nf(R) ≡Ex nf(P

′).

The two other cases are similar.

R.Bw: we have that M = k : R | [κ1 : a〈P 〉 | κ2 : a(X) � Q ; k] � κ1 :
a〈P 〉 | κ2 : a(X) � Q = N . Assume that Y = ((X c)c〈�Q�〉). Then, by
definition of nf(•) we have:

nf(�M�) =

nf(�R�k) | nf(Mem Y a �P � �κ1� k �κ2�) | nf(Killκ1) | nf(Killκ2) =

nf(�R�k) | (k(Z) � (Msg a �P � �κ1�) | (Trig Y a �κ2�)) | Killκ1 | Killκ2

From Lemma 23 we know that �R�k ↪→∗ νũ. k〈�R′�〉 | S with S a
parallel composition of garbage processes and R ≡ νũ. R′. Thanks to
Lemma 26 we have nf(�R�k) ↪→∗ νũ. k〈�R′�〉 | nf(S). Hence:

nf(�R�k) | (k(Z) � (Msg a �P � �κ1�) | (Trig Y a �κ2�)) |
nf(Killκ1) | nf(Killκ2) ↪→∗

νũ. k〈�R′�〉 | nf(S) | (k(Z) �b (Msg a �P � �κ1�) |
(Trig Y a �κ2�)) | nf(Killκ1) | nf(Killκ2) �

νũ. (Msg a �P � �κ1�) | (Trig Y a �κ2�) | nf(Killκ1) | nf(Killκ2) |
nf(S) = R

We have that P ′ = νũ. (Msg a �P � �κ1�) | (Trig Y a �κ2�) | Killκ1 |
Killκ2 | S ∈ addG(�κ1 : a〈P 〉 | κ2 : a(X) � Q�) and nf(R) ≡Ex nf(P ′)
as desired.

Equiv: we have two cases, one for forward reductions and one for back-
ward reductions. We consider the first one, the second being analo-
gous. We have that M � N with hypothesis M ≡ M ′, M ′ � N ′

and N ′ ≡ N . Figure 9 (numbers refers to the used lemmas, ind
means that inductive hypothesis is applied and addG that garbage
is added) shows the proof schema we use. By inductive hypothe-
sis we have that nf(�M ′�) ⇒f P with nf(P ) ≡Ex nf(R′) and R′ ∈
addG(�N ′�). As a consequence also nf(R′) ∈ addG(nf(�N ′�)). By
Lemma 13, we have that if M ≡ M ′ then nf(�M�) ≡Ex nf(�M ′�),
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Figure 9: Proof schema of Theorem 4, case Equiv (numbers refer to Lemmas)

and by Lemma 28 we have that if nf(�M ′�) ⇒f nf(P ) then there exists
Q such that nf(�M�) ⇒f nf(Q) with nf(Q) ≡Ex nf(P ′) with P ′ ∈
addG(P ) (hence nf(P ′) ∈ addG(nf(P ))). By inductive hypothesis we
have that nf(P ) ≡Ex nf(R′), but since by hypothesis we had N ′ ≡ N
by Lemma 13 we have that nf(�N ′�) ≡Ex nf(�N�) and by Lemma 15 we
have that there exists R ∈ addG(�N�) (hence nf(R) ∈ addG(nf(�N�)))
such that nf(R′) ≡Ex nf(R). Thanks to Lemma 15 there exist R′′′ ∈
addG(R′) = addG(�N ′�) and R′′ ∈ addG(R) = addG(�N�) such that
nf(P ′) ≡Ex nf(R′′′) ≡Ex nf(R′′). We can conclude by saying that
nf(�M�) ⇒f Q and that nf(Q) ≡Ex nf(R′′) with R′′ ∈ addG(�N�), as
desired.

Ctx: by a simple induction on the structure of the context, noting that the
translation of configuration contexts is isomorphic. �

4.5. Observations

In this section we study the properties of the encoding from an observa-
tional point of view.

Barbs are preserved by administrative steps.

Lemma 30. If M ↓a and �M� ↪→∗ Q then Q ↪→∗↓a.
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Barbs of translations are originated by barbs of the encoded configuration.

Lemma 31. If �M� ↪→∗↓a then M ↓a.

The function addG does not remove barbs, that is:

Lemma 32. If P ↪→∗↓a then addG(P ) ↪→∗↓a.

Proof. Since P ↪→∗ P ′ ↓a, we can express P as E[0] and P ′ as E
′[0] with

E[0] ↪→∗
E

′[0] ↓a. We can write any process in addG(P ) as E[R]. We still
have that E[R] ↪→∗

E
′[R] ↓a, as desired. �

Garbage has no impact on bfa barbed bisimilarity.

Lemma 33. For any consistent HOπ+ process P , the relation
R = {(P,R) |R ∈ addG(P )} is a bfa barbed bisimulation.

Axioms in ≡ are correct with respect to bfa barbed bisimilarity.

Lemma 34. The relation R = {(P,Q) | P ≡ Q} where P,Q are HOπ+

processes is a bfa barbed bisimulation.

Proof. By induction on the length of the derivation of P ≡ Q, with a case
analysis on the last applied axiom. All the cases are easy. �

The same holds for axioms in ≡Ex, when applied to consistent processes.

Proposition 1. The relation R = {(P,Q) | P ≡Ex Q} where P,Q are con-
sistent HOπ+ processes is a bfa barbed bisimulation.

4.6. Final proof

Before proving the theorem we show two results ensuring completeness
of forward and backward transitions, respectively.

The first one relies on the result below.

Lemma 35. If nf(�M�) � P then M � M ′ with P ↪→∗ P ′ and nf(P ′) ≡
nf(Q′) and Q′ ∈ addG(�M ′�).

Lemma 36. Let M be a rhoπ configuration. If �M� ↪→∗ Q � Q′ then there
are M ′, Q′′ and Q′′′ such that M � M ′, Q′ ↪→∗ Q′′ and nf(Q′′) ≡Ex nf(Q

′′′)
and Q′′′ ∈ addG(�M ′�).
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Figure 10: Proof schema of the first part of Lemma 36

Proof. The proof schema of the first part of the proof is in Figure 10.
Assume �M� ↪→∗ Q � Q′. By definition of normal form we have �M� ⇁∗

nf(�M�). Applying Lemma 26 to the two reduction sequences from �M� we
have that there exists Q1 with nf(�M�) ↪→∗ Q1 and Q ⇁∗ Q1. Moreover
we have that Q1 ⇁∗ nf(Q1) and since ⇁∗⊆↪→∗ we also have nf(�M�) ↪→∗

nf(Q1). Since Q � Q′ and Q ⇁∗ nf(Q1) by Lemma 26 we have that also
nf(Q1) � Q2 for some Q2 such that Q′ ⇁∗ Q2. In order to apply Lemma 35
we have to show that also nf(�M�) � P for some P .

We want to show that we can re-arrange the trace nf(�M�) ↪→∗ nf(Q1) �
Q2 in order to obtain a trace of the form nf(�M�) �↪→∗ P2 with Q2 ∈
addG(P2). Consider the trace nf(�M�) ↪→∗ nf(Q1), and recall that ↪→= �→
∪ ⇁. Since nf(�M�) is in normal form, if no step in nf(�M�) ↪→∗ nf(Q1) is
a communication �→ then the trace is empty. Otherwise we want to rewrite
it as nf(�M�) �→⇁∗ nf(R1) �→⇁∗ . . . �→⇁∗ nf(Rn) �→⇁∗ nf(Q1). This
can be done using Lemma 25 to ensure that all the enabled applications are
performed before the next administrative communication �→.

We now proceed by induction on the length of this trace, showing that we
can either remove administrative reductions or move them after the forward
reduction nf(Q1) � Q2. The base case (no administrative reductions) is
trivial. For the inductive case we have a case analysis on the last administra-
tive communication �→. By looking at the encoding one can see that there
are three kinds of non-labelled triggers, hence triggers able to generate an
administrative communication:

Internal communication in the translation of a trigger: this case ne-
ver happens. In fact, by inspecting the encoding, one can see that such
a communication is enabled only after a � reduction takes place.
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Communication due to a Rew process: a Rew process consumes a mes-
sage on a key channel, and this kind of message is not present in
nf(�M�). Thus, back in the trace there exists an administrative com-
munication �→ due to a killer process producing it. Let us select the
nearest such �→. Since this is the nearest one, there are no interme-
diate administrative communications that consume the same message.
Hence we can move the killer communication forward in order to be
adjacent to the Rew one. Now, one can observe that these two commu-
nications in a row lead back to the original process, plus some garbage.
Thus by removing these two communications from the trace we obtain
a shorter trace, leading to a term with the same behavior but possibly
less garbage. This explains why the sequence of reductions leads to P2

with Q2 ∈ addG(P2) and not to Q2.

Communication due to a killer process: the administrative communi-
cation �→ can be moved after the � reduction since it does not remove
processes that contribute to the � reduction, and we obtain again a
shorter trace.

The proof schema for the rest of the proof is shown in Figure 11. We have
proved above that nf(�M�) ↪→∗ nf(Q1) � Q2 implies nf(�M�) � P ↪→∗ P2

for some P , with Q2 ∈ addG(P2). By applying Lemma 35 to nf(�M�) � P
we have that M � M ′ and P ↪→∗ P ′ with nf(P ′) ≡Ex nf(P ′′′) and P ′′′ ∈
addG(�M ′�). By applying Lemma 29 to P ↪→∗ P2 there existsQ3, P3 such that
P2 ↪→∗ P3 with nf(P3) ≡Ex nf(Q3) and Q3 ∈ addG(P ). Since P ↪→∗ nf(P ′),
we have that also Q3 ↪→∗ Q4 with Q4 ∈ addG(nf(P ′)). From Lemma 26 we
have that there exists Q5 such that Q4 ⇁

∗ Q5 and nf(Q3) ↪→∗ Q5. However,
Q4 differs from a normal form (the one of P ′) only for garbage, thus we can
assume Q5 = Q4. Since then nf(Q3) ↪→∗ Q4 we can use Lemma 28 to show
that there exists Q6 such that nf(P3) ↪→∗ nf(Q6) and nf(Q6) ≡Ex nf(Q7)
with Q7 ∈ addG(Q4). By composing garbage, Q7 ∈ addG(nf(P ′)). Since
Q2 ∈ addG(P2) and P2 ↪→∗ nf(Q6) we have that Q2 ↪→∗ Q′′ with Q′′ ∈
addG(nf(Q6)). By composing garbage and using transitivity of ≡Ex we have
that there is Q′′′ such that Q′′ ≡Ex Q′′′ and Q′′′ ∈ addG(�M ′�). The thesis
follows by noticing that Q′ ↪→∗ Q′′ and that Q′′ and Q′′′ are normal forms
(apart, possibly, for garbage). �

Lemma 37. Let M be a rhoπ configuration. If �M� ↪→∗ Q � Q′ then there
exists M ′, Q′′ and Q′′′ such that M � M ′, Q′ ↪→∗ Q′′ and nf(Q′′) ≡Ex
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Figure 11: Proof schema of the last part of Lemma 36

nf(Q′′′) and Q′′′ ∈ addG(�M ′�).

Proof. The proof schema of the first part of the proof is shown in Fig-
ure 12. We have that Q � Q′ and by applying Lemma 26 we also have
that nf(Q) � Q1 with Q′ ⇁∗ Q1. This implies that nf(Q) ≡ νũ. R |
nf(�Mem Y a �P � k1 k k2�) | k〈�C�〉 with Y = (X c)c〈�P1�〉 and that
Q′ ≡ νũ. R | (Msg a �P � k1) | (Trig Y a k2). Since administrative reduc-
tions ↪→ do not remove memories, the memory needs to be already present
both in the configuration M and in its normal form. Since �M� ↪→∗ Q
and �M� ⇁∗ nf(�M�) by Lemma 26 we also have that nf(�M�) ↪→∗ R with
Q ⇁∗ R, hence �M� ↪→∗ R, moreover since Q � Q′ we also have that R � R′

with Q′ ⇁∗ R′. By definition of � � and nf( ), the process nf(�M�) cannot
contain a message on a key channel such as k〈�C�〉. Hence, such a message has
been generated by the reductions nf(�M�) ↪→∗ R. We distinguish two cases:
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Figure 12: Proof schema of the first part of Lemma 37

either all the communications in ↪→∗ contribute to create such a message, or
not. In the first case all the communications are due to killer processes, and
we have that nf(�M�) ≡ νũ. nf(�N�) | nf(Mem Y a �P � k1 k k2) | nf(�C�k)
for some N , hence M ≡ νũ. N | [k1 : a〈P 〉 | k2 : a(X) � P1; k] | k : C.
Since the administrative reductions just create the message on the chan-
nel k, by using Lemma 23 (where S is garbage) we have that nf(�M�) ↪→∗

νũ. nf(�N�) | (k(Z) � (Msg a �P � k1) | (Trig Y a k2)) | k〈�C�〉 | S � R′ with
R′ = νũ. nf(�N�) | (Msg a �P � k1) | (Trig Y a k2)) | S. On the other side we
have that M � νũ. N | k1 : a〈P 〉 | k2 : a(X) � P1 = M ′ and we can conclude
since nf(R′) = nf(Q′′′) with Q′′′ ∈ addG(�M ′�).

If there are administrative reductions that do not contribute to the cre-
ation of the message on k, we re-arrange the trace nf(�M�) ↪→∗ R � R′ so
to have first all the reductions that contribute to create the message on k,
then the � reduction and finally all the unrelated reductions. We proceed
by induction on the length of the reduction sequence nf(�M�) ↪→∗ R, with a
case analysis on the last reduction that does not contribute to the creation
of the message on k. It can be either a communication due to a killer process
unrelated to the process with tag k, or a communication due to a Rew l.
In the first case the kill does not concerns the process labelled by k nor a
parallel composition due to the split of the key k. Thus, it can be moved
after the � reduction and we can conclude by induction on a shorter trace.

If the reduction is due to a Rew process we have two cases: either it deals
with processes related to the one tagged by k, or not. In the second case
we proceed as in the case above and we conclude by induction on a shorter
trace. In the first case, note that a reduction due to a Rew process instanti-
ates a process. Since this reduction is related to the process on channel k,
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Figure 13: Proof schema of Theorem 3, challenge M � M ′

the instantiated process must be re-killed by possibly many successive kills.
Hence, we can remove the Rew reduction and the corresponding kills, and we
can conclude by induction on a shorter trace.

At the end, we have a trace of the form nf(�M�) ↪→∗ R1 � R′
1 ↪→∗ R′

with the first trace ↪→∗ containing all the administrative reductions related
to the creation of the message on k. As in the first case we know that
nf(�M�) ↪→∗ R1 � R′

1 implies that M � M ′ with nf(R′
1) = nf(R′

2) and
R′

2 ∈ addG(�M ′�). Moreover we have that R′
1 ↪→∗ R′ and that nf(R′

1) ↪→∗ R′′

with R′ ⇁∗ R′′. By using Lemma 29 we have that there exist Q′′ such that
R′′ ↪→∗ Q′′ and nf(Q′′) ≡Ex nf(Q3) with Q3 ∈ addG(R′

1). Since nf(R′
1) =

nf(R′
2) and applications do not change garbage we have that there is Q′′′

such that nf(Q3) = nf(Q′′′) and Q′′′ ∈ addG(�M ′�), as desired. �

We can now prove our main result.

Proof of Theorem 3. We prove that the following relation is a bfa barbed
bisimulation:

R = {(M,R) |
M is consistent ∧ nf(R) ≡Ex nf(Q

′) ∧Q′ ∈ addG(Q) ∧ �M� ↪→∗ Q}
We have to check the different conditions for bfa barbed bisimulation.

Assume M ↓a. Note that from the definition of barbs only names in N
produce barbs. From Lemma 30 Q ↪→∗↓a. Since addG never removes barbs
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then, thanks to Lemma 32, Q′ ↪→∗↓a. Then also nf(Q′) ↪→∗↓a. Thanks to
Proposition 1 we have that nf(R) ↪→∗↓a and thus also R ↪→∗↓a.

Assume now R ↓a. Thanks to Lemma 22 we have that a ∈ N . We also
have that nf(R) ↓a. Thanks to Proposition 1 nf(Q′) ↪→∗↓a and also Q′ ↪→∗↓a.
Then Q ↪→∗↓a. Finally, thanks to Lemma 31 M ↓a.

Let us consider reductions. Figure 13 shows the proof schema we use. If
M � M ′ then by Theorem 4 we have nf(�M�) ⇒f P with nf(P ) ≡Ex nf(P

′)
and P ′ ∈ addG(�M ′�). By hypothesis we have that �M� ↪→∗ Q, and also
nf(�M�) ↪→∗ nf(Q) and by Lemma 29 we have that there are Q1, Q2 such
that nf(Q) ↪→∗ nf(Q1) and nf(Q1) ≡Ex nf(Q2) with Q2 ∈ addG(nf(�M�)).
Since nf(�M�) ⇒f P then Q2 ⇒f P1 with P1 ∈ addG(P ). Since Q2 ⇁∗

nf(Q2) and Q2 ⇒f P1 then thanks to Lemma 26 there exists P3 such that
nf(Q2) ⇒f P3 and P1 ⇁∗ P3. Since nf(Q2) ≡Ex nf(Q1) and nf(Q2) ⇒f P3

by Lemma 27 we also have that nf(Q1) ⇒f P2 and nf(P2) ≡Ex nf(P4)
for some P4 ∈ addG(P3). Now, one can go from P to nf(P4) by executing
applications and adding garbage, thus nf(P4) ∈ addG(nf(P )). Also, there is
P5 such that nf(P4) ≡Ex nf(P5) and P5 ∈ addG(P ′). By composing garbage
we get P5 ∈ addG(�M ′�). Since nf(P2) ≡Ex nf(P4) and nf(P4) ≡Ex nf(P5)
by transitivity we have nf(P2) ≡Ex nf(P5). We can conclude by noting that
(M ′, P2) ∈ R (no administrative reductions are performed from �M ′�). The
backward case is similar.

