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Two populations mean-field monomer-dimer
model

Diego Alberici, Emanuele Mingione

Abstract

A two populations mean-field monomer-dimer model including both
hard-core and attractive interactions between dimers is considered. The
pressure density in the thermodynamic limit is proved to satisfy a varia-
tional principle. A detailed analysis is made in the limit of one population
is much smaller than the other and a ferromagnetic mean-field phase tran-
sition is found.

1 Introduction

Monomer-dimer models have been introduced in theoretical physics
during the ’70s to explain the absorption of diatomic molecules on a two-
dimensional layer [21]. Fundamental results were obtained by Heilmann
and Lieb, who proved the absence of phase transitions [15] when only
the hard-core interaction is taken into account, while the presence of an
additional interaction coupling dimers can generate critical behaviours
[16]. Monomer-dimers models have been source of a renewed interest
in the last years in mathematical physics [1, 2, 11, 13], condensed matter
physics [19] and in the applications to computer science [17,22] and social
sciences [7, 10]. The presence of an interaction beyond the hard-core one
that couples di↵erent dimers is fundamental for the applications where
phase transitions are observed [7, 10]. Indeed in [3–5] the authors proved
that a mean-field monomer-dimer model exhibits a ferromagnetic phase
transition when a su�ciently strong interaction is introduced between
pairs of dimers.

In this paper the investigation is extended to the case of a mean-field
monomer-dimer model defined over two populations. The methods pre-
sented here can be extended to a higher number of populations. This
multi-species framework has been already introduced in the context of
spin models [8,9,18,20] reveling interesting mathematical features. Multi-
species monomer-dimer models are suitable to describe the experimental
situation treated in [7, 10], where a mean-field type phase transition has
been observed in the percentage of mixed marriages between native people
and immigrants. The hard-core interaction between dimers naturally rep-
resents the monogamy constraint in marriages, while, as pointed out by
the authors of [7], an additional imitative interaction between individuals
can be at the origin of the observed critical behaviour.
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In this work we consider a mean-field model built on two populations
A and B (e.g., the immigrants population and the local one) which takes
into account both the imitative and the hard-core interactions. Dimers
can be divided into three classes: type A if they link two individuals in A,
type B if they link two individuals in B and type AB if they link a mixed
couple. When the total size of the system N = NA + NB increases, we
assume that the relative sizes of the two populations NA/N , NB/N take
fixed values ↵, 1�↵. The energy contribution of dimers is tuned by a three
dimensional vector h = (hA, hB , hAB) 2 R3 where hA tunes the activity
of a dimer of type A and so on. Individuals have also a certain propensity
to imitate or counter-imitate the behaviour of the other individuals; this
feature is is encoded in an additional contribution to the energy tuned by
a 3⇥ 3 real matrix J . For example, the entry J

AB

AB couples dimers of type
AB with other dimers of the same type. The main result we obtain is a
representation of the pressure density in the thermodynamic limit in terms
of a variational problem in R3 for all the values of the parameters h and J

(see Theorem 1 in section 2 for the precise statement). This result is then
applied to the case where the only non-zero parameters contributing to
the energy are hAB and J

AB

AB . As a consequence, the only relevant degree
of freedom is the density of mixed dimers dAB and the above variational
problem leads to a consistency equation of the type

f↵(dAB) = hAB + J
AB

AB dAB .

Its analytical properties are investigated in detail for small ↵: the mean-
field critical exponent 1/2 is rigorously found, consistently with the ex-
perimental situation analyzed in [7, 10].

The paper is structured as follows. In section 2 we introduce the
statistical mechanics model with the basic definitions and we prove the
main result: the thermodynamic limit of the pressure density is expressed
as a three-dimensional variational problem, where the order parameters
are the dimer densities dA, dB internal to each population and the mixed
dimer density dAB .

In section 3 we focus on three non-zero parameters, ↵, hAB , J
AB

AB , and
we study in detail the critical behaviour of the system when one population
is much larger than the other (↵ ! 0), finding a phase transition with
standard mean-field exponents.

Finally, in the Appendix we give an alternative proof for the existence
of thermodynamic limit of the pressure density in the case J = 0, hA +
hB � 2hAB . This proof, which easily applies also to the standard single
population case, uses a convexity inequality and is based on the Gaussian
representation for the partition function [6].

