
26 June 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

A Relational Theory of Monadic Rewriting Systems, Part i / Gavazzo F.; Faggian C.. - ELETTRONICO. -
2021:(2021), pp. 9470633.1-9470633.14. (Intervento presentato al convegno 36th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2021 tenutosi a Rome, Italy nel 2021)
[10.1109/LICS52264.2021.9470633].

Published Version:

A Relational Theory of Monadic Rewriting Systems, Part i

Published:
DOI: http://doi.org/10.1109/LICS52264.2021.9470633

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/834391 since: 2021-10-06

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/LICS52264.2021.9470633
https://hdl.handle.net/11585/834391

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

F. Gavazzo and C. Faggian, "A Relational Theory of Monadic Rewriting Systems,
Part I," 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), 2021, pp. 1-14.

The final published version is available online at:
http://dx.doi.org/10.1109/LICS52264.2021.9470633

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.1109%2FLICS52264.2021.9470633

A Relational Theory of Monadic Rewriting
Systems, Part I

Claudia Faggian
Laboratoire IRIF - Équipe PPS

University of Paris

Francesco Gavazzo
University of Bologna

INRIA Sophia Antipolis

Abstract—Motivated by the study of effectful programming
languages and computations, we introduce a relational theory
of monadic rewriting systems. The latter are rewriting systems
whose notion of reduction is effectful, where effects are modelled
as monads. Contrary to what happens in the ordinary operational
semantics of monadic programming languages, defining mean-
ingful notions of monadic rewriting turns out to problematic for
several monads, including the distribution, powerset, reader, and
global state monad. This raises the question of when monadic
rewriting is possible. We answer that question by identifying
a class of monads, known as weakly cartesian monads, that
guarantee monadic rewriting to be well-behaved. In case monads
are given as equational theories, as it is the case for algebraic
effects, we also show that a sufficient condition to have well-
behaved notion of monadic rewriting is that all equations in the
theory are linear. Finally, we apply the abstract theory of monadic
rewriting systems to the call-by-value λ-calculus with algebraic
effects, this way obtaining effectful (surface) standardisation and
confluence theorems.

I. INTRODUCTION

Rewriting Theory [1] is the discipline that studies the
general properties of object transformations [2]. Among its
many applications, rewriting theory plays a central role in
computer science, where it is used both as a foundational
theory of computation and as a formalism for the development
of programming languages. To have a taste of the role played
by rewriting theory, we consider the λ-calculus [3], which is
arguably the most well-known rewriting system in theoretical
computer science. The λ-calculus provides both a model of
computation and a foundation of pure higher-order sequential
programming languages, with fundamental results, such as the
Church-Rosser theorem, ensuring the soundness of powerful
optimisation techniques, such as parallelisation. These results
play a crucial role in the development of compilers, where
efficiency can be gained by changing the order of standard
evaluation strategies [4], or even by leaving such strategies
unspecified until runtime, when they are chosen according to
the available resources [5]. None of these techniques would
be sound without results such as the Church-Rosser theorem.

Nowadays programming languages, however, are not pure.
Quite the opposite, actually: they are deeply effectful, with pro-
grams exhibiting several computational effects at once (rais-
ing exceptions, performing input-output operations, sampling
from distributions, etc). This makes the λ-calculus and, more
generally, the ordinary theory of rewriting systems inadequate

to understand such languages and their associated notion of
computation.

Starting with the seminal work by Moggi [6], [7], monads
[8] have been proved to be the right mathematical abstraction
for the denotational analysis of computational effects, whereas
Plotkin and Power [9]–[11] showed that an operational analy-
sis of effects can be given in terms of equational theories, this
way introducing the theory of algebraic effects. Since their
introduction, both monads and algebraic effects have been
extensively investigated in terms of programming languages
and their semantics: but what about rewriting systems?

To the best of the authors’ knowledge, only specific com-
putational effects have been studied in the setting of rewriting
theory (the main example being the recent theory of proba-
bilistic rewriting [12]–[16]) and nothing has been done at the
general level of monadic or algebraic effects. This is rather
unsatisfactory, as a proper analysis of effectful programming
languages and computations requires a general theory of
effectful rewriting. For instance, we may want to know whether
the optimisation techniques enabled by the Church-Rosser
theorem in the pure λ-calculus continue to hold in presence of
probabilistic nondeterminism, or in presence of global stores,
or both. More generally, we would like to isolate classes of
effects for which a given (optimisation) technique is sound.

This paper aims to answer those questions by making a first
step towards the development of a general, relational theory of
monadic rewriting systems. The development of such a theory
turns out to be nontrivial since, contrary to what happens in
the ordinary operational semantics of programming languages
with monadic and algebraic effects [10], we discovered that
(relational) rewriting is simply not possible for several monads,
including the distribution, powerset, reader, and global state
monad. This raises the question of when monadic rewriting
is possible. We answer that question by identifying a class of
monads, known as weakly cartesian monads [17]–[20], that
support (monadic) rewriting. Moreover, in case effects are
defined by means of equational theories (as it is for algebraic
effects), we give a sufficient condition on the shape of a theory
that makes its associated monadic rewriting well-behaved:
such a condition is based on an old theorem by Gautam [21]
about power algebras [22], and requires all equations of the
theory to be linear. This result also sheds some light upon
what researchers have been done in specific cases of monadic
rewriting (viz. probabilistic rewriting). Finally, we witness

the effectiveness of our analysis by instantiating our theory
of monadic rewriting to Plotkin’s call-by-value λ-calculus
[23] extended with algebraic effects. As a byproduct of that,
we obtain two new theorems: (surface) standardisation and
confluence. Remarkably, the former holds for all algebraic
effects (admitting well-behaved monadic rewriting), whereas
the latter requires effects to be commutative, a well-known
notion in programming language theory.

Summing up, the contributions of this work are:
1) A novel notion of a monadic rewriting system based on

the notion of a relational extension [24]–[26].
2) The identification of a class of monads — namely the

class of weakly cartesian monads [17]–[20] — for which
monadic rewriting is indeed possible.

3) The development of nontrivial proof principles for rea-
soning about monadic rewriting systems.

4) An analysis of monadic rewriting in terms of equational
theories and a sufficient condition on the shape of a theory
that makes monadic rewriting well-behaved.

5) The application of the general theory of monadic rewrit-
ing systems to the call-by-value λ-calculus with algebraic
effects, and the proof of effectful (surface) standardisation
and confluence for such a calculus.

A. A Roadmap

We expand on the main contributions of this work.
a) Monadic Rewriting Systems: The first goal of this

work is to define the notion of a monadic (abstract) rewriting
system (MARS), i.e. of an effectful rewriting system whose
computational effects are given in terms of monads. Our
definition is relational, whereby a MARS is given by a set
of objects together with a rewriting relation between objects
and monadic elements. That, however, is not enough: in order
to study rewriting sequences, we need a way to compose
monadic rewriting steps, which essentially amounts to give
a relational extension [24]–[27] of the underlying monad, an
important concept studied in fields such as topology [24],
[26], [27], coalgebra [28]–[31], and programming language
semantics [32]–[37]. MARSs are introduced in Section IV.

b) Negative Results: A MARS is thus parametric with re-
spect to a monad (which specifies the kind of effects produced)
and a relational extension (which specifies how rewriting
steps are composed). To qualify those relational extensions
that give meaningful notions of rewriting, we introduce the
(minimal) properties of compatibility and preservation, and
argue that both these properties are necessary to define mean-
ingful MARSs. Perhaps surprisingly, we discover that such
properties are incompatible with several monads — including
the distribution, reader, powerset, and global state monads —
that are regularly used to model computational effects: for
such monads, there is no relational extension satisfying both
compatibility and preservation. Compatibility, preservation,
and negative results are given in Section II, where we give a
gentle introduction to MARSs by means of a simple example.

c) Weakly Cartesian Monads and Relational Extensions:
In light of the aforementioned negative result(s), the most

urgent question to be answered becomes: what are the monads
for which monadic rewriting is possible? We answer this
question by showing that weakly cartesian monads are pre-
cisely those monads on which one can do monadic rewriting.
Moreover, a classic result by Barr [24] states that not only for
such monads there exists a well-behaved relational extension,
but such an extension is also unique and it is given by the so-
called Barr extension of the monad [24]–[26]. Additionally,
we show that the axiomatics of a weakly cartesian monad
entails the soundness of powerful rewriting techniques that
simplify the analysis of MARSs. As a main result in this
respect, Theorem 22 shows the diamond property is preserved
by Barr extensions. Weakly cartesian monads and the Barr
theorem are the subject of Section IV-A, whereas monadic
rewriting techniques are studied in Section IV-B.

d) Algebraic Theories: When dealing with algebraic
effects, monads are given as equational or algebraic theories.
In those cases, it is natural to ask whether it is possible to find
a sufficient condition on the shape of an equational theory that
ensures the corresponding monadic rewriting to be possible.
We answer that question in the affirmative, by showing that
for all linear equational theories monadic rewriting is indeed
possible. This follows from a classic theorem by Gautam
[21]. Monadic rewriting on algebraic theories is studied in
Section IV-C.

e) The λ-calculus with Algebraic Operations: Finally,
we use our general theory of MARSs to make an operational
analysis of the call-by-value λ-calculus with algebraic effects.
We prove two new theorems: effectful surface standardisation
(Theorem 38) and confluence (Theorem 43). The former holds
for all algebraic effects (making monadic rewriting well-
behaved), whereas the latter requires effects to be commu-
tative. This is done in Section V.

II. MONADIC REWRITING, AN INVITATION

In this section, we give an informal introduction to the
relational theory of monadic abstract rewriting (or reduction)
systems (MARSs) by means of a concrete example: proba-
bilistic rewriting systems [12], [13], [15].

Recall that an abstract rewriting (or reduction) system
(ARS) is a structure (A,R) consisting of a set of objects A
together with a rewrite relation R : A +→ A.1 A probabilistic
rewriting system is an extension of an ARS where the rewriting
relation has a probabilistic behaviour. Probabilistic nondeter-
minism is usually modelled using the distribution monad, but
for our purposes the finite distribution monad is sufficient.
Given a set X , we denote by DX the collection of finite
distribution on X , i.e. the set of functions ϕ : X → [0, 1] such
that: (i) ϕ(x) 6= 0 for finitely many x only; (ii)

∑
x ϕ(x) = 1.

We oftentimes denote a distribution ϕ as a formal sum∑
i∈I pi:xi, remarking that such a notation is not unique. The

construction D gives a functor which we endow with a monad
structure D = (D, ηD,µD). The unit ηD(x) maps each y ∈ X

1We write R : X +→ Y for relations R over X × Y and R;S : X +→ Z
for the composition of two relations R : X +→ Y , S : Y +→ Z.

to 0 if x 6= y, and to 1 otherwise; the multiplication maps
a distribution Φ ∈ DDX to the distribution µD(Φ) defined
by µD(Φ)(x) =

∑
ϕ∈DX Φ(ϕ)ϕ(x). As it is customary when

representing distributions as formal sums, we write
∑
i pi:ϕi

in place of µD(
∑
i pi:ϕi).

Following Bournez and Garnier [13], a probabilistic rewrit-
ing system is thus defined as a set A together with a proba-
bilistic rewrite relation R : A +→ DA. Given such a system, we
are interested to study how the system evolves, i.e. we want
to study its rewriting sequences. At this point, the literature
offers two possibilities.

1) The first one [13] studies probabilistic rewriting se-
quences by means of Markov decision processes, and thus
focuses on the stochastic evolution of single rewriting
sequence.

2) The second one [14]–[16] analyses the global behaviour
of probabilistic systems by lifting the underlying rewrit-
ing relation R : A +→ DA to a relation acting on a
variation of distributions, viz. multi-distributions, this
way obtaining an ARS whose objects are themselves
multi-distributions.

Although those approaches are equivalent [15], we focus on
the second one, the latter being truly relational. That allows
us to stay closer to the definition of an ARS, and thus to
extend theories and techniques developed in a pure setting to
a probabilistic scenario.