For the other direction, assume R → R′. We have a case analysis accord-
ing to the kind of reduction.
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If R ⇁ R′ then the thesis follows trivially since nf(R) = nf(R′).
If instead R �→ R′ (the proof schema is in Figure 14) then by Lemma 26

nf(R) ↪→∗ R′′ and R′ ⇁∗ R′′ for some R′′. Thanks to Lemma 25 from
R′ ⇁∗ R′′ ⇁∗ nf(R′′) and R′ ⇁∗ nf(R′) we have that there are two sequences
of applications closing the diagram. However, since nf(R′) and nf(R′′) are
normal forms those sequences are empty, hence nf(R′′) = nf(R′). Thus we
have nf(R) ↪→∗ nf(R′). Thanks to Proposition 1 from nf(R) ≡Ex nf(Q

′) we
have that there is R1 such that nf(Q′) ↪→∗ R1 and nf(R′) ≡Ex R1. Thanks to
Lemma 18 from nf(Q′) ↪→∗ R1 we have that Q ↪→∗ R2 with R1 ∈ addG(R2).
By using Lemma 14 from nf(R′) ≡Ex R1 we obtain nf(R′) ≡Ex nf(R1). We
can conclude since nf(R′) ≡Ex nf(R1) with R1 ∈ addG(R2) and �M� ↪→∗

Q ↪→∗ R2, thus (M,R′) ∈ R.
Assume now R � R′ (the proof schema is in Figure 15). By Lemma 26

nf(R) � R′′ and R′ ⇁∗ R′′ for some R′′. Thanks to Lemma 25 from R′ ⇁∗

R′′ ⇁∗ nf(R′′) and R′ ⇁∗ nf(R′) we have that there are two sequences
of applications closing the diagram. However, since nf(R′) and nf(R′′) are
normal forms those sequences are empty, hence nf(R′′) = nf(R′). Thanks
to Proposition 1 we have that ≡Ex is a bfa barbed bisimulation, and from
nf(R) ≡Ex nf(Q

′) we have that there are S, S ′, R1 such that nf(Q′) ↪→∗ S �
S ′ ↪→∗ R1 and R′′ ≡Ex R1. From Lemma 14 also nf(R′′) = nf(R′) ≡Ex

nf(R1).
Since Q′ ∈ addG(Q) using Lemma 18 from nf(Q′) ↪→∗ S ⇁∗ nf(S) we get

that there exists Q′′
1 ∈ addG(nf(S)) such that Q ↪→∗ Q′′

1. From Lemma 26
there is S ′′ such that nf(S) � S ′′ and S ′ ⇁∗ S ′′. Now, from Lemma 19 we
have that there exist Q′

1 ∈ addG(S ′′) and Q1 such that Q′′
1 ⇁∗ Q1 � Q′

1.
From Lemma 26 there is S ′′′ such that S ′′ ↪→∗ S ′′′ and R1 ⇁∗ S ′′′. Since
R1 ⇁∗ nf(R1) and R1 ⇁∗ S ′′′ we have that S ′′′ ⇁∗ nf(R1). Since S ′′ ⇁∗

nf(S ′′) and S ′′ ↪→∗ S ′′′ ⇁∗ nf(R1) we have that nf(S ′′) ↪→∗ nf(R1). Finally,
using again Lemma 18 from S ′′ ∈ addG(Q′

1) and nf(S ′′) ↪→∗ nf(R1) we have
that there exists R2 such that nf(R1) ∈ addG(R2) and Q′

1 ↪→∗ R2.
Summarizing we have Q ↪→∗ Q1 � Q′

1 ↪→∗ R2 with nf(R1) ∈ addG(R2).
By hypothesis, we have that �M� ↪→∗ Q. By Lemma 36 we have that �M� ↪→∗

Q1 � Q′
1 implies that there exist M ′, Q2 and Q3 such that M � M ′ and

Q′
1 ↪→∗ Q2 with nf(Q2) ≡Ex nf(Q3) and Q3 ∈ addG(�M ′�).
We can apply Lemma 29 to Q′

1 ↪→∗ Q2 obtaining Q4 and Q5 such that
Q2 ↪→∗ Q4 and nf(Q4) ≡Ex nf(Q5) with Q5 ∈ addG(Q′

1). Since Q
′
1 ↪→∗ R2 we

have that there is Q6 ∈ addG(R2) such that Q5 ↪→∗ Q6 and, as a consequence,
nf(Q5) ↪→∗ nf(Q6). Note that nf(R1) and Q6 differ only because of garbage.
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Since garbage has no impact on the semantics we can consider them equal
(this can be formalized more precisely as an up-to technique). Thus nf(Q6) =
nf(R1), and since nf(R′) ≡Ex nf(R1) we also have nf(R′) ≡Ex nf(Q6). We
want to show that the pair (M ′, R′) ∈ R. We have that Q2 ↪→∗ Q4 but also
nf(Q2) ↪→∗ nf(Q4) and since nf(Q3) ≡Ex nf(Q2) and ≡Ex is a bfa barbed
bisimulation there exists R3 such that nf(Q3) ↪→∗ R3 with R3 ≡Ex nf(Q4).
Hence by using Lemma 18 we also have that nf(�M ′�) ↪→∗ R4 with R3 ∈
addG(R4). We have R3 ≡Ex nf(Q4) ≡Ex nf(Q5) and nf(Q5) ↪→∗ nf(Q6).
Since ≡Ex is a bfa barbed bisimulation there exists R5 such that R3 ↪→∗ R5

withR5 ≡Ex nf(Q6). SinceR3 ∈ addG(R4) we have thatR4 ↪→∗ R6 withR5 ∈
addG(R6). Using Lemma 14 we have that nf(R5) ≡Ex nf(Q6). To conclude
we can note that �M ′� ⇁∗ nf(�M ′�) ↪→∗ R4 ↪→∗ R6 with R5 ∈ addG(R6) and
nf(R5) ≡Ex nf(Q6) ≡Ex nf(R

′). This implies that (M ′, R′) ∈ R, as desired.
IfR � R′ we can use the same reasoning of the� case by using Lemma 37

and Lemma 20 instead of Lemma 36 and Lemma 19. �

5. Related work

Research into reversible computing has already a long history, that orig-
inates in the 1960s. Bennett provides an account [1] of early research on the
subject. A full review of works on reversible computing, and the closely re-
lated subjects of program inversion (see, e.g., [39] and the references therein)
and bidirectional transformation and languages (see, e.g., [40, 41] and the ref-
erences therein), is out of the scope of this paper but we can highlight works
related to our three main contributions: (i) reversible languages and mod-
els, (ii) causal semantics and back and forth bisimulation, (iii) translating
between reversible and irreversible computations.

Reversible languages and models. The notion of reversible Turing machine
seems to date back at least to Lecerf in the early 60s [42], who provides an
early encoding of irreversible Turing machines into reversible ones, rediscov-
ered by Bennett in [43]. For a recent survey of reversible Turing machines,
their relation to reversible boolean logic, and various reversible models of
computation, see [44].

Several works have tackled the problem of adding reversibility to sequen-
tial programming languages or to sequential abstract machines. Early work
focused on reversible execution [45] and adding undo capabilities to pro-
gramming languages. Leeman [46] provides an early survey as well as a gen-
eral framework for adding an undo capability to a sequential programming

62



language. Computational history is saved by means of undo-lists, storing
previous states of the execution. Primitives dealing with undo-lists are for-
malized, and different undo operators can be defined by composing them.
A way to map compositionally high-level functional programs into a certain
kind of reversible automata is given by Abramsky in [47]. In [48], Danos
and Regnier give a compositional translation of the λ-calculus into a form
of reversible abstract machine called Interaction Abstract Machine (IAM).
Other reversible abstract machines for sequential programming such as the
SEMCD machine [49] and the Reversible Virtual Machine (RVM) [50] have
been proposed.

Whereas the latter virtual machines keep an explicit track of execution
history to reconstruct backward computation, several works study natively
reversible sequential programming languages where reversibility is obtained
without the need to keep additional information to reconstruct backward
computation. These include work on the Janus language whose origin dates
back to the early 1980s [51, 52], work on sequential flow charts [53], the Inv
[54], RFUN [55], and Π [56] reversible functional languages. The key aspect
of Janus is that all its constructs, including assignments, are made bijective
(and hence reversible), and the language does not allow I/O. The Π language
constitutes a reversible core programming model which is claimed to be at
the heart of linear logic and quantum computation. It is shown in [56] how
to translate a conventional first-order functional language with loops to Π,
making explicit the information effects implicit in the irreversible computa-
tion of a conventional functional program as manipulations of a global heap
and garbage dump.

Reversibility in concurrent models has been considered only more recently,
starting with the seminal work of Danos and Krivine on RCCS [12]. In con-
trast to sequential settings, the notion of reversibility is less easy to define,
and the key contribution of [12] is to define the criterion of causal consistency
for semantic reversibility, i.e. the ability to go back in a computation along
equivalent concurrent paths. This work later gave rise to several studies,
including the one reported in this paper (a survey on causal-consistent re-
versibility can be found in [57]). [13] showed how to accommodate a notion
of communicating transaction in the RCCS setting, and how using RCCS as
a means of specifying such transactions one can gain both in expressivity of
specifications and in ease of verification of transactional systems. Phillips
and Ulidowski show in [14] how to obtain reversible variants of process cal-
culi defined with GSOS inference rules. [58] showed how the results in [13]
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can be obtained by means of a universal categorical construction involving
categories of fractions and categories of computation paths. Extensions of
Danos and Krivine’s work on CCS to the (higher-order and first-order) π-
calculus appear in our own work [16], and in the recent paper by Cristescu,
Krivine and Varacca [20], which defines a labelled transition semantics for a
reversible variant of the first-order π-calculus called Rπ. The latter work is
close to ours, but the reversible machinery in Rπ is substantially different:
as in RCCS, Rπ processes are built upon simple π processes to which a stack
of events, called a memory, is added to keep track of past actions. Every
entry in a memory records a past communication event and can be used to
trigger backward moves. In contrast, in rhoπ only small tags are associated
to processes, and specific processes are used to record the causal relation-
ships between tags. It is easy to define a reversible variant of the first-order
π-calculus using our reversible machinery of tags. One can also define for
such a calculus a labelled transition system (LTS) semantics where actions
are standard π-calculus actions annotated with tags, but it is less easy to
directly compare the two resulting reversible π-calculi. We surmise that the
reversible π obtained via our late LTS semantics would indeed be strongly
bisimilar to Rπ, whereas the strong back and forth bisimulation associated
with the early variant LTS of our reversible π would provide a coinductive
characterization of contextual equivalence in rhoπ, but this is left for further
study. In [59] we have applied our approach to the tuple-based coordination
language Klaim [60].

Foundational studies of reversible and concurrent computations have been
largely inspired by areas such as chemical and biological systems where op-
erations are reversible and only an injection of energy and/or a change of en-
tropy can move the computational system in a desired direction. A reversible
variant of CCS to model biological systems is given in [22]. Frequently these
systems are massively concurrent, i.e. different processes of the same shape
are indistinguishable. Thus, unique tags like ours cannot be used, since there
is no way to distinguish different instances of the same molecule during in-
teraction. In these systems standard notions of causality and independence
of events need to be adapted. Reversible structures [4] allow to model such
systems. In reversible structures processes are called gates, and are expressed
as a sequence of inputs followed by a sequence of outputs. Following the ap-
proach of [14], the past computational history of a gate is stored in the gate
itself. That is, since gates are a sequence of actions, a cursor “ˆ” is used to
point to the next action of a gate. Said otherwise, the cursor ˆ divides a gate
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into two parts: past actions and future actions. Each time a gate performs
a forward (backward) action its cursor is moved forward (backward) by one
position. Different output processes (called signals) on the same channel may
have the same identifier, hence they are indistinguishable. So it may happen
that while computing backward a gate gets back a signal that has not been
generated by the gate itself, but it is indistinguishable from it. Reversibility
is proven correct even in presence of indistinguishable signals. Another work
considering reversible concurrent systems in relation with biological modeling
is the recent work by Phillips and Ulidowski [61], which presents a reversible
concurrent model where backward moves are controlled by a form of super-
position construct. In this model, backward computations are not necessarily
causally consistent.

Notions of reversible computation appear also in works on reversible de-
buggers [62, 63, 64, 65, 66] and on computer simulation tools [67]. Two
techniques are commonly used in reversible debugging: replay and state sav-
ing. The first one, typical of interpreted languages, consists in re-executing
the program to the point at which the programmer wants to get back. This
technique can be improved by using periodic or incremental checkpoints, thus
reducing the number of instructions that have to be re-played. The second
technique consists in saving the entire program state during the computa-
tion, and then restoring it when needed. Usually, due to space overhead,
the range of actions that can be reverted is limited and it has to be de-
cided before launching the debugging mode. Both the techniques work fine
in the sequential setting. In the concurrent setting also information about
the scheduling, i.e. the order of execution of concurrent processes, has to be
taken into account. [68] gives a technique to achieve repeatable execution of
highly parallel programs. During execution, the relative order of significant
events is saved. Then by imposing the same order during replay, and using
the same inputs from the external environment, it is possible to reproduce the
same behavior. Building on [18], which shows that one can build primitives
to control rhoπ reversibility, [66] shows how to force a concurrent execution
back in a causally consistent way so as to undo a specific past action in a way
similar to those of reversible debuggers but without impacting non causally-
related threads. This is in contrast, for instance, with [69], where the user is
asked, while debugging, to specify all the actions to be undone and the order
in which to undo them. The partial order among concurrent actions induced
by the rhoπ tag mechanism can be exploited also in re-playing techniques.
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Translating between reversible and irreversible models of computation. Inter-
est for translation between reversible and irreversible models of computation
has centered around encoding of irreversible models into reversible ones, or
between reversible ones.

As reported in [1], early interest was concerned with the encoding of
irreversible computations into a reversible computational model such as a
reversible Turing machine or reversible boolean logic. The more recent work
by Burhman et al. [70] provides a general upper bound on the trade-off be-
tween time and space that suffices for the simulation by a reversible Turing
machine of an irreversible one. Together with a later paper by Vitanyi [71],
it provides a useful survey of prior work on this “reversible simulation” prob-
lem. The work by Cardelli and Laneve [4], already mentioned, shows that,
by disallowing indistinguishable signals, reversible structures can implement
the asynchronous version of RCCS. This is stated by a (weak) completeness
theorem but nothing is said about the correctness of the encoding. The sur-
vey paper [44] relates different reversible models, including reversible Turing
machines, reversible boolean logic and reversible cellular automata.

To the best of our knowledge, we are the first in [16] and in this paper
to study an encoding of a reversible concurrent model of computation into
an irreversible one. In our paper [16] we have defined an encoding very
similar to the one presented in this paper, but we were only able to prove
the faithfulness of the translation using a weak barbed congruence, which, as
discussed in Section 2.5, is a rather coarse equivalence. In this paper, with
a slight modification of our encoding, we have been able to prove a much
stronger result, which is optimal in the sense that, in the equivalence we use,
each forward or backward step in rhoπ translates into a forward or backward
step, respectively, modulo administrative moves. Both encodings faithfully
implement the reversible calculus, but, as the operational semantics of rhoπ
itself, they are rather wasteful in terms of space. To see this informally, notice
first that a forward computation step in rhoπ requires retaining in a memory
the message a〈P 〉 and the receiver process a(X) � Q that participated in it.
Thus the space overhead of a computation step in reversible HOπ compared
to standard HOπ is at least ‖P‖, the size of the payload of message a〈P 〉.
Now consider the following recursive programs: P = c(X)�P | a〈X | X〉 and
Q = a(X) � Q | c〈X | X〉. We have a〈R〉 | P | Q → P | Q | c〈R | R〉 so the
space overhead of this first step starting from a〈R〉 | P | Q is at least ‖R‖.
On the second step we have P | Q | c〈R | R〉 → P | Q | a〈R | R | R | R〉, so
the space overhead of this second step is at least 2‖R‖. By induction, one can
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see that the space overhead associated with making the program a〈R〉 | P | Q
reversible is at least 2n−1‖R‖, where n is the number of computation steps
taken from the initial state a〈R〉 | P | Q. Our encodings are at least as
wasteful in terms of space. However we have shown in [23] that the space
overhead required to implement a small language close to rhoπ is only linear
in the number of computation steps, and in fact only linear in the number of
non-deterministic events occurring during a computation.

Causal semantics and back and forth simulations. For proving the correct-
ness of our encoding, we have used a notion of back and forth bisimulation,
where both forward and backward moves are taken into account in the bisim-
ulation game. Different forms of simulations taking into account forward and
backward moves have been studied in the past but mostly in the context of
verifying standard transition systems. Such notions appear in the late 80’s
and early 90’s in works such as [25, 72]. The two survey papers [73, 74]
by Lynch and Vaandrager study the relationships between different kinds
of simulations between (standard, timed and untimed) transition systems,
including refinements, forward and backward simulations, hybrid forward-
backward and backward-forward simulations, and history and prophecy rela-
tions. More recently, notions of forward and backward simulation have been
studied from a coalgebraic point of view by Hasuo [26].

More related to reversible models of computation are recent works by
Phillips and Ulidowski. The paper [75] proposes extensions to event struc-
tures to take into account reversibility in transition systems. The paper
[76] defines several forms of bisimulations mixing forward and reverse obser-
vations, and studies the relationships between various equivalences on sta-
ble configuration structures, including step bisimulation, step bisimulation
with reverse steps, interleaving bisimulation with reverse steps, and hered-
itary history-preserving bisimulation. Notably, they show that, in absence
of auto-concurrency, interleaving bisimulation with reverse steps is as strong
as hereditary history-preserving bisimulation. The latter results illustrates
the observational power gained by the ability to take into account backward
moves in a bisimulation game. It squares nicely with our result in Section 3.2
that relates our reversible machinery in rhoπ to the causal semantics for π
developed by Boreale and Sangiorgi [21], and which states that a causally
consistent reversible semantics essentially constitutes a causal semantics for
(the forward part of) the calculus. This intuition is further compounded
by the work on Rπ [20], which shows that Rπ semantics provides a non-
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interleaving semantics for the π-calculus that in addition agrees with the
causality induced by reductions (τ transitions). Much work remains to be
done, however, to better understand the relationships between our reduction
semantics for (higher-order) π and the resulting barbed congruence, the LTS
semantics of Rπ and its associated bisimilarity, and the various causal se-
mantics of the π-calculus that have been developed in the past, including,
e.g., [21, 77, 30, 78].

6. Conclusion

We have presented a reversible asynchronous higher-order π-calculus,
called rhoπ, which we have shown to be causally consistent. The paper gets
its inspiration from Danos and Krivine work [12] and makes three original
contributions. The first one is a novel way to introduce reversibility in a pro-
cess calculus which preserves the classical structural congruence laws of the
π-calculus, and which relies on simple name tags for identifying threads and
explicit memory processes. Our approach contrasts with the two previous
approaches of RCCS [12], that relied on memory stacks as thread tags, and
of Phillips and Ulidowski [14], that relied on making the structure of terms
in SOS rules static and on keeping track of causality by tagging actions in
SOS rules, as well as with the recent work on Rπ, a reversible variant of
the π-calculus developed by Cristescu, Krivine and Varacca [20]. The sec-
ond contribution of the paper is the analysis, by means of a bisimulation
relation called causal correspondence, of the relationship between the causal
semantics of the π-calculus developed by Boreale and Sangiorgi [21], and
the causality tracking machinery used in our reduction semantics for rhoπ.
The third contribution of the paper is a faithful encoding of our reversible
HOπ calculus into a variant of HOπ, showing that adding reversibility does
not change the expressive power of HOπ (up to our notion of backward and
forward bisimilarity with administrative moves). The result obtained in this
paper considerably strengthens that obtained in our previous work [16] by
showing that, modulo administrative reduction steps, a rhoπ process and its
translation are strong backward and forward bisimilar.
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Appendix A. Proofs of Section 2

Appendix A.1. Proofs of Section 2.3

We prove in this section that consistent configurations are well formed.
We need a few auxiliary results first. The lemma below gives a syntactic
characterization of forward reductions.

Lemma 38. Let M , N be configurations. Then M � N iff M ≡ M ′ and
N ′ ≡ N with:

M ′ = νũ. κ1 : a〈P 〉 | κ2 : a(X) � Q |
∏
i∈I

κi : ρi |
∏
j∈J

[μj; kj]

N ′ = νũ, k. k : Q{P/X} | [κ1 : a〈P 〉 | κ2 : a(X) � Q; k] |
∏
i∈I

κi : ρi |
∏
j∈J

[μj; kj]

Proof. Let us start with the if direction. The proof is by induction on the
derivation of the reduction �. We have a case analysis on the last applied
rule:

R.Fw: by hypothesis M = κ1 : a〈P 〉 | κ2 : a(X) � Q and M � νk. k : Q{P/
X} | [κ1 : a〈P 〉 | κ2 : a(X) � Q; k] = N . The thesis follows by choosing
M ′ = M and N ′ = N .

R.Eqv: the thesis follows by transitivity of structural congruence.

R.Ctx: the proof is by case analysis on the structure of the context. The
proof for the empty context is trivial. If the context is a restriction
then we have that νu.M � νu.N with M � N as hypothesis. The
thesis follows by adding u to ũ. For (left) parallel context we have
that M1 | M � M1 | N with M � N as hypothesis. By inductive
hypothesis M ≡ M ′ and N ′ ≡ N with:

M ′ = νũ. κ1 : a〈P 〉 | κ2 : a(X) � Q |
∏
i∈I

κi : ρi |
∏
j∈J

[μj; kj]

N ′ = νũ, k. k : Q{P/X} | [κ1 : a〈P 〉 | κ2 : a(X) � Q; k] |∏
i∈I

κi : ρi |
∏
j∈J

[μj; kj]
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Also, from Lemma 1 M1 ≡ νṽ.
∏

i∈I′(κi : ρi) | ∏j∈J ′ [μj; kj]. Then

M1 | M ≡ νũ, ṽ. κ1 : a〈P 〉 | κ2 : a(X) � Q |
∏

i∈I∪I′
κi : ρi |

∏
j∈J∪J ′

[μj; kj]

N ′′ = νũ, ṽ, k. k : Q{P/X} | [κ1 : a〈P 〉 | κ2 : a(X) � Q; k] |∏
i∈I∪I′

κi : ρi |
∏

j∈J∪J ′
[μj; kj]

with N ′′ ≡ M1 | N as desired. The case of right parallel context is
similar.

