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Abstract

Let G be a free Carnot group (i.e. a connected simply connected nilpotent stratified free
Lie group) of step 2. In this paper, we prove that the variational functional generated by
“intrinsic” Maxwell’s equations in G is the Γ-limit of a sequence of classical (i.e. Eu-
clidean) variational functionals associated with strongly anisotropic dielectric permittivity
and magnetic permeability in the Euclidean space.
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1 Introduction
Classical Maxwell’s equations in the vacuum (neither charges nor currents) in Rs × R3

x are

∂B⃗
∂s
= −curl E⃗ , div H⃗ = 0, (1.1)

∂E⃗
∂s
= curl B⃗ , div E⃗ = 0, (1.2)

∗The authors acknowledge the support of University of Bologna, funds for selected research topics, and the
Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto
Nazionale di Alta Matematica (INdAM).
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where E⃗ and B⃗ are the electric and magnetic induction fields, respectively (see, e.g. [7],
Section1.1).

Denote now by (Ω∗, d) the de Rham’s complex of differential forms in R3 associated
with the exterior differential d. If δ is the formal adjoint in L2 of d, and ∗ is the standard
Hodge-star operator in R3, then equations (1.1) and (1.2) can be reformulated in a simpler
form as follows: we fix the standard volume form dV in R3, and we consider a 2-form
F ∈ Ω2 (Faraday’s form), that can be always written as F = ds ∧ E + B, where E is the
electric field 1-form and B is the magnetic induction 2-form. Relatioship between E, B and
the corresponding vector fields E⃗, B⃗ will be illustrated below. Then, classical Maxwell’s
equations become

dF = 0 and d(∗MF) = 0 (1.3)

Here ∗M is the Hodge-star operator associated with the space-time Minkowskian metric
and the volume form ds ∧ dV in R × R3.

Clearly, equations (1.3) make perfectly good sense in Rn with n ≥ 3 (for physical mean-
ing of Maxwell’s equations in higher dimensions, we refer for instance to [34], Chapter 3).

Recently, in a series of papers ([5], [18], [19]), the authors introduced the notion of
“intrinsic” Maxwell’s equations in Carnot groups.

We recall that a connected and simply connected Lie group (G, ·) (in general non-
commutative) is said a Carnot group of step κ if its Lie algebra g admits a step κ strati-
fication, i.e. there exist linear subspaces V1, ...,Vκ such that

g = V1 ⊕ ... ⊕ Vκ, [V1,Vi] = Vi+1, Vκ ! {0}, Vi = {0} if i > κ,

where [V1,Vi] is the subspace of g generated by the commutators [X, Y] with X ∈ V1 and
Y ∈ Vi.

The first layer V1, the so-called horizontal layer, plays a key role in the theory, since it
generates the whole of g by commutation.

The Carnot group G is said to be free if its Lie algebra is free, i.e, if the commutators
satisfy no linear relations other than antisymmetry and Jacobi identity. Our main result will
be proved in the setting of free Carnot groups.

A Carnot group G can be always identified, through exponential coordinates, with the
Euclidean space Rn, where n is the dimension of g, endowed with a suitable group op-
eration. The stratification of the Lie algebra induces a family of anisotropic dilations δλ
(λ > 0) on g and therefore, through exponential map, on G.

In Section 2 we recall some basic results of the theory of Carnot groups. We refer to
[14] or [6] for an detailed introduction.

From now on, we use the word “intrinsic” for notions in G depending only on the
structure of its Lie algebra g.

The definition of Maxwell’s equation in Carnot group is written in terms of differential
forms and relies on the Rumin’s theory of differential forms in Carnot groups ([29], [32],
[30]). We refer to the Appendix for a description of Rumin’s complex, as well as to [3].
Roughly speaking, Rumin defines a kind of “minimal” class E∗0 of intrinsic forms as well
as an exterior intrinsic differential dc that makes (E∗0, dc) homotopic to the De Rham’s
complex. A crucial property of dc, that will affect all the subsequent theory, is that, in
general, dc is a differential operator in the horizontal derivatives of order greater than 1.
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The complex (E∗0, dc) being given, it is easy to define formally a set of intrinsic Maxwell’s
equations in a Carnot group G = Rn as follows: we refer to [19] for the definition. By The-
orem 5.5 in [19], Maxwell’s equations in a G take the form

∂(∗B)
∂s

= ∗dcE , δc(∗B) = 0, (1.4)

∂E
∂s
= (−1)n ∗ dc(∗B) , δcE = 0, (1.5)

where E ∈ E1
0, B ∈ E2

0. Moreover δc and ∗ are associated with a suitable left-invariant scalar
product. Notice that intrinsic Maxwell’s equations are no more of order 1, depending on
the order of dc.

It has been shown in [19] that equations (1.4) and (1.5) are invariant under the action of a
suitable class of contact Lorentz transformations (contact maps are algebra endomorphism
that preserve the stratification).

In spite of the number of various applications of Carnot groups to describe different
phenomena in applications, here we are not looking for any application modeling physical
situations. In fact, Maxwell’s equations in Carnot groups have been introduced in order to
carry on the investigation of peculiar features of the geometry of the groups. Nevertheless,
we want to mention that in the first Heisenberg group H1 equations (1.4) and (1.5) arise in
the study of quasiconformal or quasiregular maps in H1, precisely as classical Maxwell’s
equations appear in quasiconformal map theory in the Euclidean setting (see [23], [1]).

The goal of the present paper is to show that intrinsic Maxwell’s equation can be seen as
(variational) limits of Riemannian Maxwell’s equations in anisotropic media, in the spirit
of the Gromov’s Riemannian approximation. Riemannian approximations have been con-
sidered in different settings, among others, by Rumin [31], Ge [20], Citti & Manfredini
[8]. When dealing with Maxwell’s equations, this approximation is obtained via classical
Riemannian Maxwell’s equations in the matter associated with real materials with strongly
anisotropic dielectric permittivity and magnetic permeability.

To this end, we state preliminarily classical Maxwell equations in matter for time-
harmonic vector fields. In bounded regions of the space, the study of Maxwell’s equations,
together with (say) relative boundary conditions, can be reduced to the study of stationary
points of variational functionals ([9], [25], [24]). In some sense, these functionals contain
all the structure of Maxwell’s equations. In this paper, we prove precisely that the vari-
ational functional in the group generated by intrinsic Maxwell’s equations is the Γ-limit
of a sequence of the variational functionals associated with Euclidean strongly anisotropic
dielectric permittivity and magnetic permeability. We notice that the correct formulation
of the relative boundary condition in the group is not straightforward and relies on a new
Green formula (see Theorem 4.2 below). In fact, the Γ-limit result depends strongly on the
right choice of the boundary conditions.

We want to state explicitly that the Γ-convergence is not meant to derive existence re-
sults of solutions of the group Maxwell’s equation, because of the lack of several well-
known crucial property in the limit functional, like coerciveness (think for instance of
Gaffney’s inequality) and higher order regularity properties of the stationary points. In-
stead, it is meant to show that the “structure” of the intrinsic system (1.4), (1.5) is the limit
of the corresponding structure of a sequence of “true” equations in the matter.
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When we try to compare Maxwell’s equation in G with usual Maxwell’s equations in
the Euclidean space Rn, different scalar products are involved. Thus we must proceed care-
fully and establish precise definitions to take into account the two different (superposed)
structures. Indeed, all our equations are written on the exterior algebra of the cotangent
bundle of G, but they are associated with different scalar products, coming ultimately, from
two different group structures on G, i.e. (G, ·) and the Abelian Euclidean group (G,+).

The paper is organized as follows: In Section 2 we recall some basic facts about Carnot
groups, but most of the property and definitions about Carnot groups are contained in the
Appendix. In Section 3, we write Maxwell’s equations in the matter in the Euclidean space
Rn. Starting from Section 4, we suppose G to be a free Carnot group of step two. We
recall the notion of ”‘intrinsic” Maxwell’s equations and we relate them to an intrinsic
variational functional. Section 5 contains our main results. In particular we prove that if G
is a free Carnot group of step two, then the variational functional in the group, generated
by intrinsic Maxwell’s equations, is a Γ-limit of a class of variational functional in Rn with
strongly anistropic dielectric permittivity and magnetic permeability. Finally, in Section 6,
we provide some explicit computations in the first Heisenberg group H1.

To keep the paper self-contained, we add an appendix that contains some basic notions
and results concerning Carnot group, as well as a self-contained sketch of Rumin’s theory.

2 Notations and preliminary results: two scalar products
Let (G, ·) be a Carnot group of step κ identified to Rn through exponential coordinates, as
defined in the Introduction.

As customary, we denote by TG the tangent fiber bundle ofG, and by TGx its fiber over
x ∈ G.

