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Weihrauch Complexity in Computable Analysis

Vasco Brattka, Guido Gherardi and Arno Pauly

Abstract We provide a self-contained introduction to Weihrauch complexity and its
applications to computable analysis. This includes a survey on some classification
results and a discussion of its relation to other approaches.

11.1 The Algebra of Problems

The Weihrauch lattice offers a framework to classify the uniform computational
content of problems and theorems from analysis and other areas of mathematics.
This framework can be seen as an attempt to create a calculus of mathematical
problems, very much in spirit of Kolmogorov’s interpretation of intuitionistic logic
[71].

We express mathematical problems with the help of partial multi-valued func-
tions f :⊆ X ⇒Y , which are just relations f ⊆ X×Y . It has turned out to be fruitful
for our approach to think of these relations as input-output-oriented multi-valued
functions f :⊆ X ⇒ Y . We consider dom( f ) = {x ∈ X : f (x) 6= /0} as the set of ad-
missible instances x of the problem f , and we consider the corresponding set of
function values f (x) ⊆ Y as the set of possible results. In the case of single-valued
f we identify f (x) with the corresponding singleton. An example of a mathematical
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problem that the reader can have in mind as a prototypical case is the zero problem.
Obviously, many problems in mathematics can be expressed in terms of solutions
of equations of the type f (x) = 0 with a continuous f : X → R. We formalize this
problem.

Example 11.1.1 (Zero problem). Let X be a topological space and let C (X) denote
the set of continuous f : X → R. The zero problem ZX :⊆ C (X)⇒ X , f 7→ f−1{0}
is the problem to find a solution x ∈ X of an equation of the type f (x) = 0, given
a continuous function f : X → R. The set dom(ZX ) of admissible instances of this
problem is the set of all continuous functions f with a non-empty zero set f−1{0}.
The set ZX ( f ) = f−1{0} of solutions is the set of all zeros of f .

Mathematical problems can be combined in various natural ways to obtain new
problems. The following definition lists a number of typical algebraic operations
that we are going to use. By X tY := ({0}×X)∪ ({1}×Y ) we denote the disjoint
union. By X∗ :=

⋃
∞
i=0({i}×X i) we denote the set of words over X , where X i :=

Xi
j=1 X stands for the i–fold Cartesian product of X with itself with X0 := {()}. Here

() stands for the empty tuple or word. By X := X ∪{⊥} we denote the completion
of X , where ⊥ 6∈ X . We use the set of natural numbers N= {0,1,2, ...}.

Definition 11.1.2 (Algebraic operations). Let f :⊆ X ⇒ Y , g :⊆ Z ⇒ W and
h :⊆ Y ⇒ Z be multi-valued functions. We define the following operations (for ex-
actly those inputs given by the specified domains):

1. h◦ f :⊆ X ⇒ Z, (h◦ f )(x) := {z ∈ Z : (∃y ∈ f (x)) z ∈ h(y)} and
dom(h◦ f ) := {x ∈ dom( f ) : f (x)⊆ dom(h)} (composition)

2. f ×g :⊆ X×Z ⇒ Y ×W,( f ×g)(x,z) := f (x)×g(z) and
dom( f ×g) := dom( f )×dom(g) (product)

3. f tg :⊆ X tZ ⇒ Y tW , ( f tg)(0,x) := {0}× f (x), ( f tg)(1,z) := {1}×g(z)
and dom( f tg) := dom( f )tdom(g) (coproduct)

4. f �g :⊆ X tZ ⇒Y ×W , ( f �g)(0,x) := f (x)×W , ( f �g)(1,z) :=Y ×g(z) and
dom( f �g) := dom( f )tdom(g) (box sum)

5. f ug :⊆ X×Z ⇒ Y tW,( f ug)(x,z) := f (x)tg(z) and
dom( f ug) := dom( f )×dom(g) (meet)

6. f +g :⊆ X×Z ⇒ Y ×W ,( f +g)(x,z) := ( f (x)×W )∪ (Y ×g(z)) and
dom( f +g) := dom( f )×dom(g) (sum)

7. f ∗ :⊆ X∗⇒ Y ∗, f ∗(i,x) := {i}× f i(x) and
dom( f ∗) := dom( f )∗ (finite parallelization)

8. f̂ :⊆ XN ⇒ YN, f̂ (xn)n := Xi∈N f (xi) and
dom( f̂ ) := dom( f )N (parallelization)

Here f i := Xi
j=1 f denotes the i–fold product of f with itself, where f 0 = idX0 .

It is important to point out that the appropriate definition of the domain of h ◦ f is
crucial. If x ∈ dom(h ◦ f ), then we require that all possible results y ∈ f (x) of f



upon input of x are supported by h, i.e., f (x) ⊆ dom(h). This definition of compo-
sition corresponds to our understanding of multi-valued functions as computational
problems.1 We often write for short h f for the composition h◦ f .

The reader might notice some relations between the resource-oriented interpre-
tation of linear logic and the way we combine mathematical problems (see Sec-
tion 11.9.1). Indeed, the following intuitive interpretation of some of our algebraic
operations is useful:

1. The composition h◦ f applies both problems consecutively, first f and then h.
2. The product f ×g provides both problems f and g in parallel. For each instance

one obtains solutions of both f and g.
3. The coproduct f t g provides both problems f and g as alternatives. For each

instance one can select to obtain either a solution of f or a solution of g.
4. The meet f u g provides either f or g. For each instance one either obtains a

solution for f or a solution for g; one learns a posteriori which one it is, but one
cannot control in advance which one it will be.

5. The sum f +g provides two potential solutions for given instances of f and g, at
least one of which has to be correct.

6. The finite parallelization f ∗ allows arbitrarily many finite applications of f in
parallel, and with each instance one can select how many applications are to be
used in parallel.

7. The parallelization f̂ allows countably many applications of f in parallel.

Given the above list of operations we can derive other algebraic operations.

Definition 11.1.3 (Juxtaposition). For f :⊆ X ⇒ Y and g :⊆ X ⇒ Z we denote by
( f ,g) :⊆ X ⇒ Y × Z the juxtaposition of f and g, which is defined by ( f ,g) :=
( f ×g)◦∆X , where ∆X : X ⇒ X×X ,x 7→ (x,x) denotes the diagonal of X .

Given two problems f and g we want to express what it means that f solves g.

Definition 11.1.4 (Solutions). Let f ,g :⊆ X ⇒ Y be multi-valued functions. We
define f v g :⇐⇒ dom(g) ⊆ dom( f ) and (∀x ∈ dom(g)) f (x) ⊆ g(x). In this sit-
uation we say that f solves g, f is a strengthening of g and g is a weakening of
f .

Intuitively, f v g means that all instances of g are also instances of f , and on all
these common instances f yields a possible solution of g. It is clear that the relation
v yields a preorder, i.e., it is reflexive and transitive.

Many theorems give rise to mathematical problems. In general, a theorem of the
logical form

(∀x ∈ X)(x ∈ D =⇒ (∃y ∈ Y )P(x,y))

translates into the problem

1 The way we define composition turns the multi-valued functions into morphisms of a specific
category [96] that is not identical to the usual category of relations.



F :⊆ X ⇒ Y,x 7→ {y ∈ Y : P(x,y)} with dom(F) := D.

That is, F plays the rôle of a multi-valued Skolem function for the statement of
the theorem. The problem F measures the difficulty of finding a suitable y, given
x, whereas the condition encapsulated in D is a purely classical premise that is not
meant to bear any constructive content. As an example we mention the intermediate
value theorem.

Example 11.1.5 (Intermediate value theorem). IVT :⊆C [0,1]⇒ [0,1], f 7→ f−1{0},
where dom(IVT) contains all f ∈ C [0,1] with f (0) · f (1)< 0, is called the interme-
diate value theorem. It is easy to see that Z[0,1] v IVT holds.

Bibliographic Remarks

Algebraic operations on multi-valued functions have been used frequently in computable analysis.
For instance, composition in the way defined here, product, juxtaposition and parallelization have
been used by Brattka [6, 8]. The coproduct operation and finite parallelization were introduced by
Pauly in [91]. The meet operation was introduced by Brattka and Gherardi [18], and the box sum
was introduced by Dzhafarov [42]. Inspired by the definition of the box sum, the definition of the
sum from Brattka, Gherardi and Hölzl [19] appears here for the first time in a modified version that
has better properties. The category of multi-valued functions was studied by Pauly [96].

11.2 Represented Spaces

In this section we want to provide the data types that we will use for problems
f :⊆ X ⇒ Y . For a purely topological development of our theory it would be suf-
ficient to consider topological spaces X and Y . However, since we want to discuss
computability properties too, we need slightly more structure on the spaces X and
Y , and this structure is provided by representations.

Definition 11.2.1 (Represented spaces). A represented space (X ,δ ) is a set X to-
gether with a surjective partial function δ :⊆ NN→ X .

If δ (p) = x then we call p a name for x, and we reserve the word representation
for the map δ itself. We endow the Baire space NN with its usual product topology
of the discrete topology on N and we always assume that a represented space (X ,δX )
is endowed with the final topology O(X) induced by δX on X , which is the largest
topology on X that turns δX into a continuous map. In this situation δX is automat-
ically a quotient map. Typically, we will deal with admissible representations2 δX
that are not just quotient maps but they are even more closely linked to the topology
O(X). In the following we will often just write for short X for a represented space
if the representation is clear from the context or not needed explicitly. We can now
formally define problems.

2 See the chapter “Admissibly Represented Spaces and Qcb-Spaces” by Schröder in this book for
more details.



Definition 11.2.2 (Problems). We call partial multi-valued functions f :⊆ X ⇒ Y
on represented spaces X ,Y problems, for short.

Properties of problems such as computability and continuity can easily be intro-
duced via realizers.

Definition 11.2.3 (Realizer). Given represented spaces (X ,δX ), (Y,δY ), a problem
f :⊆ X ⇒ Y and a function F :⊆ NN→ NN, we define F ` f :⇐⇒ δY F v f δX . In
this situation we say that F is a realizer of f .

In other words, F is a realizer of f if δY F solves f δX . Obviously, this concept
depends on the underlying represented spaces and the notation F ` f is only justified
when these are clear from the context.

On the Baire space NN it is clear what a continuous function F :⊆ NN → NN

is. Computability of such functions can be defined via Turing machines in a well-
known way. Such properties can now easily be transferred to problems via realizers.

Definition 11.2.4 (Computability and continuity). A problem f is called com-
putable (continuous) if it has a computable (continuous) realizer.

We warn the reader that the resulting notion of continuity for single-valued func-
tions is not automatically the topological notion of continuity that is induced by the
final topologies of the representations. However, every total single-valued function
f : X → Y on represented spaces that is continuous in our sense is also continuous
in the usual topological sense with respect to the final topologies, and in all our ap-
plications we will use admissible representations for which these two notions even
coincide.

Two representations δ1,δ2 of the same set X are called equivalent if the identity
id : (X ,δ1)→ (X ,δ2) and its inverse are computable. It is easy to see that equivalent
representations yield the same notion of computability and continuity.

By C (X ,Y ) we denote the set of continuous functions f : X → Y in terms of
Definition 11.2.4. The category of represented spaces is Cartesian closed, and the
same holds for the category of admissibly represented spaces. In particular, we have
canonical ways of defining product and function space representations.

In order to define those, we use pairing functions. We define a pairing func-
tion 〈,〉 : NN ×NN → NN by 〈p,q〉(2n) := p(n) and 〈p,q〉(2n + 1) := q(n) for
p,q ∈ NN and n ∈ N. We define a pairing function of type 〈,〉 : (NN)N → NN by
〈p0, p1, p2, ...〉〈n,k〉 := pn(k) for all pi ∈ NN and n,k ∈ N, where 〈n,k〉 is the stan-
dard Cantor pairing defined by 〈n,k〉 := 1

2 (n+ k+ 1)(n+ k)+ k. Finally, we note
that by np we denote the concatenation of a number n ∈N with a sequence p ∈NN.

We assume that we have some standard representation Φ of (a sufficiently large
class3) of continuous functions, i.e., for any such function f :⊆ NN→ NN there is a
p∈NN with f = Φp. For total functions this representation yields the exponential in
the category of (admissibly) represented spaces and satisfies natural versions of the

3 It suffices to consider all continuous functions f :⊆ NN → NN with Gδ –domain since any con-
tinuous function can be extended to such a function.



utm- and smn-theorems. For computable p one obtains the computable functions
Φp with natural domains (see [116] for details). For p ∈ NN we denote by p− 1 ∈
NN∪N∗ the sequence or word that is formed by concatenation of p(0)−1, p(1)−1,
p(2)−1,... with the understanding that −1 = () is the empty word.

Definition 11.2.5 (Constructions on representation). Let (X ,δX ) and (Y,δY ) be
represented spaces. We define

1. δX×Y :⊆ NN→ X×Y , δX×Y 〈p,q〉 := (δX (p),δY (q))
2. δXtY :⊆ NN→ X tY , δXtY (0p) := (0,δX (p)) and δXtY (1p) := (1,δY (p))
3. δX∗ :⊆ NN→ X∗, δX∗(n〈p1, p2, ..., pn〉) := (n,(δX (p1),δX (p2), ...,δX (pn)))
4. δXN :⊆ NN→ XN, δXN〈p0, p1, p2, ...〉 := (δX (pn))n∈N
5. δC (X ,Y ) :⊆ NN→ C (X ,Y ) by δC (X ,Y )(p) = f :⇐⇒ Φp ` f
6. δX : NN→ X , δX (p) := δX (p−1) if p−1∈ dom(δX ) and δX (p) :=⊥ otherwise.