For the only if direction, the desired reduction can be derived by applying
rule (R.Fw) followed by (R.Ctx):

νũ. κ1 : a〈P 〉 | κ2 : a(X) � Q |
∏
i∈I

κi : ρi |
∏
j∈J

[μj; kj] �

νũ, k. k : Q{P/X} | [κ1 : a〈P 〉 | κ2 : a(X) � Q; k] |
∏
i∈I

κi : ρi |
∏
j∈J

[μj; kj]

The thesis then follows by applying rule (R.Eqv). �

The following lemma is similar to Lemma 38, but it considers backward
reductions.

Lemma 39. Let M , N be configurations. Then M � N iff M ≡ M ′ and
N ′ ≡ N with:

M ′ = νũ, k. k : R | [κ1 : a〈P 〉 | κ2 : a(X) � Q; k] |
∏
i∈I

κi : ρi |
∏
j∈J

[μj; kj]

N ′ = νũ. κ1 : a〈P 〉 | κ2 : a(X) � Q |
∏
i∈I

κi : ρi |
∏
j∈J

[μj; kj]

Proof. Similar to the proof of Lemma 38. �

We can now prove Lemma 3.

Lemma 3. Each consistent configuration M is well formed
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Proof. By definition M is consistent if there is an initial configuration
M0 such that M0 ⇒ M . The proof is by induction on the number n of
steps in M0 ⇒ M . For the base case, n = 0, we have to show that initial
configurations are well formed. Conditions 1 and 4 in Definition 3 hold by
definition of initial configuration. Conditions 2, 3 and 5 trivially hold since
there are no memories.

For the inductive case, we have to show that if M0 ⇒ M → N then N is
well formed. We know by inductive hypothesis that M is well formed. The
proof proceeds by case analysis on the derivation of M → N .

Let us consider the case M � N . By Lemma 38 we have M ≡ M ′ and
N ′ ≡ N with M ′ = νũ. κ1 : a〈P 〉 | κ2 : a(X) � Q | ∏i∈I κi : ρi | ∏j∈J [μj; kj]
and νũ, k. k : Q{P/X} | [κ1 : a〈P 〉 | κ2 : a(X) � Q; k] | ∏

i∈I κi : ρi |∏
j∈J [μj; kj] = N ′. M ′ is well formed since M is well formed (well formedness

is preserved by ≡ since it is defined up to ≡ itself). We have to prove that
N ′ is well formed. The properties 1-4 of Definition 3 check uniqueness of
keys. They are all satisfied for existing tags, and they are satisfied by the
new tag k since it is a fresh key. The condition 5 holds for the new memory
[κ1 : a〈P 〉 | κ2 : a(X)�Q; k] because of the form of the continuation. It holds
for the other memories by hypothesis. Note that the condition on memories
that generated the two threads tagged by κ1 and κ2 participating to the
communication still holds, since the two threads are just moved from the top
level to a memory.

The case M � N is similar to the previous one, using Lemma 39 instead
of Lemma 38. �

Appendix A.2. Proofs of Section 2.4

We prove in this section results relating rhoπ and HOπ reductions. We
first prove an auxiliary result relating rhoπ and HOπ structural congruences.

Lemma 40. For all closed configurations M,N if M ≡ N then γ(M) ≡π

γ(N).

Proof. It is enough to prove that the thesis holds for each axiom (since γ
is defined by structural induction). We have a case for each axiom. For the
rules E.ParC, E.ParA, E.NilM, E.NewN, E.NewC, E.NewP and E.α
there is a corresponding rule in HOπ. Rules E.TagN and E.TagP instead
reduce to the identity. �
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Lemma 4. For all closed configurations M,N , if M � N then γ(M) →π

γ(N)

Proof. By induction on the derivation of M � N .

R.Fw: M = κ1 : a〈P 〉 | κ2 : a(X) � Q � νk. k : Q{P/X} | [a〈P 〉 | κ2 :
a(X) � Q; k] = N . By definition γ(M) = a〈P 〉 | a(X) � Q →π Q{P/
X} = γ(N).

R.Eqv: M � N with hypothesis M ≡ M ′, M ′ � N ′ and N ′ ≡ N . By
using the inductive hypothesis we have that M ′ � N ′ implies that
γ(M ′) →π γ(N ′) and since structural equivalence is preserved by γ (by
Lemma 40) we can conclude.

R.Ctx: the proof is by induction on the context. The case of the empty
context is trivial. The case of a restriction of a key is trivial since the
restriction is removed by γ. The case of restriction of a name follows by
induction. The case of parallel composition follows by induction since
γ(M | N) = γ(M) | γ(N).

�

To prove Lemma 5 we need a few auxiliary results. The first one charac-
terizes the configurations M such that γ(M) = P for a given HOπ process
P .

Lemma 41. Let P be a HOπ process. If γ(M) = P and P ≡π P ′ with P ′ =
νã.

∏
i∈I ρi and ã ⊆ fn(

∏
i∈I ρi) then M ≡ νã, ã′, k̃.

∏
i∈I κi : ρi | ∏

j∈J mj

with ã′ ∩ fn(
∏

i∈I κi : ρi) = ∅.

Proof. By Lemma 1 M ≡ νũ.
∏

i′∈I′(κ′
i : ρ

′
i) |

∏
j′∈J ′ mj′ ≡ νb̃, h̃.

∏
i′∈I′(κ′

i :

ρ′i) |
∏

j′∈J ′ mj′ = M ′ where we distinguish between names b̃ and keys h̃. By

definition γ(M ′) = νb̃.
∏

i′∈I′ ρi′ , but since M ≡ M ′ by Lemma 40 we also
have γ(M) ≡π γ(M ′). Since γ(M) = P ≡π P ′ we have P ′ ≡π γ(M ′). Thus
we have to prove that if νb̃.

∏
i′∈I′ ρi′ ≡π νã.

∏
i∈I ρi then νb̃, h̃.

∏
i′∈I′(κ′

i : ρ
′
i) |∏

j′∈J ′ mj′ ≡ νã, ã′, k̃.
∏

i∈I κi : ρi | ∏j∈J mj. We can set b̃ = b̃1, b̃2 where b̃1 ⊆
fn(

∏
i′∈I′ ρi′) and b̃2∩fn(∏i′∈I′ ρi′) = ∅. We have νb̃1.

∏
i′∈I′ ρi′ ≡π νã.

∏
i∈I ρi

which is derived using only α-conversion and axioms E.ParC, E.ParA and
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E.NilM. Using the same axioms we can derive also νb̃, h̃.
∏

i′∈I′(κ′
i : ρ′i) |∏

j′∈J ′ mj′ ≡ νb̃2, ã, h̃.
∏

i∈I(κi : ρi) | ∏j′∈J ′ m′
j′ (memories may be affected by

α-conversion). The thesis follows by choosing ã′ = b̃2, h̃ = k̃ and
∏

j′∈J ′ m′
j′ =∏

j∈J mj. �

The next lemma is the inverse of Lemma 40.

Lemma 42. Let P and P ′ be HOπ processes. If P ≡π P ′ then for each
configuration M such that γ(M) = P there is a configuration N such that
N ≡ M and γ(N) = P ′.

Proof. Since both ≡π and ≡ are equivalence relations, it is enough to show
the thesis for derivations of length one. The idea is that each axiom applied
on HOπ processes can be applied to each corresponding rhoπ configuration.
This may require additional applications of axioms to deal with the additional
rhoπ structure. For instance, lifting axiom E.NewC may require additional
applications of the same axiom to deal with restrictions on keys. We do not
report the detailed case analysis. �

We can finally prove the inverse of Lemma 4.

Lemma 5. For all closed HOπ processes R, S if R →π S then for all closed
configurations M such that γ(M) = R there is N such that M � N and
γ(N) = S.

Proof. By induction on the derivation of the reduction →π.

Com: R = a〈P 〉 | a(X) � Q →π Q{P/X} = S. Since γ(M) = R by Lemma
41 we have that M ≡ νã′, k̃. κ1 : a〈P 〉 | κ2 : a(X) � Q | M1 with
ã′ ∩ fn(

∏
i∈I κi : ρi) = ∅ and M1 composed only by memories. We have

that M � νã′, k̃, h. h : Q{P/X} | [κ1 : a〈P 〉 | κ2 : a(X) � Q;h] | M1 =
N . Also, γ(N) = νã′. Q{P/X} ≡π Q{P/X} = S as required.

Eqv: we have that R →π S with hypothesis R ≡π R′, R′ →π S ′ and S ′ ≡π S.
Taken M such that γ(M) = R from Lemma 42 there is M ′ ≡ M such
that γ(M ′) = R′. Then by inductive hypothesis there is M ′′ such that
M ′ � M ′′ and γ(M ′′) = S ′. By applying again Lemma 42 we know
that there is M ′′′ such that M ′′′ ≡ M ′′ and γ(M ′′′) = S. The thesis
follows by applying rule (R.Eqv).
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Ctx: we have C[R] →π C[S] with hypothesis R →π S. Take M such that
γ(M) = C[R]. Then there are C

′ and M ′ such that M = C
′[M ′] and

γ(M ′) = R. Thus the thesis follows by inductive hypothesis using rule
(R.Ctx).

�

Appendix B. Proofs of Section 3

Appendix B.1. Proofs of Section 3.1
We prove in this section that rhoπ is causal consistent.

Lemma 9 (Square Lemma). If t1 = M
η1−→ M1 and t2 = M

η2−→ M2 are
two coinitial concurrent transitions, then there exist two cofinal transitions
t2/t1 = M1

η2−→ N and t1/t2 = M2
η1−→ N .

Proof. By case analysis on the form of transitions t1 and t2.

• M
m1�−−−→ N1 and M

m2�−−−→ N2. By Lemma 38 if M � N1 then M ≡ M ′,
N ′ ≡ N1 with:

M ′ = νũ. (κ1 : a〈P 〉) | (κ2 : a(X) � Q) |
∏
i∈I

κi : ρi |
∏
j∈J

[μj; kj]

N ′ = νũ, k. (k : Q{P/X}) | m1 |
∏
i∈I

κi : ρi |
∏
j∈J

[μj; kj]

and m1 = [κ1 : a〈P 〉 | κ2 : a(X) � Q; k]. Similarly, if M � N2 then
M ≡ M ′′, N ′′ ≡ N2 with:

M ′′ = νũ. (κ′
1 : a

′〈P ′〉) | (κ′
2 : a

′(X) � Q′) |
∏
i∈I′

κi : ρi |
∏
j∈J

[μj; kj]

N ′′ = νũ, k′. k′ : Q′{P ′
/X} | m2 |

∏
i∈I′

κi : ρi |
∏
j∈J

[μj; kj]

and m2 = [κ′
1 : a

′〈P ′〉 | κ′
2 : a

′(X)�Q′; k′]. Since the two transitions are
concurrent (by hypothesis) we have that {κ1, κ2, k} ∩ {κ′

1, κ
′
2, k

′} = ∅.
Thus, we have:

M ≡ νũ. (κ1 : a〈P 〉) | (κ2 : a(X) � Q) | (κ′
1 : a

′〈P ′〉) | (κ′
2 : a

′(X) � Q′) |∏
i∈I′′

κi : ρi |
∏
j∈J

mj

N1 ≡ νũ, k. (κ′
1 : a

′〈P ′〉) | (κ′
2 : a

′(X) � Q′) |
∏
i∈I′′

κi : ρi | (
∏
j∈J

mj) | m1
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with m1 = [κ1 : a〈P 〉 | κ2 : a(X) � Q; k] and

N2 ≡ νũ, k′. (κ1 : a〈P 〉) | (κ2 : a(X) � Q) |
∏
i∈I′′

κi : ρi | (
∏
j∈J

mj) | m2

We have that N2
m1�−−−→ νũ, k′, k.

∏
i∈I′′ κi : ρi | (∏j∈J mj) | m2 | m1 and

N1
m2�−−−→ νũ, k′, k.

∏
i∈I′′ κi : ρi | (∏j∈J mj) | m2 | m1, as desired.

• M
m1�−−−→ N1 and M

m2�−−−→ N2. Since M
m1�−−−→ N1 by Lemma 39 M ≡ M ′

with:

M ′ = νũ, k. k : R | [κ1 : a〈P 〉 | κ2 : a(X) � Q; k] |
∏
i∈I′

κi : ρi |
∏
j∈J ′

mj

N1 ≡ νũ. κ1 : a〈P 〉 | κ2 : a(X) � Q |
∏
i∈I

κi : ρi |
∏
j∈J

mj

and since M
m2�−−−→ N2 then by Lemma 38 M ≡ M ′′ with:

M ′′ = νũ. κ′
1 : a

′〈P ′〉 | κ′
2 : a

′(X) � Q′ |
∏
i∈I

κi : ρi |
∏
j∈J ′

mj

N2 ≡ νũ, k′. k′ : Q′{P ′
/X} | m′

2 |
∏
i∈I

κi : ρi |
∏
j∈J ′

[μj; kj]

and m′
2 = [κ′

1 : a〈P ′〉 | κ′
2 : a(X) � Q′; k′]. By hypothesis the two

transitions are concurrent so k is neither equal nor a suffix of κ′
1 or κ

′
2.

Thus, we have that

M ≡ νũ, k′. k : R | [κ1 : a〈P 〉 | κ2 : a(X) � Q; k] | (κ′
1 : a

′〈P ′〉) |
(κ′

2 : a
′(X) � Q′) |

∏
i∈I′′

κi : ρi |
∏
j∈J ′′

mj

N1 ≡ νũ. κ′
1 : a

′〈P ′〉 | κ′
2 : a

′(X) � Q′ | κ1 : a〈P 〉 | κ2 : a(X) � Q |∏
i∈I′′

κi : ρi |
∏
j∈J ′′

mj

N2 ≡ νũ, k′, k.m′
2 | k′ : Q′{P ′

/X} | [κ1 : a〈P 〉 | κ2 : a(X) � Q; k] |
k : R |

∏
i∈I′′

κi : ρi |
∏
j∈J ′′

mj
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We have that:

N2
m1�−−−→ νũ, k′. (κ1 : a〈P 〉) | (κ2 : a(X) � Q) | m′

2 | k′ : Q′{P ′
/X} |∏

i∈I′′
κi : ρi |

∏
j∈J ′′

mj

N1
m2�−−−→ νũ, k′. (κ1 : a〈P 〉) | (κ2 : a(X) � Q) | m′

2 | k′ : Q′{P ′
/X} |∏

i∈I′′
κi : ρi |

∏
j∈J ′′

mj

as desired.

• M
m1�−−−→ N1 and M

m2�−−−→ N2, similar to the case above.

• M
m1�−−−→ N1 and M

m2�−−−→ N2, similar to the first case.

�

Lemma 10 (Rearranging lemma). Let σ be a trace. There exist forward
traces σ′ and σ′′ such that σ � σ′

•; σ
′′.

Proof. The proof is by lexicographic induction on the length of σ and on
the distance between the beginning of σ and the earliest pair of transitions
in σ of the form t; t′• (where t and t′ are forward). If there is no such pair
we are done. If there is one, we have two possibilities: either t and t′ are
concurrent, or they are in conflict. In the first case, we can swap them
by using Lemma 9, resulting in a later earliest contradicting pair, and by
induction the result follows since swapping transitions keeps the total length
constant. In the second case we have that there is a conflict on a tag κ.
We have two cases: either the memory involved in the two transitions is the
same or not. In the first case we have t = t′, and we can apply the Loop
lemma removing t; t•. Hence the total length of σ decreases and again by
induction the result follows. In the second case thanks to the property of
well-formed configurations the only possible conflict is between the thread
tag of a memory and a tag in the configuration part of the other memory.
Assume a conflict between the thread tag of memory m of transition t and
a tag in the configuration part of memory m′ of transition t′•. In this case
t has created a memory of the form [δ1 : a〈P 〉 | γ1 : a(X) � Q; k1] and a
process k1 : R. Thus from conditions 1 and 4 in the definition of well-formed
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configuration this case never happens. Assume now the opposite case: a
conflict between the thread tag of memory m′ and a tag in the configuration
part of memory m. In this case transition t′• deletes a memory of the form
[δ2 : a〈P 〉 | γ2 : a(X)�Q; k2], but this requires having a process k2 : R. Again
from conditions 1 and 4 this case never happens. �

Lemma 11 (Shortening lemma). Let σ1, σ2 be coinitial and cofinal traces,
with σ2 forward. Then, there exists a forward trace σ′

1 of length at most that
of σ1 such that σ′

1 � σ1.

Proof. We prove this lemma by induction on the length of σ1. If σ1 is a
forward trace we are already done.

Otherwise by Lemma 10 we can write σ1 as σ•; σ′ (with σ and σ′ forward).
Let t•; t′ be the only two successive transitions in σ1 with opposite direction,
with m1 belonging to t•. Since m1 is removed by t• then m1 has to be put
back by another forward transition otherwise this difference will stay visible
since σ2 is a forward trace. Let t1 be the earliest such transition in σ1. Since
it is able to put back m1 it has to be the exact opposite of t•, so t1 = t. Now
we can swap t1 with all the transitions between t1 and t•, in order to obtain
a trace in which t1 and t• are adjacent. To do so we use the Square Lemma
(Lemma 9), since all the transitions in between are concurrent. Assume in
fact that there is a transition involving memory m2 which is not concurrent
to t1, with λ(m1) = {δ1, γ1, k1}, λ(m2) = {δ2, γ2, k2}. Thanks to consistency
conditions the only possible conflicts are (1) between k1 and δ2 or between k1
and γ2 or (2) between k2 and δ1 or k2 and γ1. The first case can never happen
since k1 is fresh (generated by the forward rule) and thus cannot coincide nor
been a prefix of γ2 or δ2. Similarly the second case can never happen since
k2 is fresh and thus cannot occur in m1. When t• and t are adjacent we can
remove both of them using �. The resulting trace is shorter, thus the thesis
follows by inductive hypothesis. �

Theorem 1 (Causal consistency). Let σ1 and σ2 be coinitial traces, then
σ1 � σ2 if and only if σ1 and σ2 are cofinal.

Proof. By construction of �, if σ1 � σ2 then σ1 and σ2 must be coinitial
and cofinal, so this direction of the theorem is verified. Now we have to prove
that σ1 and σ2 being coinitial and cofinal implies that σ1 � σ2. By Lemma
10 we know that the two traces can be written as composition of a backward
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trace and a forward one. The proof is by lexicographic induction on the sum
of the lengths of σ1 and σ2 and on the distance between the end of σ1 and
the earliest pair of transitions t1 in σ1 and t2 in σ2 which are not equal. If all
the transitions are equal then we are done. Otherwise we have to consider
three cases depending on the direction of the two transitions.

t1 forward and t2 backward: we have σ1 = σ•; t1; σ′ and σ2 = σ•; t2; σ′′.
Moreover we know that t1; σ

′ is a forward trace, so we can apply the
Lemma 11 to the traces t1; σ

′ and t2; σ
′′ (since σ1 and σ2 are coinitial

and cofinal by hypothesis, also t1; σ
′ and t2; σ

′′ are coinitial and cofinal)
and we obtain that t2; σ

′′ has a shorter equivalent forward trace and
so also σ2 has a shorter equivalent forward trace. We can conclude by
induction.

t1 and t2 forward: by assumption the two transitions are different. If they
are not concurrent then they should conflict on a thread process κ : P
that they both consume and store in different memories. Since the two
traces are cofinal there should be t′2 in σ2 creating the same memory as
t1. However no other process κ : P is ever created in σ2 thus this is not
possible. So we can assume that t1 and t2 are concurrent. Again let
t′2 be the transition in σ2 creating the same memory of t1. We have to
prove that t′2 is concurrent to all the previous transitions. This holds
since no previous transition can remove one of the processes needed
for triggering t′2 and since forward transitions can never conflict on
k. Thus we can repetitively apply the Square Lemma to derive a trace
equivalent to σ2 where t2 and t′2 are consecutive. We can apply a similar
transformation to σ1. Now we can apply the Square Lemma to t1 and
t2 to have two traces of the same length as before but where the first
pair of different transitions is closer to the end. The thesis follows by
inductive hypothesis.

t1 and t2 backward: t1 and t2 cannot remove the same memory. Let m1

be the memory removed by t1. Since the two traces are cofinal, either
there is another transition in σ1 putting back the memory or there is
a transition t′1 in σ2 removing the same memory. In the first case, t1
is concurrent to all the backward transitions following it, but the ones
that consume processes generated by it. All the transitions of this kind
have to be undone by corresponding forward transitions (since they are
not possible in σ2). Consider the last such transition: we can use the
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Square Lemma to make it the last backward transition. The forward
transition undoing it should be concurrent to all the previous forward
transitions (the reason is the same as in the previous case). Thus we can
use the Square Lemma to make it the first forward transition. Finally
we can apply the simplification rule t•; t � εtarget(t) to remove the two
transitions, thus shortening the trace. The thesis follows by inductive
hypothesis.

