
08 August 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Lazzaro, D. (2016). A nonconvex approach to low-rank matrix completion using convex optimization.
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 23(5), 801-824 [10.1002/nla.2055].

Published Version:

A nonconvex approach to low-rank matrix completion using convex optimization

Published:
DOI: http://doi.org/10.1002/nla.2055

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/565705 since: 2016-10-25

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1002/nla.2055
https://hdl.handle.net/11585/565705


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Lazzaro, D. (2016) A nonconvex approach to low-rank matrix completion using 
convex optimization. Numer. Linear Algebra Appl., 23: 801– 824. 

The final published version is available online at : 
http://dx.doi.org/10.1002/nla.2055 

 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the 
publishing policy. For all terms of use and more information see the publisher's website.   

 

https://cris.unibo.it/
http://dx.doi.org/10.1002%2Fnla.2055


NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS

Numer. Linear Algebra Appl. 0000; 00:1–36

Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nla

A Nonconvex Approach to Low-Rank Matrix Completion using

Convex Optimization

Damiana Lazzaro∗

Department of Mathematics, University of Bologna, Piazza di Porta S. Donato, 40123 Bologna (Italy)

SUMMARY

This paper deals with the problem of recovering an unknown low-rank matrix from a sampling of its entries.

For its solution we consider a nonconvex approach based on the minimization of a nonconvex functional that

is the sum of a convex fidelity term and a nonconvex, nonsmooth relaxation of the rank function. We show

that by a suitable choice of this nonconvex penalty it is possible, under mild assumptions, to use also in this

matrix setting the iterative Forward-Backward splitting method. Specifically, we propose the use of certain

parameter dependent nonconvex penalties that with a good choice of the parameter value allow us to solve

in the backward step a convex minimization problem and we exploit this result to prove the convergence

of the iterative Forward-Backward splitting algorithm. Based on the theoretical results, we develop for the

solution of the matrix completion problem the efficient iterative Improved Matrix Completion Forward-

Backward (IFBMC) Algorithm, which exhibits lower computing times and improved recovery performance

when compared to the best state-of-the-art algorithms for matrix completion. Copyright c© 0000 John Wiley

& Sons, Ltd.

Received . . .

KEY WORDS: Matrix Completion, Nonconvex Minimization, Forward-Backward Splitting, Proximity
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1. INTRODUCTION

The problem of recovering an unknown low-rank matrix from a sampling of its entries has recently

become an important research area. The popularity and primary motivation of the matrix completion

problem comes from recommendation systems, where users submit ratings only on a subset of

entries of a low-rank user-item ratings matrix and the task is to complete the matrix from a small

number of its entries. Many other real world models can be categorized as matrix completion

problems, such as video denoising [1], model reduction [2], computer vision [3–5], multiclass

learning in data analysis [6, 7] and so on.

The general form of the matrix completion problem is:

min
X∈lRm×n

rank(X), s. t. Xij = Mij , (i, j) ∈ Ω, (1)

where we are given only p sampled entries {Mi,j : (i, j) ∈ Ω}, where Ω is a random subset of

cardinality p.

Problem (1) is an NP-hard optimization problem, due to the nonconvexity and combinatorial

nature of the rank function [8]. To overcome such a difficulty in [9–11] the authors prove that

the convex envelope of rank(X) on the set
{
X ∈ lRm×n : ‖X‖2 ≤ 1

}
is the nuclear norm‖X‖∗,

namely ‖X‖∗ =
∑r

i=1 σi(X), where σi(X), i = 1, ..., r, r ≤ min(m,n), are the singular values of

X . They use, therefore, the nuclear norm as a convex relaxation for the rank function. Moreover,

they prove that a random low-rank matrix can be recovered exactly with high probability from a

rather small random sample of its entries by solving the convex minimization problem:

min
X∈lRm×n

{||X||∗ : Xij = Mij , (i, j) ∈ Ω} . (2)

By defining

PΩ(X) =


Xij if (i, j) ∈ Ω

0 if (i, j) /∈ Ω

,

problem (2) can be recast as:

min
X∈lRm×n

{||X||∗ : PΩ(X) = PΩ(M)} . (3)



3

1.1. Existing methods

Many existing algorithms rely on the convex relaxation (3). For example in [12, 13] it is shown

that problem (3) can be solved making use of efficient semidefinite programming solvers, such as

SeDuMi, SDPT3. Nevertheless the high computational cost and the memory demanding of these

algorithms make them unsuitable for handling large size problems. Different approaches, more

suited for large-scale matrix completion, solve the Lagrangian version of (3) i.e.

min
X∈lRm×n

{
1

2
||PΩ(X)− PΩ(M)||2F + λ||X||∗

}
, (4)

where ‖ · ‖F is the Frobenius norm and λ is a suitable penalization parameter.

Since this formulation is similar to the well known and widely studied compressed sensing

reconstruction problem [14], where the sparsity inducing `1-norm is used as convex relaxation

of the `0-norm, most of the algorithms proposed for matrix completion are inspired by recent

works in the area of sparse reconstruction. In particular, we refer to the singular values thresholding

methods, such as the SVT-method proposed in [15], the alternating direction augmented Lagrangian

methods (ALM) [16–18], the fixed point and Bregman iterative method (FPCA) [19] and the

accelerated proximal gradient algorithm (APGL) [20]. All these algorithms are based on iterative

soft thresholding of the singular values of certain matrices and are designed to obtain reconstructed

matrices with the lowest nuclear norm. Even if these algorithms largely outperform the performance

of SeDuMi and SDPT3, the high computational cost of the singular value decomposition greatly

reduces their use in case of large dimension matrices. A remarkable improvement can be obtained

by the use of truncated SVD algorithms, such as Linear-Time SVD [21] and randomized SVD [24],

but this implies an efficient identification of a suitable truncation level.

Another strategy to solve the low-rank matrix completion problem is to apply low-rank matrix

factorization methods [25, 26]: the aim is to find a matrix that is as close as possible to the data,

according to a certain fidelity function, and that is, at the same time, factorisable into the product

of two low-rank matrices. The corresponding algorithms are fast since they avoid the use of the

SVD, but they are effective only for Easy problems (see Section 7.1 for definition of Easy and Hard
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problems). Their weakness derives from their need to know a good approximation of the unknown

rank of the original matrix. When this approximation is not available, the methods based on the

convex relaxation (2), (4) are preferable since they solve Easy and Hard problems with similar

performance; but they still present some unresolved problems such as their inability, in certain

situations, to retrieve the true relevant variables. In fact, the soft thresholding operator associated

with the nuclear norm [15], shrinks the singular values of the same amount , not taking into account

that the larger singular values are usually associated with the major projection orientations and

therefore they should be penalized less, to preserve important information. To overcome such

problems, other types of penalty that relax the convexity property have been considered in problem

(4) that becomes:

min
X∈lRm×n

{F (X) = H(X) + λR(X)} (5)

where H(X) = 1
2‖PΩ(X)− PΩ(M)‖2F and R(X) is a nonsmooth, nonconvex functional that

approximates the rank function better than the nuclear norm. While being theoretically appealing,

the nonconvex relaxation approach leads to a more challenging minimization problem, since the

solution of problem (5) is usually not unique and algorithms performing nonconvex minimization

may get trapped in bad local optimal solutions.