But why does one need to work with a variation of
distributions? Naively, one would expect to lift the rewriting
relation R : A +→ DA to a relation ΓR : DA +→ DA
on distributions, and to study the ARS (DA, ΓR). Avanzini,
Dal Lago, and Yamada [15], however, showed that such an
approach does not work well: working with distributions, one
naturally looses some rewriting sequences, this way creating
a discrepancy with the first approach in the aforementioned
list. Avanzini et al. overcame the problem by moving from
distributions to multi-distributions (see Section III), this way
obtaining the desired equivalence. Here, we attack the problem
from a more foundational perspective: first, we propose two
minimal conditions on (candidate) relation liftings and argue
that such conditions are necessary to have a meaningful notion
of a probabilistic rewriting system; secondly, we show that
there exists no relation lifting satisfying such conditions. This
negative result is the deep reason why Avanzini et al. define
probabilistic rewriting systems relying on multi-distributions.
Our two conditions are:

1) The relation ΓR must be compatible with the (probabilis-
tic) effects produced during the rewriting process;

2) Γ must preserve pure rewriting back and forth.
Let us expand on that.

a) Compatibility: Compatibility means that the relation
ΓR can always apply R inside convex combinations or, more
formally, that ΓR is closed under convex combinations. This is
a natural, minimal condition ensuring that, e.g., no matter how
Γ is defined, if 1:a rewrites into 1

3 :c+ 2
3 :c′ and 1:b rewrites into

1:c, then 1
2 :a + 1

2 :b rewrites into 1
6 :c + 1

3 :c′ + 1
2 :d. Formally,

compatibility states that if ϕ1 ΓR ψ1, . . ., ϕn ΓR ψn, then∑
i pi:ϕi ΓR

∑
i pi:ψi, for any convex combination

∑
i pi.

b) Preservation: Preservation is a more delicate prop-
erty than compatibility, and it often makes effectful rewrit-
ing problematic. Preservation ensures that programs with no
probabilistic operation do not produce nontrivial probabilistic
behaviours. More precisely, given a probabilistic rewriting
system (A,R : A +→ DA), preservation states that performing
a R-rewriting step on an element a is the same as performing
a ΓR-rewriting step on 1:a. Formally, a R ϕ iff (1:a) ΓR ϕ.
This property ensures that, e.g., any non-probabilistic λ-term
t can be studied in a probabilistic setting as 1:t. For instance,
preservation ensures that the pure λ-term t = (Ix)(Iy),
where I = λx.x, has only the following trivially probabilistic
reductions (we write ⇒β in place of Γ(→β) [16]):

1:t⇒β 1:x(Iy)⇒β 1:xy 1:t⇒β 1:(Ix)y⇒β 1:xy.

In particular, preservation entails that the operational be-
haviour of t in a pure setting is essentially the same as
the one of 1:t in a probabilistic setting, meaning that pure
programs cannot produce nontrivial probabilistic behaviours.
Please notice that without preservation, nothing will prevent
(in principle) 1:t to rewrite into, e.g., 3

8 :x(Iy) + 5
8 :(Ix)y.

This behaviour may seem prima facie innocent, as a further
rewriting step gives the distribution 1:xy. However, what
would happen if instead of having the redexes Ix, Iy one
has two terms performing two different output actions? In
that case, we would have that a non-probabilistic program
generates a truly probabilistic behaviour which, thanks to the
presence of output, is now visible to an external observer. This
is definitely something undesired.

c) No Extension for the Distribution Monad: We have
identified compatibility and preservation as two minimal con-
ditions any probabilistic rewriting system should satisfy to be
considered operationally meaningful. As a further evidence
of that, we show that compatibility and preservation are
necessary conditions to make probabilistic rewriting mathe-
matically well-defined. To understand that, let us recall that
in an ARS (A,R), a reduction sequence can be ultimately
described as a sequence R;R; · · · ;R of compositions of the
rewriting relation R with itself. If the system is probabilistic,
this definition is not possible anymore. However, the lifting
Γ naturally induces a notion of composition on relations of
type A +→ DA as R · S = R; ΓS. A (probabilistic) rewriting
sequence can be thus defined as a sequence of the form
R · R · · · · · R. Following the analogy with ARSs, we would
like the composition operation · to behave as be as close as
possible to ordinary relation composition. In particular, · must
be associative and have a neutral element, which we expect to
be the unit η : A → DA of the distribution monad (regarded
as a relation).2 It turns out that these desiderata cannot hold
if preservation and compatibility are not satisfied.

2Cf. with the notion of a Kleisli composition [6], [8].

Proposition 1. If compatibility or preservation does not hold,
then one of the following laws does not hold too:

R · η = R η · S = S R · (S · P) = (R · S) · P .

That is, without compatibility and preservation, there is no
hope to obtain a meaningful notion of rewriting sequence rely-
ing on Γ. Proposition 1 is a direct corollary of Proposition 15,
which establishes a tighter connection between relation lifting
and composition of (monadic) rewriting relations.

Given the importance of compatibility and preservation, a
natural question arises: can we find a lifting Γ satisfying both
compatibility and preservation? The answer is in the negative.

Proposition 2. There is no lifting Γ satisfying both compati-
bility and preservation

Proof. Suppose to have such a lifting Γ, and consider the
probabilistic rewriting system defined by the relation a R 1:b,
aR1:c, with a 6= b 6= c. Then, preservation implies 1:aΓR1:b
and 1:a ΓR 1:c, from which follows, by compatibility: 1:a =
(1

2 :a+ 1
2 :a) ΓR (1

2 :b+ 1
2 :c). Again, by preservation we should

have a R (1
2 :b+ 1

2 :c) which, however, is not the case. Hence
such an extension Γ does not exist.

Proposition 2 gives a strong, negative result: probabilistic
rewriting as we have defined it, is simply not possible.
Moreover, this does not concern the lifting Γ we choose, but
it is an intrinsic trait of the distribution monad.

d) The Anatomy of the Problem: Where do problems
with the distribution monad come from? The proof of Propo-
sition 2 clearly shows that the crucial passage is moving from
1:a to 1

2 :a+ 1
2 :a, which is an instance of the idempotency law

characterising the algebra of formal sums. Such a law gives D
a form of nondeterminism that does not interact well with the
implicit nondeterminism of the very act of rewriting. From a
more abstract perspective, any probabilistic (rewriting) relation
R : X +→ DX can be seen as a function r : X → PDX . Since
there is a one-to-one correspondence between well-behaved
liftings and distributive laws [38] of type δ : DP ⇒ PD
(see Remark 20), we can read Proposition 2 as an instance of
the well-known result that there is no distributive law of the
distribution monad over the powerset monad [39], [40].

But does that mean that a relational theory of probabilistic
rewriting is not possible at all? Not really, it means that
(full) probabilistic rewriting cannot be done relying on the
distribution monad, although we use the latter to model prob-
abilistic computations. This is the deep reason why relational
approaches to probabilistic rewriting [14]–[16] rely on the
multi-distribution monad.3 And in fact, the multi-distribution
monad is de facto obtained from the distribution monad by
removing the idempotency equation from the algebra of formal
sums.

3Actually, the very same monad has been introduced before [39], [40] under
the name of indexed valuations monad, where it is also proved the existence
of a distributive law of the indexed valuation monad over the powerset monad.

e) No-go Theorems for Monadic Rewriting: Summing
up, we have identified two minimal necessary criteria to have
a meaningful (relational) notion of probabilistic rewriting and
have showed that as long as we use the distribution monad,
there is no hope to have such a notion. The next step is to
realise that our negative results do not affect the distribution
monad only. In fact, Proposition 2 can be easily modified to the
case of the powerset monad P , the source of the problem being
again the idempotency law x∪x = x; and indeed, the powerset
monad does not distribute over itself [41]. Furthermore, even
the group monad suffers the same pathology (even without
idempotency, we can rely on the equations 0 = x+ (−x) and
x = x+ 0), as well as the reader and global state monads.

f) Monadic Rewriting Systems: The negative results seen
so far show that developing a well-behaved relational theory of
monadic rewriting systems is problematic: for several monads
that are used to model computational effects, monadic rewrit-
ing turned out to be simply not possible. Of course, here we
mean monadic rewriting as constrained by compatibility and
preservation; but we argued that rewriting systems not satisfy-
ing such constraints can be hardly judged to be operationally
meaningful (as well as mathematically well-behaved, as they
might give, e.g., non-associative rewriting sequences). These
observations show that a proper understanding of monadic
computations also goes through the development of a theory
of monadic rewriting systems, the task of such a theory being
to precisely define what a monadic rewriting system is, to
isolate the class of monads for which monadic rewriting is
indeed possible, and to develop a collection of techniques for
studying such systems. That is our plan for this work.

III. PRELIMINARIES: MONADS, ALGEBRA, AND
REWRITING

In this section, we recall some preliminary notions on
monads [8], algebras [42], and rewriting [1] that will be central
in the rest of this paper. Due to space constraints, there is no
hope to be comprehensive and thus we assume the reader to
have a minimal familiarity with those fields. Unless explicitly
stated, we work in the category Set of sets and functions, and
we tacitly restrict all definitions to it.

A. Monads and Algebraic Effects

Starting with the seminal work by Moggi [6], [7], monads
have become a standard formalism to model and study com-
putational effects. We recall some basic notions about monads
and algebraic operations.

Definition 3. A monad (on Set) is a triple4 T = (T , ηT,µT)
consisting of a functor T (on Set) together with two natural
transformations: ηT : 1Set ⇒ T (called unit) and µT : TT ⇒
T (called multiplication) subject to the following laws: µT ◦
ηTT = µT ◦ TηT = 1T and µT ◦ TµT = µT ◦ µTT .

4When unambiguous, we omit superscripts from η and µ.

Any monad T defines two useful categories: the category of
Eilenberg-Moore algebras of T and the Kleisli category of T.
We denote them by EM(T) and Kl(T), respectively.5

Monads model notions of computational effects. To model
how actual effects are produced, Plotkin and Power [9], [10]
introduced the notion of an algebraic operation.

Definition 4. Given a monad T = (T , η,µ), an n-ary
algebraic operation is a natural transformation f : Tn ⇒ T
respecting the monad multiplication.

From an operational perspective, algebraic operations de-
scribes those operations whose execution is independent of
the context in which they are executed.

Example 5. Throughout this paper, we will use the following
monads as running examples.

1) Divergent computations are modelled by the maybe or
partiality monad M = (M, ηM,µM), where MX = X +
{⊥}, ηM is the left injection ι`, and µM : ((X + {⊥}) +
{⊥}) → X + {⊥} sends ι`(ι`(x)) to ι`(x), and all the
rest to ⊥.

2) Probabilistic computations are modelled by the (finitary)
distribution monad as seen in Section II.

3) Computations with output are modelled by the writer
(sometimes called output or action) monad W =
(W, ηW,µW), where WX = W × X and (W , 1, ·)
is a monoid. Unit and multiplication are defined by
ηW(x) = (1,x) and µW(w, (v,x)) = (w · v,x). Taking
the monoid of words, then we read (w,x) as the result
of a program printing w and returning x. If, instead, we
take the monoid (N, 0, +), then we obtain the cost or
complexity monad, whereby we read (n,x) as the result
of a computation that produces x with cost n. We consider
a W -indexed family of unary operations outw defined by
outw(v,x) = (w · v,x). These are indeed algebraic.

4) We model computations reading from a set of states
using the reader monad. For simplicity, we consider
a single location containing values from a (finite) set
R only. In this case, the reader monad is the triple
R = (R, ηR,µR), where RX = XR, ηR(x)(r) = x, and
µR(f)(r) = (f(r))(r). An element f in RX represent a
computation that behaves as f(r) if the location contains
r.

5) We model nondeterminism using the powerset monad
P = (P, ηP,µP), where ηP(x) = {x} and µP(U) =

⋃
U .