�

Appendix B.2. Proofs of Section 3.2

Appendix B.2.1. Labelled transition system semantics for choπ

In [21], Boreale and Sangiorgi do not define their causal π-calculus via
a reduction semantics but with a labelled transition system. To show that
our notion of causal process indeed corresponds to that of Boreale and San-
giorgi, we present here a labelled transition system semantics for choπ directly
adapted from [21] to our higher-order context. We then prove that the la-
belled transition system semantics and the reduction semantics for choπ are
in agreement.

The labelled transition system semantics of choπ is given in Figure B.16,
where α ranges over channel names a and their complements of the form a.
The rules in Figure B.16 are a direct adaptation of the rules in [21] to the
asynchronous higher-order π, with the use of concretions and abstractions,
following Milner and Sangiorgi [15, 17]. A concretion takes the form νã. 〈P 〉A,
where ã ⊆ fn(P ). An abstraction takes the form (X)A. We use C,D and
their decorated variants to range over concretions, and F,G and their dec-
orated variants to range over abstractions. We call agent an abstraction, a
concretion or a causal process, and by abuse of notation, we also use A,B
and their decorated variants to range over agents. The application operator
• is defined by the following rule (where by convention ã ∩ fn(A) = ∅):

(X)A • νã. 〈P 〉B = νã. A{P/X} | B

In addition, we define in Figure B.17 operations νa. A, A | B, B | A, and
K :: A for arbitrary agents A and causal processes B. Finally, we define
inductively the operation of substitution of a key k by a set of keys K in a
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(Out) a〈P 〉 a−−→
∅;k

〈P 〉0 (In) a(X) � P
a−−→
∅;k

{k} :: (X)P

(Cau)

A
α−−→

K;k
A′

K ′ :: A α−−−−−→
K∪K′;k

K ′ :: A′ (Res)

A
α−−→

K;k
A′ fn(α) 
= a

νa.A
α−−→

K;k
νa.A′

(Parl)

A1
α−−→

K;k
A′

1

A1 | A2
α−−→

K;k
A′

1 | A2

(Parr)

A1
α−−→

K;k
A′

1

A2 | A1
α−−→

K;k
A2 | A′

1

(T-cau)

A
τ−→ A′

K :: A
τ−→ K :: A′ (T-res)

A
τ−→ A′

νa.A
τ−→ νa.A′

(T-parl)

A1
τ−→ A′

1

A1 | A2
τ−→ A′

1 | A2

(T-parr)

A1
τ−→ A′

1

A2 | A1
τ−→ A2 | A′

1

(Coml)

A1
a−−−→

K1;k
C A2

a−−−→
K2;k

F k 
∈ k(A1, A2)

A1 | A2
τ−→ (F • C){K1/k}

(Comr)

A1
a−−−→

K1;k
C A2

a−−−→
K2;k

F k 
∈ k(A1, A2)

A2 | A1
τ−→ (F • C){K1/k}

Figure B.16: Transition system rules for choπ

causal process as follows:

(K ′ ∪ {k}){K/k} = K ′ ∪K if k 
∈ K ′

K ′{K/k} = K ′ if k 
∈ K ′

P{K/k} = P

(K ′ :: A){K/k} = K ′{K/k} :: A{K/k}
(νa. A){K/k} = νa. (A{K/k})
(A1 | A2){K/k} = (A1{K/k}) | (A2{K/k})

The agreement between the two semantics is given by the following result.

Proposition 2. A
τ−→≡ A′ if and only if A → A′.
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νa. ((X)A) = (X)νa.A νa. (νc̃. 〈P 〉A) = νa, c̃. 〈P 〉A if a ∈ fn(P )

νa. (νc̃. 〈P 〉A) = νc̃. 〈P 〉νa.A if a 
∈ fn(P )

((X)A) | B = (X)(A | B) B | ((X)A) = (X)(B | A)

(νc. 〈P 〉A) | B = νc. 〈P 〉(A | B) B | (νc. 〈P 〉A) = νc. 〈P 〉(B | A)

K :: ((X)A) = (X)K :: A K :: (νc. 〈P 〉A) = νc. 〈P 〉K :: A

Figure B.17: Operations on agents

The proof of this proposition is long but completely standard. We give
details below.

Note that, thanks to the agreement with the reduction semantics, A ↓K::α

if and only if A
α−−→

K;k
A′ for some k,A′.

Appendix B.2.2. Proof of Proposition 2

We prove in this section the equivalence between the labelled transition
system semantics and the reduction semantics for choπ. We start with a few
additional notions used in the proofs.

We extend the structural congruence relation ≡ to agents using the ad-
ditional rules below (considering that rule E.α extends to agents as well):

(E-Cnc)

P ≡ Q A ≡ B

νã. 〈P 〉A ≡ νã. 〈Q〉B (E-Abs)

A ≡ B

(X)A ≡ (X)B

An easy induction on the derivation of A ≡ B gives us the following
lemmas.

Lemma 43. For all agents A,B and process P , if A ≡ B then A{P/X} ≡
B{P/X}.

Lemma 44. For all agents A,B, A ≡ B implies A{K/k} ≡ B{K/k}.

Using Lemma 44, an easy induction on the structure of a causal process
gives us the following lemma:
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Lemma 45. For all causal processes A, k 
∈ K, (K :: A){K∪K′
/k} ≡ K ::

A{K′
/k}.

Lemma 46. If F ≡ F ′ and C ≡ C ′, then F • C ≡ F ′ • C ′.

Proof. We must have C = νã. 〈P 〉A2, F = (X)A1, C
′ = νã. 〈P ′〉A′

2, F
′ =

(X)A′
1, with P ≡ P ′, A1 ≡ A′

1 and A2 ≡ A′
2. Now

F • C = A1{P/X} | A2 definition of •
≡ A1{P ′

/X} | A2 congruence of ≡
≡ A′

1{P
′
/X} | A′

2 Lemma 43 and congruence of ≡
= F ′ • C ′ definition of •

. �

Lemma 47. For all agents F,C, K :: (F • C) ≡ (K :: F ) • (K :: C)

Proof. Let F = (X)A and C = νc̃. 〈P 〉B. We compute:

K :: (F • C) = K :: νc̃. A{P/X} | B ≡ νc̃.K :: A{P/X} | K :: B

(K :: F ) • (K :: C) = ((X)K :: A) • (νc̃.K :: B) = νc̃.K :: A{P/X} | K :: B

�

An easy induction on the derivation of A
α−−→

K;k
A′ gives us the following

lemma:

Lemma 48. For any causal process A, and any keys k, k′, if A α−−→
K;k

A′, then

A
α−−→

K;k′
A′.

We can then prove the main lemmas towards the agreement proposition:

Lemma 49. For all A,A′, B, α,K, k, if A
α−−→

K;k
A′ and B ≡ A, then there

exists B′ ≡ A′ such that B
α−−→

K;k
B′.

Proof. The proof is lengthy but completely standard. It proceeds by in-
duction on the derivation of B ≡ A. We just detail the non-classical cases
arising from the rules in Figure 4.
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• (E-par): in this case, A = K ′ :: A1 | A2 and B = K ′ :: A1 | K :: A2.
A

α−−→
K;k

A′ can only have been derived via (Cau), with A1 | A2
α−−−→

K′′;k
A′′

and K = K ′ ∪K ′′, A′ = K ′ :: A′′ . In turn, A1 | A2
α−−−→

K′′;k
A′′ can only

have been derived via (E-parl) or (E-parr). We check only the case
(E-parl) as the other is similar. We thus have A1

α−−−→
K′′;k

A′
1 with A′′ =

A′
1 | A2. Using rule (Cau), we now have K ′ :: A1

α−−−−−→
K′∪K′′;k

K ′ :: A′
1.

Using rule (Parl), we obtain

B = K ′ :: A1 | K ′ :: A2
α−−→

K;k
K ′ :: A′

1 | K ′ :: A2

By (E-par), we have K ′ :: A′
1 | K ′ :: A2 ≡ K ′ :: A′

1 | A2 = A′, and
thus we have found B′ = K ′ :: A′

1 | K ′ :: A2, such that B
α−−→

K;k
B′ and

B′ ≡ A′, as required.

• (E-Cau): in this case, A = K1 :: K2 :: A1 and B = K1 ∪ K2 :: A1.
A

α−−→
K;k

A′ can only have been derived via (Cau), with K2 :: A1
α−−→

K′
1;k

A′
1

and K = K1∪K ′
1, A

′ = K1 :: A
′
1. In turn, the latter transition can only

have been obtained via (Cau), with A1
α−−→

K′
2;k

A′′
1 and K ′

1 = K2 ∪ K ′
2,

A′
1 = K2 :: A

′′
1. Using (Cau) we getK1∪K2 :: A1

α−−−−−−−−→
K1∪K2∪K′

2;k
K1∪K2 ::

A′′
1 and thus B = K1 ∪K2 :: A1

α−−→
K;k

K1 ∪K2 :: A
′′
1. By rule (E-cau),

we have K1 ∪K2 :: A
′′
1 ≡ K1 :: K2 :: A

′′
1 = A′, and thus we have found

B′ = K1 ∪K2 :: A
′′
1 such that B

α−−→
K;k

B′ and B′ ≡ A′, as required.

• (E-res): in this case, A = K ′ :: νa. A1 and B = νa.K ′ :: A1. A
α−−→

K;k
A′

can only have been derived via (Cau), with νa. A1
α−−−→

K′′;k
A′′, K =

K ′∪K ′′, and A′ = K ′ :: A′′. In turn, the latter transition can only have
been derived via (Res), with A1

α−−−→
K′′;k

A′
1, a 
= fn(α), and A′′ = νa. A′

1.

Using (Cau) we get K ′ :: A1
α−−−−−→

K′∪K′′;k
K ′ :: A′

1, and using (Res) we get

B = νa.K ′ :: A1
α−−→

K;k
νa.K ′ :: A′

1. By (E-res) we get νa.K ′ :: A′
1 ≡

K ′ :: νa. A′
1 = A′, and thus we have found B′ = νa.K ′ :: A′

1 such that
B

α−−→
K;k

B′ and B′ ≡ A′, as required.
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• (E-nil): in this case, A = ∅ :: B. A
α−−→

K;k
A′ can only have been derived

via (Cau), with B
α−−→

K;k
B′ and A′ = ∅ :: B′. Now by (E-nil) we have

A′ ≡ B′, as required.

�

Lemma 50. For all A,A′, B, if A
τ−→ A′ and A ≡ B, then there exists

B′ ≡ A′ such that B
τ−→ B′.

Proof. The proof proceeds by induction on the derivation of A ≡ B. Again,
we give details only for the non-classical cases arising from the rules in Fig-
ure 4.

• (E.par): in this case, A = K :: A1 | A2 and B = K :: A1 | K :: A2.
A

τ−→ A′ can only have been derived via (T-cau), with A1 | A2
τ−→ A′′

and A′ = K :: A′′. In turn, the latter transition could only have been
derived via (T-parl), (T-parr), (Coml), or (Comr). We check the
different cases:

– (T-parl): in this case, we have A1
τ−→ A′

1, A
′′ = A′

1 | A2, and
A′ = K :: A′

1 | A2. Applying (T-cau) and (T-parl), we get
B

τ−→ K :: A′
1 | K :: A2. Now, by (E-cau) K :: A′

1 | K :: A2 ≡
K :: A′

1 | A2 = A′, hence we have found B′ = K :: A′
1 | K :: A2 as

required.

– (T-parr): this case is similar to the (T-parl) one.

– (Coml): in this case, A1
a−−→

K1;k
C, A2

a−−→
K2;k

F , A′′ = F{K1/k} •C,

k 
∈ k(A1, A2). Using (Cau) twice and (Coml) we get B
τ−→ B′,

with B′ = (K :: F •K :: C){K∪K1/k}. Now using Lemma 44 and
Lemma 47, we get B′ ≡ (K :: F • C){K∪K1/k} and by Lemma 45
(note that k 
∈ K for k must not be in k(K :: A1, K :: A2) for
applying (Coml), a condition which can always be met thanks to
Lemma 48) B′ ≡ K :: (F • C){K1/k} = A′, as required.

– (Comr): this case is similar to the (Coml) one.

• (E-Cau): in this case, A = K1 :: K2 :: A1 and B = K1 ∪ K2 :: A1.
A

τ−→ A′ can only have been derived via (T-cau) twice, leading to
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A1
τ−→ A′

1 and A′ = K1 :: K2 :: A′
1. Now, applying (T-cau) we get

B
τ−→ K1 ∪K2 :: A′

1 and by (E-cau) we get B ≡ K1 :: K2 :: A′
1 = A′,

as required.

• (E-res): the reasoning proceeds like above, exploiting (Res) and (E-
res).

• (E-nil): immediate.

�

Lemma 51. For all causal processes A, the following properties hold:

1. If A
a−−→

K;k
νc̃. 〈P 〉B then A ≡ νc̃. (K :: a〈P 〉) | B.

2. If A
a−−→

K;k
F then A ≡ νc̃. (K :: a(X) � Q) | B for some c̃, Q,B, and

F ≡ (X)νc̃. (K ∪ {k} :: Q) | B.

3. If A
τ−→ A′ then A ≡ νc̃. (K1 :: a〈P 〉) | (K2 : a(X) � Q) | B for some

c̃, K1, K2, a, P,Q,B, and A′ ≡ νc̃. (K1 ∪K2 :: Q{P/X}) | B.

Proof. We prove property 1 by induction on the derivation of A
a−−→

K;k
C,

where C = νc̃. 〈P 〉B for some c̃, P, B.

• (Out): in this case A = a〈P 〉, K = ∅ and C = 〈P 〉0, thus A ≡ ∅ :
a〈P 〉 | 0, as required.

• (Cau): in this case A = K1 :: A1, K = K1 ∪ K2, C = K1 :: C1,

and A1
a−−→

K2;k
C1. Assume C1 = νc̃. 〈P 〉B, then C = νc̃. 〈P 〉K1 :: B.

By induction assumption, we have A1 ≡ νc̃. (K2 :: a〈P 〉) | B. Thus
A = K1 :: A1 ≡ νc̃. (K1 ∪K2 :: a〈P 〉) | (K1 :: B), as required.

• (Parl): in this case, A = A1 | A2, A1
a−−→

K;k
C1, and C = C1 | A2.

Assume C1 = νc̃. 〈P 〉B, then C = νc̃. 〈P 〉(B | A2). By induction
assumption, we have A1 ≡ νc̃.K :: a〈P 〉 | B. Thus, A = A1 | A2 ≡
νc̃. (K :: a〈P 〉) | (B | A2), as required.

• (Parr): this case is similar to the (Parl) one.
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• (Res): in this case, A = νe. A1, e 
= a, A1
a−−→

K;k
C1, and C = νe. C1.

Assume C1 = νc̃. 〈P 〉B, then C = νe. νc̃. 〈P 〉B. By induction assump-
tion A1 ≡ νc̃.K :: a〈P 〉 | B. Thus A = νe. A1 ≡ νe, c̃. K :: a〈P 〉 | B.
We now have two cases to consider, according to whether e ∈ fn(P ) or
not. If e ∈ fn(P ), we have C = νe, c̃. 〈P 〉B, and we are done. If not,
we have C = νc̃. 〈P 〉νe. B and A ≡ νc̃.K :: a〈P 〉 | νe. B, as required.

We prove property 2 by induction on the derivation of A
a−−→

K;k
F .

• (In): in this case, A = a(X) � Q, K = ∅, and F = {k} :: (X)Q. Thus
we have A ≡ ∅ :: a(X) � Q and F ≡ ∅ ∪ {k} :: (X)Q, as required.

• (Cau): in this case, A = K1 :: A1, A1
a−−→

K2;k
F1, k = K1∪K2, F = K1 ::

F1. By induction assumption, we have A1 ≡ νc̃. (K2 :: a(X) � Q) | B
for some c̃, Q,B, and F1 ≡ (X)νc̃. (K2 ∪ {k} :: Q) | B. Thus, A ≡
νc̃. (K1 ∪K2 :: a(X) �Q) | (K1 :: B), and F ≡ (X)νc̃. (K1 ∪K2 ∪{k} ::
Q) | (K1 :: B) as required.

• (Parl): in this case, A = A1 | A2, A1
a−−→

K;k
F1, F = F1 | A2. By

induction assumption, we have A1 ≡ νc̃. (K :: a(X) � Q) | B for some
c̃, Q,B, and F1 ≡ (X)νc̃. (K ∪ {k} :: Q) | B. Thus, A ≡ νc̃. (K ::
a(X) � Q) | (B | A2), and F ≡ (X)νc̃. (K ∪ {k} :: Q) | (B | A2) as
required.

• (Parr): this case is handled as the (Parl) one.

• (Res): in this case A = νe. A1, e 
= a, A1
a−−→

K;k
F1, F = νe. F1. By

induction assumption, we have A1 ≡ νc̃. (K :: a(X) � Q) | B for some
c̃, Q,B, and F1 ≡ (X)νc̃. (K ∪ {k} :: Q) | B. Thus, A ≡ νe, c̃. (K ::
a(X) � Q) | B for some c̃, Q,B, and F ≡ (X)νe, c̃. (K ∪ {k} :: Q) | B,
as required.

We prove property 3 by induction on the derivation of A
τ−→ A′.

• (T-Cau): in this case, A = K :: A1, A1
τ−→ A′

1 and A′ = K :: A′
1.

By induction assumption A1 ≡ νc̃.K1 :: a〈P 〉 | K2 :: a(X) � Q | B,
A′

1 ≡ νc̃.K1 ∪K2 :: Q{P/X} | B for some c̃, K1, K2, a, P,Q,B. Thus

A ≡ νc̃. (K ∪K1 :: a〈P 〉) | (K ∪K2 :: a(X) � Q) | (K :: B)
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and
A′ ≡ νc̃. (K ∪K1 ∪K2 :: Q{P/X}) | (K :: B)

as required.

• (T-res), (T-parl), (T-parr): the proof is similar to the one of the
(T-Cau) case.

• (Coml): in this case, we have A = A1 | A2, A1
a−−→

K1;k
C, A2

a−−→
K2;k

F , and

A′ = F{K1/k} •C. Using property 1, we have A1 ≡ νc̃.K1 :: a〈P 〉 | B1

for some c̃, P, B1, and C = νc̃. 〈P 〉 | B1 Using property 2, we have
A2 ≡ νẽ.K2 :: a(X)�Q | B2 for some ẽ, Q,B2, and F ≡ νẽ. (K2∪{k} ::
Q) | B2. Thus,

A ≡ νc̃, ẽ. (K1 :: a〈P 〉) | (K2 :: a(X) � Q) | (B1 | B2)

and

A′ ≡ νc̃, ẽ. (((K2 ∪ {k} :: Q) | B2){P/X} | B1){K1/k}
≡ νc̃, ẽ. (K2 ∪K1 :: Q{P/X}) | (B1 | B2)

as required (noting that X is not free in B2 and that k 
∈ k(B1, B2) for
k 
∈ k(A1, A2)).

• (Comr): this case is proved like the (Coml) one.

�
We can finally prove the agreement proposition itself:

Proposition 2. A
τ−→≡ A′ if and only if A → A′.

Proof. The only if part is a direct consequence of Lemma 51(3). For the
if part, we reason by induction on the derivation of A → A′:

• (C-red): in this case, A = K1 :: a〈P 〉 | K2 :: a(X) � Q, and A′ =
K1 ∪ K2 : Q{P/X}. We can apply (Out) followed by (Cau) to get

K1 :: a〈P 〉 a−−→
K1;k

〈P 〉K1 :: 0. We can apply (In) followed by (Cau)

to get K2 :: a(X) � Q
a−−→

K2;k
(X)K2 ∪ {k} : Q. Choosing k such that

k 
∈ K1 ∪K2, and applying (Coml) we get:

A
τ−→ (K2 ∪ {k} : Q){P/X}{K1/k} = K2 ∪K1 :: Q{P/X}
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• closure by ≡: in this case, we have A ≡ B, B → B′ and B′ ≡ A′. By
induction assumption, we have B

τ−→≡ B′. Now by Lemma 50, we have
A

τ−→ A′′ with A′′ ≡ B′ and thus A′′ ≡ A′, as required.