Many spaces that occur in analysis are actually computable metric spaces. For
the definition we assume that the reader knows the notion of a computable (double)
sequence of real numbers.

Definition 11.2.6 (Computable metric spaces and Cauchy representations).

1. A computable metric space (X ,d,α) is a separable metric space (X ,d) with met-
ric d : X×X→R and a dense sequence α :N→X such that d◦(α×α) :N2→R
is a computable double sequence of real numbers.

2. We define the Cauchy representation δX :⊆NN→ X by δX (p) := limn→∞ α p(n)
and dom(δX ) = {p ∈ NN : (∀i > j) d(α p(i),α p( j))< 2− j}.

A standard numbering of the rational numbers Q and the Euclidean metric yields
the standard Cauchy representation δR of real numbers. Cauchy representations are
examples of admissible representations, and for such representations continuity in
the usual topological sense and continuity defined via realizers coincides. In partic-
ular, C (R) := C (R,R) is the usual set of continuous functions. In the following we
often consider N,R, [0,1],2N,NN and similar spaces as computable metric spaces
in the straightforward sense without further mentioning this fact. A computable Ba-
nach space is just a computable metric space that is additionally a Banach space and
such that the linear operations are computable. If the space is additionally a Hilbert
space, then it is called a computable Hilbert space.

A non-metrizable space that we occasionally need is the Sierpiński space S =
{0,1}, which is endowed with the topology O(S) = { /0,S,{1}}. By n̂ ∈ NN we
denote the constant sequence with value n ∈ N.

Definition 11.2.7 (Sierpiński space). Let δS : NN→ S be defined by δS(0̂) = 0 and
δS(p) = 1 for all p 6= 0̂.

We close this section with a discussion of computability properties of subsets.
The most important notion for us is that of a co-c.e. closed set. Given a computable
metric space (X ,d,α) we denote by B(x,r) := {y ∈ X : d(x,y) < r} the open ball
with center x ∈ X and radius r ≥ 0. More specifically, we denote by B〈n,〈i,k〉〉 :=
B(α(n), i

k+1 ) a basic open ball.



Definition 11.2.8 (Co-c.e. closed subsets). Let X be a computable metric space.
Then A ⊆ X is called co-c.e. closed if X \ A =

⋃
n∈N Bp(n) for some computable

p ∈ NN.

For X = NN the co-c.e. closed subsets are also known as Π0
1–classes. By A (X)

we denote the set of closed subsets of a topological space X . The definition of co-
c.e. closed subsets of computable metric spaces X directly leads to a representation
ψ− of the set A (X) defined by ψ−(p) := X \

⋃
∞
n=0 Bp(n). We denote the represented

space (A (X),ψ−) for short by A−(X). We now formulate two equivalent charac-
terizations of co-c.e. closed sets. For every set A ⊆ X we denote its characteristic
function by χA : X → S, which is defined by χA(x) = 1 :⇐⇒ x ∈ A.

Proposition 11.2.9 (Co-c.e. closed sets). Let X be a computable metric space and
let A⊆ X. Then the following are equivalent:

1. A is co-c.e. closed,
2. A = f−1{0} for some computable f : X → R,
3. χX\A : X → S is computable.

These equivalences are uniform, i.e., the maps A−(X)→ C (X ,S),A 7→ χX\A and
C (X)→A−(X), f 7→ f−1{0} are computable and admit (in the second case multi-
valued) computable right inverses.

The third characterization has the advantage that it is the most general of these
three, and it works even for arbitrary represented spaces X . Hence, for such spaces
we define ψ− by ψ−(p) =A :⇐⇒ δC (X ,S)(p) = χX\A. We denote the corresponding
represented space (A (X),ψ−) also by A−(X). Due to Proposition 11.2.9 this nota-
tion is consistent with the special definition for computable metric spaces X above.
Besides the notion of a co-c.e. closed subset we also need the notion of a co-c.e.
compact subset.

Definition 11.2.10 (Computable compact subsets). Let X be a computable metric
space and let K ⊆ X be compact.

1. K is called co-c.e. compact if {〈〈n1, ...,nk〉,k〉 ∈ N : K ⊆
⋃k

i=1 Bni} is c.e.
2. K is called computably compact if K is co-c.e. compact and there exists a com-

putable sequence that is dense in K.

Obviously, a computable metric space is computably compact if and only if it is
co-c.e. compact. Similarly as in the case of closed sets we can derive a representa-
tion κ− of the set K (X) of compact subsets that is based on (1) and a representation
κ of compact sets that is based on (2). By K−(X) we denote the represented space
(K (X),κ−). Once again there is a more general representation that works for arbi-
trary represented spaces, but we will not formalize this representation here.
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11.3 The Weihrauch Lattice

We now want to define Weihrauch reducibility as a way to compare problems with
each other. The goal is that f ≤W g expresses the fact that f can be computed by
a single application of g. We will need two variants of such a reducibility. By
id : NN→ NN we denote the identity of the Baire space. For other sets X we usually
add an index X and write the identity as idX : X → X . For F,G :⊆ NN → NN we
define 〈F,G〉(p) := 〈F(p),G(p)〉.

Definition 11.3.1 (Weihrauch reducibility). Let f and g be problems. We define:

1. f ≤W g :⇐⇒ (∃ computable H,K :⊆ NN→ NN)(∀G ` g) H〈id,GK〉 ` f .
2. f ≤sW g :⇐⇒ (∃ computable H,K :⊆ NN→ NN)(∀G ` g) HGK ` f .

We say that f is (strongly) Weihrauch reducible to g, if f ≤W g ( f ≤sW g) holds.

The diagram in Figure 11.1 illustrates Weihrauch reducibility and its strong coun-
terpart. It is easy to see that f ≤sW g implies f ≤W g. It is also easy to see that ≤W
and ≤sW are preorders, i.e., they are reflexive and transitive. We denote the corre-
sponding equivalences by ≡W and ≡sW, respectively, and we use the symbols <W
and <sW for strict reducibilities, respectively. Similar reducibilities can be defined
if the notion of computability is replaced by continuity or other suitable categories.
A more categorical characterization of Weihrauch reducibility that mentions neither
realizers nor the Baire space is given by the following proposition.

Proposition 11.3.2. Let f :⊆ X ⇒ Y and g :⊆ Z ⇒W be problems. Then:

1. f ≤W g if and only if there are computable h :⊆V ×W ⇒Y and k :⊆ X ⇒V ×Z
for some represented space V such that h◦ (idV ×g)◦ k v f .

2. f ≤sW g if and only if there are computable h :⊆W ⇒ Y and k :⊆ X ⇒ Z such
that h◦g◦ k v f .

Even though the proof of Proposition 11.3.2 is elementary, there is a subtle point
in it. Namely, the proof requires a version of the axiom of choice. In fact, we are
freely using the axiom of choice, and mostly we invoke the following version.
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Fig. 11.1 Weihrauch reducibility and strong Weihrauch reducibility.

The axiom of choice for the Baire space: every problem f has a realizer F .

The fact that Weihrauch reducibility captures the idea of using g exactly once
in the course of the computation is stated in the following theorem that we only
formulate in intuitive terms here.

Theorem 11.3.3 (Generalized Turing oracles). f ≤W g holds if and only if f can
be computed on a (generalized) Turing machine that uses exactly one application of
g in the course of its computation.

We emphasize that f ≤W g actually requires that the oracle g is used once in the
course of the computation of f . Hence, using the oracle g can actually be an obstacle
if the domain of g contains only complicated points.

We note that a characterization of strong Weihrauch reducibility analogous to
Theorem 11.3.3 would require discarding all results that were obtained in the course
of the computation other than the result of the application of the oracle g. This would
be a rather unnatural way of using oracles, and it indicates why ordinary Weihrauch
reducibility is a more appropriate concept from this perspective.

The relation between strong and ordinary Weihrauch reducibility is similar to
the relation between one-one and many-one reducibility in classical computability
theory, and it can be expressed using the notion of a cylinder.

Definition 11.3.4 (Cylinder). A problem f is called a cylinder if id× f ≤sW f .

It is clear that f ≤sW id× f and id× f ≡W f hold for all problems f , whereas
id× f ≤sW f is a specific property of f that allows one to “feed the input through to
f .”

Proposition 11.3.5 (Cylinder). A problem f is a cylinder if and only if for all prob-
lems g the following holds: g≤W f ⇐⇒ g≤sW f .

It is important to mention that the definitions of ≤W and ≤sW are invariant under
the replacement of represented spaces by equivalent ones [18, Lemma 2.1]. The
equivalence classes induced by ≡W and ≡sW are called Weihrauch degrees and
strong Weihrauch degrees, respectively. The reducibilities ≤W and ≤sW naturally
extend to these degrees.



Most algebraic operations defined in Definition 11.1.2 are monotone with respect
to (strong) Weihrauch reducibility. We say that a binary operation � on problems is
monotone with respect to≤W if for all problems f0, f1,g0 and g1 condition 1. holds,
and a unary operation � on problems is called a closure operator with respect to
≤W if for all problems f ,g condition 2. holds:

1. ( f0≤W f1 and g0≤W g1) =⇒ f0�g0≤W f1�g1 (monotone)
2. f ≤W f�, f��≤W f� and ( f ≤W g =⇒ f�≤W g�) (closure operator)

Analogously to monotone, we define antitone with a reversed order on one side.
Monotonicity and closure operators with respect to ≤sW are defined analogously.

Proposition 11.3.6 (Monotonicity and closure operators). We obtain:

1. The binary operations ×, t, u, � and + are all monotone with respect to ≤W
and ≤sW.

2. The unary operation ∗ is a closure operator with respect to ≤W and monotone
with respect to ≤sW.

3. The unary operation ̂ is a closure operator with respect to ≤W and ≤sW.

In particular, all the mentioned operations extend to operations on degrees.

It is an obvious question whether there is any least and any greatest Weihrauch
degree. The first question is easy to answer.

Definition 11.3.7 (Special Weihrauch degrees). By 0 we denote the (strong) Weih-
rauch degree of the nowhere-defined problems, and by 1 we denote the Weihrauch
degree of the identity id.

It is easy to see that 0 is exactly the class of all nowhere defined problems, and
it is the least (strong) Weihrauch degree. The class 1 characterizes the computable
problems in the sense that f ≤W 1 holds if and only if f is computable. In many
respects 0 and 1 behave algebraically like the numerical constants 0 and 1.

The question of whether there is a greatest Weihrauch degree is less straightfor-
ward to answer. If we do not accept the axiom of choice for the Baire space, then
the class of problems without realizer forms a natural top element. Since we are
accepting the axiom of choice, this natural top element is not available, and we can
only add an additional top element to the Weihrauch degrees.4

If one is not interested in classifying specific problems with general types X ,Y as
they appear in analysis, but if one rather wants to study the structure of Weihrauch
degrees as such, then it is sufficient to consider problems of the type f :⊆NN ⇒NN

on the Baire space. We make this slightly more precise.

Lemma 11.3.8 (Realizer version). Let (X ,δX ) and (Y,δY ) be represented spaces
and let f :⊆ X ⇒ Y be a problem. Then the realizer version f r :⊆ NN ⇒ NN of f is
defined by f r := δ

−1
Y ◦ f ◦δX . We have f r≡sW f .

4 See Brattka and Pauly [29] for a more detailed discussion.



This means that every (strong) Weihrauch degree has a representative of type
f r :⊆ NN ⇒ NN. By W and Ws we denote the set of Weihrauch degrees and strong
Weihrauch degrees, respectively, both restricted to problems on the Baire space.5

Theorem 11.3.9 (Weihrauch lattice). The Weihrauch degrees (W ,≤W) form a
distributive lattice with supremum operation t, infimum operation u and bottom
element 0.

Also the strong Weihrauch degrees form a lattice structure, albeit a non-distributive
one with a different supremum operation.

Theorem 11.3.10 (Strong Weihrauch lattice). The strong Weihrauch degrees
(Ws,≤sW) form a non-distributive lattice with supremum operation �, infimum op-
eration u and bottom element 0.
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11.4 Algebraic and Topological Properties

In this section we discuss a number of algebraic and topological notions and their
interactions that turned out to be fruitful for the study of the Weihrauch lattice.
We mention that while f ≤W 1 characterizes the computable problems f , also the
relation 1≤W f bears some meaning.

5 We use the restriction to the Baire space for our formal definition of W and Ws, since the class
of all (strong) Weihrauch degrees of problems with arbitrary type does not form a set.



Definition 11.4.1 (Pointedness). We call a problem f pointed if id≤W f holds.
Analogously, we can define strong pointedness with the help of ≤sW instead of
≤W.

It is easy to see that the pointed problems are exactly those with a computable
point in their domain. By definition f ∗ is always pointed since f 0 = id{()}. We intro-
duce some further terminology that can be expressed with the help of the algebraic
operations.

Definition 11.4.2 (Idempotency and parallelizability). Let f be a problem.

1. We call f idempotent if f × f ≡W f .
2. We call f parallelizable if f̂ ≡W f .

Analogously, we define strong idempotency and strong parallelizability with the
help of ≡sW instead of ≡W.