By definition, g, the Lie algebra of G (i.e. the Lie algebra of the left-invariant vector
fields on G) can be written as

g = V1 ⊕ ... ⊕ Vκ, [V1,Vi] = Vi+1, Vκ ! {0}, Vi = {0} if i > κ.

Set mi = dim(Vi), for i = 1, . . . , κ and hi = m1 + · · · + mi with h0 = 0. Clearly, hκ = n. We
denote by Q the homogeneous dimension of G, i.e. we set

Q :=
κ∑

i=1

i dim(Vi).

If e is the unit element of (G, ·), we recall that the map X → X(e), that associate with a
left-invariant vector field X its value at e, is an isomorphism from g to TGe, in turn identified
with Rn. From now on, we shall use systematically these identifications.

We choose now a basis e1, . . . , en of Rn adapted to the stratification of g, i.e. such that

eh j−1+1, . . . , eh j is a basis of Vj for each j = 1, . . . , κ.

Then, we denote by ⟨·, ·⟩ the scalar product in g making the adapted basis {e1, . . . , en} or-
thonormal. Moreover, let X = {X1, . . . , Xn} be the family of left invariant vector fields such
that Xi(e) = ei, i = 1, . . . , n. Clearly, X is orthonormal with respect to ⟨·, ·⟩.
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The dual space of g is denoted by
∧1 g. The basis of

∧1 g, dual of the basis X1, · · · , Xn,
is the family of covectors {θ1, · · · , θn}. We indicate by ⟨·, ·⟩ also the inner product in

∧1 g
that makes θ1, · · · , θn an orthonormal basis. We point out that, except for the trivial case
of the commutative group Rn, the forms θ1, · · · , θn may have polynomial (hence variable)
coefficients.

Following Federer (see [12] 1.3), the exterior algebras of g and of
∧1 g are the graded

algebras indicated as
∧
∗
g =

n⊕

h=0

∧
h
g and

∧∗
g =

n⊕

h=0

∧h
g where

∧
0 g =

∧0 g = R

and, for 1 ≤ h ≤ n,
∧

h
g := span{Xi1 ∧ · · · ∧ Xih : 1 ≤ i1 < · · · < ih ≤ n},

∧h
g := span{θi1 ∧ · · · ∧ θih : 1 ≤ i1 < · · · < ih ≤ n}.

The elements of
∧

h g and
∧h g are called h-vectors and h-covectors.

The dual space
∧1(

∧
h g) of

∧
h g can be naturally identified with

∧h g.

Definition 2.1 We denote by Θh the basis {θi1 ∧ · · · ∧ θih : 1 ≤ i1 < · · · < ih ≤ n} of∧h g. The inner product ⟨·, ·⟩ extends canonically to
∧

h g and to
∧h g making the bases

Xi1 ∧ · · · ∧ Xih and θi1 ∧ · · · ∧ θih orthonormal.

We can define now, as usual, two families of vector bundles, denoted by
∧
∗ (TG) (the

exterior power of the tangent bundle) and
∧∗ (TG) (the exterior power of the cotangent

bundle) over G.
Sections of

∧h (TG) are differential h-forms, and sections of
∧

h (TG) are h-vector
fields, 1 ≤ h ≤ n. If U ⊂ G is an open set, we denote by Ωh(U) and Ωh(U) the spaces of
h-forms and of h-vectors inU. IfU = G, we write simply Ωh and Ωh.

With the notations of [21], Chapter 2, Section 2.1, if V,W are finite dimensional linear
vector spaces and L : V → W is a linear map, we denote by

ΛhL :
∧h

W →
∧h

V

the linear map induced by L between exterior powers (see [21], Chapter 2, Section 2.1).
We stress now that the aim of this paper is to compare Maxwell’s equation in G with

usual Maxwell’s equations in the Euclidean space Rn. Since different scalar products are
involved, we must proceed carefully and to establish precise definitions to take into ac-
count the two different (superposed) structures. Indeed, all our equations are written on the
exterior algebra of the cotangent bundle of G, but they are associated with different scalar
products, coming ultimately, from two different group structures on G, i.e. (G, ·) and the
Abelian Euclidean group (G,+).

In particular for any x ∈ G two families of (left) translations τx : G→ G and tx : G→ G
are defined respectively by

τx p := x · p , tx p := x + p .
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Thanks to the identification of TGe with g, the maps

(x,α) −→ (
x,Λh(dτx(e))α

)
from

∧h
(TG) to G ×

∧h
g

and

(x,α) −→ (
x,Λh(dtx(e))α

)
from

∧h
(TG) to G ×

∧h
g

define two canonical (global) trivializations of the vector bundle
∧h (TG) associated with

the two families τx and tx of left translations in G.
Starting from the scalar product defined in

∧h g, each trivialization defines on the fiber∧h (TG)p over p ∈ G two scalar products

⟨Λhdτp−1 (α),Λhdτp−1 (β)⟩p := ⟨α, β⟩

and
⟨Λhdt−p(α),Λhdt−p(β)⟩p := ⟨α, β⟩Euc.

Analogously, τ and t define on
∧h (TG)p two (orthonormal) bases Θh

p and Θh,Euc
p through

the identities
Θh

p := Λhdτp−1 (e)Θh and Θh,Euc
p := Λhdt−p(e)Θh.

In particular,
Θh,Euc

p = Λh(dt−p(p))Λh(dτp(e))Θh
p.

Obviously, a parallel argument can be carried out for h-vectors in
∧

h (TG).
From now on, if α ∈ ∧h g, we denote by αE = (αE,1,αE,2, . . . ) and by αg = (αg,1,αg,2, . . . )

the vector of its coordinates with respect to the bases Θh,Euc and Θh, respectively.
It is easy to see that

⟨α, β⟩ = αg • βg and ⟨α, β⟩Euc = αE • βE,

where • denotes the Euclidean scalar product in RN , with N =
(

n
h

)
.

Definition 2.2 The dual space
∧1(

∧
h g) of

∧
h g can be naturally identified with

∧h g.
The action of a h-covector ϕ on a h-vector v is denoted as ⟨ϕ|v⟩. The same notation is

used for the duality between forms and vector fields.
If v ∈ Ωh we define v♮ ∈ Ωh by the identity

⟨v♮|w⟩ := ⟨v,w⟩, ⟨v♮,Euc|w⟩ := ⟨v,w⟩Euc

and analogously we define ϕ♮ ∈ Ωh and ϕ♮,Euc ∈ Ωh for ϕ ∈ Ωh.
However, to avoid cumbersome notations, in the sequel we write also v♮ and φ♮ with

respect to the Euclidean scalar product, if this is evident from the context.
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3 Maxwell’s equations in matter
Classical Maxwell’s equations in a bounded smooth connected region U ⊂ R3, for time-
harmonic vector fields in Rs × R3

x

eiωsE⃗, eiωsH⃗, eiωsB⃗, eiωsD⃗,

with no charges and no currents, read as follows:

curl H⃗ − iωD⃗ = 0 inU,

curl E⃗ + iωB⃗ = 0 inU,
div D⃗ = 0, div B⃗ = 0 inU,

together with the constitutive relations

D⃗ = εE⃗, B⃗ = µH⃗,

and the boundary condition
E⃗tan∣∣∣∂U

= F⃗ on ∂U. (3.6)

Here ε = ε(x), µ = µ(x) ∈ GL(R3) are invertible linear maps depending (say) smoothly on x
and F⃗ is a tangent vector field on ∂U. Usually, the matrices [ε], [µ] are called respectively
the dielectric permittivity and the magnetic permeability.

From previous equations we get the following differential equation satisfied by D⃗.

curl µ−1curl ε−1D⃗ = ω2D⃗. (3.7)

Consider now the 1-forms E = E⃗♮, H = H⃗♮ and the 1-forms ∗D := −D⃗♮ and ∗B := −B⃗♮.
The duality in the previous expression is meant with respect to the Euclidean scalar product
⟨·, ·⟩Euc, as stated in Definition 2.2. Since, trough all this section, we shall refer only to the
”Euclidean” duality between forms and vector fields, in the sequel, we shall write e.g. D♮

instead of D♮,Euc.
On the other hand, keeping in mind that, if V⃗ is a vector field in R3, then curl V⃗ =( ∗ dV⃗♮)♮. From the equations above we obtain

∗dE = iω ∗ B , , δ ∗ B = 0, (3.8)

and
∗dH = −iω ∗ D , , δ ∗ D = 0, (3.9)

together with the constitutive relations

∗B = (Λ1µ∗)H, ∗D = (Λ1ε∗)E. (3.10)

If we replace equation (3.8) in equation (3.9), taking also into account the constitutive
relations (3.10), we get

∗d(Λ1µ∗)−1 ∗ d(Λ1ε∗)−1 ∗ D = ω2 ∗ D. (3.11)

Thus, we have the following result.
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and
∗dH = −iω ∗ D , , δ ∗ D = 0, (3.9)

together with the constitutive relations
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∗d(Λ1µ∗)−1 ∗ d(Λ1ε∗)−1 ∗ D = ω2 ∗ D. (3.11)

Thus, we have the following result.
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Proposition 3.1 Let D⃗ ∈ Ω1(U) be a solution of the differential equation (3.7). Then the
1-form α = ∗D ∈ Ω1(U) satisfies the differential equation

δMdNα − ω2α = 0, δα = 0 (3.12)

where M := (det[µ])−1(Λ2µ), N := Λ1(ε∗)−1 . Moreover the boundary condition (3.6)
becomes

t(Nα) = φ,

where φ is a 1-form on ∂U and t(Nα) is the tangential part of Nα (see [21], Section 2.6,
and Proposition 4.3 below).