A widely used strategy to solve problem (5) is to replace it with a sequence of approximated

convex subproblems. Specifically we refer to the iterative reweighted `2/`1 algorithms IRLS,

t-IrucLq-M, IRNN, sIRLS0, proposed in [27–30], respectively. They solve a Weighted Singular

value thresholding problem iteratively, where the weight vector is given by the gradient of the

nonconvex penalty evaluated at the previous iterate. These algorithms exhibit superior performance

when compared to the existing nuclear norm minimization algorithms, but they are more

computationally demanding. A different approach is proposed in [31], where a low-rank solution is

obtained iteratively by estimating an approximated matrix rank and shrinking only non-dominant

singular values. The corresponding Iterative Partial Matrix Shrinkage algorithm (IPMS) has the

same performance to solve hard problems as sIRLS0, but it takes less computing time.

Another line of research for solving the nonconvex optimization problem (5), where H(X) is
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differentiable with a Lipschitz-continuous gradient, is to apply the Forward-Backward (FB) scheme

[32–34] well known and largely used in the context of sparse reconstruction both for convex

and nonconvex relaxation of the `0-norm [34–37]. This scheme consists in iteratively alternating

between a descent step along the gradient ofH(X) (forward step) and a minimization step, involving

the proximity operator of the functional R(X) (backward step). While the convergence of this

iterative method is well assessed for nonsmooth but convex R(X) both in the vector and in matrix

setting [20, 34], its behavior is not clear for nonconvex R(X), since the corresponding proximity

operator is not unique, in general, and its closed form may be not available. This represents a great

limit to the applicability of this scheme to the nonconvex case.

1.2. Contribution and paper organization

Motivated by the theoretical problems related to the convergence of the FB scheme in the case of

nonconvex R(X), in this paper we focus on the application of this iterative splitting method for

the solution of the nonconvex relaxation of the matrix completion problem (5). Our theoretical

contribution is twofold: first we show that the use of certain parameter dependent nonconvex

penalties, with a suitable choice of the parameter value, allows us to solve in the backward step

a convex optimization problem whose corresponding proximity operator is unique and has a simple

closed form. Based on this result, then we use the KL-property [38] of the cost functional F (X) to

give a rigorous proof of the convergence of the FB splitting method for matrix completion problem

(FBMC) to a critical point of F (X). Moreover, in the IMCBF algorithm we present an efficiently

improved implementation of the proposed approach that includes an incremental strategy for matrix

rank estimation and a continuation approach for the evaluation of the penalization parameter λ.

Extensive numerical experiments and comparisons with the most efficient state-of-the-art algorithms

for matrix completion highlight the effectiveness of the proposed algorithm, which outperforms the

others both in terms of reconstruction capabilities and computing time.

The paper is organized as follows: in the next Section we briefly recall the Iterative Forward-

Backward Splitting scheme for low-rank matrix recovery. In Section 3 the FB scheme is applied
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to the matrix completion problem and we propose a new strategy to deal with a convex optimization

problem in spite of the nonconvexity of the penalty function. Section 4 is completely devoted to

prove the convergence of the iterative FB scheme when applied to matrix completion and Section 5

our theoretical results are used to develop the efficient iterative algorithm IFBMC. The performance

of the proposed algorithm is assessed in Section 6 by presenting comparisons with the best state-

of-the-art algorithms on simulated and real recovery problems. A short conclusion in Section 7

summarizes the main contributions of the paper.

2. THE ITERATIVE FORWARD-BACKWARD SCHEME FOR LOW-RANK MATRIX

RECOVERY

In this Section we briefly recall the derivation of the FB scheme for the solution of the following

nonsmooth, nonconvex minimization problem

min
X∈Mr

F (X) = H(X) + λR(X), (6)

where λ ≥ 0, Mr is the set of real m× n matrices with rank less or equal to r ≤ min(m,n),

R :Mr → lR is a nonsmooth, nonconvex relaxation of the rank function that enforces low-rank

on the recovered matrix, and the functional H , that represents a constraint to be satisfied by the

low-rank matrix we want to recover, is such that holds

A1- H :Mr → lR is a smooth convex continuously differentiable functional with L− Lipschitz

continuous gradient:

‖∇H(X)−∇H(Y )‖F ≤ L‖X − Y ‖F , X, Y ∈Mr.

For the solution of (6), for any matrix Y ∈Mr and µ > 0, we consider the following quadratic

approximation of the objective functional F (X) at Y :

Q(X,Y ) = H(Y )+ < X − Y,∇H(Y ) > +
µ

2
‖X − Y ‖2F + λR(X) (7)

that can be written as

Q(X,Y ) = H(Y ) +
µ

2

∥∥∥∥X −(Y − 1

µ
∇H(Y )

)∥∥∥∥2

F

− 1

2µ
‖∇H(Y )||2F + λR(X), (8)
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and we evaluate a minimizer of (8) iteratively by setting Y = Xk−1, and ignoring X− independent

terms. We obtain therefore that:

Xk = min
X∈Mr

Q(X,Xk−1) = proxλ
µR

(Zk), (9)

where

Zk = Xk−1 −
1

µ
∇H(Xk−1) (10)

and the proximity operator of the functional R(X) is defined for any Zk ∈Mr as

proxλ
µR

(Zk) = arg min
X∈Mr

{µ
2
‖X − Zk‖2F + λR(X)

}
. (11)

This leads to the following Forward Backward Scheme for Low-Rank Matrix Recovery ( FBLRM)

Algorithm 1 (FBLRM)

Given X0 ∈ lRm×n , R(X), H(X) and for fixed µ,λ > 0,

for k=1,2,...do

Forward Step

Zk = Xk−1 − 1
µ∇H(Xk−1)

Backward Step

Xk = proxλ
µR

(Zk)

until convergence

(12)

We remark that the FB iterative scheme is well known in the vector setting and its convergence has

been proved in [32,34] in the case ofR convex. In the nonconvex case, the problem is more involved

because the evaluation of the proximity operator may be difficult and the result not unique, since

they may be several local minima. This case is studied in [38] where the authors prove, under some

restrictive hypotheses, a convergence result to a critical point of the cost functional.

The extension of the iterative FB scheme to the matrix setting, as done in FBLRM presents further

unresolved problems: the first is the existence of a unique proximity operator of the nonconvex
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functional R(X), or correspondingly the evaluation of a global minimum in the Backward step,

necessary to obtain the monotonically decreasing of the objective function, last, but not least, is

the proof of the convergence of the sequence of the iterates Xk to a critical point of F (X). In the

next two Sections we consider the above issues in the context of the nonconvex matrix completion

problem and we propose a satisfactory and efficient solution.