Whether or not a problem is idempotent or parallelizable might be hard to prove
in some instances. In the following example the first statement is relatively easy
to obtain, whereas the second one is harder to prove (see Theorems 11.7.34 and
11.7.35).

Example 11.4.3. ÎVT≡sW Z[0,1] and hence Z[0,1] is (strongly) parallelizable, but IVT
is not idempotent.

The following result captures some easy observations. Pointedness is involved
here, since f 0 = id{()} is pointed for every problem f .

Proposition 11.4.4 (Idempotency and parallelizability). Let f be a problem. Then:

1. f (strongly) parallelizable =⇒ f (strongly) idempotent.
2. f pointed and idempotent ⇐⇒ f ∗≡W f .
3. f strongly pointed and strongly idempotent ⇐⇒ f ∗≡sW f .

A less obvious result relates idempotency and parallelizability. In order to for-
mulate this result, we need another definition.

Definition 11.4.5 (Finite tolerance). A problem f :⊆ NN ⇒ NN is called finitely
tolerant if there is a computable partial function T :⊆ NN → NN such that for all
p,q∈ dom( f ) and k ∈N with (∀n≥ k)(p(n) = q(n)) it follows that r ∈ f (q) implies
T 〈r,k〉 ∈ f (p). More generally, a problem g :⊆ X ⇒Y can be called finitely tolerant
if there is some finitely tolerant f :⊆ NN ⇒ NN with f ≡W g.

Intuitively, finite tolerance means that for two almost identical inputs and a so-
lution for one of these inputs we can compute a solution for the other input. The
squashing theorem relates products g× f to parallelizations ĝ of problems.

Theorem 11.4.6 (Squashing theorem). For f ,g :⊆ NN ⇒ NN we obtain:

1. If dom( f ) = NN and f is finitely tolerant, then g× f ≤W f =⇒ ĝ≤W f .



2. If dom( f ) = 2N and f is finitely tolerant, then g× f ≤sW f =⇒ ĝ≤sW f .

We obtain the following immediate corollary.

Corollary 11.4.7. Let f :⊆ NN ⇒ NN be finitely tolerant. Then we obtain:

1. For dom( f ) = NN: f idempotent ⇐⇒ f parallelizable.
2. For dom( f ) = 2N: f strongly idempotent ⇐⇒ f strongly parallelizable.

Another property that turned out to be quite useful is join-irreducibility. We recall
that a problem f is called join-irreducible in the lattice-theoretic sense if f ≤W gth
implies f ≤W g or f ≤W h for all problems g,h. We need a countable version of
this property. For this purpose we first need to define countable coproducts. For a
sequence (Xi)i∈N of sets we define the disjoint union by

⊔
∞
i=0 Xi :=

⋃
∞
i=0({i}×Xi).

Now we can define the countable coproduct.

Definition 11.4.8 (Countable coproduct). Let fi :⊆ Xi ⇒ Yi be problems for all
i ∈ N. Then we define

⊔
∞
i=0 fi :⊆

⊔
∞
i=0 Xi ⇒

⊔
∞
i=0 Yi by

⊔
∞
i=0 fi(n,x) := {n}× fn(x).

Now we are prepared to define countable irreducibility.

Definition 11.4.9 (Countable irreducibility). A problem f is called countably ir-
reducible if for every sequence (gi)i∈N of problems: f ≤W

⊔
∞
i=0 gi =⇒ (∃i) f ≤W gi.

Likewise we can define strong countable irreducibility with ≤sW in place of ≤W.

It is clear that every countably irreducible6 problem is join-irreducible. Another
notion that turned out to be fruitful in this context is the notion of a fractal. Roughly
speaking, a fractal is a problem that exhibits its full power even if we zoom arbitrar-
ily deep into its domain.

Definition 11.4.10 (Fractal). A problem f is called a fractal if there is a problem
F :⊆NN ⇒NN such that F≡W f and F |A≡W F holds for every clopen A⊆NN with
A∩ dom(F) 6= /0. Likewise we define a strong fractal with ≡sW instead of ≡W. A
total (strong) fractal is a (strong) fractal where F can be chosen to be total.

One reason why fractals are useful is captured in the following observation.

Proposition 11.4.11 (Fractals). Every (strong) fractal is (strongly) countably irre-
ducible.

Some natural problems in the Weihrauch lattice are densely realized in the fol-
lowing sense.

Definition 11.4.12 (Densely realized). Let (X ,δX ), (Y,δY ) be represented spaces.
A problem f :⊆ X ⇒Y is called densely realized if f r(p) = δ

−1
Y ◦ f ◦δX (p) is dense

in dom(δY ) for all p ∈ dom( f ◦δX ).

6 We note that countable irreducibility is not identical to what is sometimes called σ -join-
irreducibility since the countable coproduct is not necessarily a countable supremum, as we will
see in Theorem 11.5.1.



We note that this notion depends on the representations chosen. It turns out that
all problems with discrete output below densely realized problems with totally rep-
resented output are computable.

Proposition 11.4.13 (Densely realized). Let f :⊆X ⇒Y be densely realized, where
Y is a represented space with total representation, and let g :⊆ Z ⇒N be a problem.
If g≤W f holds, then g is computable.
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11.5 Completeness, Composition and Implication

Another obvious question regarding the Weihrauch lattice is whether the lattice is
complete or, more generally, which suprema and infima exist. A mostly negative
answer is given by the following result.

Theorem 11.5.1 (Suprema and infima). No non-trivial countable suprema exist
in the Weihrauch lattice, i.e., a sequence ( fn)n∈N of problems has a supremum if
and only if this supremum is already a supremum of ( fn)n≤k for some k ∈ N. Some
non-trivial countable infima exist in the Weihrauch lattice, others do not exist.

In particular, the Weihrauch lattice is not complete in the lattice-theoretic sense.
We can also conclude that

⊔
∞
n=0 fn is typically not the supremum of { fn : n ∈ N}

unless it is already a supremum of
⊔k

n=0 fn for some k ∈ N.
However, it turns out that some important suprema and infima exist in the

Weihrauch lattice. We are particularly interested in composition and implication.
The composition f ◦g of problems as it has been defined in Definition 11.1.2 is not
an operation on degrees in the same sense in which the other algebraic operations
extend to degrees. It requires that the output type of g fits the input type of f , and
even if the types fit, the operation does not need to be monotone. On the other hand,
it is natural to consider a Weihrauch degree f ∗ g that captures exactly what can
be achieved when one first applies g, possibly followed by some computation, and
then one applies f . That the maximal Weihrauch degree that can be built in this way
always exists is the first statement of the following theorem. The second statement
captures the minimal degree (g→ f ) that is needed in advance of g in order to com-
pute f . In some sense (g→ f ) measures how much harder f is to compute than
g.



Theorem 11.5.2 (Compositional product and implication). Let f and g be prob-
lems. The following Weihrauch degrees exist:

1. f ∗g := max≤W{ f0 ◦g0 : f0≤W f ,g0≤W g} (compositional product)
2. (g→ f ) := min≤W{h : f ≤W g∗h} (implication)

Maximum and minimum are understood with respect to ≤W. Only such f0 and g0
are considered that can be composed.

By definition, ∗ and→ are operations on degrees. It is easy to see that ∗ is even
a monotone operation, whereas→ is antitone in the first component and monotone
in the second component. In order to prove Theorem 11.5.2 it is useful to define a
specific representative of the degree f ∗g that we denote by f ?g. For F,G :⊆NN→
NN we define 〈F×G〉〈p,q〉 := 〈F(p),G(q)〉.

Definition 11.5.3 (Compositional product). Let f and g be problems. We define
f ?g :⊆ NN ⇒ NN by ( f ?g)〈p,q〉 := 〈id× f r〉 ◦Φp ◦gr(q) for all p,q ∈ NN.

This definition captures the intuition that in between g and f there is another
possible computation Φp. Of course, this definition does not have the same set-
theoretic flavor as the other operations in Definition 11.1.2, and it is not a definition
that we typically work with. It is mostly needed in order to prove Theorem 11.5.2,
and the working definition of the compositional product f ∗ g is the one given in
Theorem 11.5.2. The following result captures another interesting property of f ?g.

Proposition 11.5.4. f ∗ g≡W f ? g and f ? g is always a cylinder. If f and g are
fractals, then so is f ?g.

We can also define a strong version of the compositional product. This operation
has been studied less and is only known to exist in specific cases. In fact, since f ?g
is always a cylinder, we directly obtain the following corollary of Theorem 11.5.2
and Proposition 11.5.4.

Corollary 11.5.5. f ∗s g := max≤sW{ f0 ◦g0 : f0≤sW f ,g0≤sWg} exists for cylinders
f ,g.

The maximum f ∗s g exists also in some cases where f ,g are not cylinders, but
we do not claim that it exists in general. The following result summarizes some
algebraic properties of compositional products and implications.

Proposition 11.5.6 (Algebraic properties).

1. ∗ is associative but not commutative,→ is neither associative nor commutative.
2. ∗s is associative whenever all occurring degrees actually exist.

The operations +,u,�,t,× and ∗ are typically ordered as given.

Proposition 11.5.7 (Order of algebraic operations). We obtain:

1. f +g≤sW f ug≤sW f �g≤sW f tg and f ×g≤sW f ?g for all problems f ,g.



2. f tg≤W f ×g and f �g≤sW f ×g for all pointed problems f ,g.

The following result expresses in which way compositional product and implica-
tion are adjoints of each other.

Proposition 11.5.8 (Adjointness). f ≤W g∗h ⇐⇒ (g→ f )≤W h.

In the language of lattice theory this result can be expressed such that (W ,≥W,∗)
is right residuated, and the residual operation is exactly→. It follows from Exam-
ple 11.7.43 that (W ,≥W,∗) is not left residuated and that (W ,≥W,×) is not residu-
ated. The following result expresses that the Weihrauch lattice is not residuated with
respect to the lattice operations t,u.

Theorem 11.5.9 (Brouwer and Heyting algebras). The Weihrauch lattice W is
neither a Brouwer algebra nor a Heyting algebra.

Brouwer algebras can be seen as models of intermediate logics that are in be-
tween classical logic and intuitionistic logic.
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11.6 Limits and Jumps

A map of particular importance in the Weihrauch lattice is the limit map. Given a
Hausdorff space X , we define the limit map of the space X and the the limit map (of
the Baire space) by

1. limX :⊆ XN→ X ,(xn)n∈N 7→ limn→∞ xn,
2. lim :⊆ NN→ NN,〈p0, p1, p2, ...〉 7→ limn→∞ pn.

The domain of limX consists of all converging sequences in X . In the special case
of the Baire space, we use a tupling with pi ∈NN on the input side for mere reasons
of convenience. By lim∆ we denote the restriction of lim to eventually constant
sequences. It is easy to see that limN≡W lim∆ . It has been noticed that limit maps
can be used to characterize limit computable functions and functions computable
with finitely many mind changes.

Proposition 11.6.1 (Limit computability and finite mind change computabil-
ity). For problems f we obtain:



1. f ≤W lim ⇐⇒ f limit computable.
2. f ≤W limN ⇐⇒ f computable with finitely many mind changes.

Limit computability and computability with finitely many mind changes can be
defined directly with Turing machines that allow two-way output tapes. In the case
of limit computable problems the Turing machine can change the content of each
output cell finitely many times before it has to stabilize; in the case of problems that
are computable with finitely many mind changes, the entire output has to stabilize
after finitely many changes. These concepts are well known from learning theory.

One might ask whether limX for other spaces X yields different classes of com-
putable problems, but for many spaces X this is not the case. We recall that a com-
putable metric space X is called rich if there is a computable embedding ι : 2N ↪→ X ,
i.e., ι is injective, and ι and its partial inverse ι−1 are computable.

Proposition 11.6.2 (Limits). limX≡sW lim for all rich computable metric spaces X.

Examples of rich computable metric spaces are 2N,NN,R,RN, [0,1], [0,1]N, etc.
This justifies also the more generic notation lim for the limit operation on the Baire
space. An interesting property of limX is its behavior under composition. The fol-
lowing result on limN can be proved with the help of Theorem 11.7.11, but is also
easy to see directly.

Proposition 11.6.3 (Composition). limN ∗ limN≡W limN, i.e., problems that are
computable with finitely many mind changes are closed under composition.

The situation for iterations of lim is very different. For a problem f we denote by
f [n] the n–fold iteration of the compositional product of f with itself, i.e., f [0]≡W id,
f [1]≡W f , f [2]≡W f ∗ f , etc. By iterations of lim one climbs up the Borel hierar-
chy with every further application of a limit. By Σ0

n we denote the corresponding
Borel class of subsets of NN, i.e., Σ0

1 is the class of open subsets, Σ0
2 is the class

of Fσ –subsets and so forth. A function F :⊆ NN → NN is called Σ0
n–measurable,

if preimages F−1(U) of open sets U are Σ0
n–sets relative to dom(F). Analogously,

F is effectively Σ0
n–measurable if the preimage can be uniformly computed from a

description of U . The Σ0
1–measurable functions F are exactly the continuous ones,

and the effectively Σ0
1–measurable functions F are exactly the computable ones. We

can transfer concepts of measurability to problems via realizers.

Definition 11.6.4 (Effective Borel measurability). Let n≥ 1. A problem f is called
(effectively) Σ0

n–measurable if it has a realizer with the same property.