Proof. As shown above, the equation in (3.7) is equivalent to equation (3.11).
Since on a h-forms

∗d = (−1)h+1δ∗ , (3.13)

then
δ ∗ (Λ1µ∗)−1 ∗ d(Λ1ε∗)−1 ∗ D − ω2 ∗ D = 0.

Moreover

∗(Λ1(µ∗)−1)∗ = ∗ ∗ (det[µ])−1(Λ2µ) = (det[µ])−1(Λ2µ).

Hence, we get that ∗D satisfies (3.12), and we are done. !

Notice that, by (3.12), ∗D is a stationary point of the functional

Jµ,ε(α) :=
∫

U
⟨MdNα, dNα⟩Euc dV − ω2

∫

U
⟨Nα,α⟩Euc dV,

in {α ∈ W1,2(U,∧1 TR3), t(Nα) = φ in ∂U} =: W1,2
DN(U,∧1 TR3).

A standard approach to the Dirichlet problem with relative boundary conditions in a
bounded open set U for system (3.12) relies on a variational approach combined with a
compactness argument (see, for instance, [9] and Appendix A of [24]) for the functional

J̃µ,ε(α) :=
∫

U
⟨MdNα, dNα⟩Euc dV + σ

∫

U
|δα|2 dV

+C
∫

U
⟨Nα,α⟩Euc dV

(3.14)

in W1,2
DN(U,∧1 R3). Here, σ > 0 is a positive parameter, and C > 0 is a large constant.

We stress that all the peculiarities of the structure of Maxwell’s equations are contained
in the functional (3.14). Indeed, the further steps of the technique rely on standard com-
pactness arguments and on regularity properties of solutions of elliptic pde’s.

Finally, we notice that (3.12) and all the previous arguments make perfect sense in Rn

for any n ∈ N.
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Indeed, let U ⊂ Rn be a smooth connected region. Let ε = ε(x), µ = µ(x) ∈ GL(Rn)
be invertible linear maps depending (say) smoothly on x. Consider two differential forms
E and H in U, with E ∈ Ω1(U) and H ∈ Ωn−2(U). If ∗ denotes the Hodge-star operator
in Rn, the n-dimensional Maxwell’s equations for time-harmonic forms in an anisotropic
medium read as follows,

∗dE = iω (Λn−2µ∗)H , , δ(Λn−2µ∗)H = 0

and
∗dH = (−1)niω (Λ1ε∗)E , , δ(Λ1ε∗)E = 0.

Arguing as above, the 1-form α = (Λ1ε∗)E satisfies equation (3.12). Again, the study of
equation (3.12) can be reduced to the study of a functional akin to (3.14).

4 Maxwell’s equations in group and related functionals
From now on, we denote by (E∗0, dc) the complex of intrinsic differential forms that is
described in detail in the Appendix.

If we consider the time-harmonic differential forms eiωsE, eiωsH in the “free” space
Rs × Gx, where E ∈ E1

0(G) and H ∈ En−2
0 (G), equations (1.4) and (1.5) became

∗dcE = iωH ∗ dcH = −iωE, (4.15)

δcH = 0 δcE = 0. (4.16)

Hence, α = E satisfy
δc dcα − ω2α = 0 δcα = 0. (4.17)

Clearly, if we consider equations (4.15) and (4.16) in the open set U, we must couple
equation (4.17) with suitable boundary conditions (see below). Then α is also a stationary
point of the functional ∫

U
|dcα|2 dV − ω2

∫

U
|α|2 dV.

Mimicking the Euclidean approach we have to consider the functional
∫

U
|dcα|2 dV + σ

∫

U
|δcα|2 dV +C

∫

U
|α|2 dV, (4.18)

which still hides all the peculiarities of the structure of our intrinsic Maxwell’s equations.
So far, our argument are rather vague. To make it accurate, we need to set precisely the

functions spaces involved in our problem, as well as the boundary condition and to prove a
formula of integration by parts for dc and δc (see Theorem 4.2 below).

First of all, since from now on we focus our interest in the functionals instead of the
equation, without loss of generality we take σ = 1. The natural setting for the func-
tional (4.18) is provided by Folland-Stein function spaces that are left-invariant and group-
homogeneous.

Since here we are dealing only with integer order spaces, we can give this simpler
definition (for a general presentation, see e.g. [13]).
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Definition 4.1 Let U ⊂ G be an open set. If 1 < s < ∞ and m ∈ N, then the space
Wm,s
G (U) is the space of all u ∈ Ls(U) such that

XIu ∈ Ls(U) for all multi-index I with d(I) = m,

endowed with the natural norm.

We recall that

Proposition 4.1 Let U ⊂ G be an open set. If 1 < s < ∞ and m ∈ N, then the space
Wm,s
G (U) is independent of the choice of X1, . . . , Xm1 .

Proposition 4.2 LetU ⊂ G be an open set. If 1 < s < ∞ and m ∈ N, then E(U)∩Wm,s
G (U)

is dense in Wm,s
G (U).

The following result summarizes several extension and trace results for Folland-Stein
spaces in Carnot groups (see Theorems 10.4 and 13.5 in [11] and Theorem B in [26]). All
these results can be applied thanks to the characterization of uniform domains given [27]
(see also [15]).

Theorem 4.1 Suppose G is a step 2 Carnot group. Let U ⊂ G be an open connected
smooth region, locally lying on one side of its boundary ∂U. Then

i) E(Ū) is dense in Wm,s
G (U);

ii) there exists a bounded linear map

P : W1,2
G (U) −→ W1,2

G (G) such that Pu∣∣∣U = u

for any u ∈ W1,2
G (U);

iii) the linear map
γ : E(Ū) −→ E(∂U), γu = u∣∣∣∂U

can be continued as a bounded map

γ : W1,2
G (U) −→ L2(∂U, dσ),

where

dσ =
( m∑

j=1

⟨Xj, ν⟩2
)1/2dHn−1, (4.19)

ν being the outward unit normal to ∂U.

Definition 4.2 LetU ⊂ G be an open set. If 0 ≤ h ≤ n, 1 ≤ s ≤ ∞ and m ≥ 0, we denote
by Wm,s

G (U,∧h g) the space of all sections of
∧h g such that their components with respect

to the basis Θh belong to Wm,s
G (U), endowed with its natural norm. Clearly, this definition

is independent of the choice of the basis itself.
Moreover, if Eh

0 is the class of the intrinsic h-forms, then the space Wm,s
G (U, Eh

0) are
defined analogously, replacing Θh by Ξh (see Remark 7.2 in the Appendix).

Obviously, Propositions 4.1, 4.2 and Theorem 4.1 still hold for form-valued spaces.

Maxwell’s equations in Carnot groups as variational limits 343

If α ∈ C∞(∂U,∧h g), as in [21], Section 2.6, we denote by t(α) and n(α) the tangen-
tial and the normal parts of α, respectively. We stress that both t and n can be extended
to continuous linear maps from L2(∂U,∧h g) to L2(∂U,∧h g), since for any x ∈ ∂U
|α(x)|2 = |t(α)(x)|2 + |n(α)(x)|2. It is important to stress that here and in the sequel, the
space L2(∂U,∧h g) has to be understood with respect to the measure dσ.

Thus, the following proposition follows by Theorem 4.1.

Proposition 4.3 If α ∈ C∞(Ū,∧h g) and we denote by γ the trace operator

γ : C∞(Ū,
∧h
g)→ C∞(∂U,

∧h
g), γ(α) = α∣∣∣∂U ,

the maps
α −→ t(γ(α)), α −→ n(γ(α))

can be extended as linear continuous maps from W1,2
G (U,∧h g) to L2(∂U,∧h g).