3. THE NONCONVEX MATRIX COMPLETION PROBLEM: CONVEX MINIMIZATION

USING NONCONVEX PENALTIES

In this Section we apply the FBLRM algorithm to the nonconvex matrix completion problem. More

in detail, we consider

H(X) =
1

2
||PΩ(X)− PΩ(M)||2F , (13)

that satisfies condition A1 and we choose R(X) such that it holds:

A2- R(X) :Mr → lR, is a proper lower semicontinuous nonconvex functional defined as

R(X) =

r∑
i=1

φ(σi(X), a), (14)

where φ(x, a) : lR→ lR is a parametrized continuous, symmetric, twice differentiable on lR \ {0},

increasing and nonconvex function, σi(X),i = 1, .., r, are the singular values of the matrixX ∈Mr,

and a > 0.

The nonconvex matrix completion problem can be, then, formulated as:

min
X∈Mr

{
F (X) =

1

2
||PΩ(X)− PΩ(M)||2F + λ

∑
i

φ(σi(X), a)

}
. (15)

By applying in this case the FBLRM algorithm, by taking into account (9),(10),(11) the Forward

step becomes:

Zk = Xk−1 −
1

µ
(PΩ(Xk−1)− PΩ(M)) (16)

and the Backward step

Xk = arg min
X∈Mr

{
µ

2
‖X − Zk‖2F + λ

r∑
i=1

φ(σi(X), a)

}
= proxλ

µR
(Zk) (17)
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Algorithm 1 in the case of the Matrix Completion Problem can be rewritten as:

Algorithm 2: Forward Backward Algorithm for Matrix Completion (FBMC)

Input: X0 = PΩ(M), λ > 0, µ > L, F (X0), γ < 1, r ≤ min(m,n)

k=1

while condition > γ · λ

Forward Updating Step

Zk = Xk−1 − 1
µ (PΩ(Xk−1)− PΩ(M))

Backward Minimization Step

Xk = arg minX∈Mr

{
µ
2 ‖X − Zk‖

2
F + λ

∑r
i=1 φ(σi(X), a)

}
= proxλ

µ
(Zk) (18)

condition =
F (Xk)−F (Xk−1)

F (Xk)

k=k+1

end

Output: X̂ = Xk−1 as low-rank solution

Finding an unique solution of the nonconvex minimization (18) is a really challenging problem.

Despite that, we found a way to succeed by choosing the parametrized nonconvex penalty

function φ(x, a) according to the recent results of the nonconvex sparse signal processing literature

given [40–42].

3.1. Proximity operators of Parametrized Nonconvex penalty functions

Let φ(x, a) be the nonconvex parametrized penalty function given by

φ(x, a) =
1

a
log(1 + a|x|) , a > 0. (19)

that satisfies regularity conditions similar to those given in condition A2 and where the parameter

a controls the degree of nonconvexity of the penalty function. In [40–42] the authors prove that for

a ≤ 1
λ the function f in the definition of the proximity operator of such nonconvex φ(x, a)

proxλφ(y, a) = arg min
x∈lR

{
f(x) =

1

2
|y − x|2 + λφ(x, a)

}
(20)
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is strict convex. The proximity operator is therefore the unique solution of the convex minimization

problem (20) and it is a continuous non-linear threshold function with λ as threshold value, namely

proxλφ(y, a) = 0, ∀ |y| < λ. (21)

It is given by:

proxλφ(y, a) =


[
|y|
2 −

1
2a +

√(
|y|
2 + 1

2a

)2

− λ
a

]
|y| ≥ λ

0 |y| ≤ λ

(22)

While the soft thresholding function, that is the proximity operator of the absolute value, shrinks all

arguments of the same amount, regardless of their values, the threshold function of the considered

nonconvex penalties approaches identity asymptotically and in this way large values are not

underestimated.

3.2. Proximity Operator in the matrix setting

In this subsection we use the previous results in order to prove that in the matrix setting it is possible

to give an unique and simple expression of the proximity operator

proxλR(G) = min
X∈Mr

{
1

2
||X −G||2F + λ

∑
i

φ(σi(X), a)

}
. (23)

where φ(x, a) is the nonconvex parametrized penalty function defined in (19) and a ≤ 1
λ .

Since in the matrix completion problem the rank revealing singular values are positive, from now

on we restrict the function domain to be lR+.

Theorem 3.1

Let φ(x, a) : lR+ → lR+ be the nonconvex parametrized penalty function given by (19) and that

satisfies condition A2 with a ≤ 1
λ . Let G = UDiag(σ(G))V T be the Singular Value Decomposition

of G ∈Mr. The optimal solution to

proxλR(G) = min
X∈Mr

{
1

2
||X −G||2F + λ

∑
i

φ(σi(X), a)

}
, (24)
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is given by

X∗ = UDiag(σ∗)V T , (25)

where

σ∗i = proxλφ(σi(G), a) = arg min
σi≥0

{
1

2
(σi − σi(G))2 + λφλ(σi, a)

}
, i = 1, ..., r

with σ∗1 ≥ σ∗2 ≥ ... ≥ σ∗m, i = 1, ..., r.

In order to prove Theorem (3.1), we need of the following results:

Proposition 3.1

Let φ(x, a) be the nonconvex parametrized penalty function given by (19) and that satisfies condition

A2 with a ≤ 1
λ , then the proximity operator proxλφ(·, a) is strictly monotonically increasing, namely

if y2 > y1 , we have

proxλφ(y2, a) > proxλφ(y1, a). (26)

Proof: The proof immediately follows from the fact that under our hypotheses the function f in

the definition of the proximity operator of φ(x, a) (20) is strict convex. ut

Lemma 3.1

For any matrices A,B ∈ lRm×n(m ≤ n), the von Neumann’trace inequality [43, 44] holds:

Tr(ATB) ≤
m∑
i=1

σi(A)σi(B) (27)

where σ1(A) ≥ σ2(A) ≥ ... ≥ 0 and σ1(B) ≥ σ2(B) ≥ ... ≥ 0 are the singular values of A and

B, respectively. Equality holds if A and B share the same right and left singular vectors, namely

A = UDiag(σ(A))V T and B = UDiag(σ(B))V T .

We are now in position to prove Theorem 3.1:
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Proof of Theorem 3.1: By Lemma (3.1) we have:

‖X −G‖2F = Tr((X −G)T (X −G)) = Tr(XTX)− 2Tr(XTG) + Tr(GTG)

=
∑r

i=1 σ
2
i (X)− 2Tr(XTG) +

∑r
i=1 σ

2
i (G)

≥
∑r

i=1 σ
2
i (X)− 2

∑r
i=1 σi(X)σi(G) +

∑r
i=1 σ

2
i (G)

Since equality holds when X and G share the same right and left singular vectors, we assume that

X = UDiag(σ(X))V T and G = UDiag(σ(G))V T . Therefore it holds that:

‖X −G‖2F =

r∑
i=1

(σi(X)− σi(G))
2
.