It can be proved that for computable metric spaces X and Y and total functions
f : X → Y this yields just the usual (effectively) Σ0

n–measurable functions as they
are known in descriptive set theory [9]. The measurable problems can also easily be
characterized in the Weihrauch lattice.

Theorem 11.6.5 (Effective Borel measurability). f ≤W lim[n] ⇐⇒ f is effectively
Σ0

n+1–measurable, for all problems f and n ∈ N.



This theorem can be relativized. We write f ≤p
W g if f is Weihrauch reducible to g

with respect to some oracle p ∈ NN, which means that the reduction functions H,K
are computable relative to p. Then f ≤p

W lim[n] holds for some p ∈ NN if and only
if f is Σ0

n+1–measurable. Theorem 11.6.5 shows that the Weihrauch lattice yields a
refinement of the effective Borel hierarchy very much in the same way as many-one
reducibility yields a refinement of the Kleene hierarchy. We summarize some of the
obvious algebraic properties of lim.

Proposition 11.6.6. lim is a cylinder, strongly parallelizable, strongly idempotent,
finitely tolerant, a strong fractal and (strongly) countably irreducible.

It is useful to know that there are many problems that are equivalent to lim. We
mention only a few. By J : NN→NN, p 7→ p′ we denote the Turing jump operation,
which is injective as a function on the Baire space. By EC : NN→ 2N we denote the
function that translates enumerations of sets into their characteristic functions, and
by LPO : NN→{0,1} we denote the limited principle of omniscience7:

EC(p)(n) :=
{

1 if (∃k ∈ N) p(k) = n+1
0 otherwise and LPO(p) :=

{
1 if (∃k) p(k) = 0
0 otherwise

We also use inf,sup :⊆ RN→ R. We obtain the following result that lists some
important members of the equivalence class of lim.

Theorem 11.6.7 (Limit). lim≡sW inf≡sW sup≡sW J≡sW EC≡sW L̂PO≡sW ̂limN.

We now use this limit operation to define the jump of a represented space.

Definition 11.6.8 (Jump of a represented space). Let (X ,δ ) be a represented
space. Then we define its jump (X ′,δ ′) by X ′ := X and δ ′ := δ ◦ lim. Likewise,
(X (n),δ (n)) denotes the n–fold jump.

That is, in the new represented space X ′ a name of x with respect to δ ′ is a se-
quence that converges to a name in the sense of δ . Hence, names in (X ′,δ ′) typically
carry less computably accessible information than names in (X ,δ ). Now the jump
of a problem is just the same problem but with the input space replaced by its jump.

Definition 11.6.9 (Jump of a problem). Let f :⊆ X ⇒ Y be a problem. Then its
jump f ′ :⊆ X ′⇒Y is defined to be the same problem with the modified input space
X ′. Likewise f (n) :⊆ X (n) ⇒ Y denotes the n–fold jump for n ∈ N with f (0) := f .

Since the jump f ′ has to work with a weaker type of input information, it is
typically harder to compute f ′ than f . The study of jumps provides one reason why it
is important to keep track of strong Weihrauch reductions. Jumps are monotone with
respect to strong Weihrauch reductions, but not with respect to ordinary Weihrauch
reductions in general.

7 LPO is also Weihrauch equivalent to the identity id : S→{0,1}.



Proposition 11.6.10 (Monotonicity). For all problems f ,g the following hold:
f ≤sW f ′ and also f ≤sW g =⇒ f ′≤sW g′.

Trivial examples such as a constant function show that f ≡sW f ′ can happen. For
f ≤W g all possible reductions between f ′ and g′ can occur; the order can even be
reversed, i.e., g′<W f ′ can happen [22, Figure 2]. Surprisingly, there is also a certain
inverse of Proposition 11.6.10 that one can prove. We recall that by p′ we denote
the Turing jump of p. Using this concept we can phrase the following theorem.

Theorem 11.6.11 (Inverting jumps). f ′ ≤p
W g′ =⇒ f ≤p′

W g holds for all problems
f ,g and p∈NN. An analogous statement holds if Weihrauch reducibility is replaced
by strong Weihrauch reducibility in both occurrences.

The property that f ≤p
W g holds for some oracle p is equivalent to the continu-

ous version of Weihrauch reducibility, where the two reduction functions H,K just
need to be continuous. By Theorem 11.6.11 continuous separations are particularly
useful, since they automatically carry over to jumps.

The following result summarizes some algebraic properties of the jump.

Proposition 11.6.12 (Algebraic properties). We obtain f ′ × g′≡sW( f × g)′,
f̂ ′ ≡sW f̂ ′, f ′ug′≡sW ( f ug)′, f ′tg′≤sW( f tg)′ and f ′∗≤sW f ∗′ for all problems
f ,g.

One can see that coproducts do not commute with jumps in general, since jumps
are join-irreducible.

Proposition 11.6.13 (Finite tolerance and fractality). f ′ is finitely tolerant, a
strong fractal and (strongly) countably irreducible for every problem f .

Sometimes it is useful to have the following characterizations of the jump.

Proposition 11.6.14 (Cylinder). f ′≡sW f ∗s lim, and if f is a cylinder, then f ′ is a
cylinder and f ′≡W f ′× lim≡W f ∗ lim.

In particular, f ∗s lim always exists. We continue with a discussion of some in-
variant properties. We call a class P of problems invariant if f ≤W g and g ∈ P
implies f ∈ P. Likewise, we define strong invariance. We list a number of examples
of (strongly) invariant properties that easily follow from results of this section.

Corollary 11.6.15 (Invariance). The following properties of problems are (strongly)
invariant: continuity, computability, limit computability, (effective) Σ0

n–measurability,
computability with finitely many mind changes, non-uniform computability (i.e., the
class of problems that have some computable output for every computable input in
the domain).

Sometimes it is also useful to use numerical quantities that are preserved by
Weihrauch reducibility. Besides the level n of (effective) Σ0

n–measurability, we can
also use the number of mind changes that are required to compute a problem. Let
mind( f ) denote the minimal number n ∈ N that a Turing machine with two-way
output needs in order to compute f with at most n mind changes on all inputs (if
such a number exists). This property is invariant in the following sense.



Proposition 11.6.16 (Mind changes). f ≤W g=⇒mind( f )≤W mind(g) for all prob-
lems f ,g for which mind( f ),mind(g) exist.

Another numerical quantity that is useful as an invariant for strong Weihrauch
reducibility is the cardinality of a problem.

Definition 11.6.17 (Cardinality). For every problem f :⊆ X ⇒ Y we denote by # f
the maximal cardinality (if it exists) of a set M ⊆ dom( f ) such that { f (x) : x ∈M}
contains pairwise disjoint sets.

It is easy to see that the following holds.

Proposition 11.6.18 (Cardinality). f ≤sW g =⇒ # f ≤ #g for all problems f ,g with
existing cardinality.

Every cylinder f needs to satisfy # f ≥ |NN|, since #id = |NN|, where |X | denotes
the cardinality of the set X . For instance, it is easy to see that # limN = |N| and
#lim∆ = |NN|. We obtain the following.

Example 11.6.19. limN≡W lim∆ and limN<sW lim∆ . Moreover, lim∆ is a cylinder,
whereas limN is not.

Next we mention that LPO is in a certain sense the weakest discontinuous prob-
lem among all single-valued problems.

Theorem 11.6.20 (Discontinuous single-valued problems). LPO ≤p
W f for some

oracle p ⇐⇒ f is discontinuous, for f : X →Y on computable metric spaces X ,Y .

We close this section with the following result that shows that for (certain well-
behaved) linear closed operators there is a dichotomy: either they are bounded and
computable or lim is reducible to them.

Theorem 11.6.21 (Linear operators). Let T :⊆ X → Y be a linear closed opera-
tor on computable Banach spaces X ,Y . Let (en)n∈N be a computable sequence in
dom(T ) whose linear span is dense in dom(T ) and such that (T (en))n∈N is com-
putable.

1. If T is bounded, then T is computable.
2. If T is unbounded, then lim≤W T .
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11.7 Choice

The choice problem CX of a given space X is the problem of finding a point in a
given closed A⊆X . By choosing appropriate spaces X one obtains several important
Weihrauch degrees.

Definition 11.7.1 (Choice). The problem CX :⊆A−(X)⇒X ,A 7→A with dom(CX )
:= {A : A 6= /0} is called the choice problem of the represented space X .

Here the description A 7→ A of the map is to be read such that on the input side
A ∈ A−(X) is a point of the input space, whereas on the output side it is a subset
A ⊆ X of possible results. Typically, X will be a computable metric space, and the
reader can think of closed sets being represented by enumerations of balls whose
union exhausts the complement, as described in the first item of Proposition 11.2.9.

Likewise, one can use the second characterization of Proposition 11.2.9 to define
a representation of closed sets via preimages of continuous functions f : X → R.
The uniformity statement in Proposition 11.2.9 yields the conclusion that the choice
problem is nothing but the zero problem that we introduced in Example 11.1.1.

Corollary 11.7.2. CX≡sW ZX for every computable metric space X.

Certain relations between spaces transfer to the corresponding choice problems.
We mention two such properties in the following result.

Proposition 11.7.3 (Subsets and surjections). Let X ,Y be represented spaces.

1. If A⊆ X is co-c.e. closed, then CA≤sW CX .
2. If there is a computable surjection s : X → Y , then CY ≤sW CX .

The choice problem has been studied in many variants that are typically restric-
tions to closed subsets with certain extra properties. We list a number of examples.

Definition 11.7.4 (Variants of choice).

1. UCX is CX restricted to singletons (unique choice)
2. CCX is CX restricted to connected sets (connected choice)
3. PWCCX is CX restricted to pathwise connected sets (pathw. connected choice)
4. XCX is CX restricted to convex sets (convex choice)



5. PCX is CX restricted to sets with positive measure (positive choice)
6. AoUCX is CX restricted to sets of the form {x} or X (all-or-unique choice)
7. ACCX is CX restricted to sets of the form X \{x} or X (all-or-co-unique choice)
8. CFCX is CX restricted to co-finite sets (co-finite choice)

In some of these examples some additional structure is required on X . For in-
stance, for convex choice one would assume that X is a vector space, and for posi-
tive choice one would expect that X is endowed with a fixed Borel measure. In the
case of NN and R we assume that the product measure of the geometric probability
measure on N and the Lebesgue measure are used, respectively. In the case of UCX
and AoUCX we assume that X is a T1–space, and in the case of ACCX and CFCX
we assume that X is endowed with a discrete topology. The choice problem CX is a
fractal for many spaces X and often a total fractal for compact X .

Proposition 11.7.5 (Fractality).

1. CN,CR,PCR and CNN are fractals,
2. C2N ,PC2N ,CC[0,1] and XC[0,1]n+1 are total fractals for all n ∈ N.

In particular, all the mentioned problems are countably irreducible and hence join-
irreducible.

While it is easy to see that CX is a cylinder for many spaces X , it follows from the
fact that there are only countably many pairwise different sets of positive measure
that #PC2N = #PCR = #PCNN = #CN = |N|, and hence all the mentioned problems
are not cylinders. It requires more sophisticated arguments to show that CC[0,1] is
not a cylinder despite the fact that #CC[0,1] = |NN|.

Proposition 11.7.6 (Cylinders).

1. C2N ,CR,CNN are cylinders,
2. CN,PC2N ,PCR,PCNN and CC[0,1] are not cylinders.

We note that there is also a choice problem KX :⊆K−(X) ⇒ X ,K 7→ K that is
called compact choice. Unlike the other choice problems we do not just restrict CX
to compact sets here, but we also increase the input information, i.e., the input set K
is actually described as a compact set.

With the help of the choice problem CX for different spaces X we obtain sev-
eral important Weihrauch degrees. In the following result we indicate how the most
important choice problems appear naturally as upper bounds for certain topologi-
cal properties of the underlying space. We call X computably countable if there is
a computable surjection s : N→ X , and we say that a computable metric space is
computably σ–compact if there is a computable sequence (Ki)i∈N of compact sets
Ki ⊆ X such that X =

⋃
i∈N Ki.

Proposition 11.7.7 (Spaces). Let X be a computable metric space.

1. CX≤sW CNN if X is complete,
2. CX≤sW CR if X is computably σ–compact,



limN≡sW CN

KN≡sW C∗2≡sW LLPO∗

WWKL≡sW PC2N

WKL≡sW C2N≡sW Ĉ2≡sW L̂LPO

IVT≡sW CC[0,1]

CR≡sW CN×C2N

PCR≡sW CN×PC2N

lim≡sW ĈN≡sW L̂PO
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Fig. 11.2 Basic choice problems together with corresponding reverse mathematics systems (see
Subsection 11.9.3) and topological properties (every arrow indicates a strong Weihrauch reduction;
no additional ordinary Weihrauch reductions hold besides those that follow from transitivity; the
arrows in the diagram point in the direction of computations and implicit logical implications and
hence in the inverse direction of the corresponding reductions).

3. CX≤sW C2N if X is computably compact,
4. CX≤sW CN if X is computably countable,
5. CX≤sW KN if X is finite.

We will discuss these cones in individual subsections below. The diagram in
Figure 11.2 displays several basic choice problems in the Weihrauch lattice. The
corresponding systems from reverse mathematics are discussed later in Subsec-
tion 11.9.3.

The reader who is mostly interested in classifications of theorems in analysis can
continue reading in Section 11.8 from here on. In the remainder of this section we
continue discussing systematically choice principles and their properties.