2 Model and main result

Consider a system composed by N sites divided into two populations
of sizes NA and NB respectively, NA + NB = N . We assume that the
ratios ↵ = NA/N and 1 � ↵ = NB/N are fixed when the total size N of
the system varies. A monomer-dimer configuration can be identified with
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a set � of edges that satisfies a hard-core condition:

e = {i, j} 2 � , e
0 = {i

0
, j

0
} 2 � ) e \ e

0 = ; (1)

Given the configuration � (see Figure 1), the edges in � are called
dimers and they can be partitioned into three families: denote by DA

the number of dimers having both endpoints in A, by DB the number
of dimers having both endpoints in B and by DAB the number of dimers
having one endpoint in A and the other one in B. Monomers, namely sites
free of dimers, can be partitioned into two families: denote by MA, MB

the number of monomers in A, B respectively. Observe that

2DA +DAB +MA = NA , 2DB +DAB +MB = NB . (2)

Figure 1: A monomer-dimer configuration on two populations of sizes NA = 5,
NB = 11. In this example there are DA = 1 dimers internal to population A,
DB = 3 dimers internal to population B and DAB = 2 mixed dimers.

We denote by DN the set of all possible monomer-dimer configurations
on N sites. For a given configuration � 2 DN , D denotes the vector of
the cardinalities of the three families of dimers

D :=

0

B@
DA

DB

DAB

1

CA , (3)

while
|D| := DA +DB +DAB (4)

represents the total number of dimers. The Hamiltonian function is de-
fined as

HN (D) = �h · D �
1
2N

JD · D (5)

where · denotes the standard scalar product in R3, the dimer vector field
h tunes the activity of dimers while the coupling matrix J tunes the
interaction between sites according to the types of dimers they host:

h =

0

B@
hA

hB

hAB

1

CA J =

0

B@
J
A

A J
B

A J
AB

A

J
A

B J
B

B J
AB

B

J
A

AB J
B

AB J
AB

AB

1

CA . (6)
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The partition function of the model is

ZN ⌘ ZN (h, J,↵) =
X

�2DN

N
�|D|

e
�HN (D)

. (7)

Since the number of dimers |D| is at most N , the Hamiltonian is of or-
der N . On the other hand the term N

�|D| guarantees that the entropy,
namely the logarithm of �N (D) (defined in equation (21)), is of order
N . As we will see in Theorem 1 and in the Appendix, these two facts
ensure a well defined thermodynamic limit of the model. Without loss of
generality we assume the inverse temperature � = 1, since this parameter
can be absorbed in h and J . Given f : DN ! R we call expected value of
f with respect to the Gibbs measure the quantity

h f iN :=
1
ZN

X

�2DN

N
�|D|

e
�HN (D)

f(�) . (8)

Let us introduce the definitions needed to state our main result. De-
note by ⌦↵ the set of d = (dA, dB , dAB)

T
2 (R+)

3 such that

2dA + dAB  ↵ , 2dB + dAB  1� ↵ . (9)

The above constraints on the vector d reflect the hard-core relations (2).
Set

�(x) := exp(x log x� x) , x � 0 (10)

and define the following functions

s(d;↵) := log �(↵) + log �(1� ↵)� log �(↵� 2dA � dAB) +

� log �(1� ↵� 2dB � dAB)� log �(dA)� log �(dB) +

� log �(dAB)� dA log 2� dB log 2

(11)

✏(d;h, J) := �h · d�
1
2
Jd · d (12)

 (d;h, J,↵) := s(d;↵)� ✏(d;h, J) . (13)

The functions  , s, ✏ represent respectively the variational pressure, en-
tropy and energy densities.