For the sake of simplicity, from now on, if α ∈ W1,2
G (U,∧h g), we write t(α) and n(α)

instead of t(γ(α)) and n(γ(α)), respectively. This notation, though usually established in
the literature, may yield ambiguities in our setting. A point must be stressed: we apply first
the trace operator, and then we decompose the trace in his tangential and normal parts. In
fact, it might be possible to decompose first the form in a neighborhood of the boundary,
and to apply later the trace operator. This distinction would not have any influence in the
Euclidean setting, but here is crucial. Indeed the decomposition is not compatible with the
Folland-Sobolev spaces, since it mixes variable of different layers of the stratification.

Assumption. From now on, we assume G is a free Carnot group of step 2.
We recall that, roughly speaking, the group G is said to be free if its Lie algebra is

free, i.e. the commutators satisfy no linear relationships other than antisymmetry and the
Jacobi identity. This is a large and relevant class of Carnot groups. We recall also that
Carnot groups can always be “lifted” to free groups (see [28] and [6], Chapter 17). For our
purposes, the main property of free Carnot groups relies on the fact that intrinsic 1-forms
and 2-forms on free groups have all the same weight (see Theorem 7.2). This helps at
several steps of the proofs.

We stress that several statements below and, in particular, the main result Theorem 5.1
still hold in larger classes of Carnot groups (see, for instance, Remark 6.1). However, for
sake of simplicity, we do not make our intermediate statements as sharp as possible.

Proposition 4.4 Let G be a free Carnot group of step 2. If ΠE denotes the lifting operator
from the complex (E∗0, dc) to (E, d) defined in the Appendix, Theorem 7.1, the linear map

α −→ t(ΠEα)

is well defined and continuous from W2,2
G (U, Eh

0) to L2(∂U,∧h g).

Proof. The assertion follows from Proposition 4.3, since ΠE is an operator of order 1 in the
horizontal derivatives, by Theorem 7.1 in the Appendix. !

Now, we can define precisely our intrinsic functional.
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Proposition 4.3 If α ∈ C∞(Ū,∧h g) and we denote by γ the trace operator

γ : C∞(Ū,
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Definition 4.3 We define a functional in W2,2
G (U,∧1 g) as follows:

J(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫

U
|dcα|2 dV +

∫

U
|δcα|2 dV +C

∫

U
|α|2 dV

if α ∈ W2,2
G (U, E1

0) and t(ΠEα) = 0

+∞ otherwise.

Remark 4.1 The boundary condition t(ΠEα) = 0 il motivated by Green formula of Theo-
rem 4.2 at the end of this Section.

Maxwell’s equations, as well as the associated functional (3.14), depend on the scalar
product on the fibers of

∧∗ TG (as for the equations, through the Hodge operator ∗). In fact,
they are invariant under the action of Lorentz transformations for the Minkowskian metric
associated with the scalar product. But it is important to point out that classical Maxwell’s
equations are associated with the Euclidean scalar product on the fibers ⟨·, ·⟩Euc, whereas
group Maxwell’s equations are associated with ⟨·, ·⟩.

Thus, if we want to see intrinsic Maxwell’s equations as a limit of classical Maxwell’s
equations in strongly anisotropic media, we have to take into account the change of the
scalar product through a change of coordinates in the tangent bundle

∧
1 TG = TG.

Remark 4.2 In particular, though the exterior differential does not depend on the coordi-
nates, the codifferential does depend on the scalar product. Thus, from now on, we denote
by δ the codifferential associated with the Euclidean scalar product ⟨·, ·⟩Euc, and by δg the
codifferential associated with the intrinsic scalar product ⟨·, ·⟩. We recall that δc denotes
instead the intrinsic codifferential, associated obviously with the intrinsic scalar product.

Definition 4.4 We define the linear map

R :
∧

1
TG −→

∧
1

TG ⟨Λ1Ru, v⟩Euc = ⟨u, v⟩,

for any u, v ∈ Ω1. Obviously, if we set Rh := ΛhR, then

⟨Rhα, β⟩Euc = ⟨α, β⟩

for any α, β ∈ Ωh.

If p ∈ G, denote now by [T ]p = (Ti j(p))i j the matrix of the identity map in Rn with
respect to the bases {e1, . . . , en} and {X1, . . . , Xn}, i.e. [T ]p satisfies

Xj(p) =
∑

i

Ti j(p)ei, j = 1, . . . , n.

Remark 4.3 [T ]p coincides with [(dt−p)(p) ◦ (dτp)(e)], the matrix of (dt−p)(p) ◦ (dτp)(e) :∧
1 TG→ ∧

1 TG with respect to the basis {e1, . . . , en}.
It is well known that det[T ] = 1 (see, e.g., [16], Proposition 2.2).

As customary, from now on we drop the index p when there is no ambiguity.
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Proposition 4.5 If α ∈ Ωh, then
αE = [ΛhT ]αg. (4.20)

An analogous assertion follows if we replace covectors by vectors.
Moreover, the matrix of R with respect to the Euclidean coordinates of g is given by

[R]−1 = [T ] · [T ]t.

In particular, by Remark 4.3, det[R] = 1.

Proof. Denote by θ j
p and θ j,Euc

p the j-element of the basis Θh
p and of ΘEuc

p , respectively. By
Remark 4.3, we have

αg, j(p) = ⟨α, θ j
p⟩p = ⟨Λhdτp(e)α, θ j

e⟩e
= ⟨Λhdt−p(p)Λhdτp(e)α, θ j,Euc

p ⟩Euc,p

=
(
Λhdt−p(p)Λhdτp(e)α

)
E, j(p).

Then assertion (4.20) follows. !

The identification of g and TGe induces a stratification of TGe =
∧

1 TGe given by∧
1 TGe =

∧
1 V1 ⊕

∧
1 V2. Hence, by left translation, we define also two fiber bundles on

G,
∧

1 Vi, i = 1, 2.

Definition 4.5 If r > 0, we denote by Cr :
∧

1 TG→ ∧
1 TG the linear bundle map defined

on a generic fiber by

Cr(Xℓ) := r jXℓ if Xℓ ∈
∧

1
Vj, j = 1, 2.

Notice (Λ2Cr)θi ∧ θ j = rw(i)+w( j)θi ∧ θ j if w(i),w( j) are the weights of the θi, θ j ∈ ∧1 g,
respectively.

We denote by [Cr]g the (diagonal) matrix associate with Cr with respect to the basis
{X1, . . . , Xn}.

Lemma 4.1 If r > 0, let dr be the “weighted exterior differential”

dr := d0 + rd1 + r2d2.

Then
drα = (Λ2Cr)d(Λ1C−1

r )α

for any α ∈ Ω1.

Proof. Choose α = αiθi. Then

drα =
2∑

j=0

r jd j(αiθ
i) =

2∑

j=0

r j+w(i)d j(r−w(i)αiθ
i) = (Λ2Cr)d(Λ1C−1

r )α.

!
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Proposition 4.6 Let r > 0 be given. Let us choose

µr = r−2(Q−3)/(n−2)C∗r RCr,

εr = r−1(RCr)∗

where C∗r and (RCr)∗ are the adjoint maps of Cr and RCr, respectively, with respect to the
Euclidean scalar product. Then, if α ∈ W2,2

G (U,∧1 g)
(
⊂ W1,2(U,∧1 g)

)
,

r−4|drα|2 = ⟨MrdNrRα, dNrRα⟩Euc, (4.21)

r⟨C−1
r α,α⟩ = ⟨NrΛ

1Rα,Λ1Rα⟩Euc, (4.22)

where Mr := (det[µr])−1 · Λ2µr, and Nr := Λ1(ε∗r )−1.

Proof. Keeping in mind 4.1, we have:

|drα|2 = ⟨Λ2(RCr)d(Λ1C−1
r )α, (Λ2Cr)d(Λ1C−1

r )α⟩Euc

= ⟨(Λ2(RCr))dΛ1(RCr)−1Rα, (Λ2(Cr))dΛ1(RCr)−1Rα⟩Euc

= ⟨Λ2(C∗r RCr)dΛ1(RCr)−1Rα, dΛ1(RCr)−1Rα⟩Euc.

Then assertion (4.21) follows since (Λ2σL) = σ2(Λ2L) for any linear map L and for any
σ ∈ R, and

det µr = r2(3n−2Q)/(n−2).

This proves (4.21). Identity (4.22) follows analogously. !

If in the “real world” functional J̃µ,ε in (3.14) we choose µ = µr, ε = εr as above, we
obtain a sequence of functionals (J̃µr ,εr )r>0 with boundary conditions t(Nrα) = 0.