The optimization problem (24) reduces now to

arg min
σ1(X)≥σ2(X)≥...≥σr(X)≥0

r∑
i=1

{
1

2
(σi(X)− σi(G))2 + λφ(σi(X), a)

}
. (28)

The objective function in (28) is separable and each term is strict convex for a ≤ 1
λ : for each σi(G)

there exists a unique minimum

σ∗i = proxλφ(σi(G), a), (29)

that is a thresholded version of σi(G). Moreover, by Proposition (3.1), we have that σ∗1 ≥ σ∗2 ≥ ... ≥

σ∗r . Therefore it follows that X∗ = UDiag(σ∗)V T is a global optimal solution to (24). ut

We now define the matrix thresholding operator Θλ(G) as follows:

Θλ(G) = UDiag(σ∗)V T (30)

where σ∗i = proxλφ(σi(G), a), i = 1, ...r, r ≤ min (m,n), and U and V are the singular vectors

of G, namely G = UDiag(σ(G))V T .

Relation (18) in Algorithm 2, can be then rewritten as:

Xk = min
X∈Mr

{
µ

2
||X − Zk||2F + λ

∑
i

φ(σi(X), a)

}
= Θλ

µ
(Zk) (31)

4. CONVERGENCE ANALYSIS

In this Section we prove in our context the convergence of the sequence Xk generated by FBMC to

a critical point of the objective functional F (X) given in (15), when the penalty φ(x, a) is given by
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(19) with a ≤ 1
λ . We suppose that Assumptions 1 and 2 are verified and that the following holds:

A3- F (X) :Mr → lR is an analytical functional, bounded from below and coercive.

We remark that the choice of φ(x, a) as in (19), with a ≤ 1
λ , and the restriction of its domain to lR+

ensures that A3 is satisfied.

Since the proof holds in a general context, provided that assumptions A1-A3 are verified, we do not

give an explicit form for the functional H(X).

To reach our aim we follow the steps listed below and we show that:

I- the sequence {F (Xk)} is nonincreasing, namely satisfies the Sufficient decrease condition

F (Xk) + C1‖Xk −Xk−1‖2F ≤ F (Xk−1), C1 > 0, (32)

and the sequence {Xk} has at least an accumulation point (Proposition 4.1);

II- the sequence {Xk} satisfies the Relative Error Condition

‖Wk+1‖F ≤ C2‖Xk+1 −Xk‖F , (33)

where Wk+1 ∈ ∂F (Xk+1) and C2 > 0 (Proposition 4.2).

III- the sequence {Xk} satisfies the Continuity Condition, (Lemma 4.2), namely, there exists a

subsequence (Xkq ) and X∗ such that

Xkq → X∗ andF (Xkq )→ F (X∗), as q →∞. (34)

IV- the functional F (X) possesses the Kurdyka-Lojasiewicz property (Lemma 4.3).

By exploiting these four results, we prove that any accumulation point of the sequence {Xk} is a

stationary point of (6) (Theorem 4.1).

For the proof of the point I, we need the following Lemma, which is the natural extension to

functionals H :Mr → lR of the descent lemma [35], and whose proof follows immediately from

Assumption A1.

Lemma 4.1

Let H :Mr → lR be a continuously differentiable function with L-Lipschitz continuous gradient.
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Then for any X,Y ∈Mr

H(X) ≤ H(Y )+ < X − Y,∇H(Y ) > +
L

2
‖X − Y ‖2F . (35)

We can now state the following Proposition, whose detailed proof is given in Appendix A.

Proposition 4.1

Let {Xk} be the sequence generated by the FBMC algorithm, and let µ > L. By Assumption A3,

the sequence {F (Xk)} is nonincreasing, specifically

F (Xk) + C1‖Xk −Xk−1‖2F ≤ F (Xk−1), C1 =
µ− L

2
> 0 (36)

and
∞∑
k=0

‖Xk −Xk−1‖2F <∞, (37)

which implies limk→+∞ ‖Xk−1 −Xk‖F = 0.

Moreover, the sequence {Xk} is bounded and has at least one accumulation point.

Before to starting with the proof of point II we recall some definitions that we use in the following.

Definition 4.1

Let ψ(x) : lRn →]−∞,+∞] be a proper lower semicontinuous function.

1. Given x ∈ domψ, the Fréchet subdifferential of ψ at x, written as ∂̂ψ(x) is defined as:

∂̂ψ(x) :=

v ∈ lRn : lim inf
y 6=x
y→x

1

‖x− y‖
[ψ(y)− ψ(x)− 〈v, y − x〉] ≥ 0,∀y ∈ lRn


2. The limiting-subdifferential, or simply the subdifferential of ψ(x) at x ∈ domψ, is defined as:

∂ψ(x) :=
{
v ∈ lRn : ∃xk → x, ψ(xk)→ ψ(x) and vk ∈ ∂̂ψ(xk)→ v as k →∞

}
and each v ∈ ∂ψ(x) is called a subgradient of ψ. Moreover if ψ is continuous differentiable,

∂ψ(x) = {∇ψ(x)}. A critical point or stationary point of ψ is a point x0 ∈ domψ, satisfying

0 ∈ ∂ψ(x0). The set of critical points of ψ is denoted by crit ψ.
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To give the definition of the subdifferential of R(X) in the matrix setting, we formulate in the

present context Corollary 2.5 given in [45]:

Lemma 4.2

LetR(X) be defined asR(X) =
∑

i φ(σi(X)), where σ(X) :Mr → R+ has components σ1(X) ≥

σ2(X) ≥ ...σq(X), q = min(m,n). By Corollary 2.5 in [45], it holds

∂R(X) =
{
UDiag(µ)V T : µ ∈ ∂φ(σ(X)), X = UDiag(σ(X))V T

}
(38)

We now recall the definition of the subdifferential of the sum of two functionals, one of which is

continuous and derivable and the other is nonsmooth [46].

Definition 4.2

Let F (X) :Mr → R be defined as F (X) = H(X) + λR(X), whereH(X) satisfies the assumption

A1 and R(X) =
∑

i φ(σi(X) where φ(x) is a nonsmooth, nonconvex function, then

∂F (X) = ∇H(X) + λ∂R(X). (39)

We are now in position to demonstrate the Relative Condition Error:

Proposition 4.2

Let {Xk} be the sequence generated by FBMC algorithm, and let µ > L. The sequence {Xk}

satisfies the following Relative Error Condition:

‖Wk‖F ≤ C2‖Xk −Xk−1‖F , (40)

where Wk ∈ ∂F (Xk) and C2 > 0.

Proof: Since Xk is a global minimum to problem (7), where Y = Xk−1, writing down the

optimality condition yields

∇H(Xk−1) + µ(Xk −Xk−1) + Vk = 0 (41)

where

Vk ∈ ∂(R(Xk)). (42)
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It follows that:

‖Vk +∇H(Xk−1)‖F = µ‖Xk −Xk−1‖F ≤ µ̄‖Xk −Xk−1‖F (43)

where µ̄ ≥ µ.