We generate nondeterminism using (binary) set-theoretic
union, which is indeed algebraic. The finitary powerset
monad Pf is obtained from P by taking as underling
functor the finite powerset functor Pf . Similarly, the non-
empty powerset monad P+ is obtained by the taking the
non-empty powerset functor P+.

5We will use these notions only in few technical passages in Section IV.
The reader not familiar with these concepts will still be able to follow the
paper. Here we mentioned them only to fix the notation.

B. Algebraic Theories

Since effects are ultimately produced by algebraic opera-
tions, we oftentimes describe computational effects by means
of algebraic theories, i.e. via a collection of operations and
equations.

Definition 6. Recall that a signature Σ is a family of sets
{Σk}k∈N, the elements σ, ρ, . . . of each Σk being called k-
ary operations.

1) The set TΣX of Σ-terms (just terms if unambiguous)
over X (notation t, s, . . .) is inductively defined thus:
x ∈ TΣX , for any x ∈ X; σ(t1, . . . , tn) ∈ TΣX ,
whenever t1, . . . , tn ∈ TΣX .

2) A Σ-algebra A = (A, {σA}σ∈Σ) is given by a set A
together with an operation σA : An → A, for any n-ary
operation in Σ. A Σ-algebra homomorphism from A to B
is a function f : A→ B such that f ◦σA = σB◦

∏
n f . We

denote by Σ-Alg the category of Σ-algebras and their
homomorphisms.

The construction of Σ-terms defines a functor TΣ which is
part of a monad TΣ whose unit is given by the subset inclusion
injection ι : X ↪→ TΣX and whose multiplication is given by
term substitution (see below). Moreover, for any set X , the set
TΣX carries a Σ-algebra structure that makes it the free Σ-
algebra: that means that for any Σ-algebra A = (A, {σA}σ∈Σ),
any map f : X → A extends uniquely to a Σ-algebra
homomorphism f̂ : TΣX → A such that f̂ ◦ ι = f . We
call maps γ̂, for γ : X → TΣX , substitution maps. Since
a Σ-term over X is just a tree with operations in Σ as
nodes and elements in X as leaves, we can uniquely write
any term t as an expression of the form θ(x1, . . . ,xn), for
some6 θ ∈ TΣ(n) and (x1, . . . ,xn) ∈ ×Xn.7 Accordingly,
we see that if t = θ(x1, . . . ,xn) and si = ϑi(~yi), then
θ(ϑ1(~y1), . . . ,ϑn(~yn)) is the result of applying the substitution
xi 7→ si to t. Notice that algebraic operations on TΣ are
isomorphic to elements in

⋃
n TΣ(n) [9].

Operations tell us how effects are produced, but the be-
haviour of such effects is defined by equations.

Definition 7. 1) An algebraic or equational theory T =
(Σ,E) associates to each set X the collection TΣX of
Σ-term over X together with a set E ⊆ TΣX × TΣX of
equations between such terms.

2) A (Σ,E)-algebra is a Σ-algebra A such that for any
(t, s) ∈ A, and for any map α : X → A, we have
α̂(t) = α̂(s). We denote by (Σ,E)-Alg the subcategory
of Σ-Alg whose objects are (Σ,E)-algebras.

For a theory T = (Σ,E), we write ∼E (or simply ∼ if
unambiguous) for the least congruence relation on terms that
is closed under term substitution and contains E. The free
T-theory over X , notation FTX , is the quotient of TΣX by
∼. Indeed, FTX is a Σ-algebra (define σFT([t1]∼, . . . , [tn]∼)

6For n ∈ N, we write n for the set {1, . . . ,n}
7The family {TΣ(n)}n∈N together with its associated notion of compo-

sition (given by tree substitution) forms the so-called tree operad [43].

as [σ(t1, . . . , tn)]∼) which obviously satisfies equations in E.
Moreover, for any (Σ,E)-algebra A, any map f : X → A
extends uniquely to a Σ-homomorphism f̃ : FTX → A such
that f̃ ◦ [−]∼ ◦ ι = f , where [−]∼ : TΣX → FTX maps each
term t to its equivalence class [t]∼. When unambiguous, we
will write [t] in place of [t]∼.

The construction FT gives a functor which is part of a
monad FT, called the free theory monad of T. Is is well-known
that the Eilenberg-Moore category of a free theory monad FT

is isomorphic to the category of (Σ,E)-algebras.

Example 8. The following are examples of equational theory.
For readability, we write t ∼ s in place of (t, s) ∈ E.

1) The theory of divergence has a single 0-ary operation
and no equation. Its free theory monad gives the maybe
monad.

2) The theory of nondeterminism consists of a single binary
operation ∨ together with the usual join semilattice
equations [44]. Its associated free theory monad gives
the finitary non-empty powerset monad. If we drop the
idempotency equation x ∨ x ∼ x, we obtain the theory
of multisets [45] and the associated multiset monad. If
we also drop commutativity, we obtain the theory of lists
and the associated list monad L.

3) The theory of probabilistic nondeterminism has binary
operations +p indexed by rational numbers 0 ≤ p ≤ 1
subject to the usual axioms of a barycentric algebra [46]:

x+p x ∼ x; x+1 y ∼ x; x+p y ∼ y +1−p x;

x+p (y +q z) ∼ (x+ p
p+(1−p)q

y) +p+(1−p)q z.

The free theory monad of this theory gives the finitary
distribution monad. The theory of multi-distribution or
indexed valuations (and their corresponding monads)
[15], [39], [40] is obtained by dropping the idempotency
axiom x+p x ∼ x.

4) Fixed a monoid W , the theory of the writer monad has
a unary operation outw for each w ∈W , and equations

out1(x) ∼ x outw(outv(x)) ∼ outw·v(x).

5) Let R be a set of states which we assume to have two
states only, say R = {0, 1} (so that our location can
stores booleans only). The theory of the reader monad
has a binary operation rd and equations:

rd(x,x) ∼ x rd(rd(w,x), rd(y, z)) ∼ rd(w, z).

The intended meaning of a programs of the form rd(t, s)
is to read the value stored in the location and continue
as t if the value is 0, and as s otherwise.

C. Rewriting and Relations

We will extensively work with relations. We denote by Rel
the category with sets as objects and binary relations as arrows.
As it is customary, we use the notation R : X +→ Y for a
relation R ⊆ X × Y , and write Rel(X,Y) for the collection
of relations of type X +→ Y . Notice that the subset inclusion
order endow Rel(X,Y) with a complete lattice structure. We

denote by IX : X +→ X the identity relation, by R;S : X +→
Z the composition of R : X +→ Y and S : Y +→ Z, and by
R− : Y +→ X the dual or transpose of R : X +→ Y . As usual,
we write R∗ for the reflexive and transitive closure of R. Also,
remember that any function f : X → Y can be regarded as
a relation via its graph. As the context will disambiguate the
notation, we write f : X → Y for the function f regarded
as a relation (hence as an arrow in Rel) In particular, the
composition g ◦ f in Set corresponds to f ; g in Rel. Finally,
we will extensively use the following shunting laws [47]:

R; f ⊆ S ⇐⇒ R ⊆ S; f− f−;P ⊆ S ⇐⇒ P ⊆ f ;S.

An abstract rewriting system (ARS) [48] is a pair (A,R :
A +→ A) consisting of a set A together with a binary relation
on A. Given the possible rewriting sequences an object of
an ARS may have, sometimes we will be interested in those
obtained following a strategy, the latter being a way to specify
which reduction one should perform. Accordingly, we say that
a strategy for R is a relation Rst ⊆ R. Notice that a strategy
need not be deterministic. Finally, we say that two relations
R,S on A �-commute8 (resp. commute) if R−;S ⊆ S;R−

(resp. R−;S ⊆ S∗; (R∗)−). A relation is � (resp. confluent) if
if it �-commutes (resp. commutes) with itself.

IV. A RELATIONAL THEORY OF MONADIC REWRITING
SYSTEM

In this section, we introduce our relational theory of
monadic rewriting systems. Fixed a monad T = (T , η,µ), a
monadic abstract rewriting system (MARS) may be thought
as a set A together with a (rewriting) relation R : A +→ TA.
Since such relations play an important role in this work, we
give them a name.

Definition 9. Given a monad T, a T-corelation R : X +⇀ Y
is a relation R : X +→ TY .

T-corelations are T -coalgebras in Rel, and they are the
dual notion of a T-relation [24], [26]. Thus, we may define a
MARS as a pair (A,R : A +⇀ A). This definition, however,
is too liberal to give a meaningful notion of rewriting system.
In fact, as already remarked in Section II, our main object of
investigation are rewriting sequences, and to define them we
need to be able to compose T-corelations.

Given a candidate MARS (A,R : A +⇀ A), we are
interested in studying its rewriting sequences; and to do so,
we need a notion of composition between T-corelations. Here,
we define T-corelation composition relying on maps Γ lifting
relations R : X +→ TY to ΓR : TX +→ TY , which we
then use to define the composition R · S : X +⇀ Z of two
T-corelations R : X +⇀ Y and S : Y +⇀ Z as R; ΓS.

Maps Γ : Rel(X,TY) → Rel(TX,TY) that guarantee
good properties of T-corelation composition turn out to coin-
cide with the so-called relational extensions of T [24]–[27], a
notion playing an important role in topology [24], [26], [27],
coalgebra [25], [28], [29], logic [30], [31], and programming

8Read “diamond commute”.

language theory [32]–[37]. This correspondence allows us to
develop our relational theory of monadic rewriting systems
relying on a vast body of results and techniques.

Definition 10 ([24]). A relational extension of a monad T =
(T , η,µ) is a family of monotone maps Γ : Rel(X,Y) →
Rel(TX,TY) such that:

I = Γ(I) ΓR; ΓS = Γ(R;S) Ff = Γf (ΓR)− = Γ(R−)

R; ηY = ηX ; ΓR ΓΓR;µY = µX ; ΓR

If we ignore the last two equalities, we obtain the notion of a
relational extension of the functor T .

A relational extension Γ of T is a way to extend T to a 2-
functor on Rel that behaves as T on sets and functions, and
as Γ on relations. Here, being a 2-functor means that R ⊆ S
implies ΓR ⊆ ΓS. If Γ is a relational extension of the monad
T, then Γ is a relational extension of T making the unit and
multiplication of T natural. In particular, given a relational
extension Γ, the map Γ−;µ : Rel(X,TY)→ Rel(TX,TY)
gives the lifting we need to compose T-corelations.

Lemma 11. Given a relational extension Γ of T, let ∆ be
Γ−;µ. Then, the following hold, for all f : X → TY , R :
X +→ TY , S : Y +→ TZ.

∆f = f† η; ∆R = R ∆(R; ∆S) = ∆R; ∆S.

Now that we have the notion of a relational extension,
we can give the following definition of a monadic rewriting
system.

Definition 12. Given a monad T with relational extension Γ,
a (T, Γ)-rewriting system is a pair (A,R : A +⇀ A).

Example 13. 1) Let us consider the monoid (N, +, 0) and
instantiate the writer monad W on it. Define the relational
extension Γ by (n,x) ΓR (m, y) iff n = m and x R y.
As a consequence, the map Γ−;µ : Rel(X,WY) →
Rel(WX,WY) gives (n,x) (ΓR;µ) (m, y) iff there
exists p such that m = n + p and x R (p, y). Let us
now consider the system defined by the W-corelation
aR (a, 1). Then, we see that for any n ≥ 0, we have the
reduction sequence aRn(a,n). Here, Rn denotes the n-th
T-corelation composition of R with itself. Proposition 15
below ensures that such a composition is associative, and
thus that the expression Rn is meaningful. For instance,
for n = 2, we have the reduction a (R ·R) (a, 2), i.e.
a (R; ΓR;µ) (a, 2). Notice also that for n = 0, we have
R0 = η, which indeed gives a R0 (a, 0).