• closure by evaluation context: in this case we reason by induction on
the form of evaluation context E:

– E = •: this is the case (C-red) above.

– E = νa.E′: in this case A = νa.B and A′ = νa.B′ for some B, B′

such that B → B′. By induction assumption, B
τ−→ B′′ ≡ B′. The

thesis follows by applying rule T-res since ≡ is a congruence.

– E = E
′ | BP and symmetric: in this case A = B | BP and

A′ = B′ | BP for some B, B′ such that B → B′. By induction
assumption, B

τ−→ B′′ ≡ B′. The thesis follows by applying rule
T-parl since ≡ is a congruence.

�

Appendix C. Proofs of Section 4

Appendix C.1. Proofs of Section 4.3

Before proving Lemma 13 below, which concerns configurations, we prove
a corresponding result on processes.

Lemma 52. For all names k and rhoπ processes P , Q, if P ≡ Q then
nf(�P �k) ≡Ex nf(�Q�k).

Proof. By induction on the derivation of P ≡ Q. The only interesting case
is the base one, corresponding to the application of an axiom. We have a
case analysis on the applied axiom. We consider just the most interesting
cases.

P | Q ≡ Q | P . If either P or Q is congruent to 0, the thesis banally follows.
Otherwise

nf(�P | Q�k) = νl, h. nf(�P �l) | nf(�Q�h) | nf(KillP l h k)

≡Ex νl, h. nf(�P �l) | nf(�Q�h) | nf(KillP h l k)

= nf(�Q | P �k)

as desired, where we used axiom Ax.C.
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P | (Q | R) ≡ (P | Q) | R. If at least one among P , Q and R is equivalent to
0 the thesis banally follows. Otherwise

nf(�P | (Q | R)�k) =

= νh, l, h′, l′. nf(�P �h) | nf(�Q�h′) | nf(�R�l′) | nf(KillP h l k) |
nf(KillP h′ l′ l)

=α νh, l, h′, l′. nf(�P �h′) | nf(�Q�l′) | nf(�R�l) | nf(KillP h′ h k) |
nf(KillP l′ l h)

≡Ex νh, l, h′, l′. nf(�P �h′) | nf(�Q�l′) | nf(�R�l) | nf(KillP h′ l′ h) |
nf(KillP l h k)

= nf(�(P | Q) | R�k)

as desired, where we used axiom Ax.A. �

Lemma 13. Let M , N be closed consistent rhoπ configurations. Then M ≡
N implies nf(�M�) ≡Ex nf(�N�).

Proof. By induction on the derivation of M ≡ N . The only interesting
case is the base one, corresponding to the application of an axiom. If the
axiom is applied to a process only, the thesis follows from Lemma 52 and
from the observation that processes are always applied to keys. We show
below the most interesting of the other cases:

(νu.M) | N ≡ νu. (M | N). By definition:

nf(�(νu.M) | N�) = nf(�(νu.M)�) | nf(�N�)

= nf(νu. �M�) | nf(�N�)

= νu. nf(�M�) | nf(�N�)

≡ nf(νu. (�M� | �N�))

= nf(νu. �M | N�)

= nf(�νu. (M | N)�)

κ : νa. P ≡ νa. κ : P . We distinguish two cases, depending on the form of κ.
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If κ = 〈hi, h̃〉 · k then by definition:

nf(�〈hi, h̃〉 · k : νa. P �) = nf(�νa. P �hi) | nf(Kill〈hi,h̃〉·k)

= νa. nf(�P �hi) | nf(Kill〈hi,h̃〉·k)

≡ (νa. nf(�P �hi) | nf(Kill〈hi,h̃〉·k)

= νa. nf(�〈hi, h̃〉 · k : P �)

= nf(�νa. 〈hi, h̃〉 · k : P �)

The other case is simpler.

k :
∏n

i=1 τi ≡ νh̃.
∏n

i=1(〈hi, h̃〉 · k : τi). We consider below the case n > 2, the
case n = 2 is simpler. By definition:

nf(�k :
n∏

i=1

τi�) = nf(�
n∏

i=1

τi�k) =

νh1, l1. nf(�τ1�h1) | nf(�
n∏

i=2

τi�l1) | nf(KillP h1 l1 k) =

νh1, h2, l1, l2. nf(�τ1�h1) | nf(�τ2�h2) | nf(�
n∏

i=3

τi�l1) |

nf(KillP h1 l1 k) | nf(KillP h2 l2 l1) =

νh̃, l̃.
n−1∏
i=1

nf(�τi�hi) | nf(�τn�ln−1) | nf(KillP h1 l1 k) |
n−1∏
i=2

nf(KillP hi li li−1)

Now by α−converting the key of the last τn from ln−1 to hn we obtain
a term of the form

νh̃, l̃.
n∏

i=1

nf(�τi�hi) | nf(KillP h1 l1 k) |
n−2∏
i=2

nf(KillP hi li li−1) |

nf(KillP hn−1 hn li−2) =

nf(�νh̃.
n∏

i=1

〈hi, h̃〉 · k : τi�)

Note that in this case we assumed that the | is right associative, in order
to unroll the parallel composition from

∏n
i=1�τi� to �τ1� | ∏n

i=2�τi�. �
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Before proving Lemma 14 below, we show a few auxiliary results.
First, we characterize the effect of reduction to normal form on a term of

the form C[P ]. To this end we define normal form on contexts, which also
computes the substitution applied to the hole •. To work with contexts with
one hole only, we require that for all the higher-order applications (X)P C1[•]
either P is linear or P is already in normal form. In the first case the bullet
is not replicated, and single-hole contexts are enough. In the second case, no
inductive call is required.

Definition 21 (Context normal form). The context normal form func-
tion nfc(C[•]) is defined as nfc(C[•], ∅), where the second parameter is used
for computing the substitution applied to the bullet. The result is also a pair
(C′[•], σ). The function nfc(C[•], σ) is defined as follows:

nfc(P | C1[•], σ) = nf(P ) | C′[•], σ′ if nfc(C1[•], σ) = C
′[•], σ′

nfc(νa.C1[•], σ) = νa.C′[•], σ′ if nfc(C1[•], σ) = C
′[•], σ′

nfc((X)C1[•] P, σ) = C
′[•], σ′ if nfc(C1{P/X}[•], σ · {P/X}) = C

′[•], σ′

nfc((X)P C1[•], σ) = C
′[•], σ′ if nfc(P{C1[•]/X}, σ) = C

′, σ′ and P is linear

nfc((X)P C1[•], σ) = P{C1[•]/X}, σ · {C1[•]/X} if P is in normal form

nfc((h)C1[•] l, σ) = C
′[•], σ′ if nfc(C1{l/h}[•], σ · {l/h}) = C

′[•], σ′

nfc(a〈C1[•]〉, σ) = a〈C1[•]〉, σ
nfc(a(X) � C1[•], σ) = a(X) � C1[•], σ
nfc(•, σ) = •, σ

This definition enables the lemma below.

Lemma 53. If nfc(C[•], ∅) = C1, σ then nfc(C[•], σ′) = C1, σ
′ · σ

The notions of normal form for processes and for contexts are compatible.

Lemma 54. nf(C[P ]) = C
′[nf(Pσ)] with nfc(C[•]) = C

′[•], σ if for each
higher-order application (X)Q C1[•] process Q is either linear or in normal
form.

Proof. By structural induction on C[•]. We show a few cases as examples:
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• C[•] = Q | C1[•]) we have that nf(Q | C1[P ]) = nf(Q) | nf(C1[P ]).
By inductive hypothesis we have that nf(C1[P ]) = C

′
1[nf(Pσ)] with

nfc(C1[P ], ∅) = C
′
1, σ, and we can conclude by noting that nfc(Q |

C1[•], ∅) = nf(Q) | nfc(C1[•], ∅).
• C[•] = (X)C1[•] Q) we have to show that nf((X)C1[P ] Q) = C

′[nf(Pσ)]
with nfc((X)C1[•] Q, ∅) = C

′, σ. By definition, nfc((X)C1[•] Q, ∅) =
nfc(C1[•]{Q/X}, {Q/X}). We have that nf(C1[P ]{Q/X}) = nf(C1{Q/
X}[P{Q/X}]) = C

′′[nf(P{Q/X}σ′)] where nfc(C1{Q/X} [•], ∅) = C
′′, σ′

and by using Lemma 53 nfc(C1{Q/X}[•], {Q/X}) = C
′′, {Q/X} ·σ′. We

have that C′′, σ′{Q/X} = C
′, σ. So nf((X)C1[P ] Q) = C

′[nf(Pσ)] with
nfc((X)C1[•] Q, ∅) = C

′, σ, as desired.

• C[•] = nf((X)Q C1[•]) with Q linear) we have that nf((X)Q C1[P ]) =
nf(Q{C1[P ]/X}), but since Q is linear we can write Q{C1[P ]/X} = C2[P ],
hence nf((X)Q C1[P ]) = nf(Q{C1[P ]/X}) = nf(C2[P ]). By induc-
tive hypothesis we have that nf(C2[P ]) = C

′
2[Pσ] with nfc(C2[•], ∅) =

C
′
2, σ, as desired.

• C[•] = nf((X)Q C1[•]) with Q in normal form) we have that nf((X)Q
C1[P ]) = nf(Q{C1[P ]/X}) = Q{C1[P ]/X} and nfc((X)Q C1[P ], ∅) =
C

′
1[•], σ with nfc(Q{C1[•]/X}, ∅) = Q{C1[•]/X}, ∅ and C

′
1[•] = Q{C1[•]/

X}, and we can conclude by stating that C
′
1[P∅] = Q{C1[P ]/X}, as

desired. Note that if Q is in normal form then nf(Q{P/X}) = Q{P/
X}, since X does not occur in evaluation contexts. �

Substitutions preserve structural congruence ≡Ex.

Lemma 55. For any substitution σ = {l/h} or σ = {�P �/X}, if M ≡Ex N
then Mσ ≡Ex Nσ.

Proof. The proof is trivial for name substitutions. For higher-order ones
the proof is by induction on the derivation of M ≡Ex N , with a case analysis
on the last applied axiom of ≡Ex. All the cases are easy. �

Lemma 14. If P and Q are consistent HOπ+ processes and P ≡Ex Q then
nf(P ) ≡Ex nf(Q).
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Proof. Let us consider P and Q generated by the encoding of Figure 7
where instead of having Trig processes, we substitute them with their normal
form. Thus we can apply Lemma 54. Let us consider one application of an
axiom. We have that P = C[L] and Q = C[R] with L ≡Ex R an axiom. By
Lemma 54 we have that nf(C[L]) = C

′[nf(Lσ)] with nfc(C[•], ∅) = C
′[•], σ,

and the same with nf(C[R]) = C
′[nf(Rσ)]. By Lemma 55 we have that if

L ≡Ex R then Lσ ≡Ex Rσ. Also, nf(Lσ) ≡Ex nf(Rσ) since ≡Ex is closed
under normal form. Finally, C′[nf(Lσ)] ≡Ex C

′[nf(Rσ)], as desired. �

Lemma 15. If nf(P ) ≡Ex nf(P ′) then for each Q ∈ addG(P ) there exists
Q′ ∈ addG(P ′) such that nf(Q) ≡Ex nf(Q

′).

Proof. By definition of addG we have that P ≡ E[0] and P ′ ≡ E
′[0], with

Q ≡ E[R]. Let us choose Q′ ≡ E
′[R]. By using Lemma 54 we have that

nf(E[R]) = E1[nf(Rσ)] and nf(E′[R]) = E2[nf(Rσ′)]. Since all the pro-
cesses added by the function addG are closed we have that Rσ = Rσ′ = R
and nf(E[R]) = E1[nf(R)] and nf(E′[R]) = E2[nf(R)]. By hypothesis we
have that nf(E[0]) ≡Ex nf(E′[0]). We also have E1[nf(0σ)] = E1[0] ≡Ex

E2[0] = E2[nf(0σ
′)], and we can conclude by saying that also E1[nf(R)] ≡Ex

E2[nf(R)], that is nf(Q) ≡Ex nf(Q
′), as desired. �

Lemma 16. If P is a consistent HOπ+ process and P ≡ C[l〈R〉, . . . , l〈R〉]
with l ∈ K for some n-ary context C then P ≡ C′[l〈R〉 | S1, . . . , l〈R〉 | Sn]
for some n-ary context C′ with, for each i ∈ {1, . . . , n}, Si = Rew l or
Si = l(Z) � Z l.

Proof. By definition of consistency there exists a rhoπ process Q such that
�νk. k : Q� ⇒ P . The proof is by induction on the number of steps in ⇒.
The base case is when �νk. k : Q� = P . The proof is easy by inspection
on the rules defining the encoding, since all messages on key channels are
created together with the corresponding Rew l.

In the inductive case we have that �νk. k : Q� ⇒ P ′ → P with P ≡
C[l〈R〉, . . . , l〈R〉]. For simplicity we consider just one instance of a message
l〈R〉 at the time. Note that messages cannot appear, but existing messages
may be duplicated because of communications or applications. We proceed
by case analysis on P ′ → P . If the reduction does not involve the message
l〈R〉 nor the corresponding Si the thesis follows easily. If the message l〈R〉
is inside a communicated message or the argument of an application, then
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the corresponding Si is inside the same message or the same argument and
they are deleted, moved, or replicated together. If the message is read, it
disappears and nothing has to be proved. If the message is inside a trigger or
in the body of an abstraction on a process then a substitution may be applied
to it, but this has no effect on the corresponding Si, and the thesis holds by
inductive hypothesis. If the reduction is an application of an abstraction of
the name l, then the same renaming is done on the corresponding Rew l, and
the thesis holds by inductive hypothesis. If the reduction is the application of
Rew l we move from the first case of the thesis to the second one. If instead the
reduction is the communication of l(Z) �Z l, this removes the corresponding
message and nothing has to be proved (if it removes another message this
means that there were two parallel messages on the same channel l, and we
can simply exchange them in the correspondence). �

Lemma 17.
If P is a consistent HOπ+ process and P ≡ C[a〈�Q�, l〉, . . . , a〈�Q�, l〉] with
a ∈ N for some n-ary context C then P ≡ C′[a〈�Q�, l〉 | S1, . . . , a〈�Q�, l〉 | Sn]
for some n-ary context C′ with, for each i ∈ {1, . . . , n}, Si = (KillM a l) or
Si = (a(X, \l) � l〈(h)Msg a X h〉 | Rew l).

Proof. By inspection of the encoding of Figure 7 we note that a message
of the form a〈�Q�, l〉 is only generated in the Msg process, together with the
corresponding KillM. Also, interaction with the message is the only way to
remove a KillM. The case analysis is similar to the one in Lemma 16. �

Lemma 18. Let P be a consistent HOπ+ process and Q ∈ addG(P ). If
nf(Q) ↪→ Q′ then there exists P ′ such that P ↪→∗ P ′ with Q′ ∈ addG(P ′).

Proof. The reduction nf(Q) ↪→ Q′ is due to a communication since pro-
cesses in normal form have no enabled applications.

We distinguish two cases: either the reduction ↪→ is due to the process
nf(P ) only or it involves garbage added by addG.

Let us consider the first case. By definition we have Q = E[R] with
P ≡ E[0] where R is the garbage added by the function addG. The form of
Q is preserved by the nf(·) function, where all the applications are executed.
Hence, nf(Q) ≡ E′[R′] with nf(P ) = E

′[0]. Since the reduction does not
involve R we have that E

′[R] ↪→ E
′′[R] = Q′, but also E

′[0] ↪→ E
′′[0] = P ′.

Moreover we have that P ⇁∗
E

′[0] ↪→ E
′′[0] and we are done.
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In the second case, the only garbage processes that may interact with the
context are either a (Rew l) process or a (KillM a l) process (the other garbage
processes are inactive). If the administrative step is due to the applied form
of (Rew l) then the context E contains a message on the channel l, that is
nf(Q) = E[l(Z) � Z l | R1] ≡ E1[l〈S〉 | l(Z) � Z l | R1] ↪→ E1[(S l) | R1] = Q′.
But since P is consistent and since the process l(Z) � Z l has been added
by the addG function, by Lemma 16 we have that also P = E1[l〈S〉] ≡
E2[l〈S〉 | l(Z) � Z l] ↪→ E2[(S l)] = P ′. We can conclude by noting that
Q′ ∈ nf(addG(P ′)). The other case is similar using Lemma 17 instead of
Lemma 16. �

Appendix C.2. Proofs of Section 4.4

Lemma 23. For each closed rhoπ process P , �P �k ↪→∗ νũ. k〈�Q�〉 | S with
k 
∈ ũ, S =

∏
Ri, Ri = Rew ki or Ri = νt. (a(X, h)|t � R) and P ≡ νũ. Q.

Proof. By induction on the structure of P . We show only the most inter-
esting cases:

P = a(X) � P ′ : let Y = (X c)c〈�P ′�〉, we have that

�P �k = ((l)(Trig Y a l))k ⇁ Trig Y a k ⇁

νt. (t | (a(X, h)|t � R) | (KillT Y t k a)) ⇁

νt. (t | (a(X, h)|t � R) | (t � k〈(h)Trig Y a h〉 | Rew k)) ↪→
νt. (a(X, h)|t � R) | k〈(h)Trig Y a h〉 | Rew k ≡
(νt. (a(X, h)|t � R)) | k〈(h)Trig Y a h〉 | Rew k = k〈(h)Trig Y a h〉 | S

as desired.

P = νa. P ′ : we have that �νa. P ′�k = ((h)νa. �P ′�h)k ⇁ νa. �P ′�k. Now
by inductive hypothesis we know that �P ′�k ↪→∗ νũ. k〈�Q�〉 | S with
P ′ ≡ νũ. Q and since restriction is an evaluation context we have
νa. �P ′�k ↪→∗ νa. νũ. k〈�Q�〉 | S with νa. P ′ ≡ νa. νũ. Q, as desired.

P = P1 | P2 : we have that

�P �k = ((l)(Par �P1� �P2� l)k ⇁ Par �P1� �P2� k ⇁

νh, l. �P1�h | �P2�l | KillP l h k ⇁

νh, l. �P1�h | �P2�l | (h(W )|l(Z) � k〈(h)Par W Z h〉 | Rew k).
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By inductive hypothesis we have that �P1�h ↪→∗ νũ. h〈�P ′
1�〉 | S1 with

P1 ≡ νũ. P ′
1 and �P2�l ↪→∗ νṽ. l〈�P ′

2�〉 | S2 with P2 ≡ νṽ. P ′
2. Hence we

have

νh, l. �P1�h | �P2�l | (h(W )|l(Z) � k〈(h)Par W Z h〉 | Rew k) ↪→∗

νh, l, ũ, ṽ. h〈�P ′
1�〉 | S1 | l〈�P ′

2�〉 | S2 | (h(W )|l(Z) � k〈(h)Par W Z h〉 |
Rew k) ↪→

νh, l, ũ, ṽ. S1 | S2 | k〈(h)Par �P ′
1� �P ′

2� h〉 | Rew k ≡
νh, l, ũ, ṽ. k〈(h)Par �P ′

1� �P ′
2� h〉 | S

with S = Rew k | S1 | S2, and by garbage collecting names h, l we have
P ≡ νũ, ṽ. (P ′

1 | P ′
2) as desired. �

Lemma 24. For any consistent HOπ+ process P the following conditions
hold:

1. P 
≡ C[l〈P1〉 | l〈P2〉], with l ∈ K.

2. P 
≡ C[(KillP l1 l2 l3) | (KillP l4 l5 l6)], with l1, l2, l3, l4, l5, l6 ∈ K and
{l1, l2} ∩ {l4, l5} 
= ∅ or l3 = l6.

3. P 
≡ C[(KillP l1 l2 l) | (Mem P a Q h l3 k)], with l, l1, l2, l3, h, k ∈ K
and l1 = l3 or l2 = l3.

Proof. By definition of consistency there is a rhoπ process R such that
�νk. k : R� ⇒ P .