We define, now,

Wk = Vk +∇H(Xk).

From Corollary 4.2 and relation (42), it follows that

Wk ∈ ∂F (Xk).

Moreover, making use of relation (43) and of the triangular inequality, we have that

‖Wk‖F ≤ ‖Vk +∇H(Xk−1)‖F + ‖∇H(Xk)−∇H(Xk−1)‖F

≤ (µ̄+ L)‖Xk −Xk−1‖F = C2‖Xk −Xk−1‖F

where C2 = (µ̄+ L). ut

In order to prove point III, we first define the limit point set of the sequence {Xk} generated by

FBMC algorithm from a starting point X0, ω(X0), as follows:

ω(X0) =
{
X∗ ∈Mr : ∃ an increasing sequence of integer {kl}l∈IN , such thatXkl → X∗ as l→∞

}
.

We can now state the following lemma proving that the sequence {Xk} satisfies the Continuity

Condition (34) and that all points which belong to ω(X0) are critical points of F .

Lemma 4.3

Let {Xk} be the sequence generated by FBMC algorithm, and let µ > L. Let ω(X0) denote the set

of its limit points. Considering that Xk is the global minimum of the corresponding minimization

problem (9), the following assertions hold:

1. There exists a subsequence (Xkq ) and X∗ such that

Xkj → X∗ and F (Xkj )→ F (X∗), as j →∞. (44)
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2. All points which belong to ω(X0) are critical points of F (X), namely

∅ 6= ω(X0) ⊂ critF. (45)

Please refer to Appendix B for the detailed proof.

The proof of point IV follows immediately from Assumption A3, that allows us to use the following

characterization of the Kurdyka-Lojasiewicz property in the matrix setting ( [47],Theorem 3.8):

Lemma 4.4

Let D ⊆ Rm×n be open, Mr ⊂ D and F : D → R be real-analytic. Then function F is said to

have the Kurdyka-Lojasiewicz property (and is called KL function) at each point X∗ ∈ dom∂F =

{X ∈Mr : ∂F (X) < +∞}, namely, there exist η ∈ (0,+∞], a neighborhood U of X∗, and a

continuous concave function ϕ : [0, η)→ lR+, called desingularizing function such that

(i) ϕ(0) = 0,

(ii) ϕ is C1 on (0, η),

(iii) for all s ∈ (0, η),ϕ′(s) > 0

(iv) for all X ∈ U ∩ {X ∈Mr : F (X∗) < F (X) < F (X∗) + η} , the Kurdyka-Lojasiewicz

property holds:

ϕ′(F (X)− F (X∗)) dist(0, ∂F (X)) ≥ 1. (46)

where dist(0,∂F (X)) = inf {‖V ‖F , V ∈ ∂F (X)} .

If ϕ(s) = s1−θ, θ = [1/2, 1), equation (46) is equivalent to Lojasiewicz inequality

|F (X)− F (X∗)|θ ≤ Λ‖T‖F (47)

where Λ > 0 and T ∈ ∂F (X) .

Simply speaking, a function that possesses the KL-property in a critical point X∗ admits locally

a sharp reparametrization. Moreover, as we will show in the following Lemma, a sequence (Xk)

that starts in the neighborhood of a point X∗ (as in (49)) and that does not improve F (X∗) ( as in

(48)) converges to a critical point near X∗.
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Lemma 4.5

Let F (X) = H(X) + λR(X) :Mr → lR be a proper lower semicontinuous functional that

possesses the KL property at each point X∗ ∈ dom∂(F ). Let U ⊂Mr be a neighborhood of

X∗, η ∈ (0,+∞] and ϕ : [0, η)→ lR+ a continuous concave function that satisfies the properties

(i),(ii),(iii),(iv). Let ρ > 0 be such that B(X∗, ρ) = {X ∈Mr : ‖X −X∗‖F ≤ ρ.} ⊂ U . Let

(Xk)k∈IN the sequence generated by FBMC algorithm which satisfies condition (32), (33) and (34)

with X0 as an initial point. Let us assume that

F (X∗) < F (Xk) < F (X∗) + η, k ≥ 0, (48)

and

Mϕ(F (X0)− F (X∗)) +

√
2

µ− L
√
F (X0)− F (X∗) + ‖X∗ −X0‖F < ρ (49)

where M = 2 µ̄+L
µ−L , then the sequence (Xk)k∈IN satisfies:

∀k ∈ IN, Xk ∈ B(X∗, ρ), (50)

∞∑
k=0

‖Xk+1 −Xk‖F < +∞ (51)

F (Xk)→ F (X∗), as k →∞. (52)

and converges to a critical point of F (X).

Please refer to Appendix C for the detailed proof.

Now we have all the tools to prove our main convergence result, which extends to the matrix setting

the convergence property of the FB splitting algorithm proved for the vector setting in the nonconvex

case, [38], Theorem 2.9.

Theorem 4.1

Let F (X) = H(X) + λR(X) :Mr → lR be a proper lower semicontinuous functional that satisfies

Assumption A3 and let {Xk} be the sequence generated by FBMC that satisfies (32), (33) and (34).

If F possesses the KL-property at the cluster point X∗ = limj→∞Xkj then the sequence {Xk}

converges to X∗ as k goes to∞ and X∗ is a critical point of the minimization problem (15).



19

Proof: Let X∗ be a cluster point of (Xk)k∈IN. By (34) there exists a subsequence Xkq → X∗

and F (Xkq )→ F (X∗). By (32) the sequence F (Xk) is nonincreasing, it therefore follows that

F (Xk)→ F (X∗) and F (Xk) ≥ F (X∗) for all integers k. The functional F possesses the KL-

property in X∗, hence, by Lemma (4.4), there exists a neighborhood of X∗, U ⊂Mr , a constant

η ∈ (0,+∞] and a continuous concave function ϕ : [0, η)→ lR+ such that property (46) holds. By

using the continuity property of ϕ, we obtain the existence of an integer k0 such that F (X∗) ≤

F (Xk) ≤ F (X∗) + η for all k ≥ k0 and

Mϕ(F (Xk0
)− F (X∗)) +

√
2

µ− L
√
F (Xk0)− F (X∗) + ‖X∗ −Xk0‖F < ρ (53)

The conclusion follows by applying Lemma (4.5) to the sequence (Yk)k∈IN defined as Yk = Xk0+k

for all integers k. ut

5. THE PROPOSED ALGORITHM: IFBMC

We give in the following some details of the proposed version of the FBMC algorithm. Since in the

form presented in Algorithm 2 FBMC is very computational demanding, especially by the increase

of the matrix dimensions, we have added some strategies to improve the computational time, and

named IFBMC this improved version that is displayed in Table I.

The improvements are:

S0- Continuation for the optimal value of λ. FBMC solves the minimization problem (15).