As already pointed out, the functionals J̃µr ,εr contain all the information about Maxwell’s
equations in the matter. Now it is clear in what sense we can think of intrinsic Maxwell’s
equations in Carnot groups as limits of usual Maxwell’s equations for anisotropic media:
the Euclidean “energy” functionals J̃µr ,εr Γ-converge to “energy” functional associated with
the intrinsic Maxwell’s equations in the group as in Definition 4.3.

However, at this point it is important to notice that this convergence has a meaning
provided the functionals are all written in the same coordinates, i.e. through the same
trivialization. Because of the privileged role in our approach of the limit functional, we
choose to write all functionals in an intrinsic way. Therefore, through the map R1, we write
J̃µr ,εr in the trivialization associated with group translations, even though its “physical”
meaning appears when we write J̃µr ,εr through the usual Euclidean trivialization.

Definition 4.6 With the notations of Proposition 4.6, if r > 0, we denote by Jr the func-
tional in W2,2

G (U,∧1 g)

Jr(α) :=

⎧⎪⎪⎨
⎪⎪⎩

Jµr ,εr (R1α) if t(NrR1α) = 0 on ∂U
+∞ otherwise.
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In other words, Jr is the variational functional associated with the classical Maxwell’s
equations in Rn for an anisotropic medium with magnetic permeability [µr] and dielectric
permittivity [εr] given by

[µr] = r−2(Q−3)/(n−2) [T−1]t · [Cr]2
g · [T−1], (4.23)

[εr] = r−1 [T−1]t · [Cr]g · [T−1]. (4.24)

Proposition 4.7 If α ∈ W2,2
G (U,∧1 g), we have

i) δg(α) = δ(R1α);

ii) Jr(α) = r−4
∫
U |drα|2 dV +

∫
U |δgα|

2 dV +Cr
∫
U⟨C

−1
r α,α⟩ dV

when Jr(α) < ∞.

Proof. Assertion i) is a trivial consequence of the definition of R. Assertion ii) follows by
Proposition 4.6. !

We conclude this Section going back to the condition t(ΠEα) = 0 that is justified by the
following Green formula. We stress that this formula is not a straightforward consequence
of Stokes theorem as in Rn. Indeed, the identity dc(α ∧ β) = dcα ∧ β − α ∧ dcβ fails to hold
for intrinsic forms, as pointed out in [4], Proposition A.7, since α ∧ β cannot be defined in
a coherent way.

Theorem 4.2 (Green formula) LetG be a Carnot group of arbitrary step. If α ∈ C∞(Ū, Eh+1
0 ),

0 ≤ h ≤ n − 1, and β ∈ C∞(Ū, Eh
0), we have

∫

U
⟨α, dcβ⟩ dV =

∫

U
⟨δcα, β⟩ dV +

∫

∂U
t(ΠEβ) ∧ ∗n(α). (4.25)

Proof. First of all, we notice the following identity holds:

ΠE0ΠE + ΠF(I − ΠE0ΠE) = I. (4.26)

Indeed, by Theorem 7.1, I = ΠE + ΠF = ΠEΠE0ΠE + ΠF = ΠE0ΠE − ΠFΠE0ΠE + ΠF =
ΠE0ΠE + ΠF(I − ΠE0ΠE).
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Then, by classical Green formula (see e.g. [21], Chapter 5, Section 2.6, Proposition 2),
∫

U
⟨α, dcβ⟩ dV −

∫

∂U
t(ΠEβ) ∧ ∗n(α)

=

∫

U
⟨α,ΠE0 dΠEβ⟩ dV −

∫

∂U
t(ΠEβ) ∧ ∗n(α)

=

∫

U
⟨α, dΠEβ⟩ dV −

∫

∂U
t(ΠEβ) ∧ ∗n(α) (since α ∈ Eh+1

0 )

=

∫

U
⟨δα,ΠEβ⟩ dV

=

∫

U
⟨δα,ΠEβ⟩ dV = (−1)h(n−h)

∫

U
⟨∗ ∗ δα,ΠEβ⟩ dV

= (−1)h(n−h)
∫

U
⟨∗ΠE0ΠE ∗ δα,ΠEβ⟩ dV

+ (−1)h(n−h)
∫

U
⟨∗ΠF(I − ΠE0ΠE) ∗ δα,ΠEβ⟩ dV (by (4.26))

= (−1)h(n−h)
∫

U
⟨∗ΠE0ΠE ∗ δα,ΠEβ⟩ dV (by Lemma 7.4)

= (−1)h(n−h+1)+1
∫

U
⟨∗ΠE0ΠEd ∗ α,ΠEβ⟩ dV

= (−1)h(n−h+1)+1
∫

U
⟨∗ΠE0 dΠE ∗ α,ΠEβ⟩ dV

= (−1)h(n−h+1)+1
∫

U
⟨∗dc ∗ α,ΠEβ⟩ dV

=

∫

U
⟨δcα,ΠEβ⟩ dV =

∫

U
⟨ΠE0δcα,ΠEβ⟩ dV (since δcα ∈ Eh

0)

=

∫

U
⟨δcα,ΠE0ΠEΠE0β⟩ dV (since β ∈ Eh

0)

=

∫

U
⟨δcα,ΠE0β⟩ dV

=

∫

U
⟨δcα, β⟩ dV (again since β ∈ Eh

0).

Thus (4.25) is proved. !

5 Main results
In this section we state our main convergence result. We briefly recall the definition of
Γ-convergence.
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Definition 5.1 (see, e.g. [10], Chapter 4) Let X be a topological space, and denote by
N(x) the family of all open neighborhoods of x in X. If h ∈ N, let

Jh : X −→ [−∞,+∞]

be functionals on X. We set

(Γ − lim inf
h→∞

Jh)(x) = sup
V∈N(x)

lim inf
h→∞

inf
y∈V

Jh(y),

and
(Γ − lim sup

h→∞
Jh)(x) = sup

V∈N(x)
lim sup

h→∞
inf
y∈V

Jh(y).

If there exists J : X −→ [−∞,+∞] such that

Γ − lim inf
h→∞

Jh = Γ − lim sup
h→∞

Jh = J,

then we say that {Jh}h∈N Γ-converges to J in X, and we write

J = Γ − lim
h→∞

Jh.

In metric spaces we have the following characterization of Γ-convergence.

Proposition 5.1 (see, e.g., [10], Proposition 8.1) Let X be a metric space, and let

Jr, J : X −→ [−∞,+∞]

with r > 0 be functionals on X. Then {Jr}r>0 Γ-converges to J on X as r goes to zero if and
only if the following two conditions hold:

1) for every u ∈ X and for every sequence {urk }k∈N with rk → 0 as k → ∞, which
converges to u in X, there holds

lim inf
k→∞

Jrk (urk ) ≥ J(u);

2) for every u ∈ X and for every sequence {rk}k∈N with rk → 0 as k → ∞ there exists a
subsequence (still denoted by {rk}k∈N) such that {urk }k∈N converges to u in X and

lim sup
k→∞

Jrk (urk ) ≤ J(u)

In a metric space, to avoid cumbersome notations, from now on we write systematically
limr→0 to mean a limit with r = rk, where {rk}k∈N is any sequence with rk → 0 as k → ∞.

For a deep and detailed survey on Γ-convergence, we refer to the monograph [10].

Proposition 5.2 Suppose αr → α as r → 0 in W2,2
G (U,∧1 g). Then

J(α) ≤ lim inf
r→0

Jr(αr). (5.27)
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Proof. As usual, without loss of generality, we may assume lim infr→0 Jr(αr) < ∞.
We can argue now following the guidelines of Theorem 5.1 in [2]. First of all, we show

that
∫

U
|dcα|2 dV ≤ lim inf

r→0
r−4

∫

U
|drα

r |2 dV. (5.28)

To this end, keeping in mind (7.43), we write

αr = αr
1 + α

r
2,

with αr
i ∈ Ω1,i, i = 1, 2. Reordering the terms of drαr according to their weights, we have

the following orthogonal decomposition:

drα
r =

(
d0α

r
2 + rd1α

r
1
)
+

(
rd1α

r
2 + r2d2α

r
1
)
+ r2d2α

r
2.

Therefore we can write

r−4
∫

U
|drα

r |2 dV = r−4
∫

U
|d0α

r
2 + rd1α

r
1|2 dV

+ r−2
∫

U
|d1α

r
2 + rd2α

r
1|2 dV

+

∫

U
|d2α

r
2|2 dV.