For condition 1 the proof is by structural induction on R, using as induc-
tive hypothesis that messages are created only on the key channel passed to
the process or on fresh key channels. In basic cases (0 process, message or
trigger), one message is created on the received channel, plus one if the Rew l
is executed, but this consumes a message on the same channel thus preserv-
ing the invariant. For restriction, the thesis follows by inductive hypothesis.
For Par, two distinct fresh names are passed to the parallel processes, thus
by inductive hypothesis their messages will not be on the same channel as
the one created by the KillP. For Trig, a fresh name is passed to the con-
tinuation, thus by inductive hypothesis its messages will not conflict with
the one created by the KillT or with the one created by the Trig in the
Mem. Note that these last two messages cannot conflict since for them to be
in parallel the token t is needed, and either KillT or the Trig may read it,
but not both of them.
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For condition 2, note that KillP is generated only by a Par process. The
first two arguments are fresh, thus they cannot be used by another KillP.
For the last argument, we can reason as above to show that at most one
KillP for each name may be created.

For condition 3 we can see that both the channel used by the Mem and
the ones used by KillP are fresh, thus they cannot coincide. �

Before proving Lemma 27 below we show a few auxiliary results.

Lemma 56 (Input key invariant). For each rhoπ process R and key l we
have:

1. �R�l 
⇒ E[l(X) � P ], unless the trigger has been generated by an appli-
cation of Rew l.

2. �R�l 
⇒ E[l(X)|l′(W ) � P ].

3. �R�l 
⇒ E[l′(X) � P | l′(X) � Q] for each l′ ∈ K and l′ 
= l, unless one
of the triggers has been generated by an application of a Rew l′.

Proof. We prove all the cases by showing that no such derivation with less
than n steps exists. The proof is by induction on n. All the base cases are
trivial, since the starting term has no trigger in an evaluation context. Let
us consider the different inductive cases.

1. We reason by contradiction. Suppose that �R�l ⇒ E[l(X) � P ] in n
steps. By looking at the encoding in Figure 7 we note that a trigger on
a key channel can only occur inside a Mem term. However the subject
k is generated fresh in the clause defining the Trig process, thus it
cannot be l. This contradiction concludes the proof.

2. Suppose towards a contradiction that �R�l ⇒ E[l(X)|l′(Z) � P ] in n
steps. By looking at the encoding we note that a trigger reading two
messages can only be generated by a KillP process. However, the
two names are generated fresh in the clause defining the Par process,
against the hypothesis that one of them can be l.

3. We use the same proof strategy as in items 1 and 2. Triggers on keys
l′ ∈ K with l′ 
= l may be generated only by Mem processes, but since
the used key is fresh two triggers may not have the same key. �

Messages on channels l ∈ K carry translations of processes with no top-
level restrictions.
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Lemma 57. For each rhoπ process R, �R�l ⇒ C[l〈Q〉] implies Q = �Q′�
where Q′ has no top-level restriction.

Proof. We proceed by induction on the number of reductions in ⇒. The
proof of the base case is by structural induction on R. We show a few cases
as examples.

R = a〈P 〉 : by definition

�a〈P 〉�h = (l)(Msg a �P � l)h =

(l)((a X l)(a〈X, l〉 | (KillM a l)) a �P � l)h =

(l)((a X l)(a〈X, l〉 | (((a l)a(X, \l) � l〈(h)Msg a X h〉 |
(Rew l)) a l))a �P � l)h

as desired since (h)Msg a X h = �a〈X〉�.
R = νa. P : by definition �νa. P �h = (l)(νa. �P �)h and we can conclude by

inductive hypothesis on P .

R = P1 | P2 : by definition

�P1 | P2�h = (l)(Par �P1� �P2� l)h =

(l)(((X Y l)νh, k.X h | Y k | (KillP h k l)) �P1� �P2� l)h =

(l)(((X Y l)νh, k.X h | Y k |
(((h k l)h(W )|k(Z) � l〈(l)(Par W Z l)〉) h k l)) �P1� �P2� l)h

and we can conclude since (l)(Par W Z l) = �W | Z�.

For the inductive case, either the message we are considering disappears, and
then there is nothing to prove, or the message remains in the context and
we can conclude by applying the inductive hypothesis. Note, in fact, that
higher order variables are always replaced by translations of rhoπ processes,
and that variables are never at top level inside the messages with subject l
above. �

Lemma 27. If nf(P1) ≡Ex nf(P2) and nf(P1) → P ′
1 then nf(P2) ⇒ nf(P ′

2)
with nf(P ′′

1 ) ≡Ex nf(P ′
2) and P ′′

1 ∈ addG(P ′
1). Furthermore, if → is forward

then ⇒ is ⇒f , if → is backward then ⇒ is ⇒b, if → is administrative then
⇒ is ↪→∗.
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Proof. By case analysis on the used axiom P ≡Ex Q and on the structure
of nf(P1). Since nf(P1) is in normal form, → is a communication. Hence we
can express nf(P1) as an evaluation context E[a〈R〉 | a(X) � S] (the cases
where the trigger has different forms are similar). We just consider a few
interesting cases, the remaining ones are similar. The second part follows
by noticing that in the proofs below the same trigger is used to mimic the
reduction (possibly together with some administrative reductions).

P | Q ≡Ex Q | P . There are four places where the axiom could be applied: in
the context, inside the message content, inside the trigger continuation,
or to the context hole. We consider the second case as an example. We
have that nf(P1) can be written as E[a〈C[P | Q]〉 | a(X)�S] and nf(P2)
as E[a〈C[Q | P ]〉 | a(X) � S]. We have that nf(P1) → E[S{C[P |Q]/X}]
and nf(P2) → E[S{C[Q|P ]/X}], with E[S{C[P |Q]/X}] ≡Ex E[S{C[Q|P ]/

X}], and we can conclude by applying Lemma 14.

Ax.C. We have that nf(P1) = E[nf(KillP l h k)] = E[(l(Z)|h(W )�k〈(h)Par
Z W l〉 | Rew k)]. If the communication is performed by the con-
text E[•] then the thesis banally follows. If the communication in-
volves the hole, we should have in the context two messages of the
form l〈P 〉 and h〈Q〉, hence E[nf(KillP l h k)] ≡ E

′[l〈P 〉 | h〈Q〉 |
(l(Z)|h(W )�k〈(h)Par Z W l〉 | Rew k)] → E

′[k〈(h)Par P Q h〉 | Rew k],
and by expanding the definition of Par we have that

nf(P1) →E
′[k〈(h)(νl1, l2. (P l1) | (Q l2) | KillP l1 l2 h)〉 | Rew k] ≡Ex

E
′[k〈(h)(νl1, l2. (Q l1) | (P l2) | KillP l2 l1 h)〉 | Rew k].

Since nf(P2) → E
′[k〈(h)(νl1, l2. (Q l1) | (P l2) | KillP l2 l1 h)〉 | Rew k]

the thesis follows.

Ax.P. We have nf(P1) = E[l1〈�P �〉 | l2〈�Q�〉 | nf(KillP l1 l2 l)]. The con-
text can interact with the hole by reading messages on l1 or l2. By
inspection of the encoding one can note that only processes generated
by a Rew, by a KillP, or by a Mem can read this kind of messages.
Let us consider the Rew case. We have that nf(P1) ≡ E

′[(l1(Z) �
Z l1) | l1〈�P �〉 | l2〈�Q�〉 | nf(KillP l1 l2 l)] → E

′[�P �l1 | l2〈�Q�〉 |
nf(KillP l1 l2 l)] = P ′

1. Let us consider P2. We also have that
nf(P2) = E[l〈(h)Par �P � �Q�〉 | (l(Z) � Z l)]. Thus, nf(P2) ↪→⇁∗

E[νl1, l2. �P �l1 | �Q�l2 | (KillP l1 l2 l)]. Now, by using Lemma 23
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we have that �Q�l2 ↪→∗ νũ1. l2〈�Q�〉 | Sl. Hence we have nf(P2) ↪→∗

E[νũ1, l1, l2. �P �l1 | l2〈�Q�〉 | (KillP l1 l2 l) | Sl] ≡ E
′[νũ1, l1, l2. �P �l1 |

l2〈�Q�〉 | (KillP l1 l2 l) | Sl | (l1(Z) � Z l1)] = P ′
2. Let P ′′

1 = E
′[�P �l1 |

l2〈�Q�〉 | nf(KillP l1 l2 l)]. We have that nf(P ′′
1 ) ≡Ex nf(P ′

2) and
that P ′

1 ∈ addG(P ′′
1 ), and we are done. The case of a KillP corre-

sponds to a reduction inside the hole, since no other message on the
same channel can exist thanks to condition 1 of Lemma 24, and no
other KillP may read the same messages thanks to condition 2 of
Lemma 24. In this case we have that nf(P1) = E[l1〈�P �〉 | l2〈�Q�〉 |
(l1(Z)|l2(W ) � (l)Par Z W h | Rew l)] → E[(l)Par �P � �Q� h | Rew l]
and the thesis banally follows. The case of a Mem can never happen
thanks to condition 3 of Lemma 24.

Reductions from the right member of the axiom are trivially matched
since the left member reduces to the right one.

Ax.A. We have that nf(P1) = E[νl′. (l1(Z)|l2(W ) � l′〈(h)Par Z W h |
Rew l′〉) | (l′(Z ′)|l3(W ′) � l〈(h)Par Z ′ W ′ h | Rew l〉)]. The hole
may perform a communication only if there are two messages on l1,
l2 in the context. In this case, we have that nf(P1) ≡ E

′[νl′. l1〈P 〉 |
l2〈Q〉 | (l1(Z)|l2(W ) � l′〈(h)Par Z W h〉 | Rew l′) | nf(KillP l′ l3 l)] →
E

′[νl′. l′〈(h)Par P Q h〉 | Rew l′ | nf(KillP l′ l3 l)] ≡Ex E[νl′. l1〈P 〉 |
l2〈Q〉 | (l1(Z)|l2(W ) � l′〈(h)Par Z W h〉 | Rew l′) | nf(KillP l′ l3 l)]
using axiom Ax.P, as desired.

Ax.Adm. By noting that the left member of the axiom can only perform a
communication, reducing to the right member of the axiom. �

Lemma 28. If nf(P1) ≡Ex nf(P2) and nf(P1) ⇒ P ′
1 then nf(P2) ⇒ nf(P ′

2)
with nf(P ′′

1 ) ≡Ex nf(P ′
2) and P ′′

1 ∈ addG(P ′
1). Furthermore, if the first ⇒ is

⇒f , ⇒b or ↪→∗ then the second ⇒ is of the same form.

Proof. By induction on the length of the derivation nf(P1) ⇒ P ′
1. In the

base case (n = 0) the proof is trivial. In the inductive case we have that
nf(P1) ⇒ P n−1

1 → P ′
1 with nf(P2) ⇒ nf(P n−1

2 ) and nf(P n−1
2 ) ≡Ex nf(Q′′

1)
and Q′′

1 ∈ addG(P n−1
1 ). Since P n−1

1 → P ′
1 then there exists P ′′′

1 ∈ addG(P ′
1)

such that Q′′
1 → P ′′′

1 , and by Lemma 26 we have that nf(Q′′
1) → nf(P ′′′

1 ).
Since nf(Q′′

1) ≡Ex nf(P n−1
2 ) we can apply Lemma 27, and we have that

nf(P n−1
2 ) ⇒ nf(P ′

2) with nf(P ′
2) ≡Ex nf(Q) and Q ∈ addG(nf(P ′′′

1 )). By
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composing the garbage we have that there exists P ′′
1 ∈ addG(P ′

1) such that
nf(P ′′

1 ) = nf(Q). This concludes the proof of the first part. The second part
follows from the second part of Lemma 27. �

Before proving Lemma 29 below we show some auxiliary results. In par-
ticular, we have to study where in a configuration a key may occur. We call
l-process, denoted by Pl, a process of a specific form.

Definition 22. Let Y = (X c)c〈�Q�〉. An l-process is an HOπ+process of
one of the forms below, or obtained from them via one or more applications.

�P �l l〈�P �〉 | Rew l

Msg a �Q� l TrigY a l

Par �P � �Q� l KillPh k l

νc. (Y �P � c) | (c(Z) � Z l) | (MemY a �P � l1 l l2) νu. �P �l

νc. c〈�P �〉 | (c(Z) � Z l) | (MemY a �P � l1 l l2) 0

MemY a �P �h k l MemY a �P � l k h

Essentially, each key l occurs at most twice (apart from occurrences in
Rew), once in an l-process and possibly once in a killer process or a memory
process.

We call primitive context a context originated during the translation of
a process.

Definition 23. A context C is called a primitive context if it is generated
by:

C ::= • | (l′)Msg a C l′ | (l′)Trig (X c)c〈C〉 a l′ | (l′)νa. (C l′) |
(l′)Par C �Q� l′ | (l′)Par �P � C l′

Lemma 58. For any rhoπ process P and any l ∈ n(�P �) ∩ K, we have
�P � = C[(l)Pl] for some primitive context C and some l-process Pl.

Proof. By structural induction on P . �

All the messages on channels a ∈ N carry a pair whose first element is
the translation of a process.
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Lemma 59. For any consistent HOπ+ process P , if P ≡ E[a〈Q, h〉] with
a ∈ N then Q = �R�.

Proof. By definition of consistency there is a rhoπ process S such that
�νk. k : S� ⇒ P . The proof is by induction on the number of steps in ⇒.
The base case is proved by inspection. The inductive case is easy. �

We can now prove the invariant on the use of keys.

Lemma 60. For any consistent HOπ+ process R and for any key l occurring
in R one of the following statements holds:

1. R ≡ E[νl. R′], with R′ ∈ addG(Pl | S) where Pl is an l-process and S
is obtained from one of the following terms via 0 or more applications:
(KillP l l′ h), (KillP l′ l h), (Mem Y a �P � l1 l l2), 0.

2. R ≡ C[νh.C′[(l)Pl]h] where Pl is an l-process and C
′ is generated from

a primitive context via 0 or more applications.

3. R ≡ C[νl. ((h)Ph)l] where Ph is an h-process.

4. R ≡ C[νl, c. (Y �Q� c) | (c(Z) � Z l) | (Mem Y a �Q� h l k)] where
Y = ((X c)c〈�P �〉).

Proof. By definition of consistency there exists a rhoπ process P such that
�νk. k : P � ⇒ R. The proof is by induction on the number n of steps in
�νk. k : P � ⇒ R.

For the base case (n = 0) we have that �νk. k : P � = νk. �P �k. By
Lemma 58 we have that for any l ∈ n(�P �)∩K we have �P � = C

′[(l)Pl], that
is νk. �P �k ≡ νk.C′[(l)Pl]k, and condition (2) holds.

In the inductive case we distinguish two possibilities: either name l did
not exist at the previous step, or it existed. By inspection of the encoding
one can see that the first case may only happen when recursive definitions
for Par or Trig are unfolded. In both the cases condition (1) is satisfied for
new names, with Pl = �P �l in the first case and Pl = νc. c〈�P �〉 | (c(Z)�Z l) |
(MemY a �P � l1 l l2) in the second case.

For the second possibility we have a case analysis according to which
condition holds before the additional step is done.

Let us consider the condition (1). Reductions involving only E leave the
process in the same form. For other reductions we proceed by case analysis
on the form of Pl (we consider applied forms together with the form they
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derive from). For simplicity we do not write addG if it does not change.
Adding it is however straightforward.

If Pl = �P �l we proceed by case analysis on the structure of P . If
P = 0 then we have E[νl. Pl | S] ⇁ E[νl. l〈Nil〉 | Rew l | S], which sat-
isfies again condition (1). Similarly, if P = a〈Q〉 then E[νl. �a〈Q〉� | S] ⇁
E[νl. Msg a �Q� l], which satisfies again condition (1). The other cases are
similar.

If Pl = l〈�P �〉 | Rew l then E[νl. l〈�P �〉 | Rew l | S] can perform several
reductions. If Rew l is applied, then we stay in the same case. If Rew l is
already in its applied form then E[νl. l〈�P �〉 | l(Z)�Z l | S] ↪→ E[νl. �P �l | S],
which again satisfies the conditions. If the message on l is read by S then
there are two cases: either it is read by a memory, or by a KillP. In the first
case we have that:

E[νl. l〈�P �〉 | Rew l | (l(Z) � Msg a �Q� l1 | Trig(X c)c〈�R�〉 a l2) | S] ↪→
E[νl. Rew l | (Msg a �Q� l1) | (Trig(X c)c〈�R�〉 a l2) | S] ≡
E
′[νl.0 | Rew l | S]

which satisfies again condition (1) since νl.0 | Rew l ∈ addG(νl.0). If the
message is read by a KillP then the context contains also a message on
channel h such that:

E[νl. l〈�P �〉 | Rew l | S] ≡
E1[νl. h〈�Q�〉 | l〈�P �〉 | (l(Z)|h(W ) � k〈(h)Par Z W h〉 | Rew k) | S] ↪→
E1[(νl.0 | S) | k〈(h)Par �Q� �P � h〉 | Rew k] ≡ E2[νl.0 | S]

which satisfies again condition (1).
If Pl = Msg a �Q� l or Pl = Trig Y a l we have a few cases. If Pl reduces

alone then it is simply applied, and its applied form is still an l-process. Note
that neither S nor the context can interact with such a Pl before application.

Let us consider applied forms of Pl = Msg a �Q� l. With one application
we get Pl = a〈�Q�, l〉 | KillM a l. In this case E[νl. Pl | S] can perform
several reductions. If KillM is not in its applied form and it is applied, then
the thesis banally follows. If KillM is in its applied form, then it can interact
with the message. In this case, we have that

E[νl. a〈�Q�, l〉 | (a(X, \l) � l〈(h)Msg a �Q� h〉 | Rew l) | S] ↪→
E[νl. l〈(h)Msg a �Q� h〉 | (Rew l) | S]
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and condition (1) still holds. If the message is read by the context, then it
is read either by a KillM (in its applied form) or by a Trig (in its applied
form). The first case has been treated just above. In the second case (we
only need to consider the trigger, and the token t needed for its activation)
we have that

E[νl. a〈�Q�, l〉 | (KillM a l) | S] ≡
E1[νl. a〈�Q�, l〉 | t | (a(X, h)|t � νk, c. (((X c)c〈�P �〉) X c) | (c(Z) � Z k) |
(Mem Y a X h k l)) | (KillM a l)| | S] ↪→
E1[νl, k, c. (((X c)c〈�P �〉) �Q� c) | (c(Z) � Z k) | (Mem Y a �P � l k l1) | S] ≡
E2[νl. (Mem Y a �P � l k l1) | S]
and condition (1) still holds.

Let us consider applied forms of Pl = Trig Y a l, i.e., Pl = νt. t |
(a(X, h)|t � R) | (KillT Y t l a) where R = νk, c. (Y X c) | (c(Z) � (Z k)) |
(Mem Y a X h k l) and Y = (X c)c〈�Q�〉. In this case E[νl. Pl | S] can
perform several reductions. If the KillT is applied then the thesis banally
follows. If the KillT is in its applied form then it can interact with t:

E[νl, t. t | (a(X, h)|t �f R) | (t � l〈(h)Trig Y a h)〉 | Rew l) | S] ↪→
E[νl, t. (a(X, h)|t �f R) | l〈(h)Trig Y a h〉 | Rew l | S] ≡
E1[νl. l〈(h)Trig Y a h〉 | Rew l | S]

as desired since l〈(h)Trig Y a h〉 | Rew l ∈ addG(�a(X)�Q�). The only other
possibility is that the trigger reads a message from the context. Thanks to
Lemma 59 the message should be of the form a〈�P �, l1〉 for some P and some
l1. Therefore,

E[νl, t. t | (a(X, h)|t �f R) | (KillT Y t l a) | S] ≡
E1[νl, t. t | a〈�P �, l1〉 | (a(X, h)|t �f R) | (KillT Y t l a) | S] �
E1[νl, k, t, c. (((X c)c〈�Q�〉) �P � c) | (c(Z) � Z k) | (Mem Y a �P � l1 k l) | S] ≡
E2[νk. (((X c)c〈�Q�〉) �P � c) | (c(Z) � Z k) | νl. (Mem Y a �P � l1 k l) | S] ≡
E3[νl. (Mem Y a �P � l1 k l) | S]
where condition (1) holds for name l. Note that condition (1) holds also for
the new name k.