Theorem 1. For all ↵ 2 (0, 1), h 2 R3
and J 2 R3⇥3

, there exists

lim
N!1

1
N

logZN (h, J,↵) = max
d2⌦↵

 (d;h, J,↵) =: p(h, J,↵) (14)

The function  (d;h, J,↵) attains its maximum in at least one point d
⇤ =

d
⇤(h, J,↵) 2 ⌦↵ which solves the following fixed point system:

8
><

>:

dA = wA
2 m

2
A

dB = wB
2 m

2
B

dAB = wAB mA mB

(15)

where we denote

mA = ↵� 2dA � dAB , mB = 1� ↵� 2dB � dAB , (16)

4



wA = e
hA+JAd

, wB = e
hB+JBd

, wAB = e
hAB+JABd

. (17)

At J = 0 the system (15) has a unique solution d
⇤ = g(h,↵) 2 ⌦↵ which

is an analytic function of the parameters h,↵. Clearly at any J the system

(15) rewrites as

d = g(h+ Jd , ↵) . (18)

Provided that d
⇤
is di↵erentiable, rh p = d

⇤
and there exists

lim
N!1

1
N

hD i
N

= d
⇤
. (19)

Proof. The number of configurations � 2 DN with given cardinalities
DA, DB , DAB can be computed by a standard combinatorial argument.
Therefore the partition function rewrites as

ZN =

NA/2X

DA=0

NB/2X

DB=0

(NA�2DA)^(NB�2DB)X

DAB=0

�N (D) e�HN (D) (20)

with

�N (D) :=
NA!NB !N�|D|

(NA � 2DA �DAB)! (NB � 2DB �DAB)!DA!DB !DAB ! 2DA 2DB

(21)
As we are interested in the limit NA, NB ! 1 (while keeping fixed the
ratio), in order to simplify the computations, we approximate the factorial
by the continuous function � defined in (10). We denote by �̃N the func-
tion obtained from �N by substituting any factorial n! with �(n), then we
denote by Z̃N the partition function obtained from ZN by substituting
�N with �̃N . The Stirling approximation and elementary computations
give the following properties of �:

i. 1 _
p
2⇡n  n!/�(n)  1 _ e

1
12
p
2⇡n 8n 2 N

ii. d

dx
log �(x) = log x , log �(x) is convex

iii. 1
N

log �(Nx) = log �(x) + x logN

By i. it follows that

1
N

logZN =
1
N

log Z̃N + O

✓
logN
N

◆
, (22)

by a standard argument

1
N

log Z̃N = max
D2N⌦↵

1
N

⇣
log �̃N (D)�HN (D)

⌘
+ O

✓
logN
N

◆
(23)

and using iii. a direct computation shows that for every N 2 N

1
N

⇣
log �̃N (Nd)�HN (Nd)

⌘
=  (d;h, J,↵) , d 2 ⌦↵ . (24)

Therefore there exists

lim
N!1

1
N

logZN = max
d2⌦↵

 (d;h, J,↵) .
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Using ii. one can easily compute

rd s =

✓
log

m
2
A

2dA
, log

m
2
B

2dB
, log

mAmB

dAB

◆
(25)

�rd ✏ = (hA + JA · d , hB + JB · d , hAB + JAB · d ) (26)

therefore

rd (d;h, J,↵) = 0 , d is a solution of (15) .

The first derivatives of p(h, J,↵) =  (d⇤(h, J,↵);h, J,↵) can be easily
computed since rd (d

⇤;h, J,↵) = 0.

3 The limit ↵ ! 0

In this section we choose a particular framework that simplifies the
mathematical treatment of the problem and allows a detailed analysis of
the thermodynamic properties of the system. The most peculiar parame-
ters of the model are hAB and J

AB

AB , describing respectively the AB-dimer
field and the interaction between pairs of AB-dimers, indeed they have no
correspondence in a bipopulated Ising model [18]. Moreover we focus on
the case where one population is much smaller than the other (↵ ! 0).
Thus in this section we set hA = hB = 0, JA

A = J
B

B = J
B

A = J
A

B = J
AB

A =
J
A

AB = J
AB

B = J
B

AB = 0 and we consider only the remaining coe�cients
hAB and J

AB

AB . From now on, with a slight abuse of notation, we will
denote

h := hAB , J := J
AB

AB > 0

and the mixed dimer density

d := dAB =
DAB

N
2 [0,↵]

In this framework the degrees of freedom of the variational problem
(14) reduces from three to one, since dA, dB are explicit functions of dAB ⌘

d as can be easily observed by looking to the consistency equation (15).
Precisely, by setting x↵(d) := mA =

p
2dA , y↵(d) := mB =

p
2dB one

can easily see that x↵(d), y↵(d) are the positive solutions of the following
quadratic equations respectively

x
2 + x� (↵� d) = 0 , y

2 + y � (1� ↵� d) = 0 (27)

namely

x↵(d) =
�1 +

p
1 + 4(↵� d)

2
, y↵(d) =

�1 +
p

1 + 4(1� ↵� d)

2
.