Since lim infr→0 Jr(αr) < ∞, we have

• if r ∈ (0, 1),

r−1(d1α
r
2 + rd2α

r
1
)

is uniformly bounded in L2(U,∧2 g)); (5.29)

• if r → 0, then
d0α

r
2 + rd1α

r
1 = O(r2) in L2(U,∧2 g)). (5.30)

Now, (5.30) yields eventually that

d0α2 = 0,

since d0 is algebraic and {αr}0<r<1 is bounded in W2,2
G (U,∧1 g). Thus, keeping in mind that

d0(
∧1,1 g) = {0}, we can conclude that α ∈ ker d0 = E1

0, and therefore α = α1.
Because of convergence of (αr)r>0 in W2,2

G (U,∧1 g) when r → 0, it follows that

αr
1 → α1 := (ΠEα)1 (5.31)

in L2(U,∧1 g) as r → 0 as well as

d−1
0 d1α

r
1 → d−1

0 d1α1 := −(ΠEα)2 in L2(U,∧1 g), (5.32)

Maxwell’s equations in Carnot groups as variational limits 351

since d1 is an homogeneous differential operator in the horizontal derivatives of order 1 and
d−1

0 is algebraic. By (5.30), we have now

d0α
r
2 + rd1α

r
1 = O(r2) in L2(U,∧2 g). (5.33)

On the other hand, by Lemma 7.3, ii), d−1
0 d0αr

2 = α
r
2, since αr

2 has weight 2 and hence is
orthogonal to Ω1,1 = ker d0. Thus, keeping in mind that d−1

0 is algebraic, it follows from
(5.33) that

1
r
αr

2 + d−1
0 d1α

r
1 = O(r) in L2(U,∧1 g),

and therefore
1
r
αr

2 → (ΠEα)2 in L2(U,∧1 g).

Now, by (5.31) and (5.32), we obtain

1
r

(
d1α

r
2 + rd2α

r
1

)
−→ d1(ΠEα)2 + d2(ΠEα)1 (5.34)

as r → 0 in the sense of distributions. On the other hand, the limit d1(ΠEα)2 + d2(ΠEα)1
belongs to L2(U,∧2 g) (since dℓ(ΠEω)3−ℓ is an homogeneous differential operator in the
horizontal derivatives of order 2, by Theorem 7.1, i) and Definition 7.2), and

{1
r
(
d1α

r
2 + rd2α

r
1
)}

r>0
is equibounded in L2(U,∧2 g), (5.35)

as r → 0, by (5.29). Combining (5.35) and (5.34) we obtain that the limit in (5.34) is in
fact a weak limit in L2(U,∧2 g) Thus, if we keep in mind Theorem 7.2, we obtain

∫

U
|dcα|2 dV =

∫

U
|ΠE0

(
d1(ΠEα)2 + d2(ΠEα)1

)|2 dV

≤
∫

U
|(d1(ΠEα)2 + d2(ΠEα)1

)|2 dV

≤ lim inf
r→0

r−2
∫

U
|d1α

r
2 + rd2α

r
1|2 dV ≤ lim inf

r→0
r−4

∫

U
|drα

r |2 dV.

This proves (5.28). !

Let us consider now the divergence term in Jr(αr). Since lim infr→0 Jr(αr) < ∞, we
have that

(δgα
r)r>0 is uniformly bounded in L2(U).

On the other hand, we can write δgαr as

δgα
r = δgα

r
1 + δgα

r
2, (5.36)

where, for i = 1, 2, δgαr
i is a sum of terms of the form Xℓ(αr)ℓ, where (αr)ℓ is the ℓ-th

component of αr with respect to the basis θ1, . . . , θn, and Xℓ ∈ Vi. But δgαr
1 → δgα1 = δcα

in L2(U) (since δgαr
1 contains only first order horizontal derivatives), and therefore δgαr

2
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weakly converge in L2(U). On the other hand, δgαr
2 → δgα2 = 0 in the sense of distribu-

tions, since αr → α in L2(U), and α is horizontal (as seen in (5.31)). Thus, eventually,

δgα
r → δcα weakly in L2(U),

and therefore ∫

U
|δcα|2dV ≤ lim inf

r→0

∫

U
|δgα

r |2dV. (5.37)

On the other hand, if we split again αr gathering the terms by their weights (i.e. αr =
αr

1 + α
r
2, with αr

j ∈ Ω1, j), keeping in mind that αr
1 → α1 in L2, we have

lim inf
r→0

∫

U
r⟨C−1

r αr,αr⟩ dV = lim inf
r→0

( ∫

U
|αr

1|2 dV +
1
r

∫

U
|αr

2|2 dV
)

≥ lim inf
r→0

∫

U
|αr

1|2 dV =
∫

U
|α1|2 dV =

∫

U
|α|2 dV,

(5.38)

since α ∈ E1
0.

Summing up (5.28), (5.37), and (5.38), in order to obtain equation (5.27), we have but to
prove that t(ΠEα) = 0. This follows straightforwardly since 0 = t(NrR1αr) = r t(C1/rαr) =
t(αr

1 + r−1αr
2), and then t(αr

1 + r−1αr
2) = 0. But, by Proposition 4.4, t(αr

1 + r−1αr
2) weakly

converge to t(ΠEα) in the space of 1-forms on ∂U, endowed with the L2-norm with respect
to the measure dσ, as defined in (4.19). This achieves the proof of (5.27). !

Definition 5.2 If α ∈ Ω1(U), keeping in mind (7.43), we write

α = α1 + α2,

with αi ∈ Ω1,i(U), i = 1, 2. If m ≥ 2, we say that

α ∈ Ŵm,2
G (U,

∧1
g) iff αi ∈ Wm+1−i,2

G (U,
∧1
g), i = 1, 2.

The space Ŵm,2
G (U,∧1 g) is endowed with its natural norm.

Remark 5.1 Any horizontal form in Ŵ2,2
G (U,∧1 g) belongs to W2,2

G (U, E1
0). In addition,

the map α→ ΠEα is continuous from W2,2
G (U, E1

0) to Ŵ2,2
G (U,∧1 g).

Proposition 5.3 Notice that Ŵ3,2(U,∧1 g)∩L2(U, E1
0) = W3,2

G (U, E1
0), and let α ∈ W3,2

G (U, E1
0)

be such that t(ΠEα) = 0. Then there exists a sequence (αr)r>0 in Ŵ3,2
G (U,∧1 g) such that

i) αr → α in W2,2
G (U,∧1 g);

ii) Jr(αr)→ J(α) as r → 0.

Proof. Arguing as in [2] (dropping however the reduction argument), we choose

αr = α + r(ΠEα)2.
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First of all, (ΠEα)2 ∈ W2,2
G (U,∧1 g), since ΠE is an operator of order 1 in the horizontal

derivatives, and hence i) follows trivially. Moreover

t(NrR1αr) = r t(C1/rα
r) = t(α + (ΠEα)2) = t(ΠEα) = 0.

Thus, in order to prove ii), we have but to show that

Jr(αr)→ J(α) as r → 0.

Arguing as in [2], we can write

drα
r = r

(
d0(ΠEα)2 + d1(ΠEα)1) + r2(d1(ΠEα)2 + d2(ΠEα)1)

+ r3d2(ΠEα)2.

Notice also that

d0(ΠEα)2 + d1(ΠEα)1 = −d0d−1
0 d1α + d1α = 0,

since d−1
0 d0 = Id on R(d0), and d1α ∈ R(d0), by Lemma 7.5 - (1) in the Appendix.

Let us suppose for a while we know that

d1(ΠEα)2 + d2(ΠEα)1 ∈ E2
0, (5.39)

in particular ΠE⊥0 (d1(ΠEα)2 + d2(ΠEα)1) = 0. Thus, we can write

r−4
∫

U
|drα

r |2 dV

=

∫

U
|d1(ΠEα)2 + d2(ΠEα)1|2 dV + r2

∫

U
|d2(ΠEα)2|2 dV

=

∫

U
|(ΠE0 (d1(ΠEα)2 + d2(ΠEα)1)|2 dV + r2

∫

U
|d2(ΠEα)2|2 dV

=

∫

U
|dcα|2 dV + r2

∫

U
|d2(ΠEα)2|2 dV →

∫

U
|dcα|2 dV,

as r → 0, since d2(ΠEα)2 ∈ L2(U,∧2 g).
On the other hand, it is obvious that δgαr → δcα in L2(U), again since the coefficients

of (ΠEα)2 belong to W2,2
G (U).

Finally
∫

Ω

r⟨C−1
r αr,αr⟩ dV =

∫

Ω

|α|2 dV + r
∫

Ω

|(ΠEα)2|2 dV →
∫

Ω

|α|2 dV

as r → 0. This achieves the proof of the Proposition, once (5.39) is proved. Indeed, (5.39)
follows straitforwardly by the identity d2 = 0. In fact, gathering all terms of the same
weight, we get

d2
0 = 0, d0d1 = −d1d0, d0d2 = −d2d0 − d2

1 .
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Hence
d0

(
d1(ΠEα)2 + d2(ΠEα)1

)
= d1d0d−1

0 d1α − d2
1α = 0,

since, again by Lemma 7.5 in the Appendix, d1α ∈ R(d0) and d−1
0 d0 = Id on R(d0).