If Pl = Par �P � �Q� l then we have that E[νl. (Par �P � �Q� l) | S] ↪→
E[νl, h, k. �P �h | �Q�k | (KillP h k l)], and we have that condition (1) is still
satisfied by name l and also by the new names h and k.
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If Pl = KillP h k l and it reduces alone then it is applied, and condition
(1) still holds. Pl may interact with the context only if it is in its applied form
and there are two messages, one on h and one on k. Thanks to Lemma 57
they should contain translations of processes, thus:

E[νl. (h(W )|k(Z) � l〈(h)Par W Z h〉 | Rew l)] ≡
E1[νl. (h(W )|k(Z) � l〈(h)Par W Z h〉 | Rew l) | h〈�P �〉 | k〈�Q�〉] ↪→
E[νl. l〈(h)Par �P � �Q� h〉 | Rew l]

and condition (1) still holds.
If Pl = νu. �P �l then we can move the restriction into the context and

reduce to the case Pl = �P �l.
If Pl = νc. (Y �P � c) | (c(Z) � Z l) | (Mem Y a �P � l1 l l2)] then E[νl. (Pl |

S)] can perform two kinds of reductions. If the Mem process is applied then
condition (1) is still satisfied. Since c and l are restricted, the only other
possible reduction is the application of Y = (X c)c〈�Q�〉. Thus:

E[νl, c. (Y �P � c) | (c(Z) � Z l) | (Mem Y a �P � l1 l l2)] ⇁

E[νl, c. c〈�Q�{�P �/X}〉 | (c(Z) � Z l) | (Mem Y a �P � l1 l l2)]

and condition (1) still holds. The case where the memory is in its applied
form is analogous.

If Pl = νc. c〈�P �〉 | (c(Z) �Z l) | (Mem Y a �P � l1 l l2) and the Mem process
is applied then condition (1) holds. Since c and l are restricted, the only
possible communication is the internal one along c:

E[νl, c. c〈�P �〉 | (c(Z) � Z l) | (Mem Y a �P � l1 l l2)] ↪→
E[νl, c. �P �l | (Mem Y a �P � l1 l l2)] ≡
E[νl. (Pl | S)]

where condition (1) still holds. The case where the memory is in its applied
form is analogous.

If Pl = Mem Y a �P � l k h and the Mem is applied, then the thesis banally
follows. If the Mem process is already in its applied form, then it may only
interact with the context via a message on k. Hence, we have

E[νl. k(Z) �b (Msg a �P � l) | (Trig Y a h)] ≡
E1[νl. k〈R〉 | k(Z) �b (Msg a �P � l) | (Trig Y a h)] �
E1[(νl. (Msg a �P � l)) | Trig Y a h] ≡
E2[νl. (Msg a �P � l))]
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and condition (1) still holds.
The case Pl = (Mem Y a �P � h k l) is similar.
Since 0 has no reduction, in the case Pl = 0 there is nothing to prove.
Let us consider conditions (2), (3) and (4). If the context evolves by itself,

then they are still satisfied. For the hole to contribute, the only possibility is
that the context is an evaluation context. For condition (2), we have a case
analysis on the form of C′. If C′ = •, then C[νh. ((l)Pl)h] ⇁ C[νh. Ph], the
name l disappears and the thesis trivially holds. If C′ = (l′)Msg a C

′′[•] l′ then
we have C[νh. ((l′)Msg a C

′′[(l)Pl] l
′)h] ⇁ C[νh. Msg a C

′′[(l)Pl] h]. Name l
disappears, thus the thesis holds trivially. Note that condition (2) holds for
name h. The other cases for contexts in non-applied form are analogous.

Let us now consider contexts where the top-level application has been
performed. Again we have a case analysis on the form of the context.
If the context has the form C[νh. Msg a C

′[(l)Pl] h], then we have that
C[νh. Msg a C

′[(l)Pl] h] ⇁ C[νh. a〈C′[(l)Pl], h〉 | KillM a h] and condition
(2) still holds. The other cases are similar.

If condition (3) holds, we have that C[νl. ((h)Ph)l] ⇁ C[νl. Pl], and con-
dition (1) holds for name l.

If condition (4) holds, we have that:

C[νl, c. (((X c)c〈�P �〉) �Q� c) | (c(Z) � Z l) | (Mem (X c)c〈�P �〉) a �Q� h l k)] ⇁

C[νl, c. c〈�P �〉{�Q�/X}] | (c(Z) � Z l) | (Mem (X c)c〈�P �〉) a �Q� h l k)] =

C[νl, c. c〈�P{Q/X}�〉] | (c(Z) � Z l) | (Mem (X c)c〈�P �〉) a �Q� h l k)]

by applying Lemma 21. Condition (1) holds for the name l. If the reduction
involves the application of the Mem process, then condition (1) for name l is
still satisfied. �

Lemma 29. For each consistent HOπ+ process P if P ↪→∗ Q then there
exist Q′ and P ′ such that Q ↪→∗ Q′, P ′ ∈ addG(P ) with nf(P ′) ≡Ex nf(Q

′).

Proof. By induction on the number n of steps in P ↪→∗ Q. In the base
case (n = 0) the thesis banally follows. For the inductive case, consider the
first step P ↪→ Q1 of P ↪→∗ Q. There are two cases to distinguish: whether
↪→ is an application ⇁ or a non-labelled communication �→. Let us consider
the first case. We have that P ⇁ Q1 and Q1 ↪→∗ Q. By inductive hypothesis
there exist Q′, Q′

1 such that Q ↪→∗ Q′, Q′
1 ∈ addG(Q1) and nf(Q′

1) ≡Ex

nf(Q′). Since the added garbage does not forbid reductions we have that
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there exists P ′ ∈ addG(P ) such that P ′ ⇁ Q′
1. Thus nf(P ′) = nf(Q′

1) ≡Ex

nf(Q′) as desired.
If the step is a non-labelled communication �→ then we have three cases,

corresponding to the three kinds of non-labelled trigger processes: a Rew

process, a killer process and the trigger in the translation of the continuation
of a rhoπ trigger.

Let us consider the case of a Rew process. We have that P ≡ E[l〈�P1�〉 |
l(Z) � Z l] → E[�P1�l]. By using Lemma 23 and Lemma 16 we have that
�P1�l ↪→∗ l〈�P2�〉 | Rew l | S with S a parallel composition of garbage
processes. Thanks to Lemma 57, P1 has no top-level restrictions (since it
was argument of a message), thus P2 = P1. So, we have that E[�P1�l] ↪→∗

E[l〈�P1�〉 | Rew l | S] ∈ addG(P ). Now from E[�P1�l] ↪→∗ Q we have that by
inductive hypothesis Q ↪→∗ Q′ and there is P ′ ∈ addG(E[�P1�l]) such that
nf(P ′) ≡Ex nf(Q′). Since the garbage does not forbid reductions we have
that there exists P ′′ ∈ addG(E[l〈�P1�〉 | Rew l | S]) such that P ′ ↪→∗ P ′′. From
Lemma 26 nf(P ′) ↪→∗ nf(P ′′). Thanks to Lemma 27 from nf(P ′) ≡Ex nf(Q

′)
and P ′ ↪→∗ P ′′ we have that nf(Q′) ↪→∗ nf(Q′′) with P ′′′ ∈ addG(P ′′) and
nf(P ′′′) ≡Ex nf(Q′′). By composing garbage we also have P ′′′ ∈ addG(P ).
The thesis follows.

Let us consider the case of a killer process. We have a few subcases,
corresponding to the killer processes KillM, KillP and KillT. The main idea
here is that the communication is undone by a Rew. Let us consider a KillM

process. We have that P ≡ E[a〈�P1�, l〉 | (a(X, \l) � l〈(h)Msg a X h〉 | Rew l])
and Q1 = E[〈(h)Msg a �P1� h)〉 | Rew l]. Then we have:

Q1 ⇁E[l〈(h)Msg a �P1� h)〉 | l(Z) � Z l] ↪→
E[((h)Msg a �P1� h)l] ⇁

∗
E[a〈�P1�, l〉 | (KillM a l)] = Q′

with nf(Q′) = nf(P ). Using the same approach of the Rew case, we can com-
pose this result with the inductive hypothesis to get the thesis. Let us con-
sider a KillP process. We have that P ≡ E[h〈�P1�〉 | l〈�Q�〉 | (h(W )|l(Z) �
k〈(h)ParW Z h〉 | Rew k)] and Q1 = E[k〈(h)Par�P1� �Q� h〉 | Rew k]. Then
we have:

Q1 ⇁E[k〈(h)Par�P1� �Q� h〉 | (k(Z) � Z k)] →
E[((h)Par �P1� �Q� h)k] ⇁ E[νh, l. �P1�l | �Q�h | (KillP l h k)]

and by using Lemma 23 and Lemma 57 (to ensure that processes P1 and Q
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have no top-level restrictions) we have:

E[νh, l. �P1�l | �Q�h | (KillP l h k)] ↪→∗

E[νh, l. l〈�P1�〉 | S1 | h〈�Q�〉 | S2 | (KillP l h k)] = Q′

To have a correspondence with P , we have to show that names h and l were
restricted also in P , and with the same scope. By using Lemma 60 we have
that P ≡ E1[νl, h. P

′] for some P ′ ∈ addG(h〈�P1�〉 | l〈�Q�〉 | S) (where S
includes (KillP l h k), Rew l and Rew h), and

nf(E1[νl, h. P
′]) ≡ nf(Q′′)

for some Q′′ ∈ addG(Q′) as desired.
If the communication is an internal communication in a trigger, we have

that

P ≡ E[νc. c〈�P1�〉 | c(Z) � Z k] ↪→
E[νc. �P1�k] ≡Ex E[νc. c〈�P1�〉 | c(Z) � Z k]

as desired using axiom Ax.Adm. �

Appendix C.3. Proofs of Section 4.5

Before proving Lemma 30 we show that barbs are preserved by the en-
coding.

Lemma 61. For each consistent configuration M , if M ↓a then nf(�M�) ↓a
Proof. Easy, by definition of barbs and of the encoding. �

Lemma 30. If M ↓a and �M� ↪→∗ Q then Q ↪→∗↓a.

Proof. By Lemma 61 we have that if M ↓a then nf(�M�) ↓a. By definition
of normal form we have that �M� ⇁∗ nf(�M�), and by hypothesis we have
that �M� ↪→∗ Q. Using Lemma 26 we have that nf(M) ↪→∗ Q′ and Q ⇁∗ Q′.
Moreover, by Lemma 29 there exist Q′′ and P ′ such that Q′ ↪→∗ Q′′, P ′ ∈
addG(nf(�M�)) and nf(P ′) ≡Ex nf(Q

′′). Since addG and ≡Ex do not remove
barbs we have nf(Q′′) ↓a as desired. The proof is graphically depicted in
Figure C.18. �

Before proving Lemma 31 below we prove some auxiliary results.
Applications never remove barbs.
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Figure C.18: Proof schema of Lemma 30 (numbers refer to Lemmas)

Lemma 62. For any HOπ+ process P , if P ↓a and P ⇁ Q, then also Q ↓a.

Proof. From the definition of ↓a and of ⇁. �

Administrative steps do not add barbs.

Lemma 63. For each consistent configuration M , if �M� ↪→∗ Q and Q ↓a,
then nf(�M�) ↓a.

Proof. By hypothesis �M� ↪→∗ Q with Q ↓a, and by definition �M� ⇁∗

nf(�M�). By applying Lemma 26 we get Q ⇁∗ Q′ and nf(�M�) ↪→∗ Q′.
Since Q ↓a, and since applications (⇁) do not remove barbs (by Lemma 62),
we also have that Q′ ↓a. The above reasoning is depicted in Figure C.19.

We have to show that if Q′ has a barb then nf(�M�) has the same barb.
Since M is consistent then fn(M) ∩ K = ∅ and also fn(Q) ∩ K = ∅ (by
Lemma 22). Thus we have no need to consider barbs in K.

We proceed by case analysis on the administrative reduction ↪→. Since
Q′ is generated from nf(�M�) via administrative steps, then applications
of the form (((X c)c〈�P �〉) �Q� c) or communications of the form c〈�P �〉 |
(c(Z) � Z l) are never enabled. Thus, only communications involving a killer
or a Rew process may happen. A communication involving a killer does
not add barbs (since fn(Q′) ∩ K = ∅). A communication involving a Rew

process does not add barbs since it produces an application. Similarly, all
the applications involving killer, Rew and Mem processes do not add barbs.
Nevertheless, other applications, such as the application of a Msg process,
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Figure C.19: Proof schema of Lemma 63 (numbers refer to Lemmas)

may create barbs. However, no such application is enabled in nf(�M�).
The only way they may become enabled is via a kill followed by a Rew.
However, the created barb was already present in nf(�M�) before the kill.
This completes the proof. �

We now show that barbs of nf(�M�) come from barbs of M .

Lemma 64. For each consistent configuration M , if nf(�M�) ↓a then M ↓a.

Proof. By structural induction on M . Note that only rhoπ names may be
free, since all the names coming from rhoπ keys are bound (by Lemma 22).
Since sub-terms of well-formed configurations are not well formed in general,
we have to consider in the induction both well-formed configurations and
their sub-terms. If M = κ : P , we proceed by structural induction on P
and by case analysis on κ. We will consider just the case in which κ = k,
the other case with κ = 〈hi, h̃〉 · k is similar. If P = 0 then we have that
nf(�k : 0�) = k〈Nil〉 | Rew k, but since k 
∈ N the process nf(�k : 0�)
does not show any relevant barb. If P = a〈Q〉 then we have that nf(�k :
a〈Q〉�) = a〈�Q�, k〉 | (a(X, \k) � k〈(h)Msg a �Q� h〉 | Rew k), which shows a
barb on a. Since also M ↓a, we are done. If P = a(X) � Q,we have that
nf(�k : a(X) � Q�) = νt. t | (a(X, h)|t � R) | (t � S) (for some R and S).
Since t is restricted then the entire process does not show any barb, and we
are done. If P = Q1 | Q2, the tag κ has to be a key, since we are dealing
with well-formed configurations. So, we have that nf(�k : (Q1 | Q2)�) =
νh, l. nf(�Q1�h) | nf(�Q2�l) | (h(W )|l(Z) � S). The process may show a barb
because of either nf(�Q1�h) or nf(�Q2�l) (or both). Let us suppose that it is
because of nf(�Q1�h), that is nf(�Q1�h) ↓a. By definition of � � we have that
nf(�Q1�h) = nf(�h : Q1�) and hence nf(�h : Q1�) ↓a. Now, by applying the
inductive hypothesis we have that (h : Q1) ↓a and then also k : (Q1 | Q2) ↓a,
as desired. The other cases are similar.
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If M = 0, we have that �0� = 0 and the thesis banally follows. If
M = M1 | M2 we have that nf(�M1 | M2�) = nf(�M1� | �M2�) = nf(�M1�) |
nf(�M2�) and we can conclude by applying the inductive hypothesis on
nf(�M1�) and nf(�M2�). If M = νu.M1 we have that nf(�νu.M1�) =
νu. �nf(M1)� and we can conclude by applying the inductive hypothesis on
�nf(M1)�. If M = [κ1 : a〈P 〉 | κ2 : a(X) � Q; k], then nf(�M�) = k(Z) � R
(for some R), that shows no barbs and we can conclude. �

Lemma 31. If �M� ↪→∗↓a then M ↓a.

Proof. By concatenating Lemma 63 and Lemma 64. �

Before proving Lemma 33, which shows that the function addG has no
impact on bfa barbed bisimilarity, we show the same result in isolation for
the forms of garbage more tricky to deal with.

Lemma 65. Let Tl be a process of the form Tl = Rew l or Tl = (l(Z) � Z l).
The relation R = {(C[Tl],C[0])} is a bfa barbed bisimulation.

Proof. Let us start with barbs. Since Tl does not show barbs, the barbs of
C[Tl] and C[0] coincide.

Let us consider the reductions. If C[Tl] reduces then it is either because
the context reduces by itself, or because Tl reduces by itself or because of
an interaction between the context and Tl. In the first case the reduction
is banally matched by the process C[0]. The second case implies that Tl =
Rew l and C[Rew l] ⇁ C[l(Z) � Z l]. C[0] matches this step by staying
idle. The third case implies that Tl = (l(Z) � Z l) and the presence of a
message in the context of the form l〈�P �〉. Hence, we have that C[(l(Z) �
Z l)] ≡ C

′[l〈�P �〉 | (l(Z) � Z l)] and C[0] ≡ C
′[l〈�P �〉]. By Lemma 16 we

know C
′[l〈�P �〉] ≡ C

′′[l〈�P �〉 | Tl]. Then on the other side we have that
C

′[l〈�P �〉 | (l(Z) � Z l)] ≡ C
′′[l〈�P �〉 | (l(Z) � Z l) | Tl]. Thus, the reduction

C
′′[l〈�P �〉 | (l(Z) �Z l) | Tl] → C

′′[�P �l | Tl] can be matched on the right side
by C

′′[l〈�P �〉 | Tl] ↪→∗
C

′′[�P �l], and we are still in the same relation since
C

′′[�P �l | Tl] ≡ C
′′′[Tl] and C

′′[�P �l] ≡ C
′′′[0], as desired. �

Lemma 66. Let T (l, a) be a process of the form T (l, a) = (KillM a l)
or T (l, a) = (a(X, \l) � l〈(h)Msg a X h〉 | Rew l). The relation R =
{(C[T (l, a)],C[0])} is a bfa barbed bisimulation.
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Proof. Let us consider the barbs. Since a process of the form (KillM a l)
or (a(X, \l) � l〈(h)Msg a X h〉 | Rew l) does not show any barbs, then the
barbs of C[T (l, a)] and C[0] coincide.

Let us consider the reductions. If the context evolves by itself, the re-
duction is banally matched. If T (l, a) = (KillM a l) then the only possible
reduction is the application

C[(KillM a l)] ⇁ C[(a(X, \l) � l〈(h)Msg a X h〉 | Rew l)]

which is matched by C[0] by staying idle. If in C[(a(X, \l)�l〈(h)Msg a X h〉 |
Rew l)] the hole process and the context interact, it is because there is a
message of the form a〈�P �, l〉 in the context. Hence

C[(a(X, \l) � l〈(h)Msg a X h〉 | Rew l)] ≡
C

′[a〈�P �, l〉 | (a(X, \l) � l〈(h)Msg a X h〉 | Rew l)]

This implies that also C[0] ≡ C
′[a〈�P �, l〉], and by Lemma 17 we know that

C
′[a〈�P �, l〉] ≡ C

′′[a〈�P �, l〉 | S] with S = (KillM a l) or S = (a(X, \l) �
l〈(h)Msg a X h〉 | Rew l). Then

C
′[a〈�P �, l〉 | (a(X, \l) � l〈(h)Msg a X h〉 | Rew l)] ≡

C
′′[a〈�P �, l〉 | (a(X, \l) � l〈(h)Msg a X h〉 | Rew l) | S] ↪→

C
′′[l〈(h)Msg a �P � h〉 | Rew l) | S] ≡ C

′′′[S]

and on the other side we have that

C
′′[a〈�P �, l〉 | S] ↪→∗

C
′′[l〈(h)Msg a �P � h〉 | Rew l] ≡ C

′′′[0]

and we remain in the same relation, as desired. �

Lemma 33. For any consistent HOπ+ process P , the relation
R = {(P,R) |R ∈ addG(P )} is a bfa barbed bisimulation.

Proof. From the definition of addG we know that P ≡ νã. P ′, and R ≡
νã. (P ′ | νb̃. Q) with Q a parallel composition of processes as in Definition 17.

The proof is by induction on the number of parallel components inside Q.
The base case Q = 0 reduces to the identity since we can can garbage collect
via structural congruence names contained in b̃ (and structural congruence
is a bfa barbed bisimulation by Lemma 34). In the inductive case, we do a
case analysis on the last process Qn of the parallel composition.
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Qn = Rew l: by Lemma 65 we know that C[Qn]
·≈ C[0]. By choosing C[•] =

νã. (P ′ | νb̃. • | ∏
i=1..n−1 Qi) we have that νã. (P ′ | νb̃. ∏i=1..nQi)

·≈
νã. (P ′ | νb̃. ∏i=1..n−1 Qi). By inductive hypothesis we have νã. (P ′ |
νb̃.

∏
i=1..n−1 Qi)

·≈ νã. P ′ and by transitivity νã. (P ′ | νb̃. ∏i=1..n Qi)
·≈

νã. P ′.

Qn = KillM a l: similar to the case above, using Lemma 66 instead of Lem-
ma 65.

Qn = νt. (a(X, k)|t � Q): trivial, since the process cannot interact.