2) Let us consider the list monad L. Define the relational
extension Γ by xsΓRys if and only if xs = [x1, . . . ,xn],
ys = [y1, . . . , yn], and xi R yi, for any i. As a conse-
quence, for any R : X → LY we have xs (ΓR;µ) ys
iff there exist ys1, . . . , ysn such that xs = [x1, . . . ,xn];
xi R ysi for any i; and ys = ys1 :: · · · :: ysn, where
:: denotes list concatenation. Now, consider the system
defined by the L-corelation aR[a, a]. Then, for any n ≥ 0,
we have the reduction sequence aRn [a, . . . , a], where the

length of [a, . . . , a] is 2n. Notice that for n = 0, we have
a R0 [a].

MARSs are thus based on two parameters: a monad T
specifying the (computational) effects produced during the
rewriting process, and a relational extension Γ of T which we
use to specify how to compose rewriting steps. Accordingly,
it is natural to ask whether relational extensions exist in
general. In the next section, we will answer this question.
For the moment, we simply notice that we already gave a
partial answer to such a question in Section II, where we
showed that relational extensions of some monads do not
exist. Actually, we have seen something different, namely that
lifting operations satisfying compatibility and preservation do
not exist. The following result connects these perspectives by
showing that any relational extension gives a lifting satisfying
compatibility and preservation. It follows that if there is no
lifting satisfying compatibility and preservation, then there is
no relational extension as well.

Proposition 14. Let T be a monad with a relational extension
Γ and let ∆ = Γ−;µ. Then, for any R : X +⇀ Y and algebraic
operation f : Tn ⇒ T , we have:∏

i

∆R; f ⊆ f ; ∆R η; ∆R = R.

Proposition 14 tells us that the lifting Γ−;µ induced by
a relational extension Γ always satisfies compatibility and
preservation, this way witnessing that our notion of a MARS
is coherent with our informal notion of operational meaning-
fulness. Additionally, our notion of a MARS is also math-
ematically well-behaved, in the sense that the T-corelation
composition operation induced by a relational extension (i.e.
R · S = R; ΓS;µ) indeed behaves as a notion of relation
composition.

Proposition 15. Let Γ be a relational extension of a functor T
which is part of a monad T = (T , η,µ). Then, Γ is a relational
extension of T iff the following laws hold, for all R : X +⇀ Y ,
S : Y +⇀ Z, and P : Z +⇀W :

R · ηY = R ηX · S = S R · (S · P) = (R · S) · P .

Notice that from Proposition 14 and Proposition 15 follows
(by contraposition) Proposition 1 of Section II.

A. The Art and Craft of Relational Extensions

MARSs are defined with respect to two parameters: a monad
T and a relational extension Γ of T. However, we would
like the monad T alone to determine its associated class of
rewriting systems: that amounts to let T determine Γ. In 1970,
Barr defined a canonical candidate relational extension T̂ of a
monad T and give necessary and sufficient conditions on T that
make T̂ a relational extension of T. These conditions precisely
isolate the class of monads that support monadic rewriting.

Definition 16. Given a monad T = (T , η,µ) and a relation
R : X +→ Y , we can regard R as a set R ⊆ X × Y . In
particular, the projections π1 : R→ X , π2 : R→ Y give R =

π−1 ;π2. The Barr extension T̂ : Rel(X,Y)→ Rel(TX,TY)
of T is defined as T̂R = (Tπ1)−;Tπ2. Elementwise, we have:

ϕ T̂R ψ ⇐⇒ ∃Φ ∈ TR. Tπ1(Φ) = ϕ1 ∧ Tπ2(Φ) = ψ.

Example 17. Let R : X +→ Y .
1) For the powerset monad, we have uP̂Rv iff ∀x ∈ u.∃y ∈

v. x R y and ∀y ∈ v.∃x ∈ u. x R y.
2) For the distribution monad, we have ϕ D̂R ψ iff there

exists Φ ∈ D(X × Y) such that
∑
y Φ(x, y) = ϕ(x),∑

x Φ(x, y) = ψ(y), and Φ(x, y) > 0 =⇒ x R y.
3) The Barr extensions for the writer and list monad are

precisely the relational extensions given in Example 13.

The Barr extension of a monad T = (T , η,µ) is not a
relational extension of T, in general: actually, it is not even
a relational extension of T . Barr identified necessary and
sufficient conditions on monads that guarantee their associated
Barr extensions to be relational extensions. As a consequence,
monads satisfying such conditions are precisely those monads
that support monadic rewriting: they have a well-behaved
notion of T-corelation composition (which allows us to form
rewriting sequences) and their Barr extension satisfies com-
patibility and preservation. Additionally, as we are going to
see, such monads come with a number of powerful proof
techniques for reasoning about their associated MARSs.

Definition 18 ([26]). Consider functions X
f−→ Z

g←− Y and
X

p←−W q−→ Y .
1) The commutative square p; f = q; g is a Beck-Chevalley

square (BC-square, for short) if p−; q = f ; g−, or equiv-
alently if q−; p = g; f−.

2) A functor T satisfies the Beck-Chevalley condition (BC,
for short),9 if it sends BC-squares to BC-squares: that is,
for any square p; f = q; g,

p−; q = f ; g− =⇒ (Tp)−;Tq = Tf ; (Tg)−

3) A natural transformation α : T ⇒ S satisfies BC if its
naturality diagrams10 Sf ;αY = αX ;Tf are BC-squares.
That is, if

(Sf)−;αX = αY ; (Tf)− (or dually, α−X ;Sf = Tf ;α−Y .)

Theorem 19 (Barr [24]). Let T = (T , η,µ) be a monad.
1) If T satisfies BC, then T̂ is a relational extension of T .

Moreover, such an extension is unique.
2) If η and µ satisfy BC, then T̂ is a relational extension of

T. Moreover, such an extension is unique.

Theorem 19 tells us that to specify a monadic rewriting
system, it is sufficient to give a monad T and a pair (A,R :
A +⇀ A): the monad T itself gives the required relational
extension as its Barr extension. Moreover, the structure of T
alone determines whether T̂ is a relational extension of T, and
thus whether rewriting works fine. Additionally, if T does not

9Notice that T satisfies BC if and only if it preserves weak pullback
diagrams [26, Proposition III.1.11.3].

10Where SY
αY−−→ TY

Tf←−− TX and SY
Sf←−− SX αX−−→ TX .

have the right structure, not only monadic rewriting via T̂ is
not possible, but no monadic rewriting on T is possible at all.

Structures satisfying property BC are called weakly carte-
sian, and thus we refer to monads whose underlying functor,
unit, and multiplication all satisfy BC as weakly cartesian
monads [17]–[20]. Examples of weakly cartesian monads
include the the maybe, writer, list, multiset, and multi-
distribution monads. Non-examples include the powerset, dis-
tribution, and reader monads (but also other monads not
mentioned in this work, such as the the global state and group
monads). This is coherent with the negative results we have
seen in Section II.

Remark 20 (A Distributive Law Perspective). In Section II,
we have seen that no operationally meaningful monadic
rewriting system can be defined upon the distribution monad.
Another way to see that negative result is by means of non-
existence of distributive laws [38]. Recall that, given monads
T = (T , ηT,µT) and S = (S, ηS,µS), a distributive law of
type TS ⇒ ST is a natural transformation δ : TS =⇒ ST
satisfying suitable equations. Whenever we have a distributive
law of type TS⇒ ST we say that T distributes over S.

Beck [38] proved that distributive laws of type TS⇒ ST are
in a one-to-one correspondence with liftings of S to EM(T)
and with extensions of T to Kl(S). Since Rel is nothing
but Kl(P), we see that extensions of T to Kl(P) are exactly
relational extensions of T, and thus that there is a one-to-one
correspondence between relational extensions and distributive
laws of type TP ⇒ PT. As a consequence, a monad T has
a relational extension if and only if there exists a distributive
law of type TP ⇒ PT. The impossibility of (well-behaved)
monadic rewriting on the distribution monad thus reflects the
well-known result [39], [40] that the distribution monad does
not distribute over the powerset monad. Since the same results
holds also for, e.g., the powerset and group monads [41],
we cannot have (well-behaved) monadic rewriting on these
monads too.

From a distributive law perspective, we recover the Barr
extension of a relation (regarded as a function) R : X →
PY as T̂3 ◦ TR, where T̂3 : TP ⇒ PT is the candidate
distributive law (known as the power law [49]) obtained as
the Barr extension of the transpose 3: PX +→ X of the set-
membership relation ∈. The counterpart of Theorem 19 states
that T̂3 gives a natural transformation whenever T satisfies
BC, and a distributive law whenever T is weakly cartesian.

B. Monads, Points, and Diamonds

In this section, we witness the effectivness of our theory
of monadic rewriting by developing two proof techniques for
the analysis of MARSs. We will see a nontrivial application
of such techniques in Section V, where we instantiate our
general theory to study the λ-calculus with algebraic effects.
In general, our techniques state that specific properties of T-
corelations are preserved by liftings. Here, the properties we
are interested in are meant to be used to prove standardisation-
like and confluence results. In the latter case, in particular, our

main result (Theorem 22) states that the diamond property is
preserved by the Barr extension construction. Let us expand
on that.

For ease of exposition, let us introduce the following
notation: for a monad T = (T , η,µ), we write T̃ for T̂−;µ.
Now, given a MARS (A,R : A +→ TA), we can study its
behaviour by looking at the ARS (TA, T̃R : TA +→ TA)
and regarding elements a in A as elements in TA via η. We
know that if η; T̃R = R holds, then the R-rewriting behaviour
of a coincides with the T̃R-rewriting behaviour of η(a). We
also know (Proposition 15 and Appendix A) that the general
law η; T̃R = R is equivalent to the law S; η = η; T̂ S (where
S : X +→ Y). But what is the advantage of studying (TA, T̃R)
in place of (A,R)? The answer is simple: (TA, T̃R) being an
ARS, we can rely on a vast body of results and techniques to
analyse it. The drawback of this approach is that applying such
results and techniques may be difficult, due to the intrinsic
complexity of elements in TA. To be more concrete (cf.
Section V), let us assume A is some set of inductively-defined
terms (e.g. a set of Σ-terms or λ-terms), and that we want to
prove a property of (TA, T̃R). Assume also that the theory of
ARSs tells us that such a property is entailed by the diamond
property, so that it is enough to prove that (TA, T̃R) has the
latter property. At this point, we might want to rely on the
inductive nature of A and to proceed by induction: but that is
not directly possible, as the rewritten objects are elements in
TA.

To overcome this difficulty, we introduce a family of proof
techniques — which we dub pointed techniques — that allow
us to prove specific properties of (TA, T̃R) by showing
pointed version of such properties on (A,R). Here, we give
two pointed techniques: one for proving standardisation-like
results, and one stating that diamonds are preserved by T̃ .
The latter, in particular, is nontrivial. To have a taste of such a
technique, we consider the case of the probabilistic λ-calculus,
where we write → for the probabilistic (β-like) reduction and
⇒ for D̃(→). Our technique states that to prove the (lifted)
diamond ⇐;⇒ ⊆ ⇒;⇐ it is sufficient to prove its pointed
version←;→ ⊆⇒;⇐. Notice that to prove the latter, we can
indeed rely, e.g., on induction over λ-terms. Remarkably, the
soundness of the pointed diamond technique crucially relies on
the law T̂ T̂R;µ = µ; T̂R, so that we see that the same axioms
ensuring monadic rewriting to be meaningful also guarantee
the correctness of powerful techniques to study MARSs.

In the following, let T = (T , η,µ) be a weakly cartesian
monad. The first pointed technique we introduce states that
factorisations are preserved by T̃ .

Proposition 21. Given R,P : X +⇀ Y , S,Q : Y +⇀ Z, we
have:

R; T̃ S ⊆ P ; T̃Q =⇒ T̃R; T̃ S ⊆ T̃P ; T̃Q.

Proof sketch. By symbolic manipulations relying on
T̂ T̂R;µ = µ; T̂R.