However, since the original problem was the constrained minimization problem

min
X∈Mr

r∑
i=1

φ(σi(X), a) such that PΩ(X) = PΩ(M),

the parameter λ must be carefully chosen. To this aim we start with a reasonable value for λ0

and we decrease this value by a fixed amount by adding in the algorithm an outer iteration

loop. This strategy, often successfully used under the name of continuation [22, 23], does not

increase much the computing time of IFBMC since the precision of the solution of the inner

loop depends on the value of λi, namely prec = γ · λi, and each outer iteration uses as starting



20

point the previous iterate (warm starting). For the first value of λk the precision is not high,

then it decreases according to the decrease of λk. Moreover, it is experimentally shown that

changing the value of λi helps the algorithm to avoid getting stuck in unwanted local minima.

S1- Rank estimation phase. Since the main computational cost of the algorithm lies in computing

at each inner iteration the r singular values of the update approximation Zi, with r ≤

min(m,n), to maximally reduce the computing time, we have divided the algorithm in two

different phases: the first devoted to obtain an approximate estimation of the true matrix rank

using an incremental strategy, and the second that uses and improves this estimate using the

doubly iterative procedure described above. In the first phase, we fix the value of γ, λ = λ0 and

r = re, with re given by a small number, and we run FBMC algorithm until convergence. The

output value rc of the matrix rank, calculated by the algorithm after thresholding operations,

is less or equal re. If rc = re, we increase re, namely we set re = rc + q, where q is given by

a fixed percentage of rc and we run again FBMC by repeating this procedure until rc < re.

At this point we accept rc as our initial ”good” rank estimation and we start with the doubly

iterative algorithm: if rc is not the exact rank, rc evolves throughout the IFBMC iterations and

it converges to the exact rank of the matrix to be recover.

S2- Improvements of the speed-up of SVD. In order to speed-up the computing time of the SVD,

we use the randomized truncated SVD (RSVD [24]), and since it is based on the power

method we use the eigenvectors of the previous iteration for its initialization. This initial

approximation is revealed to be very efficient and, with this choice, the power method usually

converges in only one iteration.

S3- Acceleration strategy. Another technique to accelerate the doubly iterative algorithm consists

in the use of the FISTA approach [35]. Specifically, FISTA defines a sequence of positive

numbers {αk}, (see Table I for their definition), and, at each iteration step, improves the

estimate yielded by FBMC performing a specific linear combination with the unmodified

previous iterate. This preserves the computational simplicity of our scheme, but significantly

improves its convergence speed. Since in general FISTA does not maintain the descent
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Table I: Improved Algorithm IFBMC

Inputs: X0,−1 = PΩ(M), X0,0 = 0, λ0 > 0, τ < 1 µ > L, γ > 0

FIRST PHASE: RANK ESTIMATION PHASE

(rc, X̂)← rank estimated as suggested in S1 and corresponding recovery matrix X̂
X−1,0 = X̂

SECOND PHASE: RECONSTRUCTION PHASE

I. Outer continuation Loop
for i=0,1,... do

k = 0

tk = 1

II. Inner Forward-Backward Loop
1. Determination of the step 1

µ̄k
as suggested in S4.

2. Forward Updating Solution
Zk,i+1 = Xk−1,i − 1

µ̄k
(PΩ(Xk−1,i)− PΩ(M))

3. Backward Minimization Step
X̃k,i+1 = Θ λi

µ̄k

(Zk,i+1) where Θ is defined as in (30) and a ≤ µ̄i
λi

if the descent property is satisfied
4. FISTA of the solution as suggested in S3.
tk+1 = 1+

√
1+4tk2

2 , αk = tk−1
tk+1

Xk,i+1 = X̃k,i+1 + αk(X̃k,i+1 − X̃k,i)
, else

Xk,i+1 = X̃k,i+1

end
if |F (λi,Xk,i+1)−F (λi,Xk,i)|

|F (λi,Xk,i+1)| > γ · λi, k = k + 1

goto 1
else

λi+1 = τ · λi Updating of the penalization parameter
X0,i+1 = Xk,i+1 Warm Starting

until convergence
Output: X̂ = X0,i+1 low-rank solution

property of the functional F (X), we insert a test to accept the FISTA accelerate value only if

the value of the functional F(X) still decreases.

S4- Choice of the step-size. Our experimentation has highlighted that the condition µ > L, that

is necessary for the convergence of the algorithm in the nonconvex case, is usually too

conservative. It was therefore possible to further speed-up IFBMC in the Easy problems by

incorporating at each iteration of IFBMC a linesearch-like acceleration strategy for the step-

size 1
µ starting from µ > L/2, as proposed in [20]. On the contrary, in the Hard cases, we use

the line-search strategy starting from µ > L in order to achieve convergence.
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5.1. Choice of the parameter values

To run IFBMC is necessary to initialize the value of the penalization parameter λ0, its reduction rate

τ , and the constant γ of the inner loop exit test. Guided by a large number of numerical experiments,

we made the following choices for the above parameters. We have chosen λ0 as a suitable fraction

of the greatest singular value of PΩ(M), i.e. λ0 = costλ · ‖σ(PΩ(M))‖∞, where the value of costλ

ranges in [0.001, 0.3] according to the difficulty of the problem ( costλ < 0.2 for Hard problems and

costλ > 0.2 for Easy problems). Concerning the reduction strategy, we have used λi+1 = τλi, with

τ = 0.8 in all the considered experiments. The parameter γ is very important since it influences the

precision requested in the inner loop which is γ · λi. In fact we have experimentally observed that,

when solving Easy and not too Hard problems, at the algorithm beginning, i. e. for large values of

λi, is not necessary to solve the inner problems with high accuracy, while accuracy must increase by

decreasing λi. On the contrary, in the very Hard cases it is necessary to solve inner problems with

high accuracy already from beginning, and this can be obtained by tuning the value of γ suitably. In

our experimentation we have chosen γ ranging form from 10−2 to 10−5, according to the difficulty

of the minimization problem.

6. EXPERIMENTS

In this Section, to validate the effectiveness of the proposed algorithm, we show the results

of several experiments, both on synthetic and real data, and we compare the recovery

performance of IFBMC with those of the best state-of-art algorithms. Specifically, we

consider FPCA [19] (available from http://www1.se.cuhk.edu.hk/˜sqma/FPCA.html), APGL

[20] (available from http://www.math.nus.edu.sg/˜mattohkc/NNLS.html), sIRLS-0 [30] (available

from https://faculty.washington.edu/mfazel/https://faculty.washington.edu/mfazel/IRLS final.zip),

IPMSr [31] (that we have implemented according to the specifications of the authors), t-IRucLq-M

[28] (available from http://www.caam.rice.edu/˜optimization/codes/), IRNN [29] (available from

https://sites.google.com/site/canyilu/). We also point out that in the considered packages some

acceleration strategies are implemented. In particular, APGL uses continuation, line-search,
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Lanczos method for computation of singular values, and FISTA acceleration. FPCA uses

continuation, matlab SVD or Linear Time SVD in the case of hard and easy problems respectively,

sIRLS-0 uses randomized SVD, iPSMr uses randomized SVD and continuation, IRNN uses

continuation and economized version of matlab SVD.