11.7.1 Composition and Non-determinism

In this section we discuss a different perspective on choice that can be seen as
a type conversion and that is related to non-determinism. Firstly, we define non-
deterministic computability with some advice space R.

Definition 11.7.8 (Non-deterministic computability). Let (X ,δX ), (Y,δY ) be rep-
resented spaces and R⊆NN. Then f :⊆ X ⇒Y is called non-deterministically com-
putable with advice space R if there exist computable functions F :⊆NN→NN and
S :⊆ NN→ S such that 〈dom( f δX )×R〉 ⊆ dom(S) and for each p ∈ dom( f δX ):

1. Rp := {r ∈ R : S〈p,r〉= 0} 6= /0,
2. r ∈ Rp =⇒ δY F〈p,r〉 ∈ f δX (p).

If R = 2N, then we say for short that f is non-deterministically computable. If in
this case we strengthen the first condition to µ(Rp) > 0 with the uniform measure
µ , then we say that f is Las Vegas computable.

Intuitively, the machine can access an arbitrary oracle r ∈ R besides the input
p. Here Rp is the set of successful oracles for input p. On input p together with
such successful oracles r ∈ Rp the computable realizer F produces a correct output.
On the other hand, the computable S eventually rejects unsuccessful oracles r, i.e.,
S〈p,r〉 = 1 for such r. The importance of non-determinism in our context is based
on the following observation.

Theorem 11.7.9 (Non-determinism). f ≤W CR ⇐⇒ f is non-deterministically
computable with advice space R, for every R⊆ NN.

In the case of R = N it is not too hard to see that we obtain exactly the func-
tions that are computable with finitely many mind changes. We summarize some
important classes of functions that can be characterized by an appropriate version
of choice.

Corollary 11.7.10 (Notions of computability). Let f be a problem. Then:

1. f ≤W CN ⇐⇒ f is computable with finitely many mind changes,
2. f ≤W C2N ⇐⇒ f is non-deterministically computable,
3. f ≤W PC2N ⇐⇒ f is Las Vegas computable.

In particular, all the given properties of f are invariant.

One benefit of characterizing the choice problem with the help of non-deter-
ministic computations is that it is very easy to consider compositions of non-
deterministic computations, and hence one obtains a simple proof of the following
result that is much harder to prove directly.

Theorem 11.7.11 (Independent choice). We obtain CR ∗CS≤W CR×S and PCR ∗
PCS≤W PCR×S for all R,S⊆ NN.



In the case of positive choice one needs an invocation of Fubini’s theorem besides
the composition of the two non-deterministic computations. We obtain the following
important corollary that, in particular, shows that the notions of computability listed
in Corollary 11.7.10 are very natural.

Corollary 11.7.12 (Composition). CN,C2N ,CR,CNN ,UCNN ,PC2N ,PCR and PCNN

are closed under compositional product and hence, in particular, idempotent.

11.7.2 Choice on Natural Numbers

An important equivalence class is the class of choice on natural numbers. We sum-
marize some of its characterizations. In particular, we use the complementary mini-
mum function minc :⊆NN→N, p 7→min{n∈N : (∀k) p(k) 6= n} and the maximum
function max :⊆ NN→ N, p 7→max{p(n) : n ∈ N}.

Theorem 11.7.13 (Choice on N). UCN≡sWCN≡sWCQ≡sWlimN≡sWminc≡sWmax.

Here Q can be endowed with the discrete or the Euclidean topology. The ordinary
Weihrauch degree of CN has some further members that occasionally appear.

Theorem 11.7.14. CFCN≡W CN≡W lim∆ and CFCN<sW CN<sW lim∆ .

Here the strictness results follow from Proposition 11.6.18 since #CFCN = 1,
#CN = |N| and #lim∆ = |NN|.

An important result related to choice on natural numbers shows that it can not
contribute anything to the computation of total fractals if it is applied first (possibly
followed by another problem).

Theorem 11.7.15 (Choice elimination). f ≤W g ∗CN =⇒ f ≤W g, for every total
fractal f and every problem g.

The proof of this theorem is based on the Baire category theorem. In light of
Proposition 11.7.5 we obtain the following corollary.

Corollary 11.7.16 (Separations). CC[0,1] 6≤W CN and PC2N 6≤W CN.

We use the identification n = {0,1, ...,n−1} for all n ∈ N, and we also consider
the finite choice problems Cn. It is clear that C0≡W 0 and C1≡W 1. The particular
case of C2 is related to LLPO, which is the counterpart of the lesser limited principle
of omniscience as it is known from constructive analysis.

LLPO :⊆ 2N ⇒ {0,1},LLPO(p) 3
{

0 ⇐⇒ (∀n) p(2n) = 0
1 ⇐⇒ (∀n) p(2n+1) = 0

with dom(LLPO) := {p ∈ 2N : p(k) 6= 0 for at most one k}.

Proposition 11.7.17 (Principles of omniscience). C2≡sW LLPO<W LPO<W CN.



Likewise, one can define problems MLPOn that are equivalent to Cn and prob-
lems LPOn that are equivalent to ACCn. These yield an increasing and a decreasing
chain of problems, respectively.

Proposition 11.7.18 (Finite choice). For every n > 2 and every p ∈ NN we obtain
ACCN <p

W ACCn+1 <
p
W ACCn <

p
W ACC2 = C2 <

p
W Cn <

p
W Cn+1 <

p
W CN.

The mere fact that Cn+1 6≤W Cn holds follows since mind(Cn) = n−1 for all n≥
1. While the power of choice increases with the finite cardinality, we can compensate
cardinality by sufficiently many parallel copies of C2, as the following result shows.

Theorem 11.7.19 (Cardinality versus products). Cn+1≤sW Cn
2 for all n ∈ N.

It is easy to see that also Cn
2≤sW C2n holds. This implies the second equivalence

in the following result.

Proposition 11.7.20 (Compact choice). KN≡sW C∗2≡sW C∗n for all n≥ 2.

We note that C∗2<W CN, since CN is a fractal by Proposition 11.7.5 and hence
countably irreducible.

Corollary 11.7.21 (Compact versus closed choice). KN<W CN.

We use the minimum function min :⊆ NN→ N, p 7→min{p(n) : n ∈ N} in order
to express the last result of this subsection.

Proposition 11.7.22 (Minimum). LPO∗≡sW min.

11.7.3 Choice on the Cantor Space

Choice on the Cantor space 2N is closely related to weak Kőnig’s lemma, which
states that every infinite binary tree T ⊆ 2∗ has an infinite path p ∈ 2N (formally,
a binary tree is a subset of 2∗ closed downward with respect to the partial order
induced by the prefix relation). By Tr we denote the set of binary trees T ⊆ 2∗

(represented by their characteristic functions χT : 2∗→ 2), and by [T ] we denote
the set of infinite paths p ∈ 2N of T . Now we formalize weak Kőnig’s lemma as
the problem WKL :⊆ Tr ⇒ 2N,T 7→ [T ], where dom(WKL) consists of all infinite
binary trees.

It is well known that the map [.] : Tr→A−(2N),T 7→ [T ] is computable, surjective
and has a computable multi-valued right-inverse. This yields the first equivalence in
the following theorem.

Theorem 11.7.23 (Choice on the Cantor space). For every rich computably com-
pact computable metric space X: WKL≡sWC2N≡sW CX≡sW Ĉ2≡sW L̂LPO.



In particular, C2N is parallelizable, and the problem of finding a path in a binary
tree can be reduced to countably many binary choices, i.e., WKL≤W Ĉ2. In the
following corollary we list the choice problem for some important examples of rich
computably compact computable metric spaces.

Corollary 11.7.24. C2N≡sW C[0,1]N≡sW C[0,1]n for all n≥ 1.

Similarly as for choice on natural numbers there is a choice elimination result for
C2N . This result can be proved using compactness properties.

Theorem 11.7.25 (Choice elimination). f ≤W C2N ∗g=⇒ f ≤W g for every single-
valued problem f : X → Y with a computable metric space Y and every g.

This result can also be generalized to admissibly represented spaces Y . We obtain
the following important special case.

Corollary 11.7.26 (Single-valuedness). f ≤W C2N =⇒ f computable, for all single-
valued problems f : X → Y with a computable metric space Y .

In particular this applies to f = UC2N . Since limN is a single-valued problem in
the equivalence class of CN, we also get the following conclusion.

Corollary 11.7.27 (Separation). CN 6≤W C2N .

The so-called weak weak Kőnig’s lemma WWKL is WKL restricted to trees T
such that µ([T ])> 0. It is easy to see that it is equivalent to PC2N .

Theorem 11.7.28 (Positive choice on the Cantor space).
WWKL≡sW PC2N≡sW PC[0,1].

One can use a result of Jockusch and Soare [64, Theorem 5.3] that essentially
shows that WKL cannot be computed with an advice set of positive measure, in
order to separate PC2N and C2N .

Proposition 11.7.29 (Positive choice versus choice). PC2N <W C2N .

Since C2≤W PC2N <W C2N≡W Ĉ2, it is clear that PC2N is not parallelizable.

Corollary 11.7.30 (Parallelizability). PC2N is not parallelizable and we obtain
P̂C2N≡sW C2N .

Also quantitative versions of WWKL have been considered, and by ε-WWKL for
ε ∈ (0,1) we denote WWKL restricted to trees with µ([T ])> ε .

Theorem 11.7.31 (Quantitative WWKL). ε-WWKL≤W δ -WWKL ⇐⇒ ε ≥ δ .

We continue with the discussion of further special versions of choice related to
C2N . It is not obvious at all that connected choice CC[0,1]n is in the same equivalence
class as C2N for dimension n≥ 2.



Theorem 11.7.32 (Connected choice). CC[0,1]n≡sW PWCC[0,1]n+1≡sW C2N for n≥
2.

The map A 7→ (A× [0,1]×{0})∪ (A×A× [0,1])∪ ([0,1]×A×{1}) shows that
one can map each closed subset A ⊆ [0,1] to a pathwise connected closed subset
B⊆ [0,1]3, and given a point in the latter set one can reconstruct a point in the former
set. This proves the previous statement on PWCC[0,1]n and CC[0,1]n for n≥ 3. Only
the two-dimensional case needs a more sophisticated argument, and in the case of
PWCC[0,1]2 the Weihrauch degree is not known.

Problem 11.7.33 (Pathwise connected choice). Does PWCC[0,1]2≡W C2N hold?

The one-dimensional case of connected choice yields the degree of the interme-
diate value theorem.

Theorem 11.7.34 (Intermediate value theorem). CC[0,1]≡sW IVT.

We mention a fact that was already stated in Example 11.4.3.

Theorem 11.7.35 (Idempotency). CC[0,1] is not idempotent.

While connected choice is very stable with respect to the dimension of the space,
this is not so for convex choice as the following result shows.

Theorem 11.7.36 (Convex choice). XC[0,1]n <W XC[0,1]n+1 for all n ∈ N.

Convex choice is not closed under composition, as the following result shows.

Theorem 11.7.37 (Composition of convex choice). XC[0,1]n is not closed under
compositional product ∗ and XC[0,1] ∗XC[0,1] 6≤W XC[0,1]n for all n≥ 1.

We mention that compact choice KX does not lead to anything new on rich com-
putable metric spaces.

Theorem 11.7.38 (Compact choice). KX≡sW C2N for all rich computable metric
spaces X.

In particular, this implies K2N≡sW KR≡sW KNN≡sW C2N . We close this section
by mentioning that CC[0,1] and PC2N are both upper bounds of KN.

Proposition 11.7.39 (Upper bound of compact choice). KN≤W CC[0,1]uPC2N .

11.7.4 Choice on Euclidean Space

In this section we discuss CR and related problems. The basic observation is that
CR can be described with the help of C2N and CN in several different ways.



Theorem 11.7.40 (Choice on Euclidean space). CR≡sW CRn≡sW C2N×N≡sW
C2N ×CN≡sW C2N ?CN≡sW CN ?C2N for all n≥ 1.

The results regarding ? follow with the help of Theorem 11.7.11. We have de-
liberately used the symbol ? and not ∗, since the degrees with ? are cylinders and
hence we obtain strong equivalences. Theorem 11.7.40 shows that Theorem 11.7.25
is applicable to CR, and we obtain the following conclusion.

Corollary 11.7.41 (Single-valuedness). f ≤W CR =⇒ f ≤W CN, for all single-val-
ued problems f : X → Y with a computable metric space Y .

This result applies in particular to UCR and implies UCR≡W CN. Now we dis-
cuss an important upper bound on CR. The low basis theorem of Jockusch and
Soare states that every computable infinite binary tree has a low path. We recall that
p ∈ NN is called low if p′≤T /0′ holds, i.e., if the halting problem relative to p is
not more difficult than the ordinary halting problem. Lowness is represented by the
problem L := J−1 ◦ lim since p is low if and only if there is a computable q such
that p = L(q). It is clear that L<W lim (since J−1 is computable and not every limit
computable p is low). The following result can be seen as a uniform version of the
low basis theorem.

Theorem 11.7.42 (Uniform low basis theorem). CR<sW L.

The strictness follows for instance from Corollary 11.7.41 since L is single-
valued. We mention an interesting algebraic example of how infima and suprema
of the degrees of CN and C2N interact.