Qn = νc, t. (KillT ((X)c�P �)) t l a): trivial, since the process reduces to a
process that cannot interact. �

Before proving Proposition 1 below, we prove some auxiliary results.
Each of the lemmas below shows that one of the axioms in ≡Ex is correct

with respect to bfa barbed bisimilarity (actually, the statement for axiom
Ax.P is slightly weaker). We consider together each axiom L ≡Ax R from
≡Ax and its normal form nf(L) ≡Ex nf(R), since this is obtained via appli-
cations. Below, we denote a multi-holes context as C.

Lemma 67. Axiom Ax.C and its normal form are correct with respect to
bfa barbed bisimilarity.

Proof. We show that the relation R below is a bfa barbed bisimulation.

R1 ={((KillP l h k), (KillP h l k)) | h, l, k ∈ K}
R2 ={((a(X)|b(Y ) � R), (b(Y )|a(X) � R)) | a, b ∈ N ∧X, Y ∈ V ∧R ∈ P}
R′ =R1 ∪R2

R ={(C[P1, .., Pn],C[Q1, .., Qn]) | n ∈ N ∧ ∀i ∈ {1 . . . n}.(Pi, Qi) ∈ R′}

Let us consider the barbs. Since the context is the same on both the sides,
and the processes in the holes show no barbs, the barbs coincide.

Let us consider reductions. We consider only challenges from the left,
since the reasoning is analogous for challenges from the right. If the process
C[P1, .., Pn] does a reduction, it is because either the context evolves by itself,
or one of the hole processes reduces by itself, or because of an interaction
between the context and one hole (no interaction between holes is possible).
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If the context performs a reduction by itself, that is C[P1, .., Pn] → C′[P1, ..,
Pm], then also C[Q1, .., Qn] → C′[Q1, .., Qm]. Note that the number of holes
may change because of the reduction.

Let us consider reductions in one hole. If C[P1, .., (KillP l h k), .., Pn] ⇁
C[P1, .., (h(W )|l(Z)�R), .., Pn] (for someR) then also C[Q1, .., (KillP h l k), ..,
Qn] ⇁ C[Q1, .., (l(Z)|h(W ) � R), .., Qn] and we are still in the same relation.

Let us consider interactions between the context and one hole. For
C[P1, .., a(X)|b(Y )�R, .., Pn] to reduce, we need in the context two messages of
the form a〈S1〉 and b〈S2〉. If so, we have that C[P1, .., a(X)|b(Y )�R, .., Pn] →
C′[P1, .., R{S1,S2/X,Y }, .., Pm] and on the other side C[Q1, .., b(Y )|a(X) � R, ..,
Qn] → C′[Q1, .., R{S′

2,S
′
1/Y,X}, .., Qm]. Since identity is included in R (it suf-

fices to consider a 0-ary context), and since (Si, S
′
i) ∈ R (since they are sub-

terms) we have (R{S1,S2/X,Y }, R{S′
2,S

′
1/Y,X}) ∈ R, and also (C′[P1, .., R{S1,S2/

X,Y }, .., Pm],C
′[Q1, .., R{S′

2,S
′
1/Y,X}, .., Qm]) ∈ R, as desired. �

Before proving the lemma concerning axiom Ax.P we prove as auxiliary
result that the function addG does not introduce barbs.

Lemma 68. For any HOπ+ process P , if addG(P ) ↓a then P ↓a.

Proof. Easy, by looking at the definition of addG (Definition 17). �

Lemma 69. Applications of axiom Ax.P and of its normal form to consis-
tent HOπ+ processes are correct with respect to bfa barbed bisimilarity.

Proof. Note that the axiom Ax.P alone is not correct, since the left term
has barbs at l1 and l2 which are not matched by the right term. However, in
consistent processes keys are always bound. We show below that applications
of the axiom and of its normal form to consistent processes are always correct.

Thanks to Lemma 60 restrictions on l1 and l2 may occur only in processes
of some forms. In particular, the only possibility is that for both l1 and l2
case (1) applies. Thus the process to which the axiom is applied is of the
form E[νl1, l2. R

′] with R′ ∈ addG(R′′) where R′′ is obtained via zero or more
applications from l1〈�P �〉 | l2〈�Q�〉 | (KillP l1 l2 l3). On the right side we
can assume l1 and l2 do not occur.

Let S(l1, l2, l3) denote a process of one of the following forms:

S(l1, l2, l3) = (KillP l1 l2 l3)

S(l1, l2, l3) = (l1(Z)|l2(W ) � l3〈(h)Par Z W h〉 | Rew l)
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Let Tl be either a process of the form Tl = Rew l or of the form Tl =
(l(Z) � Z l). Let us write addG(P ) for any process Q ∈ addG(P ). Let

R′ = {(νl1, l2. addG(l1〈�P �〉 | l2〈�Q�〉 | S(l1, l2, l))),
(νl1, l2. addG(l〈(h)Par �P � �Q� h〉 | Tl))}

R = {(C[P1, . . . , Pn],C[Q1, . . . , Qn]) | (Pi, Qi) ∈ R′∧
C[P1, . . . , Pn],C[Q1, . . . , Qn] consistent}

We now prove that the relation R is a bfa barbed bisimulation. The thesis
will follow since in consistent processes all the contexts where the axiom can
be applied have this form.

Let us consider barbs. On both sides barbs shown by the contexts C are
banally matched. The process νl1, l2. addG(l1〈�P �〉 | l2〈�Q�〉 | S(l1, l2, l)) does
not show any barb, since addG does not add any barb thanks to Lemma 68.
On the other side, the process νl1, l2. addG(l〈(h)Par �P � �Q� h〉 | Tl) shows
only a barb at l. We have that:

νl1, l2. addG(l1〈�P �〉 | l2〈�Q�〉 | S(l1, l2, l)) ↪→∗

νl1, l2. addG(l〈(h)Par �P � �Q� h〉 | Rew l)

showing a barb at l as well.
Let us consider reductions. If C[P1, . . . , Pn] reduces it is because the

context reduces by itself or because of the hole processes. The first case is
banally matched by the process C[Q1, .., Qn]. In the second case, the process
νl1, l2. addG(l1〈�P �〉 | l2〈�Q�〉 | S(l1, l2, l)) reduces. We have three cases:
the processes added by addG are not involved, the processes added by addG

reduce alone or they interact with the other processes. In the first case, if the
reduction is the application of the process S(l1, l2, l) then the right process
can match the reduction by staying idle. If it is a communication on the
channels l1 and l2 then we have that:

νl1, l2. addG(l1〈�P �〉 | l2〈�Q�〉 | (l1(W )|l2(Z) � l〈(h)Par �P � �Q� h〉 | Rew l)) →
νl1, l2. addG(l〈(h)Par �P � �Q� h〉 | Rew l))

This step is matched by the right process by staying idle, since the process
in the i-th hole on the two sides become equal, and we can put them in
the context since the identity belongs to the relation (actually, processes
added by addG may be different, but they have no impact). The case where
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processes inside addG reduce alone is banally matched. In the third case,
since the process νl1, l2. addG(l1〈�P �〉 | l2〈�Q�〉 | S(l1, l2, l)) is consistent then
the only processes inside addG( ) able to interact are a (l1(Z) � Z l1) and/or
a (l2(Z) � Z l2). The two cases are similar, so we consider just the first one.
Assume

νl1, l2. addG((l1(Z) � Z l1) | l1〈�P �〉 | l2〈�Q�〉 | S(l1, l2, l)) ↪→
νl1, l2. addG((�P � l1 | l2〈�Q�〉 | S(l1, l2, l))

We have

νl1, l2. addG(l〈(h)Par �P � �Q� h〉 | Tl) ↪→∗

νl1, l2. addG(νh, k. �P �h | �Q� k | (KillP h k l))

Using Lemma 23:

νl1, l2. addG(νh, k. �P �h | �Q� k | (KillP h k l)) ↪→∗

νl1, l2. addG(νh, k. �P �h | k〈�Q�〉 | (KillP h k l))

since all the garbage can be moved to addG and since Q does not contain
restrictions thanks to Lemma 57. Now, using α-conversion to swap names
l1 and l2 with h and k and exploiting the fact that addG is closed under α-
conversion we get νh, k. addG(νl1, l2. �P � l1 | l2〈�Q�〉 | (KillP l1 l2 l)). Since
h, k are just used by the addG( ) context we can rewrite the process as
νl1, l2. addG(�P � l1 | l2〈�Q�〉 | (KillP l1 l2 l)), where the restriction on k, h
has been moved to the context.

Let us consider now the reductions of C[Q1, . . . , Qn]. We have three cases:
the context reduces by itself, the hole reduces by itself or the hole and the
context interact. The first case is trivial. In the second case, if the reduction
is the application of Tl then the step is matched by C[P1, . . . , Pn] by staying
idle, and we are still in the same relation. If Tl is already in its applied form
then we have:

νl1, l2. addG(l〈(h)Par �P � �Q� h〉 | l(Z) � Z l) →
νl1, l2. addG(Par �P � �Q� l)

and on the other side we have that:

νl1, l2. addG(l1〈�P �〉 | l2〈�Q�〉 | S(l1, l2, l) ↪→∗ νl1, l2. addG(Par �P � �Q� l)
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and since the identity is contained in the relation, we are still in the same
relation. In the last case, since we only consider consistent processes, thanks
to Lemma 24 there are no two KillP processes waiting on the same channels.
Thus the context may not interact with the hole, and this case will never
happen. �

Lemma 70. Axiom Ax.A and its normal form are correct with respect to
bfa barbed bisimilarity.

Proof. Let S(l1, l2, l3) denote either a process of the form S(l1, l2, l3) =
(KillP l1 l2 l3) or of the form S(l1, l2, l3) = (l1(Z)|l2(W )� l3〈(h)Par Z W h〉 |
Rew l3). Let Tl denote either a process of the form Tl = Rew l or of the
form Tl = (l(Z) � Z l). Let A(�P �, l) denote either a process of the form
A(�P �, l) = l〈�P �〉 or of the form A(�P �, l) = �P �l. A bfa barbed bisimulation
containing axiom Ax.A and its normal form is quite large. For simplicity we
consider a relation which is closed only under challenges from the left term.
Extending the relation and the proof by considering the symmetric cases is
a tedious but easy work. The considered relation is R in Figure C.20.

Let us consider the barbs. The processes of the form Tl, S(l1, l2, l3),
A(�P �, l) have at most barbs on channels l ∈ K. However, all channels l ∈ K
are restricted, thus no barb on this channel can be present. Also, function
addG( ) does not add any barb thanks to Lemma 68. So the only barbs are
those shown by the context C[ ]. These barbs are trivially matched.

Let us now consider reductions. All the reductions performed by the
context are banally matched. Also, since all the relations are closed under
the applications of auxiliary processes such as Tl or S(l1, l2, l3) we will not
mention them. Let us consider the different relations.

In R1 the only possibility is that the process S(l1, l2, l
′) = (l1(Z)|l2(W ) �

l′〈(h)Par Z W h〉 | Rew l′) interacts with two messages on l1 and l2 in the
context. We can assume they are of the form l1〈�P �〉 and l2〈�Q�〉, thus the
reduction leads to R2.

From R2 two reductions are possible: the process can interact with the
context by reading a message on l3 of the form l3〈�R�〉, or the message on l′

may interact with Tl′ . In the first case we obtain l〈(h)Par �P | Q� �R� h〉 | Tl.
On the right side we obtain Tl | l〈(h)Par �P � �Q | R� h〉. We can move into
the context the process Tl, which occurs on both the sides, and also the
message context, the application context and the abstraction context going
to R6. In the second case we go directly to R3.
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R1 = {(νl′. S(l1, l2, l′) | S(l′, l3, l)), (νl′. S(l1, l′, l) | S(l2, l3, l′)) | l1, l2, l, l′ ∈ K}
R2 = {(νl′. l′〈(h)Par �P � �Q� h〉 | Tl′ | S(l′, l3, l)),

(νl1, l2. addG(A(�P �, l1) | A(�Q�, l2) | νl′. S(l1, l′, l) | S(l2, l3, l′))}
R3 = {(νl′. ((h)Par �P � �Q� h)l′ | Tl′ | S(l′, l3, l)),

(νl1, l2. addG(A(�P �, l1) | A(�Q�, l2) | νl′. S(l1, l′, l) | S(l2, l3, l′)))}
R4 = {(νl′. (Par �P � �Q� l′) | Tl′ | S(l′, l3, l)),

(νl1, l2. addG(A(�P �, l1) | A(�Q�, l2) | νl′. S(l1, l′, l) | S(l2, l3, l′)))}
R5 = {(νl′, h1, h2. �P �h1 | �Q�h2 | S(h1, h2, l

′) | Tl′ | S(l′, l3, l)),
(νl1, l2. addG(A(�P �, l1) | A(�Q�, l2) | νl′. S(l1, l′, l) | S(l2, l3, l′))}

R6 = {(Par �P | Q� �R� l), (Par �P � �Q | R� l)}
R7 = {(νl1, l2. �P | Q�l1 | �R�l2 | S(l1, l2, l)),

(νl1, l2. �P �l1 | �Q | R�l2 | S(l1, l2, l))}
R8 = {(νl1. �P | Q�l1 | S(l1, l2, l)),

(νl1, l3, l4. �P �l1 | �Q�l3 | S(l1, l4, l) | S(l3, l2, l4))}
R′ = ∪Ri

R = {(C[P1, . . . , Pn],C[Q1, . . . , Qn]) | (Pi, Qi) ∈ R′∧
C[P1, . . . , Pn],C[Q1, . . . , Qn] wellformed}

Figure C.20: Relation for Ax.A

In R3 the only possible reduction is the application of the Par, leading
to R4.

Also in R4 the only possible reduction is an application, leading to R5.
In R5 both �P �h1 and �Q�h2 may reduce by means of an application.

Note that the right process reduces to the left one. In fact, since processes
are consistent there exist in the term two Rew processes, one on l1 and one
on l2. Hence we have that

νl1, l2. addG(l1〈�P �〉 | l2〈�Q�〉 | (Rew l1) |
(Rew l2) | νl′. S(l1, l′, l) | S(l2, l3, l′)) ↪→∗

νl1, l2. addG(�P �l1 | �Q�l2 | νl′. S(l1, l′, l) | S(l2, l3, l′))

and by α-converting l1, l2 into h1, h2 we obtain νh1, h2. addG(�P �h1 | �Q�h2 |
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νl′. S(h1, l
′, l) | S(h2, l3, l

′)). This last process is structural congruent to
νh1, h2. addG(�P �h1 | �Q�h2) | νl′. S(h1, l

′, l) | S(h2, l3, l
′). Since each process

R is bfa barbed bisimilar to addG(R) (by Lemma 33), we conclude by transi-
tivity, noting that by removing the addG function we get back to the relation
R1.

From R6 we can only move to R7 by applications.
From R7 there are two possible reductions, either the application of �P |

Q�l1 or the application of �R�l2. In the first case we get back to the relation
R1 (by using α-conversion). In the second case we can execute on the right
the application �Q | R�l2, and obtain a process of the form �R�l2 (using
α-conversion) also on the right. We can thus move these processes to the
context, going to the relation R8.

From R8, the left process can only perform the application on �P | Q�,
and we get back to the relation R1 (the right process matches this challenge
by a 0 steps computation). �

Lemma 71. Axiom Ax.Adm and its normal form are correct with respect
to bfa barbed bisimilarity.

Proof. Let

R′ = {(νc. (c〈P 〉 | c(Z) � Z k), �P �k)}
R = {(C[P1, .., Pn],C[Q1, .., Qn]) | (Pi, Qi) ∈ R′}

We now show that the relation R is a bfa barbed bisimulation.
All the challenges from the right process are easily matched, since the left

process reduces to the right one via an administrative reduction.
The only barbs of the left term are in the context, thus they are easily

matched. Similarly, reductions of the context are easily matched. Reductions
in the hole reduce to the term on the right, thus we are in the same relation
by removing one hole. �

Proposition 1. The relation R = {(P,Q) | P ≡Ex Q} where P,Q are con-
sistent HOπ+ processes is a bfa barbed bisimulation.

Proof. By definition P ≡Ex Q iff there are P1, . . . Pn such that P ≡Ex

P1 ≡Ex . . . ≡Ex Pn ≡Ex Q where each equivalence is obtained by applying
just one axiom. The proof is by induction on n. The base case is banally
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verified. In the inductive case we proceed by case analysis on the last applied
axiom.

Let us consider axiomAx.C. By inductive hypothesis we have that P ≡Ex

Pn implies that P
·≈c Pn and that Pn ≡Ex Q using the axiom Ax.C. By

Lemma 67 we know that Pn ≡Ex Q implies Pn
·≈c Q, and by transitivity we

have that also P
·≈c Q.

The other cases are similar, using Lemma 69 for axiom Ax.P, Lemma 70
for axiom Ax.A, Lemma 71 for axiom Ax.Adm and Lemma 34 for axioms
in ≡π. �

Appendix C.4. Proofs of Section 4.6

Lemma 35. If nf(�M�) � P then M � M ′ with P ↪→∗ P ′ and nf(P ′) ≡
nf(Q′) and Q′ ∈ addG(�M ′�).

Proof. By structural induction on M . If M is a simple process such as 0,
a message or a trigger there is nothing to verify since nf(�M�) 
�.

In the inductive case, if M is of the form νa.M1 then by definition
of nf(·) and �·� we have that nf(�M�) = νa. nf(�M1�) and by applying
the inductive hypothesis on nf(�M1�) we have that nf(�M1�) � P implies
M1 � M ′

1 with P ↪→∗ P ′ and nf(P ′) ≡ nf(Q′) with Q′ ∈ addG(�M ′
1�). If

νa. �M1� � νa. P then also �M1� � P and using inductive hypothesis we
obtain νa.M1 � νa.M ′

1 with νa. P ↪→∗ νa. P ′ and since nf(P ′) ≡ nf(Q′)
with Q′ ∈ addG(�M ′

1�) we also have that νa. nf(P ′) ≡ νa. nf(Q′) that is
nf(νa. P ′) ≡ nf(Q′′) with Q′′ ∈ addG(�νa.M ′

1�), as desired. The case of
parallel context M = M1 | M2 also follows by inductive hypothesis if the
reduction is done inside either M1 or M2. If both M1 and M2 contribute
to the reduction then we can assume that there are a message in M1 and a
trigger in M2 able to communicate. For the sake of brevity, we consider just
the case in which both message and trigger are tagged by a key. The other
cases are similar. We can write M = M ′

1 | k1 : a〈R〉 | k2 : a(X) � Q | M ′
2.

Hence, we have

�M ′
1 | k1 : a〈R〉 | k2 : a(X) � Q | M ′

2� =

�M ′
1� | �a〈R〉�k1 | �a(X) � Q�k2 | �M ′

2�
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Let Y = (X c)c〈�Q�〉, then we have that

nf(�M�) = nf(�M ′
1�) | a〈�R�, k1〉 | nf(KillM a k1) |

νt. t|(a(X, l)|t �f νk, c. (Y X x) | (c(Z) � Z k) | (Mem Y a X l k k2)) |
nf(KillT Y t k2 a) | nf(�M ′

2�) �
nf(�M ′

1�) | nf(KillM a k1) | νk, c, t. (Y �R� c) | (c(Z) � Z k) |
(Mem Y a X l k k2) | nf(KillT Y t k2 a) | nf(�M ′

2�) ↪→↪→
nf(�M ′

1�) | nf(KillM a k1) | νk, c, t. �Q�{�R�/X}k | (Mem Y a �R� k1 k k2) |
nf(KillT Y t k2 a) | nf(�M ′

2�)

By using Lemma 21 (Substitution Lemma) the process above is equal to:

nf(�M ′
1�) | nf(KillM a k1) | νk, c, t. �Q{R/X}�k | (Mem Y a �R� k1 k k2) |

nf(KillT Y t k2 a) | nf(�M ′
2�) = P

We have that M � M ′ with M ′ = M ′
1 | νk. k : Q{R/X} | M ′

2 and we
can easily see that P ⇁∗ nf(�M ′

1�) | nf(KillM a k1) | νk, c, t. �Q{R/X}�k
| nf(Mem Y a �R� k1 k k2) | nf(KillT Y t k2 a) | nf(�M ′

2�) ≡ nf(Q′′) with
Q′′ ∈ addG(�M ′�), as desired. �
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