Next, we move to our main result.

Theorem 22. The pointed diamond technique

R−;S ⊆ T̃ S; (T̃R)− =⇒ (T̃R)−; T̃ S ⊆ T̃ S; (T̃R)−

is sound.

The proof of Theorem 22 is nontrivial and crucially relies
on weak cartesianess of T (of µ, actually). We give a complete
proof in Appendix A.

C. Back to Algebra

So far, we focused on monadic rewriting in the abstract, i.e.
with respect to arbitrary monads. When monads are given via
equational theories, as it is in the case of algebraic effects, we
can take advantage of that information to give syntactic-like
characterisations of some of the notions introduced in previous
sections. Here, we give such characterisations for the Barr
extension of free theory monads. Furthermore, we identify a
sufficient condition on the shape of an equational theory T
that guarantees the Barr extension of the free theory monad
of T to be a relational extension.

Let T = (Σ,E) be an algebraic theory. We first spell
out the definition of the Barr extension of FT, the free
theory monad of T. Actually, since to define FT-corelation
composition we have to lift relations in Rel(X,FTY) to
relations in Rel(FTX,FTY), we directly work with the map
F̃T : Rel(X,FTY) → Rel(FTX,FTY) given in previous
section: F̃TR = F̂TR;µ. Explicitly, given a relation R : X +→
FTY , we have:

[t] F̃TR [s] ⇐⇒ ∃n.∃ϑ ∈ TΣ(n).

t ∼ ϑ(x1, . . . ,xn)

s ∼ ϑ([s1], . . . , [sn])

∀i. xi R [si].

Example 23. Let T = (Σ,E) be an equational theory and fix
a FT-corelation R : X +⇀ Y .

1) For T the theory of barycentric algebras, we have [t] F̃TR
[s] if and only if t ∼

∑n
i=1 pi:xi, s ∼

∑n
i=1 pi:[si], and

xi R [si], for any i ≤ n.
2) For T the theory of join semilattices, we have [t] F̃TR [s]

if and only if t ∼
∨n
i=1 xi, s ∼

∨n
i=1[si], and xi R [si],

for any i ≤ n.
3) For T the theory of the writer monad (on a monoid W),

we have [t] F̃TR [s] if and only if t ∼ outw(x), s ∼
outw([s′]), and x R [s′], where w ∈W .

Let us now think about relations as arrows in Kl(P).
That is, we regard a relation R : X +→ Y as a function
R : X → PY . Given a monad T, recall the power law δ = T̂3
of Remark 20. The latter induces a map Pδ : Σ-Alg →
Σ-Alg sending a Σ-algebra A = (A, {σA}σ∈Σ) to the Σ-
algebra PδA = (PA, {δ ◦ σA}σ∈Σ). In particular, we have
(δ ◦σA)(u1, . . . ,un) = {σA(a1, . . . , an) | ai ∈ ui}, so that we
see that PδA corresponds to the so-called power or complex
algebra on A [21], [22]. Since, in particular, PFT builds Σ-
algebras, we can take advantage of the free algebra property
of TΣ and define a syntactic notion of lifting that allows us

to characterise F̂T syntactically, provided that the power law
is a distributive law.

Definition 24. Given a theory T = (Σ,E), we define the
syntactic extension RΣ : TΣX +→ FΣY of R : X +→ FΣY as
the free algebra homomorphism of R (regarded as a function
of type X → PFΣY). Equivalently, we inductively define RΣ

as follows:

x R [s]

x RΣ [s]

t1 R
Σ [s1] · · · tn RΣ [sn] σ ∈ Σn

σ(t1, . . . , tn)RΣ [σ(s1, . . . , sn)]

Theorem 25. Let T = (Σ,E) be a theory. If the power law
is a distributive law, then for any FT-corelation R : X +⇀ Y
we have: [t] F̃TR [s] iff t RΣ [s].

Proof sketch. Since F̂T(3) is a distributive law, Pδ extends
from Σ-Alg to (Σ,E)-Alg (recall that (Σ,E)-Alg ∼=
EM(FT)). We then exploit the free algebra properties of TΣX
and FTX .

Theorem 25 allows one to reason about the syntactic struc-
ture of terms. In fact, it states that we can perform rewriting
directly on terms in TΣX , rather than on their equivalence
classes: whenever t ∼ s and t rewrites into [t′], then s rewrites
into [s′], for some [s′] such that t′ ∼ s′ (and thus [t′] = [s′]).

In particular, if FT is weakly cartesian, then the hypothesis
of Theorem 25 holds. The notion of a weakly cartesian monad,
however, is rather abstract and it does not take advantage
of working with algebraic theories. This raises a natural
question: are there some conditions on the shape of a theory
that guarantee good properties of the corresponding monadic
rewriting? The crucial passage to prove Theorem 25 is to show
that the power algebra construction Pδ : Σ-Alg → Σ-Alg
lifts to (Σ,E)-Alg. This is equivalent to show that δ is a
distributive law, and thus that F̂T is a relational extension of
FT. Therefore, what we need is to find conditions on T making
Pδ lift to (Σ,E)-Alg: but that means nothing but finding
conditions ensuring that Pδ preserves equations in E. The
whole issue can be thus rephrased as follows: when the power
algebra of a (Σ,E)-algebra satisfies E? This question has been
answered in the late 50s by Gautam [21], who showed that if
all equations in E are linear, then they are preserved by the
power algebra construction. Notice that all the ‘problematic’
equations met in Section II are non-linear, and that the result
by Gautam perfectly fits with our general results on arbitrary
monads, as the free theory monad of a linear theory is weakly
cartesian [50].

Theorem 26 (Gautam [21]). Let T = (Σ,E) be an equational
theory. Recall that an equation (t, s) ∈ E is linear if t and
s have the same variables and each of them appears exactly
once (in each term). If T is linear (i.e. all equations in E are
linear), then (PFTX, {F̂T(3)◦σFT}σ∈Σ) is a (Σ,E)-algebra,
for any set X .

Corollary 27. Let T = (Σ,E) be linear equational theory.
Then F̂T is a relational extension of FT. Moreover, for any
FT-corelation R : X +⇀ Y we have: [t] F̃TR [s] iff t RΣ [s].

Example 28. Obviously, the idempotency equations x∨x ∼ x
and x +p x ∼ x are not linear, as it is not the inverse law
x + (−x) ∼ 0. Therefore, the theories of the distribution,
powerset, and group monad are not linear, as it is not the
theory of the reader monad (but see Remark 46) The theories
of the maybe, writer, (finite and non-empty) multi-set and list,
multi-distribution, and monoid monads are linear.

V. CALL-BY-VALUE λ-CALCULUS WITH ALGEBRAIC
EFFECTS

Now that we have set up an abstract machinery for monadic
rewriting, we instantiate it to study the operational theory of λ-
calculi extended with algebraic operations. More specifically,
we study extensions of the call-by-value λ-calculus [23] with
operations from a theory T = (Σ,E). From now on, let T =
(Σ,E) be an arbitrary linear algebraic theory.

Definition 29. The calculus Λcbv
Σ has terms and values defined

by the following grammar, where σ ∈ Σ.

t, s ::= x | λx.t | ts | σ(t, . . . , t) v, w ::= x | λx.t.

Operations in Σ act as effect-triggering operations, so that
we may informally read the behaviour of a term σ(t1, . . . , tn)
as ‘perform the effect prescribed by σ, and then continue with
one of the tis’. For instance, by taking operations outw of
the theory of the writer monad, we obtain the call-by-value
λ-calculus with output, whereas by taking operations +p of
the theory of barycentric algebras, we obtain the probabilistic
call-by-value λ-calculus [16], [51].

We adopt standard conventions [3]. In particular, we work
with terms modulo renaming of bound variables, and denote
by t〈s/x〉 the capture-avoiding substitution of s for the free
occurrences of x in t. Finally, we write Λ and V for the sets
of terms and values, respectively.

In order to define notions of reduction, we define contexts
and surface contexts [16], the latter being contexts not allow-
ing reductions to happen under neither the scope of a λ nor
of an operation.

C ::= � | λx.C | tC | Ct | σ(t1, . . . , C, . . . , tn)

S ::= � | tS | St.

As it is customary, for a context C we write C〈t〉 for the
substitution of � with t in C, allowing the capture of free
variables

Remark 30. Notice that performing effectful reductions in-
side surface contexts means, besides not reducing under λ-
abstraction, to always reduce the outermost operation symbol
(hence performing the outermost effect). This restriction is
crucial for our results (see Remark 33) and it is standard
practice in calculi with algebraic effects [10].

a) Reductions: Having defined the syntax of Λcbv
Σ , we

now look at reduction rules for it. Λcbv
Σ has two kinds of

reduction: β-reductions, and effectful reductions. As usual, a
β-reduction performs a pure computational step, whereas an
effectful reduction is basically a reduction on terms of the form

σ(t1, . . . , tn), and it is the real effect producer. We begin with
term-to-term reductions.

Definition 31. One-step β- and σi-reduction relations
7→β , 7→σi : Λ +→ Λ are thus defined:

(λx.t)v 7→β t〈v/x〉; σ(t1, . . . , tn) 7→σi ti.

One-step reductions do not provide any semantical infor-
mation on the operation reduced (and hence on the effect
produced). To overcome this problem, we move from term
reductions to FT-corelations.

Definition 32. Define the relations →β ,→σ : ΛΣ +→ FTΛΣ

by closing 7→β-reductions under arbitrary contexts, and 7→σi

reductions under surface contexts:

C〈(λx.t)v〉 →β [C〈t〈v/x〉〉]
S〈σ(t1, . . . , tn)〉 →σ [σ(S〈t1〉, . . . , S〈tn〉)].

We write →Σ for
⋃
σ∈Σ →σ , and → for →β ∪→Σ.

We define ⇒r: FTΛ +→ FTΛ as F̃T(→r ∪ η), where r ∈
{β,σ, Σ}. In particular, we have ⇒ = F̃T(→ ∪ η). Please
notice that the presence of the (function regarded as a) relation
η ensures⇒ to be reflexive. Finally, we define the notion of a
surface reduction s→ by replacing the context C with S also for
→β in Definition 32. The relation s⇒ is defined accordingly. A
reduction is deep (notation ¬s→ , ¬s⇒) if it is not surface. Please
notice that surface recuction restricts β-reduction to surface
contexts, this way forbidding β-reductions under the scope of
a λ-abstraction, and thus making the calculus weak.

Remark 33. Effectful reduction is restricted to surface con-
texts, since otherwise one could obtain from a program out-
comes which are irreversibly different, with no hope neither for
standardisation nor for confluence to hold [16]. Intuitively, this
is because evaluating an effectful subterm t (hence producing
an effect) and then copying it, or first copying the subterm t

and then evaluating each copy (this way producing the same
effect, but several times) give different results. It is important
to stress that, instead, β-reductions are unconstrained. That
is, both → and ⇒ reduce β-redexes inside arbitrary contexts.
Thus, for instance, the probabilistic term (Ix)(II +p (∆∆ +q

I∆)) (where I = λx.x and ∆ = λx.xx) has four β-redexes
(namely, Ix, II, ∆∆, and I∆), which can all be reduced by →
(even if inside algebraic operations). The term also has two
effectful redexes, namely II +p (∆∆ +q I∆) and ∆∆ +q I∆.
However, since effectful reductions must be surface, only the
first one can be reduced.

A. Surface Standardization, Confluence, and Diamonds

In this section, we study the extension of two fundamental
results in the theory of (pure) λ-calculus to an effectful
setting, namely a suitable form of standardisation, that we
call surface standardisation, and confluence. We first prove
surface standardisation: any reduction sequence [t]⇒∗ [s] can
be factorised as a sequence of surface reductions followed
by a sequence of non-surface reductions. This is analogous

to a classical result in λ-calculus: a sequence of β-steps can
be reorganised so as to first reducing head redexes and then
everything else [3, Theorem. 11.4.6]. Remarkably, surface
standardisation holds for all (linear) algebraic effects.