Example 11.7.43. We obtain

1. (C2N uCN)∗ (C2N tCN)≡W(C2N uCN)× (C2N tCN)≡W C2N tCN.
2. (C2N tCN)∗ (C2N uCN)≡W C2N ∗CN≡W C2N ×CN.

We note that C2N tCN<W C2N ×CN≡W CR since the right-hand degree is join-
irreducible and since C2N and CN are incomparable. We formulate a counterpart of
Theorem 11.7.40 for PCR.

Theorem 11.7.44 (Positive choice on Euclidean space). PCR≡sW PC2N×N≡sW
PC2N ×CN≡W PC2N ∗CN≡W CN ∗PC2N for all n≥ 1.

We mention that in this case we cannot simply replace ∗ by ? and ≡W by ≡sW,
since PCR is not a cylinder. We note that CN<W CR<W lim≡W ĈN implies the
following.

Corollary 11.7.45 (Parallelizability). CR and PCR are not parallelizable, and we
obtain P̂CR≡sW ĈR≡sW lim.



11.7.5 Choice on the Baire Space

Choice on the Baire space is the upper bound of all choice problems of complete
computable metric spaces. In fact, we obtain the following.

Theorem 11.7.46 (Non–σ–compact spaces). CNN ≡p
W CX for some oracle p ∈NN

if X is a separable complete metric space that is not σ–compact.

We list a number of choice problems that fall into the equivalence class of CNN .
We assume that these spaces are represented as computable metric spaces in the
standard way.

Theorem 11.7.47 (Baire space). CNN≡sW CRN≡sW CR\Q≡sW C`p≡sW CC [0,1] for
all computable p≥ 1.

Also the single-valued problems below CNN have a very natural characterization.

Theorem 11.7.48 (Single-valuedness). f ≤W CNN ⇐⇒ f is effectively Borel mea-
surable, for f : X → Y on complete computable metric spaces.

Similarly to Theorem 11.6.5 this result can be relativized. We mention that it is
easy to see that CNN is parallelizable.

Proposition 11.7.49 (Parallelizability). CNN is strongly parallelizable.

We briefly mention UCNN , the unique version of choice on the Baire space. It is
easy to see that lim<W UCNN holds. It follows from a basis theorem of Kreisel that
UCNN is strictly weaker than CNN .

Proposition 11.7.50 (Unique choice). lim(n)<W UCNN <W CNN for all n ∈ N.

We close with the following characterization of positive choice on the Baire
space.

Theorem 11.7.51 (Positive choice). PCNN≡sW PCR.

11.7.6 Jumps of Choice

In order to characterize the jump of choice we need the cluster point problem
CLX :⊆ XN ⇒ X ,(xn)n∈N 7→ {x ∈ X : x is a cluster point of (xn)n∈N}. This problem
fully characterizes the jump of CX on computable metric spaces X . If we restrict
CLX to such sequences (xn)n∈N whose range {xn : n ∈ N} has a compact closure,
then we denote it by BWTX :⊆ XN ⇒ X since it can be seen as a problem that
realizes the Bolzano-Weierstraß theorem.

Theorem 11.7.52 (Jump of choice). C′X≡sW CLX and K′X≡sW BWTX for all com-
putable metric spaces X.



BWT2 = CL2 is also known as the infinite pigeonhole problem. Many properties
of problems can be transferred to jumps. However, this is often not so for properties
that involve compositional products. We recall that by f [n] we denote the n–fold
compositional product of f with itself and by f (n) the n–fold jump.

Theorem 11.7.53 (Composition). We obtain:

1. C′N ∗C′N≡W C′N.
2. C′2N ∗C′2N≡W C′′2N and more generally C′2N

[n]≡W C(n)
2N for all n≥ 1.

3. PC′2N ∗PC′2N≡W PC′R ∗PC′R≡W PC′R.

It is perhaps surprising that compositions behave very differently in the proba-
bilistic case and in the non-probabilistic case. The difference between C2N and PC2N

is also underlined by the third statement in the following result that strengthens the
negative statement of Proposition 11.7.29.

Theorem 11.7.54 (Separations). We obtain for all n ∈ N:

1. C(n+1)
2 6≤W lim(n).

2. LPO(n) 6≤W C(n)
2N .

3. C2N 6≤W PC(n)
2N .

It follows from the first statement that C2≤W PC2N≤W C2N all climb up the
Borel hierarchy one step with every jump. This statement even holds relative to any
oracle, and hence C(n)

2 is not Σ0
n+1–measurable. We obtain the following alternating

hierarchies.

Theorem 11.7.55 (Alternating hierarchies). For all n ∈ N we obtain

1. C(n)
2 <W LPO(n)<W C(n+1)

2 ,

2. K(n)
N <W C(n)

N <W K(n+1)
N ,

3. C(n)
2N <W lim(n)<W C(n+1)

2N .

Analogous statements hold with ≤sW in place of ≤W.

Choice on the Baire space is an example of a choice problem that is stable under
jump.

Theorem 11.7.56 (Baire space). C′NN≡sW CNN and UC′NN≡sW UCNN .

The following example shows that a straightforward jump inversion theorem
does not hold in the Weihrauch lattice.

Example 11.7.57. lim<W C′2NtC′N, but there is no problem f with f ′≡W C′2NtC′N.

The latter holds since f ′ is join-irreducible and C′2N and C′N are incomparable.
While Theorem 11.7.54 shows that C2N has no jump of positive choice as upper
bound, this is different for CC[0,1] as the following result shows.



Proposition 11.7.58 (Upper bounds). CC[0,1]tCN≤W PC′2N uC′N.

This result is contrasted by CC[0,1] 6≤W PC2N tCN, which holds because CC[0,1]
is not reducible to any of the problems on the right-hand side and since it is join-
irreducible by Propositions 11.7.5 and 11.4.11.

For 1
2 -WWKL we can improve the statement that follows from Corollary 11.7.26

by the following result, which can be proved with a majority vote argument.

Theorem 11.7.59 (Single-valuedness). f ≤W
1
2 -WWKL(n) =⇒ f computable, for

all single-valued problems f : X → Y with a computable metric space Y and n ∈N.

We note that 1
2 -WWKL cannot be replaced by WWKL in this result, since

limN≤W WWKL′ holds as a consequence of Proposition 11.7.58.

11.7.7 All-or-Unique Choice

We briefly discuss all-or-unique choice in this section. The problem AoUC[0,1] is
located between LLPO and LPO and related to robust division, which is defined as
the problem RDIV : [0,1]× [0,1]⇒ [0,1] with RDIV(x,y) := { x

max(x,y)} if y 6= 0 and
RDIV(x,y) := [0,1] otherwise. We now obtain the following characterization.

Proposition 11.7.60 (All-or-unique choice). C2<W AoUC[0,1]≡sW RDIV<W LPO.

In some respects AoUC[0,1] is closer to C2 than to LPO, at least with respect to
the following upper bounds.

Theorem 11.7.61 (Upper bound). AoUC[0,1]≤W CC[0,1]uPC2N .

In the diagram in Figure 11.2 AoUC[0,1] would be in a similar position to
KN, however it is incomparable to KN since AoUC[0,1] is countably irreducible
and KN 6≤W LPO. We continue with a number of separation results that involve
AoUC[0,1].

Theorem 11.7.62 (Separation).

1. XC[0,1] ∗AoUC[0,1] 6≤W XC[0,1]n for all n ∈ N.
2. C2 ∗AoUC[0,1] 6≤W AoUC∗[0,1].
3. C2×AoUC[0,1] 6≤W CC[0,1].

These separation results have a number of interesting consequences. The first
statement implies Theorem 11.7.37, and the third statement implies Theorem 11.7.35.
Since C2≤W AoUC[0,1] we can conclude the following from the second statement.

Corollary 11.7.63 (Composition). AoUC∗[0,1] is not closed under compositional
product.

Surprisingly, a composition of AoUC∗[0,1] with itself yields a new problem that is
closed under compositional product.

Theorem 11.7.64 (Double composition). We obtain:
AoUC∗[0,1] ∗AoUC∗[0,1]≡W AoUC∗[0,1] ∗AoUC∗[0,1] ∗AoUC∗[0,1].
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11.8 Classifications

In this section we present results on the classification of theorems. Most of these
theorems originate from analysis. We interpret theorems as problems as explained
after Definition 11.1.4. For many theorems one can derive upper bounds using the
following observation.

Theorem 11.8.1 (Upper bounds). Let X ,Y be represented spaces and A ⊆ X ×Y
co-c.e. closed. If (∀x ∈ X)(∃y ∈Y ) (x,y) ∈ A holds, then the corresponding problem
F : X ⇒ Y,x 7→ {y ∈ Y : (x,y) ∈ A} satisfies F≤W CY .

In combination with Proposition 11.7.7 one can thus derive upper bounds on
theorems by exploiting topological properties of Y . We essentially group our classi-
fications according to related choice problems.

The equivalence class of choice on natural numbers contains many theorems that
are typically proved with the help of the Baire category theorem.

Theorem 11.8.2 (Choice on the natural numbers). The following are all Weih-
rauch equivalent to each other:

1. Choice on natural numbers CN.
2. The Baire category theorem BCT1.
3. Banach’s inverse mapping theorem BIM`2,`2 .
4. The open mapping theorem for `2.
5. The closed graph theorem for `2.
6. The uniform boundedness theorem on non-singleton computable Banach spaces.
7. The Lebesgue covering lemma for [0,1].



8. The partial identity from continuous functions to analytic functions.

In most cases these theorems are interpreted as problems in a straightforward
way. We only provide some examples and refer the reader to the references for
exact definitions. For instance, Banach’s inverse mapping theorem on computable
Banach spaces X ,Y is formalized as BIMX ,Y :⊆ C (X ,Y )→ C (Y,X),T 7→ T−1, re-
stricted to bijective, linear, bounded T . We always obtain BIMX ,Y ≤W CN, and in the
case of X = Y = `2 the theorem actually attains the maximal complexity. For finite-
dimensional X ,Y it is, however, computable. Similar remarks apply in the cases
of the open mapping theorem and the closed graph theorem. The Baire category
theorem and the uniform boundedness theorem are even equivalent to CN for all
complete computable metric spaces and non-singleton computable Banach spaces,
respectively.

In the case of some theorems it can happen that one logical formulation of the
theorem and the contrapositive formulation carry different computational content. In
such a situation it might not always be clear which form is more natural, and perhaps
both forms have applications. Such an example is the Baire category theorem, which
we can formalize at least in two ways. By A◦ we denote the interior of the set A.

1. BCT0 :⊆A−(X)N ⇒ X ,(An)n∈N 7→ {x ∈ X : x 6∈
⋃

∞
n=0 An},

with dom(BCT0) := {(An)n∈N : A◦n = /0}.
2. BCT1 :⊆A−(X)N ⇒ N,(An)n∈N 7→ {n ∈ N : A◦n 6= /0},

with dom(BCT1) := {(An)n∈N : X =
⋃

∞
n=0 An}.

While BCT1 is in the equivalence class of CN, it is easy to see that BCT0 is
computable. Nevertheless the jump of BCT0 has interesting applications that we
mention below. Similarly to the Baire category theorem, also the Heine-Borel cov-
ering theorem can be formalized in at least two ways. Here O(X) denotes the set of
open subsets of X seen as the complements of the elements of A−(X), i.e., every
open set is represented by an enumeration of basic open balls whose union coincides
with the set.

1. HBC0 :⊆O([0,1])N ⇒ N,(Un)n∈N 7→ {k ∈ N : [0,1]⊆
⋃k

n=0 Un},
with dom(HBC0) := {(Un)n∈N : [0,1]⊆

⋃
∞
n=0 Un}.

2. HBC1 :⊆O([0,1])N ⇒ [0,1],(Un)n∈N 7→ {x ∈ [0,1] : x 6∈
⋃

∞
n=0 Un},

with dom(HBC1) := {(Un)n∈N : (∀k) [0,1] 6⊆
⋃k

n=0 Un}.

Once again, it is easy to see that HBC0 is computable, and HBC1 is in the equiv-
alence class of choice on the Cantor space.

Theorem 11.8.3 (Choice on the Cantor space). The following are all strongly
Weihrauch equivalent to each other:

1. Choice on the Cantor space C2N .
2. Weak Kőnig’s lemma WKL.
3. The Hahn-Banach theorem.
4. The Heine-Borel covering theorem HBC1.
5. The theorem of the maximum MAX.



6. The Brouwer fixed-point theorem BFTn for dimension n≥ 2.
7. The Brouwer fixed-point theorem BFT∞ for the Hilbert cube [0,1]N.
8. Finding connectedness components of sets A⊆ [0,1]n for n≥ 1.
9. The parallelization ÎVT of the intermediate value theorem.

10. Determinacy of Gale-Stewart games in 2N with closed winning sets.

In the case of the Hahn-Banach theorem the underlying separable Banach space
is part of the input information. No space of maximal complexity is known in this
case. For certain spaces (such as computable Hilbert spaces) the Hahn-Banach the-
orem is computable. For two further theorems mentioned above we provide formal-
izations as problems.

1. MAX : C [0,1]⇒ R, f 7→ {x ∈ [0,1] : f (x) = max f ([0,1])}.
2. BFTn : C ([0,1]n, [0,1]n)⇒ [0,1]n, f 7→ {x ∈ [0,1]n : f (x) = x}.