!

Denote by jr and j the restrictions of Jr and J to Ŵ3,2
G (U,∧1 g), respectively. We see

below that ( jr)r>0 Γ-converges (with respect to the topology induced by W2,2
G (U,∧1 g)) to

j. However, in general, the Γ-limit of the restriction of a sequence of functionals is only
greater or equal than the restrictions of both Γ−lim sup and Γ−lim inf of the same sequence
(for further details, see Proposition 6.14 in [10] and the remarks therein).

On the contrary, in our case Propositions 5.2 and 5.3 yield a more precise result.

Theorem 5.1 Let G be a free step 2 Carnot group. If r > 0, denote respectively by jr and
j the restrictions of Jr and J to Ŵ3,2

G (U,∧1 g). Then

i) ( jr)r>0 Γ-converges to j in Ŵ3,2
G (U,∧1 g) with respect to the topology induced by

W2,2
G (U,∧1 g);

ii) in Ŵ3,2
G (U,∧1 g) we have

Γ − lim inf
r→0

Jr ≡ Γ − lim sup
r→0

Jr ≡ j ≡ J∣∣∣Ŵ3,2
G (U,E1

0)

where the Γ-limits must be meant with respect to the topology induced by W2,2
G (U,∧1 g).

Proof. Assertion i) follows from Propositions 5.2 and 5.3.
As for ii), let now α ∈ Ŵ3,2

G (U,∧1 g) be given. By definition ([10], Proposition
8.1), there exists a sequence (αr)r>0 in W2,2

G (U,∧1 g), converging to α in the topology
of W2,2

G (U,∧1 g), such that Jr(αr) → (
Γ − lim infr→0 Jr)(α) as r → 0. Suppose now(

Γ − lim infr→0 Jr)(α) < ∞. Then, by Proposition 5.2,

J(α) ≤ lim inf
r→0

Jr(αr) =
(
Γ − lim inf

r→0
Jr)(α). (5.40)

Clearly, inequality (5.40) still holds trivially if
(
Γ − lim infr→0 Jr)(α) = ∞.

On the other hand, by [10], Proposition 6.14,

J(α) ≤ lim sup
r→0

Jr(αr) ≤ (α) ≤ lim sup
r→0

Jr(αr) = j(α) = J(α). (5.41)

Combining (5.40) and (5.41) we achieve the proof of the theorem. !

6 An example: Maxwell’s equation in H1

Consider now in particular the first Heisenberg group G = H1, with variables x, y, t. Set
X := ∂x − 1

2 y∂t, Y := ∂y +
1
2 x∂t, T := ∂t. The stratification of the algebra g is given by
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g = V1 ⊕ V2, where V1 = span {X, Y} and V2 = span {T }. We have X♮ = dx, Y♮ = dy,
T ♮ = θ := dt + 1

2 (ydx − xdy) (the contact form of H1). In this case

E1
0 = span {dx, dy};

E2
0 = span {dx ∧ θ, dy ∧ θ};

E3
0 = span {dx ∧ dy ∧ θ}.

The action of dc on E1
0 is given by ([29], [17], [4])

dc(α1dx + α2dy)

= (X2α2 − 2XYα1 + YXα1)dx ∧ θ + (2YXα2 − Y2α1 − XYα2)dy ∧ θ
:= P1(α1,α2)dx ∧ θ + P2(α1,α2)dy ∧ θ.

We see that dc is a homogeneous operator of order 2 in the horizontal derivatives.
On the other hand

δcα = Xα1 + Yα2.

Thus, if E = E1dx + E2dy and H = H1dx + H2dy, equations (4.15) and (4.16) read as

P2(E1, E2) dx − P1(E1, E2) dy = iω(H1 dx + H2 dy)
P2(H1,H2) dx − P1(H1,H2) dy = −iω(E1 dx + E2 dy)

and
XH1 + YH2 = 0, XE1 + YE2 = 0.

In this case

[T ] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
− 1

2 y 1
2 x 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , [Cr]g =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r 0 0
0 r 0
0 0 r2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Thus, by (4.23) and (4.24), the magnetic permeability [µr] and dielectric permittivity [εr]
of the “approximating equations” take the forms

[µr] = [εr] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + r
4 y2 − r

4 xy r
2 y

− r
4 xy 1 + r

4 x2 − r
2 x

r
2 y − r

2 x r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Remark 6.1 Heisenberg groups HN with N > 1 are still step 2 groups, though not free.
Nevertheless, intrinsic 2-forms on HN have weight 2, and therefore all our arguments can
be carried out with the following choice of µr and εr:

µr = r−4N/(2N−1)C∗r RCr,

and
εr = r−1(RCr)∗,

where, again, C∗r and (RCr)∗ are the adjoint maps of Cr and RCr, respectively, with respect
to the Euclidean scalar product.
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Remark 6.2 With the notations of (5.36), both in Proposition 5.3 and Theorem 5.1 we can
replace the assumption α ∈ W3,2(Ω, E1

0) by

α ∈ W2,2(Ω, E1
0), δgd−1

0 d1α ∈ L2(Ω) and d2d−1
0 d1α ∈ L2(Ω,

∧2
g).

In particular, if G = H1, d−1
0 d1α is a 1-form of weight 2, and then d2d−1

0 d1α = 0, since there
are no 2-forms of weight 4.

7 Appendix: Carnot groups and Rumin’s complex
With the notations of Section 1, let (G, ·) be a Carnot group of step κ identified to Rn

through exponential coordinates. As above, {e1, · · · , en} is a basis of Rn adapted to the
stratification of g. Moreover, let X = {X1, . . . , Xn} be the family of left invariant vector
fields such that Xi(0) = ei, i = 1, . . . , n.

In the sequel, for undefined notations of multilinear algebra, we refer to Section 2 and
to [21] and [12].

We recall the notion of weight of a form that is necessary to introduce the Rumin’s
complex.

Definition 7.1 If α ∈ ∧1 g, α ! 0, we say that α has pure weight k, and we write w(α) = k,
if α♮ ∈ Vk. More generally, if α ∈ ∧h g, we say that α has pure weight k if α is a linear
combination of covectors θi1 ∧ · · · ∧ θih with w(θi1 ) + · · · + w(θih ) = k.

Remark 7.1 If α, β ∈ ∧h g and w(α) ! w(β), then ⟨α, β⟩ = 0. Indeed, it is enough
to notice that, if w(θi1 ∧ · · · ∧ θih ) ! w(θJ1 ∧ · · · ∧ θJh ), with i1 < i2 < · · · < ih and
J1 < J2 < · · · < Jh, then for at least one of the indices ℓ = 1, . . . , h, iℓ ! Jℓ, and hence
⟨θi1 ∧ · · · ∧ θih , θJ1 ∧ · · · ∧ θJh⟩ = 0.

We have ([3], formula (16))
∧h
g =

Mmax
h⊕

p=Mmin
h

∧h,p
g, (7.42)

where
∧h,p g is the linear span of the h–covectors of weight p and Mmin

h , Mmax
h are respec-

tively the smallest and the largest weight of left-invariant h-covectors.
Keeping in mind the decomposition (7.42), we can define in the same way several left

invariant fiber bundles over G, that we still denote with the same symbol
∧h,p g.

We notice also that the fiber
∧h

x g (and hence the fiber
∧h,p

x g) can be endowed with a
natural scalar product ⟨·, ·⟩x.

We denote by Ωh,p the vector space of all smooth h–forms in G of pure weight p, i.e.
the space of all smooth sections of

∧h,p g. We have

Ωh =

Mmax
h⊕

p=Mmin
h

Ωh,p. (7.43)

Maxwell’s equations in Carnot groups as variational limits 357

The following crucial property of the weight follows from Cartan identity: see [32],
Section 2.1:

Lemma 7.1 We have d(
∧h,p g) ⊂ ∧h+1,p g, i.e., if α ∈ ∧h,p g is a left invariant h-form of

weight p with dα ! 0, then w(dα) = w(α).

Definition 7.2 (see, e.g., [3], [32]) Let now α =
∑
θh

i ∈Θh,p αi θh
i ∈ Ωh,p be a (say) smooth

form of pure weight p. Then we can write

dα = d0α + d1α + · · · + dκα,

where d0 does not increase the weight, d1 increases the weight by 1, and, more generally,
di increases the weight by i, when i = 0, 1, . . . , κ. In particular, d0 is an algebraic operator.
We denote by δ0 its adjoint.