Next, we prove a confluence theorem stating that if effects
are commutative, meaning that effects are independent of the
order in which they are produced, then monadic reduction is
confluent.

1) Surface standardisation: Let us begin with surface stan-
dardisation. Our goal is to prove that any reduction sequence
⇒∗ can be factorised as s⇒∗; ¬s⇒ ∗. We follow the the modular
proof by Accattoli et al. [52] and rely on standardisation for
the pure call-by-value λ-calculus.

Lemma 34 ([52]). If ⇒∗β ⊆
s⇒∗β ; ¬s⇒ ∗β and ¬s⇒β ;⇒Σ ⊆

⇒Σ;⇒β , then ⇒∗ ⊆ s⇒∗; ¬s⇒ ∗

We now prove that both the assumptions in Lemma 34 hold,
this way obtaining the desired standardisation result. Let us
begin with the first one. First, notice that an analogous result
holds for the pure call-by-value λ-calculus.

Theorem 35 ([23], [53]). Let Λcbv be the pure call-by-value
λ-calculus (i.e. our calculus instantiated with the empty theory,
so that ⇒β =→β). Then ⇒∗β ⊆

s⇒∗β ; ¬s⇒ ∗β .

We now lift Theorem 35 to Λcbv
Σ . To do so, we define a

translation −λ from Λcbv
Σ to Λcbv preserving β-reductions in

both directions. To achieve such a goal, we need to ensure
that whenever we have a β-reduction in tλ (in Λcbv), then the
β-redex reduced is the −λ image of a β-redex in t. Stated
otherwise, we need −λ to preserve β-redexes back and forth,
and thus to ensure that a Σ-redex is not mapped into a β-redex.

Definition 36. For any operation σ ∈ Σ, let us fix two
distinguished variables xσ, yσ . Define:

xλ , x (λx.t)λ , λx.tλ

(st)λ , sλtλ (σ(t1, . . . , tn))λ , yσ(λxσ.tλ1) · · · (λxσ.tλn).

Lemma 37. Let r→∈ {→β , s→β}. Then: t r→ [s] (in Λcbv) if
and only if tλ r→ [sλ] (in Λcbv).

Proof sketch. The left to right direction of is straightforward.
The right to left direction follows by very definition of
translation, since (σ(t1, . . . , tn))λ cannot be a β-redex.

Theorem 38 (Surface Standardization). ⇒∗ ⊆ s⇒∗; ¬s⇒ ∗.

Proof Sketch. From Lemma 37 we infer ⇒∗β ⊆
s⇒∗β ; ¬s⇒ ∗β .

Moreover, since we have ¬s→β ;⇒σ ⊆ →σ;⇒β , from Propo-
sition 21 follows ¬s⇒β ;⇒Σ ⊆ ⇒Σ;⇒β .We thus conclude the
thesis using Lemma 34.

2) Confluence: It is now time to investigate confluence
of ⇒. We immediately notice that ⇒ is not confluent, in
general. To see why, we simply consider the term t =

(outw(x))(outv(x)), which gives the following reduction
sequences:

t→ [outw(x(outv(x)))]⇒ [outw·v(xx)]

t→ [outv((outw(x))x)]⇒ [outv·w(xx)]

Confluence cannot be achieved, as the outputted strings w · v
and v · w witness the order in which reductions happened.
Notice also that the reductions performed are actually surface.

Although providing a counterexample to confluence, the
above example suggests conditions under which confluence
may be recovered, namely the commutativity of the effects
performed (i.e. w · v = v · w, in our example). Commutative
effects are a well-known concept in programming language
theory, as they support a number of program refactoring and
optimisation techniques.11 Working with equational theories,
we can formalise the notion of a commutative effect as follows.

Definition 39. Given θ ∈ TΣ(n) and ϑ ∈ TΣ(m), we say
that θ commute with ϑ if:

θ(ϑ(x1,1, . . . ,x1,m), . . . ,ϑ(xn,1, . . . ,xn,m))

∼ ϑ(θ(x1,1, . . . ,xn,1), . . . , θ(x1,m, . . . ,xn,m)).

A theory T = (Σ,E) is commutative if θ commutes with ϑ,
for all θ and ϑ.

Example 40. The theory of the powerset, multiset, list,
distribution, multi-distribution, partiality, and cost monad are
commutative, whereas the theory of the writer monad is not.

Now that we have the notion of a commutative effect, we
prove that if effects are commutative, then ⇒ is confluent.
Our proof builds upon Theorem 22, which allows us to
reduce diamond properties to pointed diamond properties. In
particular, the following result then gives confluence of surface
reduction, in a strong form.

Lemma 41. Let γ, δ ∈ Σ ∪ {β}, � = F̃T(→), and t be a
term with two distinct surface redexes. If [θ(t1, . . . , tn)] γ

s←
t

s→δ [ϑ(s1, . . . , sm)] and θ commutes with ϑ, then
[θ(t1, . . . , tn)]

s
�δ [p] γ

s
� [ϑ(s1, . . . , sm)].

Proof sketch. By induction on t relaying on commutativity
of θ and ϑ, and observing that since reductions are surface, t
must be of the form pq.

From Lemma 41 and Theorem 22 it follows that surface
reduction is diamond.

Proposition 42 (Surface is �). If T = (Σ,E) is commutative,
then s⇒ is diamond, and thus confluent. The same holds, in
particular, for ⇒Σ.

From the confluence of surface reduction, and the fact that
→β is confluent, we obtain confluence of ⇒.

11For instance, in languages with sequencing commutativity essentially
corresponds to the soundness of the program transformation let x =
M in (let y = N in L) ≡ let y = N in (let x = M in L), (with x
not appearing free in N and y not appearing free in M).

Theorem 43 (Confluence). If T = (Σ,E) is commutative,
then ⇒ is confluent.

Proof sketch. By Hindley-Rosen lemma [3, Proposition 3.3.5],
to prove that ⇒ = ⇒β ∪ ⇒Σ is confluent it is enough to
show that ⇒β and ⇒Σ are confluent and commute with each
other. Commutation of⇒β and⇒Σ follows from Theorem 22
taking advantage of Lemma 41, opportunely completed with
an easy analysis of the non-surface →β steps. Confluence of
⇒β follows from confluence of β-reduction in the pure call-
by-value λ-calculus, by Lemma 37.

VI. CONCLUSION

In this paper, we have introduced a relational theory of
monadic rewriting systems and showed how such a theory
can be fruitfully applied to the study of effectful computa-
tions. Our development goes through a number of theoretical
results on monads and relational extensions, as well as on a
family of negative results showing that having a well-behaved
notion of (relational) monadic rewriting is just not possible
on some monads. Moving from those negative results, we
have identified a class of monads, namely the class of weakly
cartesian monads, on which monadic rewriting works well.
As a further evidence of that, we showed that the defining
axioms of a weakly cartesian monad allow us to prove a
number of powerful proof techniques (viz. Proposition 21
and Theorem 22), which we dub pointed techniques, for the
analysis of monadic (abstract) rewriting systems. We have also
showed that when monads are given in terms of equational
theories, then a sufficient condition for having well-behaved
rewriting is that all equations in the theory are linear. Last but
not leas, we have witnessed the effectiveness of our theory
by making an operational analysis of the call-by-value λ-
calculus with algebraic effects, the latter being a prominent
formalism for the study of higher-order effectful languages.
In this respect, we have proved two main theorems: surface
standardisation (Theorem 38) and confluence (Theorem 43).
The former holds for all algebraic effects, whereas the latter
hold for commutative effects only. Remarkably, both such
results are proved relying on the aforementioned pointed
techniques.

a) Future Work: This work is the first stage of a large
research project aiming to develop a relational theory of
monadic rewriting systems. As such, it opens several research
directions. Among those, the authors are currently working
on infinitary and asymptotic monadic rewriting [14]. In fact,
when dealing with computational effects, there are interesting
properties of computations that cannot be studied in terms of
finitary rewriting sequences, examples of those being almost
sure termination in probabilistic computation, stream analysis
in computations with output, and divergence in pure compu-
tations. Although at a preliminary stage, the results obtained
in this direction are encouraging.

b) Related Work: Categorical approaches to rewriting
based on monads are not new [54]–[56]. However, to the best
of the authors’ knowledge all such approaches are concerned

with pure rewriting and use monads to structure objects of
ARSs, this way generalising the (algebraic) signatures one has
in term rewriting systems [1]. Among these approaches, the
work by Fritz and Perrone [56] uses algebras over a monad to
model pure partial evaluation functions, whereby only specific
components of complex expressions are evaluated. Although
partial evaluations seem not to share similarities with our
notion of effectful rewriting, it is worth noticing that weakly
cartesian monads guarantee good properties (e.g. transitivity)
of such maps.

Effectful rewriting systems have been studied in isolation,
focusing on single specific effects only, with a growing interest
in probabilsitic rewriting [13]–[15]. The situation is similar if
one looks at rewriting systems for effectful λ-calculi, where
the rewriting theory of several specific effectful calculi has
been studied [16], [51], [57]. Operational properties of calculi
with arbitrary algebraic effects have been studied by Plotkin
and Power [10], who gave operational semantics to a PCF-like
language extended with algebraic operations. Such a semantics
(and the like, e.g. [58], [59]), however, is given by a fixed
deterministic reduction strategy, and therefore does not allow
for a full operational analysis of algebraic effects.

REFERENCES

[1] Terese, Term rewriting systems, ser. Cambridge tracts in theoretical
computer science. Cambridge University Press, 2003, vol. 55.

[2] M. H. A. Newman, “On theories with a combinatorial definition of
”equivalence”,” Annals of Mathematics, vol. 43, no. 2, pp. 223–243,
1942.

[3] H. Barendregt, The lambda calculus: its syntax and semantics, ser.
Studies in logic and the foundations of mathematics. North-Holland,
1984.

[4] X. Leroy, “The ZINC experiment: an economical implementation of the
ML language,” INRIA, Technical report 117, 1990.

[5] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-
niques, and Tools, ser. Addison-Wesley series in computer science /
World student series edition. Addison-Wesley, 1986.

[6] E. Moggi, “Computational lambda-calculus and monads,” in Proc. of
LICS 1989. IEEE Computer Society, 1989, pp. 14–23.

[7] ——, “Notions of computation and monads,” Inf. Comput., vol. 93, no. 1,
pp. 55–92, 1991.

[8] S. MacLane, Categories for the Working Mathematician. Springer-
Verlag, 1971.

[9] G. D. Plotkin and J. Power, “Algebraic operations and generic effects,”
Applied Categorical Structures, vol. 11, no. 1, pp. 69–94, 2003.

[10] ——, “Adequacy for algebraic effects,” in Proc. of FOSSACS 2001,
2001, pp. 1–24.

[11] ——, “Semantics for algebraic operations,” Electr. Notes Theor. Comput.
Sci., vol. 45, pp. 332–345, 2001.

[12] O. Bournez and C. Kirchner, “Probabilistic rewrite strategies. applica-
tions to ELAN,” in Proc. of RTA 2002, ser. Lecture Notes in Computer
Science, S. Tison, Ed., vol. 2378. Springer, 2002, pp. 252–266.

[13] O. Bournez and F. Garnier, “Proving positive almost-sure termination,”
in Proc. of RTA 2005, ser. Lecture Notes in Computer Science, J. Giesl,
Ed., vol. 3467. Springer, 2005, pp. 323–337.

[14] C. Faggian, “Probabilistic rewriting: Normalization, termination, and
unique normal forms,” in 4th International Conference on Formal
Structures for Computation and Deduction, FSCD 2019, June 24-30,
2019, Dortmund, Germany, 2019, pp. 19:1–19:25.

[15] M. Avanzini, U. D. Lago, and A. Yamada, “On probabilistic term
rewriting,” Sci. Comput. Program., vol. 185, 2020.