The Brouwer fixed-point theorem of dimension n = 1 is equivalent to the inter-
mediate value theorem, i.e., BFT1≡sW IVT≡sW CC[0,1]. We note that classifications
such as the one in Theorem 11.8.3 lead to simple proofs of classically known non-
uniform results in computable analysis. We mention some examples.

Corollary 11.8.4 (Non-uniform results).

1. There exists an infinite binary tree without computable paths (Kleene [70]).
2. There is a computable function f : [0,1] → R that attains its maximum only

at non-computable points x ∈ [0,1] (Lacombe [77, Theorems VI and VII] and
Specker [109]).

3. There is a computable function f : [0,1]2→ [0,1]2 that has no computable fixed-
point x ∈ [0,1]2 (Orevkov [88] and Baigger [2]).

4. There is a computable sequence ( fn)n∈N of functions fn : [0,1] → R with
fn(0) · fn(1)< 0 for all n ∈N such that there is no computable sequence (xn)n∈N
with fn(xn) = 0 (Pour-El and Richards [101, Example 8a]).

Once one has one of these negative results, all the others follow immediately
by Theorem 11.8.3. On the other hand, also positive non-uniform results can be
derived from Theorem 11.8.3. For instance, every computable function f : [0,1]2→
[0,1]2 has a low fixed-point. Such non-uniform results hold analogously for other
classifications presented here, but we are not going to discuss them in detail.

A theorem that is often proved with the help of the Brouwer fixed-point theorem
is the Nash equilibria existence theorem. Its computational content is significantly
weaker than that of the Brouwer fixed-point theorem.

Theorem 11.8.5 (All-or-unique choice). The following are strongly Weihrauch
equivalent to each other:

1. The finite parallelization AoUC∗[0,1] of all-or-unique choice.
2. The Nash equilibria existence theorem NASH.



Here NASHn,m :Rm×n×Rm×n ⇒Rn×Rm is the map that maps a bi-matrix game
(A,B) to a pair of strategies that form a Nash equilibrium of (A,B), and NASH :=⊔

n,m∈NNASHn,m.
The equivalence class of choice on Euclidean space contains a theorem that we

mention in the following result without further definitions.

Theorem 11.8.6 (Choice on Euclidean space). The following are Weihrauch
equivalent to each other:

1. Choice on Euclidean space CR.
2. Frostman’s lemma on the existence of measures.

The Vitali covering theorem is a theorem that has even been studied in three
different logical versions. We consider Int := (Q2)N as the set of sequences I =
(In)n∈N of rational intervals In = (a,b). We say that I is a Vitali cover of a set
A⊆R if for every x∈ A and ε > 0 there is some n∈N with x∈ In and diam(In)< ε .
We write J v I if J is a subsequence of I of pairwise disjoint intervals. We
consider the following three formalizations of the Vitali covering theorem:

1. VCT0 :⊆ Int ⇒ Int,I 7→ {J : J v I with µ([0,1] \
⋃

J ) = 0} and
dom(VCT0) contains all I ∈ Int that are Vitali covers of [0,1].

2. VCT1 :⊆ Int ⇒ [0,1],I 7→ [0,1] \
⋃

I and dom(VCT1) contains all I ∈ Int
that are Vitali covers of

⋃
I and without a J vI with µ([0,1]\

⋃
J ) = 0.

3. VCT2 :⊆ Int ⇒ [0,1],I 7→ {x ∈ [0,1] : (∃ε > 0)(∀n)(x 6∈ In or diam(In)≥ ε)}
and dom(VCT2) contains all I without a J vI with µ([0,1]\

⋃
J ) = 0.

It turns out that VCT0 is computable and VCT1 and VCT2 are equivalent to
different versions of positive choice.

Theorem 11.8.7 (Positive choice). The following are all strongly Weihrauch equiv-
alent to each other:

1. Positive choice on the Cantor space PC2N .
2. Weak weak Kőnig’s Lemma WWKL.
3. The Vitali covering theorem VCT1.

The following are strongly Weihrauch equivalent to each other:

1. Positive choice on Euclidean space PCR.
2. The Vitali covering theorem VCT2.

Convex choice is equivalent to the Browder-Göhde-Kirk fixed-point theorem,
which is formalized as BGKK :⊆ C (K,K) ⇒ K, f 7→ {x ∈ K : f (x) = x}, where
K ⊆ H is compact and convex, H is a computable Hilbert space and dom(BGKK)
consists of all non-expansive continuous maps f : K→ K. More general versions of
the theorem have been studied, but for simplicity we state only this basic result.

Theorem 11.8.8 (Convex choice). Let H be a computable Hilbert space and K⊆H
convex and computably compact. The following are Weihrauch equivalent to each
other:



1. Convex choice XCK .
2. The Browder-Göhde-Kirk fixed-point theorem BGKK on K.

Another important equivalence class is that of the limit map.

Theorem 11.8.9 (The limit). The following are Weihrauch equivalent to each
other:

1. The limit map lim on the Baire space (or every other rich computable metric
space).

2. The monotone convergence theorem MCT :⊆ RN→ R,(xn)n∈N 7→ supn∈N xn.
3. The operator of differentiation d :⊆ C [0,1]→ C [0,1], f 7→ f ′.
4. The Fréchet-Riesz representation theorem for `2.
5. The Radon-Nikodym theorem.
6. The parallelization B̂IM of Banach’s inverse mapping theorem.
7. Finding a basis of a countable vector space.
8. Finding a connected component of a countable graph.
9. The partial identity from infinitely differentiable functions to Schwartz functions.

Of course, the Banach inverse mapping theorem can be replaced by any other
problem from Theorem 11.8.2. We mention that the reduction lim≤W d follows
easily with Theorem 11.6.21. Several theorems also fall into the equivalence class
of the jump of choice on the Cantor space. Here KL is defined as WKL but for
finitely branching trees T ⊆ N∗.

Theorem 11.8.10 (Jump of choice on the Cantor space). The following are all
strongly Weihrauch equivalent to each other:

1. The jump C′2N of choice on the Cantor space.
2. Kőnig’s lemma KL.
3. The Bolzano-Weierstraß theorem BWTR on Euclidean space.
4. The Arzelá-Ascoli theorem for functions f : [0,1]→ [0,1].
5. Determinacy of Gale-Stewart games in 2N with winning sets that are differences

of open sets.

A natural problem that is known to be equivalent to higher jumps of choice on
the Cantor space is the parallelization of Ramsey’s theorem. We summarize some
results on this theorem. RTk

n : k[N]
n
⇒ 2N denotes the problem that maps every col-

oring c : [N]n → k (of the n–element subsets of N with k colors) to an infinite set
H ⊆ N that is homogeneous for c.

Theorem 11.8.11 (Ramsey’s theorem). C(n)
2 <W RTn

k <W RTn
k+1<W C(n)

2N for all
n,k ≥ 2. The reductions also hold in the case n = 1, but the first one is not strict
in this case.

This result can be proved with the help of the squashing theorem (Theorem 11.4.6).
Since C(n)

2N is the parallelization of C(n)
2 we obtain the following corollary.



Corollary 11.8.12 (Ramsey’s theorem). C(n)
2N ≡W R̂Tn

k for all n≥ 1 and k ≥ 2.

Higher levels of the Weihrauch lattices are not yet all too well explored. This is
currently a topic of further research, and we mention one result along these lines.

Theorem 11.8.13 (Choice on the Baire space). The following are Weihrauch equiv-
alent to each other:

1. Choice on the Baire space CNN .
2. The perfect subtree theorem.

At the end of this section we demonstrate how some problems from computabil-
ity theory can be classified in the Weihrauch lattice. We consider in particular the
following (for X ⊆N with at least two elements and a standard numbering ϕ p of the
computable functions on natural numbers relative to p):

1. DNCX : NN ⇒ NN, p 7→ {q ∈ XN : (∀n) ϕ
p
n (n) 6= q(n)}.

2. 1-GEN : 2N ⇒ 2N, p 7→ {q : q is 1–generic relative to p}.
3. MLR : 2N ⇒ 2N, p 7→ {q : q is Martin-Löf random relative to p}.
4. PA : 2N ⇒ 2N, p 7→ {q : q is of PA degree relative to p}.
5. COH : (2N)N ⇒ 2N,(Ri)i∈N 7→ {A : A is cohesive for (Ri)i∈N}.

The first observation is that DNCn is just the parallelization of ACCn.

Theorem 11.8.14 (Diagonal non-computability). DNCn≡sW ÂCCn for all n ≥ 2
and n = N.

The jump BCT′0 of the computable version of the Baire category theorem BCT0
is closely related to 1–genericity and the problem Π0

1G of Π0
1–genericity, which we

do not define here.

Theorem 11.8.15 (Genericity). 1-GEN<W BCT′0≡sW Π0
1G<W L.

We note that all the problems from computability theory mentioned here, except
DNCn, are densely realized. Hence we can apply Proposition 11.4.13.

Proposition 11.8.16. 1-GEN, MLR, PA, COH and BCT′0 are densely realized and
hence ACCN and C2 are not Weihrauch reducible to any of them.

This means that these problems are very different from all the theorems from
analysis mentioned above that are all above C2 in the Weihrauch lattice. Hence, it
is interesting that some of these densely realized problems can be characterized as
implications (i.e., as “quotients”) of problems above C2.

Theorem 11.8.17 (Randomness, Peano arithmetic, cohesiveness). We obtain:

1. MLR≡W(CN→WWKL)≡W(CN→ PC2N).
2. PA≡W(C′N→WKL)≡W(C′N→ C2N).
3. COH≡W(lim→ KL)≡W(lim→ C′2N).

We close this section by mentioning that one can apply results from computabil-
ity theory such as the theorem of van Lambalgen to conclude that some of the above
mentioned problems are closed under composition.

Proposition 11.8.18. MLR and 1-GEN are closed under compositional product ∗.
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11.9 Relations to Other Theories

In this section we discuss very briefly the relation between Weihrauch complexity
and other theories and we provide some further references.

11.9.1 Linear Logic

There is an apparent similarity between some algebraic operations on problems and
the resource-oriented interpretation of some logical operations in (intuitionistic) lin-
ear logic that was noticed early on. Table 11.1 provides a dictionary on these rela-
tions.

However, it seems that other algebraic operations on problems, such as the com-
positional product ∗, do not have any obvious counterpart in the standard approach
to linear logic. The compositional product could be seen as a non-commutative
conjunction. There does not seem to be any straightforward interpretation of the
Weihrauch lattice as a model for (intuitionistic) linear logic.



logical operation in linear logic algebraic operation on problems
⊗ multiplicative conjunction × product
& additive conjunction t coproduct
⊕ additive disjunction u infimum&

multiplicative disjunction + sum
! bang ̂parallelization, ∗ finite parallelization

Table 11.1 Linear logic versus the algebra of problems.

Several researchers have independently noticed that Gödel’s Dialectica interpre-
tation has some formal similarity to Weihrauch reducibility. This observation has
not yet been formally exploited.

11.9.2 Medvedev Lattice, Many-One and Turing Semilattices

The Medvedev lattice has also been considered as a calculus of problems. Here
problems are understood to be subsets A,B⊆ NN of the Baire space and A is called
Medvedev reducible to B, in symbols A ≤s B, if there exists a partial computable
function F :⊆ NN→ NN with B⊆ dom(F) such that F(B)⊆ A. The supremum op-
eration of this lattice is defined by A⊕B := 〈A,B〉 and the infimum operation by
A⊗B := 0A∪1B.

The relation between the Weihrauch lattice and the Medvedev lattice can be ex-
pressed from both perspectives:

1. The Medvedev lattice is a special case of the Weihrauch lattice for problems
f :⊆ NN ⇒ NN that are constant.

2. The Weihrauch lattice is a generalization of the Medvedev lattice for “rela-
tivized” problems Ap ⊆ NN that depend on a parameter p ∈ NN.

This point of view translates into a formal embedding of the Medvedev preorder
into the Weihrauch preorder (the first result mentioned in Theorem 11.9.1). In fact,
we can embed the Medvedev lattice also with order reversed into the Weihrauch
lattice, and we list both embeddings here.

Theorem 11.9.1 (Embedding the Medvedev lattice). Let A,B⊆ NN.

1. cA : NN ⇒ NN, p 7→ A satisfies A≤s B ⇐⇒ cA≤W cB with cA⊕B≡W cA×cB and
cA⊗B≡W cAu cB.

2. dA :⊆NN→NN, p 7→ 0̂ with dom(dA) := A satisfies A≤s B ⇐⇒ dB≤W dA with
dA⊕B≡W dAudB and dA⊗B≡W dAtdB.

In both cases all Weihrauch reductions and equivalences can be replaced by strong
ones, in which case t has to be replaced by � in 2.

The second, reverse embedding is even a lattice embedding since it preserves
suprema and infima in the reverse order. The first embedding is also a lattice embed-
ding if considered as an embedding into the parallelized Weihrauch degrees. These



embeddings were studied by Brattka and Gherardi [18], Higuchi and Pauly [55] and
Dzhafarov [42]. Since the Turing degrees and the enumeration degrees can be em-
bedded into the Medvedev lattice, it follows that they can also be embedded into the
Weihrauch lattice via the abovementioned embeddings.