Lemma 7.2 d2
0 = 0, i.e. (Ω∗, d0) is a complex.

Proof. Take α ∈ Ωh,p, and write the identity d2α = 0, gathering all terms according their
weights. Since terms with different weights are orthogonal, this yields that all groups of
given weight vanish. But the group of weight p is precisely d2

0α, and we are done. !

The following definition of intrinsic covectors (and therefore of intrinsic forms) is due
to M. Rumin ([32], [30]).

Definition 7.3 If 0 ≤ h ≤ n we set

Eh
0 := ker d0 ∩ ker δ0 = ker d0 ∩ (Im d0)⊥ ⊂ Ωh

We refer to the elements of Eh
0 as to intrinsic h-forms on G. Since the construction

of Eh
0 is left invariant, this space of forms can be seen as the space of sections of a fiber

subbundle of
∧h g, generated by left translation and still denoted by Eh

0. In particular Eh
0

inherits from
∧h g the scalar product on the fibers.

Remark 7.2 There exists a left invariant orthonormal basis Ξh
0 = {ξ j} of Eh

0 that is adapted
to the filtration (7.42).

Since it is easy to see that E1
0 = span {θ1, . . . , θm}, without loss of generality, we can

take ξ j = θ j for j = 1, . . . ,m.
Finally, we denote by Nmin

h and Nmax
h respectively the lowest and highest weight of

forms in Eh
0.

We define now a (pseudo) inverse of d0 as follows (see [3], Lemma 2.11):

Lemma 7.3 If β ∈ ∧h+1 g, then there exists a unique α ∈ ∧h g ∩ (ker d0)⊥ such that

δ0d0α = δ0β. We set α := d−1
0 β.

In particular
α = d−1

0 β if and only if d0α − β ∈ ker δ0 = R(d0)⊥.

In addition, d−1
0 preserves the weights.
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The following theorem summarizes the construction of the intrinsic differential dc (for
details, see [32] and [3], Section 2) .

Theorem 7.1 The de Rham complex (Ω∗, d) splits in the direct sum of two sub-complexes
(E∗, d) and (F∗, d), with

E := ker d−1
0 ∩ ker(d−1

0 d) and F := R(d−1
0 ) + R(dd−1

0 ).

We have

i) Let ΠE be the projection on E along F (that is not an orthogonal projection). Then
for any α ∈ Eh,p

0 , if we denote by (ΠEα) j the component of ΠEα of weight j, then

(ΠEα)p = α

(ΠEα)p+k+1 = −d−1
0

( ∑

1≤ℓ≤k+1

dℓ(ΠEα)p+k+1−ℓ
)
.

Notice that α → (ΠEα)p+k+1 is an homogeneous differential operator of order k + 1
in the horizontal derivatives.

ii) ΠE is a chain map, i.e.
dΠE = ΠEd.

iii) Let ΠE0 be the orthogonal projection from Ω∗ on E∗0, then

ΠE0 = Id − d−1
0 d0 − d0d−1

0 , ΠE⊥0 = d−1
0 d0 + d0d−1

0 . (7.44)

Notice that, since d0 and d−1
0 are algebraic, then formulas (7.44) hold also for cov-

ectors.

iv) ΠE0ΠEΠE0 = ΠE0 and ΠEΠE0ΠE = ΠE.

Set now
dc = ΠE0 dΠE : Eh

0 → Eh+1
0 , h = 0, . . . , n − 1.

We have:

v) d2
c = 0;

vi) the complex E0 := (E∗0, dc) is exact;

vii) with respect to the bases Ξ∗, the intrinsic differential dc can be seen as a matrix-
valued operator such that, if α has weight p, then the component of weight q of
dcα is given by an homogeneous differential operator in the horizontal derivatives of
order q − p ≥ 1, acting on the components of α.

Remark 7.3 We have also E = ker δ0 + ker(δ0d) and F = Im δ0 + Im (dδ0).

Proposition 7.1 Denote by δc = d∗c the formal adjoint of dc in L2(G, E∗0).
Then assertions (3.13) still hold if we replace d and δ by dc and δc, respectively, or by

d0, δ0, respectively.
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Lemma 7.4 If ω ∈ Eh and t(ω) = 0, then ω ∈ ∗F⊥ (with respect to the L2-product).

Proof. By [33], identity (2.27), n(∗ω) = 0. First of all, we can show that

∗ω ∈ ker d0 ∩ ker(d0δ).

Indeed, by Proposition 7.1, d0(∗ω) = (−1)h ∗ δ0ω = 0 and d0δ ∗ ω = (−1)h+1d0 ∗ dω =
∗δ0dω = 0. Take now α = δ0ξ + dδ0η ∈ F. Clearly

∫

U
⟨∗ω, δ0ξ⟩ dV =

∫

U
⟨d0 ∗ ω, ξ⟩ dV = 0.

On the other hand, by classical Green’s formula
∫

U
⟨∗ω, dδ0η⟩ dV

=

∫

U
⟨δ ∗ ω, δ0η⟩ dV +

∫

∂U
t(δ0η) ∧ ∗n(∗ω)

=

∫

U
⟨δ ∗ ω, δ0η⟩ dV (since n(∗ω) = ∗t(ω))

=

∫

U
⟨d0δ ∗ ω, η⟩ dV = 0.

This proves that ∗ω ∈ F⊥, and then the assertion follows. !

Finally, we recall the definition of free Carnot group (see, for instance [6], Section
14.1).

Definition 7.4 Let m ≥ 2 and κ ≥ 1 be fixed integers. We say that fm,κ is the free Lie
algebra with m generators x1, . . . , xm and nilpotent of step κ if:

i) fm,κ is a Lie algebra generated by its elements x1, . . . , xm, i.e. fm,κ = Lie(x1, . . . , xm);

ii) fm,κ is nilpotent of step κ;

iii) for every Lie algebra n nilpotent of step κ and for every map φ from the set {x1, . . . , xm}
to n, there exists a (unique) homomorphism of Lie algebras Φ from fm,κ to n which
extends φ.

The Carnot group G is said free if its Lie algebra g is isomorphic to a free Lie algebra.
When G is a free group, we can assume {X1, . . . , Xn} a Grayson-Grossman-Hall basis

of g (see [22], [6], Theorem 14.1.10). This makes several computations much simpler. In
particular, {[Xi, Xj], Xi, Xj ∈ V1, i < j} provides an orthonormal basis of V2.

Theorem 7.2 ([19], Theorem 5.9) Let G be a free group of step κ. Then all forms in E1
0

have weight 1 and all forms in E2
0 have weight κ + 1.

In particular, the differential dc : E1
0 → E2

0 can be identified, with respect to the adapted
bases Ξ1

0 and Ξ2
0, with a homogeneous matrix-valued differential operator of degree κ in the

horizontal derivatives.
Moreover, since ΠE0 preserves the weights, if ξ ∈ ∧2,p g with p ! κ + 1, then ΠE0ξ = 0.

Indeed, ΠE0ξ has weight p, and therefore has to be zero, since ΠE0ξ ∈
∧2,κ+1 g.
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U
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of g (see [22], [6], Theorem 14.1.10). This makes several computations much simpler. In
particular, {[Xi, Xj], Xi, Xj ∈ V1, i < j} provides an orthonormal basis of V2.

Theorem 7.2 ([19], Theorem 5.9) Let G be a free group of step κ. Then all forms in E1
0
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In particular, the differential dc : E1
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0 can be identified, with respect to the adapted
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0, with a homogeneous matrix-valued differential operator of degree κ in the

horizontal derivatives.
Moreover, since ΠE0 preserves the weights, if ξ ∈ ∧2,p g with p ! κ + 1, then ΠE0ξ = 0.

Indeed, ΠE0ξ has weight p, and therefore has to be zero, since ΠE0ξ ∈
∧2,κ+1 g.
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Lemma 7.5 ([19], Lemma 6.3) If g is a free algebra of step 2, then

1. d0(
∧1 g) =

∧2,2 g;

2. if θi ∧ θ j ∈
∧2,2 g, then d−1

0 (θi ∧ θ j) = −[Xi, Xj]♮;

3. if θi ∧ θ j ∈
∧2,2 g, then d0d−1

0 (θi ∧ θ j) = θi ∧ θ j;

4. if θi ∧ θ j ∈
∧2,3 g or θi ∧ θ j ∈

∧2,4 g then d−1
0 (θi ∧ θ j) = 0, so that again d−1

0 (θi ∧ θ j) =
−[Xi, Xj]♮.
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Théorie Spectrale et Géométrie, Vol. 19, Année 2000–2001, vol. 19 of Sémin. Théor. Spectr.
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