[16] C. Faggian and S. R. D. Rocca, “Lambda calculus and probabilistic
computation,” in 34th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27,
2019, 2019, pp. 1–13.

[17] J. Koslowski, “A monadic approach to polycategories,” Theory and
Applications of Categories, vol. 14, no. 7, pp. 125–156, 2005.

[18] M. Weber, “Generic morphisms, parametric representations and weakly
cartesian monads,” Theory Appl. Categ, vol. 13, no. 14, pp. 191–234,
2004.

[19] M. M. Clementino, D. Hofmann, and G. Janelidze, “The monads of
classical algebra are seldom weakly cartesian,” Journal of Homotopy
and Related Structures, vol. 9, no. 1, pp. 175–197, 2014.

[20] S. Szawiel and M. Zawadowski, “Monads of regular theories,” Applied
Categorical Structures, vol. 23, no. 3, pp. 215–262, 2015.

[21] N. D. Gautam, “The validity of equations of complex algebras,” Archiv
für mathematische Logik und Grundlagenforschung, vol. 3, no. 3, pp.
117–124, 1957.

[22] G. Grätzer and H. Lakser, “Identities for globals (complex algebras) of
algebras,” in Colloquium Mathematicum, vol. 56, no. 1, 1988, pp. 19–29.

[23] G. Plotkin, “Call-by-name, call-by-value and the lambda-calculus,”
Theoretical Computer Science, vol. 1, no. 2, pp. 125 – 159, 1975.

[24] M. Barr, “Relational algebras,” Lect. Notes Math., vol. 137, pp. 39–55,
1970.

[25] A. Kurz and J. Velebil, “Relation lifting, a survey,” J. Log. Algebr. Meth.
Program., vol. 85, no. 4, pp. 475–499, 2016.

[26] D. Hofmann, G. Seal, and W. Tholen, Eds., Monoidal Topology. A
Categorical Approach to Order, Metric, and Topology, ser. Encyclopedia
of Mathematics and its Applications. Cambridge University Press, 2014,
no. 153.

[27] D. Hoffman, “A cottage industry of lax extensions,” Categories and
General Algebraic Structures with Applications, vol. 3, no. 1, pp. 113–
151, 2015.

[28] A. Thijs, Simulation and fixpoint semantics. Rijksuniversiteit Gronin-
gen, 1996.

[29] J. Hughes and B. Jacobs, “Simulations in coalgebra,” Theor. Comput.
Sci., vol. 327, no. 1-2, pp. 71–108, 2004.

[30] J. Marti and Y. Venema, “Lax extensions of coalgebra functors and their
logic,” J. Comput. Syst. Sci., vol. 81, no. 5, pp. 880–900, 2015.

[31] A. Baltag, “A logic for coalgebraic simulation,” Electr. Notes Theor.
Comput. Sci., vol. 33, pp. 42–60, 2000.

[32] U. Dal Lago, F. Gavazzo, and P. Levy, “Effectful applicative bisimilarity:
Monads, relators, and howe’s method,” in Proc. of LICS 2017, 2017, pp.
1–12.

[33] U. Dal Lago and F. Gavazzo, “Effectful normal form bisimulation,” in
preparation.

[34] J. Goubault-Larrecq, S. Lasota, and D. Nowak, “Logical relations for
monadic types,” Mathematical Structures in Computer Science, vol. 18,
no. 6, pp. 1169–1217, 2008.

[35] R. C. Backhouse, P. J. de Bruin, P. F. Hoogendijk, G. Malcolm,
E. Voermans, and J. van der Woude, “Polynomial relators (extended
abstract),” in Algebraic Methodology and Software Technology (AMAST
’91), Proceedings of the Second International Conference on Method-
ology and Software Technology, Iowa City, USA, 22-25 May 1991, ser.
Workshops in Computing, M. Nivat, C. Rattray, T. Rus, and G. Scollo,
Eds. Springer, 1991, pp. 303–326.

[36] R. C. Backhouse and P. F. Hoogendijk, “Elements of a relational
theory of datatypes,” in Formal Program Development - IFIP TC2/WG
2.1 State-of-the-Art Report, ser. Lecture Notes in Computer Science,
B. Möller, H. Partsch, and S. A. Schuman, Eds., vol. 755. Springer,
1993, pp. 7–42.

[37] R. S. Bird and O. de Moor, Algebra of programming, ser. Prentice Hall
International series in computer science. Prentice Hall, 1997.

[38] J. Beck, “Distributive laws,” in Seminar on triples and categorical
homology theory. Springer, 1969, pp. 119–140.

[39] D. Varacca and G. Winskel, “Distributing probability over non-
determinism,” Math. Struct. Comput. Sci., vol. 16, no. 1, pp. 87–113,
2006.

[40] D. Varacca, “Probability, nondeterminism and concurrency: two denota-
tional models for probabilistic computation,” Ph.D. dissertation, Aarhus
University, 2003.

[41] B. Klin and J. Salamanca, “Iterated covariant powerset is not a monad.”
in MFPS, 2018, pp. 261–276.

[42] H. P. Sankappanavar and S. Burris, “A course in universal algebra,”
Graduate Texts Math, vol. 78, 1981.

[43] T. Leinster, Higher Operads, Higher Categories, ser. London Mathemat-
ical Society Lecture Note Series. Cambridge University Press, 2004.

[44] B. Davey and H. Priestley, Introduction to lattices and order. Cam-
bridge University Press, 1990.

[45] A. Syropoulos, “Mathematics of multisets,” in Workshop on Membrane
Computing. Springer, 2000, pp. 347–358.

[46] M. H. Stone, “Postulates for the barycentric calculus,” Annali di Matem-
atica Pura ed Applicata, vol. 29, no. 1, pp. 25–30, 1949.

[47] G. Schmidt, Relational Mathematics, ser. Encyclopedia of Mathematics
and its Applications. Cambridge University Press, 2011, vol. 132.

[48] M. Bezem, J. Klop, E. Barendsen, R. de Vrijer, and Terese, Term
Rewriting Systems, ser. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003. [Online]. Available:
https://books.google.it/books?id=7QQ5u-4tRUkC

[49] B. Jacobs, “Trace semantics for coalgebras,” in Proceedings of the
Workshop on Coalgebraic Methods in Computer Science, CMCS 2004,
Barcelona, Spain, March 27-29, 2004, 2004, pp. 167–184.

[50] L. Parlant, J. Rot, A. Silva, and B. Westerbaan, “Preservation of
equations by monoidal monads,” in 45th International Symposium on
Mathematical Foundations of Computer Science, MFCS 2020, August
24-28, 2020, Prague, Czech Republic, 2020, pp. 77:1–77:14.

[51] U. Dal Lago and M. Zorzi, “Probabilistic operational semantics for the
lambda calculus,” RAIRO - Theor. Inf. and Applic., vol. 46, no. 3, pp.
413–450, 2012.

[52] B. Accattoli, C. Faggian, and G. Guerrieri, “Factorize factorization,”
in 29th EACSL Annual Conference on Computer Science Logic,
CSL 2021, January 25-28, 2021, Ljubljana, Slovenia (Virtual
Conference), ser. LIPIcs, vol. 183. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021, pp. 6:1–6:25. [Online]. Available:
https://doi.org/10.4230/LIPIcs.CSL.2021.6

[53] S. R. D. Rocca and L. Paolini, The Parametric Lambda Calculus - A
Metamodel for Computation, ser. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004.

[54] C. Lüth, “Categorical term rewriting : monads and modularity,” Ph.D.
dissertation, University of Edinburgh, UK, 1998.

[55] C. Lüth and N. Ghani, “Monads and modular term rewriting,” in Cate-
gory Theory and Computer Science, 7th International Conference, CTCS
’97, Santa Margherita Ligure, Italy, September 4-6, 1997, Proceedings,
1997, pp. 69–86.

[56] T. Fritz and P. Perrone, “Monads, partial evaluations, and rewriting,”
Electronic Notes in Theoretical Computer Science, vol. 352, pp. 129
– 148, 2020, the 36th Mathematical Foundations of Programming
Semantics Conference, 2020.

[57] U. De Liguoro and A. Piperno, “Non deterministic extensions of untyped
lambda-calculus,” Inf. Comput., vol. 122, no. 2, pp. 149–177, 1995.

[58] P. Johann, A. Simpson, and J. Voigtländer, “A generic operational
metatheory for algebraic effects,” in Proc. of LICS 2010. IEEE
Computer Society, 2010, pp. 209–218.

[59] A. Lopez and A. Simpson, “Basic operational preorders for algebraic
effects in general, and for combined probability and nondeterminism in
particular,” in Proc. of CSL 2018, 2018, pp. 29:1–29:17.

APPENDIX
PROOFS OF SECTION IV

Sometimes, it will be useful to work with the equivalent
description of monads is as Kleisli triples [8]. A Kleisli triple
T = (T , η,−†) consists of a map T on sets, a family of
functions η : X → TX , and an operation mapping each
function f : X → TY to its Kleisli extension f† : TX → TY
subject to the following laws: η† = 1T ; f† ◦ η = f ;
(g†◦f)† = g†◦f†. In particular, given a monad T = (T , η,µ),
notice that f† is defined as µ ◦ Tf . Accordingly, algebraic
operations can be equivalently described as families of maps
fX : (TX)n → TX such that g† ◦ fX = fY ◦

∏
n g
†.

(TX)n
f //

∏
n g
†

��

TX

g

��
(TY)n

f
// TY

Given a monad T = (T , η,µ), let Γ be a relational extension
of T . Recall that Γ is a relational extension of T if the
following laws hold:

R; η = η; ΓR ΓΓR;µ = µ; ΓR.

Diagrammatically:

X
η //

R
��

TX

ΓR
��

Y
η
// TY

TTX
µ //

ΓΓR
��

TX

ΓR
��

TTY
µ
// TY

Lemma 44. Let Γ be a relational extension of T = (T , η,µ).
We have:

R; g ⊆ f ; ΓS =⇒ ΓR; g† ⊆ f†; ΓS.

Diagrammatically:

X

⊆R
��

f // TZ

ΓS
��

Y
g
// TW

=⇒

TX

⊆ΓR
��

f† // TZ

ΓS
��

TY
g†
// TW

Proof. We have:

ΓR; g† = ΓR;Tg;µ

= Γ(R; g);µ

⊆ Γ(f ; ΓS);µ

= Tf ; ΓΓS;µ

= Tf ;µ; ΓS

= f†; ΓS

Lemma 45. Let Γ be a relational extension of T. Then, for
any R : X +→ Y and any algebraic operation f : Tn ⇒ T ,
we have:

∏
i ΓR; f ⊆ f ; ΓR.

Proof. The proof uses the correspondence between algebraic
operations and generic effects [9]. We use such a correspon-
dence implicitly, this way giving a self-contained proof. We
have to show that for all x : n → TX , y : n → TY , if
x(i)ΓRy(i), for any i ∈ n, then f(x)ΓRf(y). By Lemma 44,
we have:

n

⊆I

��

x // TX

ΓR
��

n
y
// TY

=⇒

Tn

⊆I
��

x† // TX

ΓR
��

Tn
y†
// TY

Since ∀i ∈ n. x(i) ΓR y(i) means nothing but I; y ⊆ x; ΓR,
we infer the consequent of the above implication. Let us now
consider η : n → Tn, so that f(η) ∈ Tn. Then, I; y† ⊆
x†; ΓR implies x†(f(η)) ΓR y†(f(η)). Since f is algebraic,
x†(f(η)) = f(x† ◦ η) = f(x) (and similarly for y).

Proposition 14. Let T be a monad with relational extension
Γ. Let ∆ = Γ(−);µ. Then, for any R : X +⇀ Y and algebraic
operation f : Tn ⇒ T , we have:∏

i

∆R; f ⊆ f ; ∆R η; ∆R = R.

Diagrammatically:

(TX)n

⊆

f //

∏n
i=1 ∆R_

��

TX

∆R_
��

(TY)n
f
// TY

X
η //

R !!