All the numerical computations are conducted on an Intel i7-3770 CPU with 16 GB of RAM. The

supporting software is MATLAB R2012b.

6.1. Experiments on synthetic data

In this subsection we experiment IFBMC for the completion of randomly generated square matrices

of size n and rank r. In all experiments the matrix M ∈Mr is generated as a product MLM
T
R ,

where both matrices ML ∈ lRn×r and MR ∈ lRn×r have i.i.d. Gaussian entries. The index set Ω of

the given p entries is sampled uniformly at random. We evaluate the recovery performance by the

Relative Error, defined as

RelativeError = ||X̂ −M ||F /||M ||F ,

where X̂ is the recovered matrix. For each experiment we run several trials and we use the

Probability of Perfect Reconstruction (PPR) as performance index, defined as the ratio of the number

of the successful trials over the total number of trials. A trial is considered successful when its

Relative Error is smaller than 10−3. This value plus a maximum iteration number, maxit=3000

represents an exit test for the algorithm. The sampling ratio, namely the percentage of known

data, is measured by sr = p/n2, and, according to the current literature, to classify the numerical

experiments into two categories, we use the degree of freedom ratio, that, for an m× n matrix, is

defined as fr = r·(m+n−r)
p . If fr is small (≤ 0.4) recovering M it is not difficult and the problem is

considered Easy. If fr is large (> 0.4), recovering M becomes harder and the problem is classified

as Hard.

We recall that for given m,n matrix dimensions and p sampled entries, the largest rank for which

the matrix completion problem has an unique solution is the rank rmax for which fr = 1, namely

rmax = b(m+ n−
√

(m+ n)2 − 4p)/2c. We therefore consider rmax as the maximum possible
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Table II: Execution times of FPCA, APGL, IFBMC, IPMSr, sIRLS-0 for Easy Problems: FR < 0.4

Problem FPCA APGL IFBMC IPMSr sIRLS-0
m=n r sr FR Time Time Time Time Time
500 10 0.2 0.2 1.22 0.98 0.47 1.27 3.80
500 10 0.12 0.33 1.91 1.12 1.19 3.75 6.86

1000 10 0.12 0.17 4.52 1.47 2.24 5.35 16.59
1000 20 0.12 0.33 7.14 3.14 4.05 10.97 32.85
2000 20 0.12 0.17 20.56 5.84 8.26 20.75 71.10
2000 40 0.12 0.33 32.34 11.73 15.61 46.36 156.32
5000 10 0.15 0.026 114.92 19.10 26.74 45.02 921.93
5000 50 0.12 0.17 275.22 41.88 52.52 162.1 2220.08

10000 10 0.15 0.013 737.49 78.68 87.3612 159.66 2915.92
10000 50 0.12 0.083 817.84 131.02 185.0632 470.39 5433.05

rank, once fixed m, n, p, for the matrix completion problem.

Experiment 1: Comparisons on Easy problems

The aim of this experiment is to show the performance of IFBMC on Easy problems, where the

use of nonconvex penalties would be not strictly necessary. We make the same tests as in [31], by

repeating the experiments 10 times. In Table II we compare the execution times of IFBMC with

those of some of the best convex and nonconvex reconstruction algorithms of the recent literature.

More precisely, we consider the convex APGL, FPCA and the nonconvex sIRLS-0, IPMSr methods.

The results highlight that, while all algorithms solve successfully the matrix completion problem in

all cases, the computing time of IFBMC is much lower than that used by nonconvex algorithms and

comparable with that of the best state-of-art convex algorithms for Easy problems.

Experiment 2: Comparisons on Hard problems

To show the performance of IFBMC on Hard problems, we consider the same tests again as in [31],

where the authors show that IPSMr in Hard cases is more efficient than both sIRLS-0 and FPCA.

Furthermore, because it is known from the literature that the nuclear norm algorithm APGL fails

in the case of hard problems, we compare IFBMC only with IPSMr. In this experiment we do not

consider t-IrucLq-M and IRNN because these algorithms for n large are not very efficient. In fact,

their authors in [28] and [29], respectively, present experiments only for small problems. Table III

shows that, for Hard problems, IFBMC is approximately 5 times faster than IPSMr.
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Table III: Execution times of IFBMC and IPMSr for Hard Problems: FR ≥ 0.4

Problem IPMSr IFBMC
m=n r sr fr Time Time

40 9 0.50 0.80 0.66 0.18
500 20 0.15 0.52 7.09 2.18
500 20 0.10 0.78 66.86 6.81

1000 20 0.10 0.40 18.83 5.95
1000 20 0.06 0.66 141.19 16.23
1000 30 0.10 0.59 47.71 10.07
2000 40 0.10 0.40 65.39 22.97
2000 40 0.06 0.66 386.06 59.77

10000 300 0.10 0.59 9629.51 1430.00

Experiment 3: Scalability respect to r

In this experiment we fix the matrix order n, the sampling ratio of observed entries sr, and we test the

performance of IFBMC by varying the rank r. We consider two problems. In the first, similarly to the

experiments presented in [29], we set n = 150, sr = 0.5; since in this case the largest rank for which

the matrix completion problem has an unique solution, corresponding to fr = 1, is rmax = 43, we

test the performance of the reconstruction algorithms IFBMC, IRNN, t-IRlucq-M and IPMSr by

repeating the experiment 30 times for rank r varying from 20 to 43, (fr = 0.9823). The results,

depicted in Fig. 1, show that IFBMC outperforms in all the experiments IRNN, t-IRlucq-M and

IPMSr both in terms of Probability of Perfect Reconstruction and execution time. We observe that

IRNN achieves PPR = 1 up to matrices of rank r = 30, t-IRlucq-M up to matrices of rank r = 29

and IPMSr up to matrices of rank r = 35, while IFBMC obtains PPR = 1 up to matrices of rank

r = 43. Moreover the running times of IRNN and t-IRlucq-M are approximately 9 higher times than

those of IFBMC, while the running times of IPMSr are approximately 5 higher times than those of

IFBMC, especially in the Hard problems.

In the second problem we set n = 1000, sr = 0.2, and we repeat the experiment 10 times with the

rank r varying from 5 to 100, largest rank for which the matrix completion problem has an unique

solution, and we compare the results of IFBMC with those of IPSM-r. As shown in Fig. 2a, IFBMC

reaches for all rank values PPR = 1, while IPSMr obtains PPR = 1 only for 5 ≤ r ≤ 75. Fig. 2b
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(a) (b)

Figure 1. a) Experiment 3: Case 1: m=n=150, sr=0.5, r ∈ [20, 44]. Comparison between reconstruction
results obtained by IFBMC and those obtained by t-IRuclq-M and IRNN-log. (a)Probability of Perfect

Reconstruction as a function of the rank r. (b)The average perfect reconstruction time in seconds.

