Electronic Supplementary Information (ESI)

How similar is similar? Exploring the binary and ternary solid solution landscapes of *p*-methyl/chloro/bromo-benzyl alcohols.

A. K. S. Romasanta,^a D. Braga,^a M. T. Duarte^b and F. Grepioni^a

^a Dipartimento di Chimica G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy

^{b.}Centro de Química Estrutural, Departamento de Engenharia Química e Biológica, Instituto Superior Técnico, Av. Rovisco Pais 1, Lisbon, Portugal

ESI-Table 1. Single crystal data collected at room temperature for the p-Me_{0.5}Br_{0.5}BA solid solution and for p-BrBA.

	<i>p</i> -Me _{0.5} BABr _{0.5} BA	<i>p</i> -Cl _{0.5} BABr _{0.5} BA	<i>p</i> -BrBA
Formula	C _{7.5} H _{8.5} Br _{0.5} O	C ₇ H ₇ Br _{0.5} Cl _{0.5} O	C ₇ H ₇ BrO
fw	154.60	164.81	187.04
Cryst. System	monoclinic	monoclinic	monoclinic
space group	P2 ₁	P2 ₁	P2 ₁
Ζ	2	2	2
a (Å)	6.044(2)	5.9892(6)	6.0614(5)
b (Å)	4.974(1)	4.9395(5)	4.9572(4)
c (Å)	12.231(5)	12.086(1)	12.1601(10)
α (deg)	90.0	90.0	90.0
β (deg)	103.69(4)	102.59(1)	102.523(8)
γ (deg)	90.0	90.0	90.0
V (Å ³)	357.2(2)	348.94(6)	356.69(5)
D_{calc} (g/cm ³)	1.437	1.569	1.741
μ (mm ⁻¹)	2.869	3.127	5.673
Measd reflns	1188	1560	1556
Indep reflns	904	1206	1244
$R1[on F_0^2, I \ge 2\sigma(I)]$	0.0943	0.0512	0.0480
wR2 (all data)	0.2507	0.1232	0.1165

Scheme ESI-1. Comparison of cell parameters for pure *p*-MeBA, *p*-Me_{0.5}BABr_{0.5}BA and *p*-BrBA.

Scheme ESI-2. Comparison of cell parameters for pure *p*-ClBA, *p*-Cl_{0.5}BABr_{0.5}BA and *p*-BrBA.

Fig. ESI-1. Comparison of X-ray powder patterns for p-MeBA_{1-x}BrBA_x solid solutions. From top: x = 0 [p-MeBA (XABREY06) at RT], 0.1, 0.25, 0.5, 0.75, 0.9, 1.0 (p-BrBA, RT, calc.).

Fig. ESI-2. Comparison of X-ray powder patterns for $ClBA_{1-x}BrBA_x$ solid solutions. From top: x = 0 [*p*-ClBA (GAKNAH) at RT], 0.1, 0.25, 0.5, 0.75, 0.9, 1.0 (*p*-BrBA, RT, calc.).

Fig. ESI-3. Comparison of the experimental X-ray powder pattern for the *p*-MeBA_{0.33}ClBA_{0.33}BrBA_{0.33} solid solution with the patterns calculated from single crystal data for the Me/Cl/Br pure compounds.

Fig. ESI-4. X-ray powder patterns of ternary solid solution of *p*-MeBA/*p*-ClBA/*p*-BrBA at varying molar ratios.

Fig. ESI-6 DSC of *p*-ClBA

Fig. ESI-7. DSC of *p*-BrBA

Fig. ESI-8. DSC trace (heating cycle) of the MeBA_{0.1}ClBA_{0.9} solid solution obtained by comelting.

Fig. ESI-9. DSC trace (heating cycle) of the MeBA_{0.25}ClBA_{0.75} solid solution obtained by co-melting.

Fig. ESI-10. DSC trace (heating cycle) of the MeBA_{0.5}ClBA_{0.5} solid solution obtained by comelting.

Fig. ESI-11. DSC trace (heating cycle) of the MeBA_{0.75}ClBA_{0.25} solid solution obtained by co-melting.

Fig. ESI-12. DSC trace (heating cycle) of the MeBA_{0.9}ClBA_{0.1} solid solution obtained by comelting.

Fig. ESI-13. DSC trace (heating cycle) of the MeBA_{0.1}BrBA_{0.9} solid solution obtained by co-melting.

Fig. ESI-14. DSC trace (heating cycle) of the MeBA_{0.25}BrBA_{0.75} solid solution obtained by co-melting.

Fig. ESI-15. DSC trace (heating cycle) of the MeBA_{0.5}BrBA_{0.5} solid solution obtained by co-melting.

Fig. ESI-16. DSC trace (heating cycle) of the MeBA_{0.75}BrBA_{0.25} solid solution obtained by co-melting.

Fig. ESI-17. DSC trace (heating cycle) of the MeBA_{0.9}BrBA_{0.1} solid solution obtained by co-melting.

Fig. ESI-18. DSC trace (heating cycle) of the ClBA_{0.1}BrBA_{0.9} solid solution obtained by comelting.

Fig. ESI-19. DSC trace (heating cycle) of the ClBA_{0.25}BrBA_{0.75} solid solution obtained by co-melting.

Fig. ESI-20. DSC trace (heating cycle) of the ClBA_{0.5}BrBA_{0.5} solid solution obtained by comelting.

Fig. ESI-21. DSC trace (heating cycle) of the ClBA_{0.75}BrBA_{0.25} solid solution obtained by co-melting.

Fig. ESI-22. DSC trace (heating cycle) of the ClBA_{0.9}BrBA_{0.1} solid solution obtained by comelting.

Fig. ESI-23. DSC trace (heating cycle, 5 °C min⁻¹) of the MeBA_{0.33}ClBA_{0.33}BrBA_{0.33} solid solution obtained by co-melting.

Fig. ESI-24. DSC trace (heating cycle) of the MeBA_{0.50}ClBA_{0.25}BrBA_{0.25} solid solution obtained by co-melting.

Fig. ESI-25. DSC trace (heating cycle) of the MeBA_{0.25}ClBA_{0.25}BrBA_{0.50} solid solution obtained by co-melting.

Fig. ESI-26. DSC trace (heating cycle) of the MeBA_{0.70}ClBA_{0.15}BrBA_{0.15} solid solution obtained by co-melting.

Fig. ESI-27. DSC trace (heating cycle) of the MeBA_{0.15}ClBA_{0.70}BrBA_{0.15} solid solution obtained by co-melting.

Fig. ESI-28. DSC trace (heating cycle, heating rate 0.5 °C min⁻¹) of the

 $MeBA_{0.15}ClBA_{0.70}BrBA_{0.15}$ solid solution obtained by co-melting. The lower heating rate was chosen to check for the possible presence of a second endothermic event before the melting temperature of the solid solution.

Fig. ESI-29. DSC trace (heating cycle) of the MeBA_{0.15}ClBA_{0.15}BrBA_{0.70} solid solution obtained by co-melting.

Fig. ESI-30. DSC trace (heating cycle) of the MeBA_{0.16}ClBA_{0.42}BrBA_{0.42} solid solution obtained by co-melting.

Fig. ESI-31. DSC trace (heating cycle) of the MeBA_{0.42}ClBA_{0.16}BrBA_{0.16} solid solution obtained by co-melting.

Fig. ESI-32. DSC trace (heating cycle) of the MeBA_{0.42}ClBA_{0.42}BrBA_{0.16} solid solution obtained by co-melting.