TX

∆R
��

TY

Proof. For the second equality, we have: η; ∆R = η; ΓR;µ =
R; η;µ = R. For the first one, we chase the following diagram
relying on algebraicity of f and Lemma 45.

(TX)n

∏
i ΓR

��

f // TX

ΓR

��
(TTY)n

∏
i µi

��

f
// (TTY)n

∏
i µi

��
(TY)n

f
// TY

Proposition 15. Let Γ be a relational extension of a functor T
which is part of a monad T = (T , η,µ). Then, Γ is a relational
extension of T iff the following laws hold, for all R : X +⇀ Y ,
S : Y +⇀ Z, and P : Z +⇀W :

R · ηY = R ηX · S = S R · (S · P) = (R · S) · P .

Proof. We have to show that the equalities in the statement
of the theorem hold iff we have Q; η = η; ΓQ and ΓΓQ;µ =
µ; ΓQ, (for all Q : X +→ Y). First, we notice that R · ηY = R

always holds. Next, we show that the law ηX · S = S is
equivalent to Q; η = η; ΓQ. Assuming the latter, we have

η · S = η; ΓS;µ = S; η;µ = S.

Assuming the former, we have:

Q; η = η · (Q; η) = η; ΓQ;Tη;µ = η; ΓQ.

Finally, we show that the law R · (S · P) = (R · S) · P
is equivalent to ΓΓQ;µ = µ; ΓQ. Assuming the former, we
obtain the desired equality by taking R = ITTX , S = ITX ,
P = Q; η. Assuming the latter, we have:

R · (S · P) = R; Γ(S; ΓP ;µ);µ

= R; ΓS; ΓΓP ;Tµ;µ

= R; ΓS; ΓΓP ;µ;µ

= R; ΓS;µ; ΓP ;µ

= (R · S) · P .

Proposition 21. Given R : X +⇀ Y , S : Y +⇀ Z, and
P : X +⇀ Y , Q : Y +⇀ Z, we have:

R; T̃ S ⊆ P ; T̃Q =⇒ T̃R; T̃ S ⊆ T̃P ; T̃Q.

Proof. We have:

T̃R; T̃ S = T̂R;µ; T̂ S

= T̂R; T̂ T̂ S;µ;µ

= T̂R; T̂ T̂ S;Tµ;µ

= T̂ (R; T̂ S;µ);µ

= T̂ (R; T̃ S);µ

⊆ T̂ (P ; T̃Q);µ

= T̂ (P ; T̂Q;µ);µ

= T̂P ; T̂ T̂Q;Tµ;µ

= T̂P ; T̂ T̂Q;µ;µ

= T̂P ;µ; T̂Q;µ

= T̃P ; T̃Q.

Theorem 22. The pointed diamond technique

R−;S ⊆ T̃ S; (T̃R)− =⇒ (T̃R)−; T̃ S ⊆ T̃ S; (T̃R)−

is sound.

Proof. Assume R−;S ⊆ T̃ S; (T̃R)−. By standard calcu-
lations based on the properties of T̂ and the hypothesis
R−;S ⊆ T̃ S; (T̃R)−, we have:

(T̃R)−; T̃ S = (T̂R;µ)−; T̂ S;µ

= µ−; T̂ (R−); T̂ S;µ

= µ−; T̂ (R−;S);µ

⊆ µ−; T̂ (T̃ S; (T̃R)−);µ

= µ−; T̂ (T̂ S;µ; (T̂R;µ)−);µ

= µ−; T̂ T̂ S; T̂ µ; T̂ µ−; T̂ T̂R−;µ

= µ−; T̂ T̂ S;Tµ; (Tµ)−; T̂ T̂R−;µ.

Next, we notice that we have:

µ−; T̂ T̂ S ⊆ T̂ S;µ− T̂ T̂R−;µ ⊆ µ; T̂R−.

For instance, by shunting we have µ−; T̂ T̂ S ⊆ T̂ S;µ− iff
T̂ T̂ S ⊆ µ; T̂ S;µ−. Since T̂ T̂ S;µ = µ; T̂ S, to prove T̂ T̂ S ⊆
µ; T̂ S;µ− it is enough to show T̂ T̂ S ⊆ T̂ T̂ S;µ;µ−, which
indeed holds since I ⊆ µ;µ−. In a similar way, one can prove
T̂ T̂R−;µ ⊆ µ; T̂R−. Using these inclusions, we thus obtain:

µ−; T̂ T̂ S;Tµ; (Tµ)−; T̂ T̂R−;µ ⊆ T̂ S;µ−;Tµ; (Tµ)−;µ; T̂R−.

Now we focus on the relation µ−;Tµ; (Tµ)−;µ. Diagrammat-
ically:

TTA
(µTA)−� // TTTA

TµA

��
TTTA

µTA

OO

TTA
TµA

�oo

Consider the maps TTA
µA−−→ TA

µA←−− TTA and TTA
µTA←−−−

TTTA
TµA−−−→ TTA and the naturality square TµA;µA =

µTA;µA. Since T is weakly cartesian (and thus µ is), we infer

(TµA)−;µTA = µA; (µA)− (µTA)−;TµA = µA; (µA)−.

Applying these identities (as well as µ−;µ ⊆ I), we obtain

µ−;Tµ; (Tµ)−;µ = µ;µ−;µ;µ− ⊆ µ;µ−.

We can thus complete our calculation of (T̃R)−; T̃ S by
inferring

(T̃R)−; T̃ S ⊆ · · · ⊆ T̂ S;µ−;Tµ; (Tµ)−;µ; T̂R−

⊆ T̂ S;µ;µ−; T̂R−

= T̂ S;µ; (T̂R;µ)−

= T̃ S; (T̃R)−

Theorem 25. Let T = (Σ,E) be a theory. If the power law is
a distributive law, then for any FT-corelation R : X +⇀ Y we
have:

[t] F̃TR [s] ⇐⇒ t RΣ [s].

Proof. Let δ be the power law F̂T(3). If δ is a distributive
law, then Pδ extends from Σ-Alg to (Σ,E)-Alg. In fact, δ

being distributive law, it gives a lifting of P to EM(FT) ∼=
(Σ,E)-Alg. δ being the power law, such a lifting is nothing
but Pδ . In particular, PFTY carries a (Σ,E)-algebra structure,
so that we we can exploit the free algebra properties of TΣX
and FTX , obtaining:

X
� � //

R ""

TΣX
[−] //

RΣ

��

FTX

F̃TRzz
PFTX

Remark 46 (Affine equations). Example 28 shows that most
of the usual equational theories used to model computational
effects are either linear or can be made linear, at a reasonable
price. A notable exception to this pattern is the theory of
the reader monad (as well as the theory of the global state
monad) which is made of non-linear equations only, namely:
rd(x,x) = x and rd(rd(x,w), rd(z, y)) = rd(x, y). How-
ever, for the kind of examples we have seen so far, only the
first equation (namely idempotency of rd) is problematic. This
suggests that problems are not given by non-linear equations,
but by non-affine equations. In an affine equation, the variables
in the two terms must be distinct, but each of these variables
must appear at most once in each term. Theorem 26 does not
hold for affine theories, however it does hold if we replace the
powerset monad with the non-empty powerset monad P+ [50].
As a consequence, we obtain an extension of Corollary 27 to
affine equations, provided that we restrict to FT-corelations
R : X +⇀ Y such that R[x] 6= ∅, for any set x. Since we will
endow λ-calculi with FT-corelations R : Λ +⇀ Λ satisfying
such a property, the results in Section V which we are going to
introduce can be easily extended to affine equational theories.

APPENDIX
PROOFS OF SECTION V

Lemma 47. ¬s⇒β ;⇒Σ ⊆ ⇒Σ;⇒β .

Proof. First, we observe that ¬s→β ;⇒σ ⊆ →σ;⇒β , which is
immediate to check since ¬s→β preserves the shape of terms.
We then conclude the desired result by Proposition 21.

Theorem 38 (Surface Standardization). ⇒∗ ⊆ s⇒∗; ¬s⇒ ∗.

Proof. From Lemma 37 we infer ⇒∗β ⊆
s⇒∗β ; ¬s⇒ ∗β . We

conclude the thesis from Lemma 47, using Lemma 34.

Lemma 41. Let γ, δ ∈ Σ ∪ {β}, � = F̃T(→), and t be a
term with two distinct surface redexes. If [θ(t1, . . . , tn)] γ

s←
t

s→δ [ϑ(s1, . . . , sm)] and θ commutes with ϑ, then
[θ(t1, . . . , tn)]

s
�δ [p] γ

s
� [ϑ(s1, . . . , sm)].

Proof. The proof is by induction on t. First, observe that
since reductions are surface, t cannot be neither a variable
nor a λ-abstraction. Additionally, t cannot be itself a redex, as
neither (λx.s)v nor σ(t1, . . . , tn) can contain surface redexes.
Therefore, t must be of the form pq. We now proceed by case
analysis. If both redexes are inside p or q, then we are done

by induction hypothesis. Otherwise, one redex is inside p and
the other is inside q. Without loss of generality we can assume
p = S1〈s〉 (and s γ-redex) and q = S2〈r〉 (and r δ-redex).
Therefore, we have:

t
s−→γ [θ(. . . , S1〈si〉q, . . .)]
s
�δ [θ(. . . , [ϑ(. . . , S1〈si〉S2〈rj〉, . . .)], . . .)]

Similarly, we have

t
s−→δ [ϑ(. . . , pS2〈rj〉, . . .)]
s
�γ [ϑ(. . . , [θ(. . . , S1〈si〉S2〈rj〉, . . .)] . . .)]

We conclude the thesis since θ commutes with ϑ.

Proposition 42 (Surface is �). If T = (Σ,E) is commutative,
then then s⇒ is diamond, and thus confluent. The same holds,
in particular, for ⇒Σ.

Proof. From Lemma 41 we infer (
s−→∪η)−; (

s−→∪η) ⊆ F̃T(
s−→∪

η); F̃T(
s−→∪ η)− =

s
=⇒;

s⇐=. By Theorem 22 we thus conclude
s⇐=;

s
=⇒ ⊆ s

=⇒;
s⇐=. Finally, notice that ⇒Σ = s⇒Σ.

We now prove Theorem 43.

Theorem 43 (Confluence). If T = (Σ,E) is commutative,
then ⇒ is confluent.

Our proof relies on the Hindley-Rosen Lemma.

Lemma 48 (Hindley-Rosen). Let A be a set, and R,S : A +→
A be binary relations on A. Then, R ∪ S is confluent if both
R and S are confluent, and R and S commute.

Since ⇒ =⇒β ∪⇒Σ, by Lemma 48, to prove confluence
it is enough to show that ⇒β and ⇒Σ are confluent and
commute. For the commutation of ⇒β and ⇒Σ we rely on
Theorem 22

Lemma 49. The relations ⇒β and ⇒Σ �-commute.

Proof. By Theorem 22, it is enough to prove that (→β ∪
η)−; (→Σ∪η) ⊆ ⇒Σ; (⇒β)−. We proceed by cases on→β∪η
and →Σ ∪ η, the only non trivial one being →β

−;→Σ ⊆
⇒Σ; (⇒β)−. The latter amounts to show that if s1 β← t→Σ

s2, then s1 ⇒Σ pβ⇐s2. By Lemma 41 we have to check only
cases for deep reductions. Since Σ-reductions are surface, t
must be of the form σ(s1, . . . , sn) with a si containing the β-
redex. We are done since σ-reductions always commute with
β-ones.

Next, we show that ⇒β is confluent.

Proposition 50 (⇒β-confluence). The relation ⇒β is conflu-
ent.

Proof sketch. From confluence of β-reduction in the pure call-
by-value λ-calculus, using Lemma 37.

We can finally prove Theorem 43 using the Hindley-Rosen
Lemma, together with Lemma 49, Proposition 50, and Propo-
sition 42.