We note that the Medvedev lattice has been used by Downey, Greenberg, Jock-
usch, Milans, Lewis and others [39, 63] in order to study problems from computabil-
ity theory, such as MLR,1-GEN,PA and DNCn in their unrelativized form (for com-
putable inputs). The advantage of the Weihrauch lattice is that these problems can be
studied in this lattice together with problems such as WKL and WWKL that depend
on parameters (i.e., the input tree) in an essential way. Finally, we mention that the
Muchnik lattice, which is the non-uniform counterpart of the Medvedev lattice, has
also been used to classify problems, see Simpson [107] .

Also the many-one semilattice can be embedded into the Weihrauch lattice, albeit
in a slightly less natural way than the Turing semilattice. The construction starts
with a non-canonical choice of two Turing incomparable points. As usual we denote
many-one reducibility between sets A,B⊆N by≤m and we recall that A⊕B := {2n :
n ∈ A}∪{2n+1 : n ∈ B} is the supremum with respect to many-one reducibility.

Proposition 11.9.2 (Embedding of the many-one semilattice). Let p,q ∈ NN be
Turing incomparable and, for A ⊆ N, define mA : N→ {p,q} by mA(n) = p :⇐⇒
n∈A. Then we obtain A≤m B ⇐⇒ mA≤W mB and mA⊕B≡W mAtmB for all A,B⊆
N, i.e., A 7→ mA is a join-semilattice embedding.

11.9.3 Reverse Mathematics

Reverse mathematics is a proof-theoretic approach that aims to classify theorems
according to the axioms that are needed to prove these theorems in second-order
arithmetic [106]. Many theorems from various areas of mathematics have been clas-
sified in this approach. Most axiom systems that are used in reverse mathematics
have counterparts in the Weihrauch lattice (see also Figure 11.2):

• BΣ0
n (Σ0

n–boundedness): BΣ0
2 is equivalent to the regularity principle RΣ0

1 over
a very weak system [48], and it corresponds to K′N by Theorem 11.7.52. Hence
BΣ0

n can be seen as the counterpart of K(n−1)
N .

• IΣ0
n (Σ0

n–induction) is equivalent to the least number principle LΠ0
n over a very

weak system [48]. LΠ0
1 directly translates into minc as a problem and hence IΣ0

n

corresponds to C(n−1)
N by Theorem 11.8.2.

• RCA∗0 (recursive comprehension) stands for the usual system RCA0 but with IΣ0
0

instead of IΣ0
1. It corresponds to C1 (the computable problems).

• WKL∗0 and WWKL∗0, by which we mean RCA∗0 plus weak Kőnig’s lemma and
weak weak Kőnig’s lemma, respectively, correspond directly to the problems
WKL and WWKL.



• ACA0 (arithmetic comprehension) corresponds to the problems lim (and its finite
compositions lim[n] with n ∈ N). Sometimes, a uniform version ACA′0 of ACA0

is used [57], which corresponds to
⊔

n∈N lim[n].
• ATR0 (arithmetical transfinite recursion) corresponds to UCNN and CNN (see

Theorem 11.8.13). This topic is still very much research in progress.

Counterparts in the Weihrauch lattice of higher systems such as Π1
1-CA0 (Π1

1–
comprehension) have not yet been systematically studied. By Theorem 11.7.55 we
have K(n)

N <W C(n)
N <W K(n+1)

N in analogy to BΣ0
n← IΣ0

n← BΣ0
n+1.

Reverse mathematics is based on a proof-theoretic approach, whereas classifica-
tions in the Weihrauch lattice are based on a computational approach. Besides this
we note the following distinguishing features:

1. Resource sensitivity: classifications in reverse mathematics do not distinguish
between a single application, a finite number of consecutive applications or a
finite number of parallel applications of a theorem, since classical logic is used
(as opposed to linear logic).

2. Uniformity: classifications in reverse mathematics only capture the non-uniform
content of problems, i.e., the way output parameters depend on input parameters
in the worst case. Again this is due to the usage of classical logic (as opposed to
intuitionistic logic).

For instance, a number of theorems that are non-uniformly computable in the sense
that there is a computable output for every computable input are provable over
RCA0 in reverse mathematics, even though they are not computable in a uniform
way. This includes the intermediate value theorem IVT, the Baire category theorem
BCT1 and others. Due to the lack of uniformity reverse mathematics also cannot dis-
tinguish between theorems and their contrapositive forms. For instance the version
HBC0 of the Heine-Borel covering theorem is computable, while HBC1≡W WKL.
In reverse mathematics, the Heine-Borel theorem is equivalent to WKL0 over RCA0
irrespectively of whether we consider the analogue of HBC0 or HBC1. In other
words: classifications in reverse mathematics automatically capture the most com-
plicated contrapositive form.

It is remarkable that despite these explicable differences most classifications
in the Weihrauch lattice can be seen as uniform and resource sensitive refine-
ments of classifications in reverse mathematics. This seems to confirm a “computa-
tions as proofs” paradigm (as opposed to the well-known “proofs as computations”
paradigm in intuitionistic logic).

11.9.4 Constructive Reverse Mathematics

Constructive reverse mathematics, as proposed by Ishihara [61], classifies problems
in the Bishop approach to constructive analysis, which is based on intuitionistic
logic. Due to the usage of intuitionistic logic this approach is fully uniform, but it is



even less resource sensitive compared to classical reverse mathematics. This is due
to the fact that typically the axiom of countable choice can be used freely, which
amounts to a free usage of parallelization in the Weihrauch lattice. In this sense, the
Weihrauch complexity approach is closer to a hypothetical version of constructive
reverse mathematics with intuitionistic linear logic. The classifications in construc-
tive reverse mathematics are captured by their equivalence to certain constructively
unacceptable principles:

1. LLPO (the lesser limited principle of omniscience) is the theorem that corre-
sponds to our problem LLPO. In the presence of countable choice it corresponds
to WKL by Theorem 11.7.23.

2. LPO (the limited principle of omniscience) is the theorem that corresponds to our
problem LPO. In the presence of countable choice and due to the availability of
composition it corresponds to lim(n) with n ∈ N by Theorem 11.6.7 (and hence
to ACA0 in classical reverse mathematics).

3. MP (Markov’s principle), BD-N (the boundedness problem) and some other prin-
ciples that are rejected in constructive analysis correspond to computable (and
hence continuous) problems in the Weihrauch lattice.

In conclusion, this means that the Weihrauch complexity approach is finer than
constructive reverse mathematics in terms of resource sensitivity, but coarser when
it comes to distinctions that are based on computable principles such as MP and
BD-N. In order to translate these heuristic observations into formal theorems, one
needs to fix an axiomatic framework for constructive analysis. Some results in this
direction have been obtained by Kuyper [75], Fujiwara [43] and Uftring [112].

11.9.5 Other Reducibilities

Hirschfeldt and Jockusch [57, 58, 108] have introduced a number of further re-
ducibilities that are related to Weihrauch reducibility. For one, there are non-uniform
versions of Weihrauch reducibility and strong Weihrauch reducibility, which are
called computable reducibility and strong computable reducibility, in symbols ≤c
and ≤sc, as well as a reducibility ≤ω that is based on Turing ideals. On the other
hand, they introduced a concept of generalized Weihrauch reducibility that has a
built-in closure under composition. This operation can be formalized as a closure
operator f 7→ f � in the Weihrauch lattice. Likewise, Brattka and Gherardi [18] and
Higuchi and Pauly [55] studied variants of Weihrauch reducibility with a built-in
parallelization. These and further reducibilities allow one to interpolate between
Weihrauch complexity and reverse mathematics in the sense that one can choose
a reduction that captures a particular degree of uniformity and resource sensitivity
(see Figure 11.3).

Yet another related reducibility that originates from descriptive set theory is
Wadge reducibility, which is defined via preimages. Given A,B ⊆ NN, we say that
A is Wadge reducible to B, in symbols A≤W B, if there exists a continuous function



f ≤sW g f ≤W g

f ≤c gf ≤sc g f ≤ω g

f ≤gW guniform

resource sensitive

non-uniform

closed under composition

Fig. 11.3 Implications between notions of reducibility.

f : NN→ NN such that A = f−1(B). Hence, Wadge reducibility is the (topological)
analogue of many-one reducibility on the Baire space. Weihrauch reducibility can
be seen as a (computable) analogue of this reduction for multi-valued functions.

In early work by Weihrauch [114, 115] and by Hertling [50] mostly the contin-
uous version of Weihrauch reducibility was considered. In particular, Hertling [50,
51] completely characterized continuous (strong) Weihrauch and Wadge degrees of
certain functions with discrete image in terms of preorders on labeled forests. Kudi-
nov, Selivanov and Zhukov [74] and Hertling and Selivanov [52] have studied the
decidability and complexity of some initial segments of these preorders. Such pre-
orders and versions of Weihrauch reducibility have also been used in descriptive set
theory, e.g., by Carroy [37].

11.9.6 Descriptive Set Theory

Descriptive set theory studies the complexity of subsets of and functions between
separable complete metric spaces. Wadge reducibility has been established as a crit-
ical tool here, and reasonable classes of subsets are typically closed downwards
under Wadge reducibility. For functions, Weihrauch reducibility can play the analo-
gous role. As demanded by Moschovakis [81], this treatment covers both the effec-
tive and the non-effective case simultaneously, with the former implying the latter
via relativization.

Many typical classes of functions even have complete problems under Weihrauch
reducibility. Theorem 11.6.5 provides an example; another one is related to
(Σ0

n+2,Σ
0
n+2)–measurability, which is defined such that preimages of Σ0

n+2–sets are
Σ0

n+2–sets (see Pauly and de Brecht [97] and Kihara [67]).

Theorem 11.9.3 (Effective (Σ0
n+2,Σ

0
n+2)–measurability). f ≤W C(n)

N ⇐⇒ f is ef-
fectively (Σ0

n+2,Σ
0
n+2)–measurable, for all f : X→Y on complete computable metric

spaces X ,Y with n = 0 and for f : NN→ NN with n ∈ N.

There is a subtle but crucial issue with relativization here: relativizing the theo-
rem covers the case where the preimage map of f from Σ0

n+2–sets to Σ0
n+2–sets is

continuous, rather than merely being well defined. For n ∈ {0,1} the theorem of
Jayne and Rogers [62] and a theorem by Semmes [105] show that these cases are
equivalent. For n > 1, the question of whether the cases are equivalent is open and



equivalent to the generalized conjecture of Jayne and Rogers. This is discussed in
some more detail in [94].

Weihrauch complete problems for function classes correspond to game charac-
terizations in descriptive set theory. A general account of the latter is provided by
Motto Ros [82], and the link to Weihrauch reducibility is made by Nobrega and
Pauly [87].

More generally, the theory of Weihrauch degrees is closely linked to a pro-
gramme to extend descriptive set theory from Polish spaces to larger classes of
spaces, such as represented spaces. Such an endeavor was called for and started
by Selivanov [104]. De Brecht introduced the quasi-Polish spaces [34] and demon-
strated that many results from descriptive set theory remain valid in this setting. A
further extension is possible using the formalism of jump operators (de Brecht [35])
or computable endofunctors (Pauly and de Brecht [98]), both of which are closely
related to each other and to Weihrauch degrees.

11.9.7 Other Models of Computability

We have already seen in Sections 11.6 and 11.7 that other models of computability
can be characterized in the Weihrauch lattice. This includes the classes of prob-
lems that are computable with finitely many mind changes, limit computable, non-
deterministically computable and Las Vegas computable.

There are completely different algebraic models of computability such as the
Blum-Shub-Smale machines [4] (BSS machines). Due to their algebraic nature, the
class of functions computable by these machines lack certain completeness prop-
erties and cannot be characterized exactly in the Weihrauch lattice. However, some
tight upper bounds have been found by Neumann and Pauly [86].

Theorem 11.9.4 (Algebraic computation). If f :⊆ R∗ → R∗ is computable on a
BSS machine, then f ≤W CN and there is a function f :⊆R∗→R∗ that is computable
on a BSS machine and satisfies f ≡W CN.

Hertling and Weihrauch [53, 49] have studied how the number of tests that are
performed is related to degeneracies in computations. Yet a further class of machines
can be obtained if one allows infinite computation time of higher order. Weihrauch
computability was generalized to this context by Carl [36] and Galeotti and No-
brega [44].
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Applied Logic 168(8), 1605–1608 (2017)

16. Brattka, V., Gherardi, G.: Borel complexity of topological operations on computable metric
spaces. Journal of Logic and Computation 19(1), 45–76 (2009)

17. Brattka, V., Gherardi, G.: Effective choice and boundedness principles in computable analy-
sis. The Bulletin of Symbolic Logic 17(1), 73–117 (2011)

18. Brattka, V., Gherardi, G.: Weihrauch degrees, omniscience principles and weak computabil-
ity. The Journal of Symbolic Logic 76(1), 143–176 (2011)

19. Brattka, V., Gherardi, G., Hölzl, R.: Probabilistic computability and choice. Information and
Computation 242, 249–286 (2015)

20. Brattka, V., Gherardi, G., Hölzl, R., Pauly, A.: The Vitali covering theorem in the Weihrauch
lattice. In: A. Day, M. Fellows, N. Greenberg, B. Khoussainov, A. Melnikov, F. Rosamond
(eds.) Computability and Complexity: Essays Dedicated to Rodney G. Downey on the Oc-
casion of His 60th Birthday, Lecture Notes in Computer Science, vol. 10010, pp. 188–200.
Springer, Cham (2017)

21. Brattka, V., Gherardi, G., Marcone, A.: The Bolzano-Weierstrass theorem is the jump of
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