(28)
Then one can easily prove from Theorem 1 that

p(h, J,↵) = max
d2 (0,↵)

 1(d;h, J,↵) (29)
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where  1 coincides with the function  defined by equation (13) evaluated
at 0

B@
dA

dB

dAB

1

CA =

0

B@
x↵(d)

2
/2

y↵(d)
2
/2

d

1

CA . (30)

Any solution d
⇤ = d

⇤(h, J,↵) of the one-dimensional variational problem
(29) satisfies the fixed point equation

d = exp(h+ Jd)x↵(d) y↵(d) (31)

It is convenient to set f↵(d) := log d � log x↵(d) � log y↵(d) and rewrite
equation (31) as f↵(d) = h + Jd . Fix ↵ 2 (0, 1). f↵ is the inverse
function of a sigmoid function1. Therefore the point (dc, hc, Jc) such that
f
00
↵(dc) = 0, f 0

↵(dc) = Jc, f↵(dc) = hc + Jc dc is the critical point of the
system, where the density d

⇤ branches from one to two values (see Figure
2).

For small values of ↵, the following estimates for the critical point can
be obtained by expanding f↵(d) as ↵! 0:

dc(↵) =
↵

2
+O(↵3) (32)

Jc(↵) =
4
↵

+O(↵) (33)

hc(↵) = �2� log

p
5� 1
2

+O(↵) (34)

Figure 2: Plots of the variational pressure  1 versus d, for ↵ = 10�3 and di↵erent
values of the parameters: critical parameters J = Jc, h = hc on the left-hand
side; parameters J = Jc +103, h = hc � dc (J � Jc) on the right-hand side. The
number of global maximum points of  1, that identify the phases of the system
(see eq. (29)), passes from one to two when we move the parameters (J, h) away
from the critical point along a suitable curve.

Fixing ↵ close to zero and moving the parameters (h, J) towards
their critical values, along the half line h � hc(↵) = �dc(↵)

�
J � Jc(↵)

�
,

1It is easy to check that f↵(d) ! �1 as d & 0, f↵(d) ! 1 as d % ↵, f 0
↵ > 0, f 00

↵ vanishes
exactly once.
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J � Jc, the mixed dimer density d
⇤(h, J,↵) exhibits the following critical

behaviour:

d
⇤(h, J,↵)� dc(↵) = C(↵)

p
J � Jc(↵) + O

⇣
(J � Jc(↵))

3/2
⌘

(35)

with C(↵) =
q

3
16↵

3 +O(↵6). This fact can be proven using the Taylor

expansion of f↵(d) around d = dc(↵) up to the third order.

Remark 1. The expansion (35) describes the mean-field critical behaviour
with respect to the coupling J for fixed ↵. However one can also fix J and
move ↵ around the critical point. For example let’s take J = ↵ (1� ↵) J 0

with J
0
� 1. In this case we obtain

d� dc = C(J 0)
p
↵� ↵c + O

�
(↵� ↵c)

3/2� (36)

as ↵! ↵c, h = hc � dc (↵� ↵c) and

↵c =
2

p
J 0

+ O

✓
1
J 0

◆
(37)

hc = �2� log

p
5� 1
2

+ O

✓
1

p
J 0

◆
(38)

dc =
1

p
J 0

+ O

✓
1

J 0 3/2

◆
. (39)

The critical behaviour (36) clearly has no counterpart in the single
population case. This behaviour has been observed in the experimen-
tal situation [7], where the authors find that relation (36), with suitable
parameters, fits well the data.

Remark 2. Equation (36) is a consequence of the fact that at the critical
point the lowest order non vanishing derivative of the variational pressure
 1 in (29) is the fourth one. This fact suggests that the fluctuations of
the order parameter at the critical point follows the standard mean field
theory [3, 12]. From the above considerations we expect the fluctuations
to scale as N3/4 and to converge to a quartic exponential distribution.

Acknowledgment: We thank Pierluigi Contucci for bringing the
problem to our attention and we acknowledge financial support by GNFM-
INdAM Progetto Giovani 2017.

Appendix

Here we give a directed proof of the existence of the thermodynamic
limit for the pressure density in the particular case

J = 0 , W =

✓
wA wAB

wAB wB

◆
=

✓
e
hA e

hAB

e
hAB e

hB

◆
> 0 . (40)

where W > 0 means that the matrix W is positive definite. This proof is
independent from Theorem 1 and the strategy follows a basic idea intro-
duced in [14] in the context of Spin Glass Theory. In this case the partition
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function (7) admits a representation in terms of Gaussian moments:

ZN =
X

�2DN

⇣
wA

N

⌘
DA

⇣
wB

N

⌘
DB

⇣
wAB

N

⌘
DAB

= E
h
(1 + ⇠A)

NA(1 + ⇠B)
NB

i
,

(41)
where ⇠ = (⇠A, ⇠B) is a centred Gaussian vector of covariance matrix
1
N
W (the hypothesis of positive definiteness is crucial) and E denotes the

expectation operator. The representation (41) is based on the Isserlis-
Wick formula, see [6] (Proposition 2.2) for the proof.

Now consider the set Q = {⇠ 2 R2 : 1 + ⇠A > 0, 1 + ⇠B > 0} and
define a modified partition function

Z
⇤
N = E

h
(1 + ⇠A)

NA(1 + ⇠B)
NB 1Q(⇠)

i
. (42)

Z
⇤
N can be rewritten as an integral over ⇠ 2 Q, with integrand function

proportional to exp(N f(⇠)) and

f(⇠) = �
1
2
hW

�1
⇠, ⇠i+ ↵ log |1 + ⇠A|+ (1� ↵) log |1 + ⇠B | .

Since f approaches its global maximum on R2 only for ⇠A � 0, ⇠B � 0,
standard Laplace type estimates implies that

ZN

Z
⇤
N

! 1 as N ! 1 . (43)

Hence we can restrict our attention to the sequence logZ⇤
N , N 2 N. We

claim that

Proposition 1. For every N1, N2, N 2 N such that N = N1 + N2, it

holds that

Z
⇤
N1

Z
⇤
N2

 Z
⇤
N . (44)

Then the sequence logZ⇤
N is super-additive and the “monotonic” con-

vergence of the pressure density will follow immediately by Fekete’s lemma
and equation (43):

Corollary 1. Under the hypothesis (40), there exists

lim
N!1

1
N

logZN = sup
N

1
N

logZ⇤
N (45)

Only the proposition 1 remains to be proven.

Proof of the proposition 1. The strategy for the proof follows the basic
ideas introduced in [14] for mean field spin models. For a fixed N consider
two integers N1, N2, such that N = N1 +N2 and set

� = N1/N , 1� � = N2/N ,

We decompose each of the two parts of the system N1, N2 in two popula-
tions A,B according to the fixed ratio ↵, namely according to the relation

Ni = ↵Ni + (1� ↵)Ni =: NiA +NiB , i = 1, 2

9



Now we introduce two independent centred Gaussian vectors:

⇠i = (⇠iA , ⇠iB) with covariance matrix
1
Ni

W , i = 1, 2

and we prove the following lemmas.

Lemma 1.
� ⇠1 + (1� �) ⇠2

d

= ⇠

Proof. Since ⇠1, ⇠2 are independent centred Gaussian vectors, ⇠0 := � ⇠1 +
(1� �) ⇠2 is a centred Gaussian vector. Its covariance matrix is:

�
2 W

N1
+ (1� �)2

W

N2
= �

W

N
+ (1� �)

W

N
=

W

N
,

the same of ⇠.

Lemma 2.

(1 + x)� (1 + y)1��
 1 + �x+ (1� �)y 8x > �1, y > �1, � 2 (0, 1)

Proof. Consider the function f(x, y) = (1 + x)� (1 + y)1�� and its Taylor
polynomial of first order at (0, 0), P (x, y) = 1 + �x + (1 � �)y . The
Hessian matrix of f is negative defined for x > �1, y > �1 (it has zero
determinant and negative trace), hence f(x, y)  P (x, y) .

Finally the proof of proposition 1 follows easily using the independence
of ⇠1, ⇠2, lemma 2 and lemma 1 .
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