(a) (b)

Figure 2. a) Experiment 3: Case 2: m=n=1000, sr=0.2, r ∈ [5, 100]. Comparison between reconstruction
results obtained by IFBMC and those obtained by IPMSr. (a)Probability of Perfect Reconstruction as a

function of the rank r. (b)The average perfect reconstruction time in seconds.

highlights the major efficiency in terms of computational cost of IFBMC respect to IPSMr especially

for r ≥ 15.

Experiment 4: Robustness to noise

This experiment demonstrates the robustness of the proposed algorithm to different noise levels. We

consider the following noisy matrix completion problem

min
X∈Mr

{
1

2
||PΩ(X)− PΩ(B)||2F + λ

∑
i

φ(σi(X))

}
. (54)
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(a) ( b)

Figure 3. Experiment 4: (a) m=n=500 sr=0.12, r = 10, fr = 0.33; (b) m=n=500, sr=0.15, r = 20, fr = 0.52.
Measurements corrupted by withe noise with standard deviation σ ≈ ε

√
r, ε ∈ [10−2, 0.5]. Mean Relative

Error of recovery as a function of Mean Relative Error of measurements.

where PΩ(B) = PΩ(M) + PΩ(Z) and PΩ(Z) is the noise on the measurements, with Zi,j i.i.d

Gaussian random variables with normal distribution with 0-mean and variance σ2. As in [15], we

consider a perturbation such that ‖PΩ(Z)‖F ≤ ε‖PΩ(M)‖F . This is true if σ ≈ ε
√
r. We consider

two cases: an Easy problem with N = 500, r = 10 and sr = 0.12, corresponding to an fr = 0.33

and an Hard problem with N = 500, r = 20 and sr = 0.15, corresponding to an fr = 0.52. In both

problems we choose ε ranging in interval [0.01, 0.5]. We repeat the two sets of experiments 5 times.

We stop the algorithm when ‖PΩ(X̂)− PΩ(B)‖F /‖PΩ(B)‖F ≤ ε · η, with η = 0.8. In Fig. 3a and

Fig. 3b we display the behavior of the mean Relative Error of the reconstructions obtained both by

IPSMr and IFBMC, as a function of the mean Relative Error of the measurements, for Easy and

Hard problems, respectively. An analysis of the results highlights that IFBMC outperforms IPSMr

in terms of stability in particular in Easy cases.

6.2. Experiments on real data

In this section, we consider matrix completion problems based on the real MovieLens data set [48].

The dataset is collected by the GroupLens Research Project at the University of Minnesota and

contains 100,000 rating information from 943 users on 1,682 movies. The data has been cleaned up

such that users who had less than 20 ratings were removed. So each user in the data has rated at

least 20 movies. The ratings are from 1 (strongly unsatisfactory) to 5 (strongly satisfactory). In the
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Table IV: Comparison of Normalized Mean Absolute Error NMAE of s-IRLS0, IPSMr and IFBMC
for different splits of the 100k movie-lens dataset

Method Split 1 Split 2 Split 3 Split 4
s-IRLS0 0.1919 0.1878 0.1870 0.1899
IPSMr 0.1904 0.1873 0.1863 0.1863
IFBMC 0.1814 0.1795 0.1786 0.1792

recommendation situation, the data matrix is highly sparse (only about 6.3% entries are known). In

order to test the proposed algorithm, we split the ratings into training and test sets. In our experiment,

80,000 ratings (80%) are randomly chosen to be the training set and the test set contains the

remaining 20,000 ratings (20%) In particular, for our numerical experiments, we consider as in [31]

four different splits of the 100k ratings into (training set, test set): (u1.base,u1.test), (u2.base,u2.test),

(u3.base,u3.test), (u4.base,u4.test) for our numerical experiments. Any given set of ratings (e.g.,

from a data split) can be represented as a matrix. This matrix has rows representing the users and

columns representing the movies and an entry (i, j) of the matrix is non-zero if we know the rating

of user i for movie j. Thus estimating the remaining ratings in the matrix corresponds to a matrix

completion problem. For each data split, we train our algorithms on the training sets, 80,0000 ratings

(namely, u1.base,u2.base,u3.base,u4.base) to estimate the 20,000 ratings in the test sets (namely,

u1.test, u2.test, u3.test, u4.test). The performance metric here is Normalized Mean Absolute Error

or NMAE defined as follows. Let M be the matrix representation corresponding to the actual test

ratings and X be the ratings matrix output by an algorithm when input the training set. Then

NMAE =
1

(rtmax − rtmin)|Ω|

 ∑
i,j∈|Ω|

|Mij −Xi,j |


where rtmin and rtmax are the minimum and maximum possible value of movie ratings. For the

MovieLens data set, we have that rtmin = 1 and rtmax = 5

Table IV shows that the IFBMC has a better NMAE than IPSMr and s-IRLS0 across different splits

of the data.

6.3. Application to image recovery

In this subsection we evaluate the effectiveness of IFBMC for low-rank image recovery and we

compare our results with those of IPSMr. For this aim we consider the 512× 512 Boat image,
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full of fine details and edges (Fig 4.a). Because the real images are not low-rank, but the top

singular values maintain the main information, we apply SVD to the original image and truncate

this decomposition to get the 50-rank image M50 (Fig. 4.b). We selected 30 % samples randomly

from M50 (Fig. 4.c) and we solve the recovery problem with IFBMC and IPSMr. To measure the

quality of the reconstruction in this case, in addition to the Relative Error, that uses M50, we use the

Peak Signal to-Noise Ratio, defined as:

PSNR = 20 log10

max(M)

rmse
rmse =

√∑
i

∑
j(X̂ij −Mij)2

m · n

where M is the original full rank image.

The reconstructions obtained by both the algorithms, depicted in Fig. 4d, have the same

RelativeError = 9.90E − 011 and PSNR = 50.19, but the execution time of IFBMC (25.79 sec)

is lower than that of IPSMr (136.41 sec).

7. CONCLUSIONS

We considered a nonconvex approach to the matrix completion problem. We showed that also in this

nonconvex, nonsmooth matrix setting it is possible, under certain hypotheses, to use the iterative

Forward-Backward splitting algorithm and we proved its convergence to a critical point of the

nonconvex objective functional. Since the most difficult request for the convergence proof is that

in the backward step the solution of the nonconvex minimization is a global minimizer, we showed

that by using certain parameter dependent nonconvex, nonsmooth relaxations of the rank function

and by a suitable choice of the parameter value it is possible to solve in the backward step a convex

minimization problem that has a closed form solution. We used our theoretical results to solve the

matrix completion problem and we developed the efficient, iterative algorithm IFBMC, that presents

better recovery performances and lower computing times when compared, on simulated and real

recovery problems, with the best state-of-the-art algorithm for matrix completion. The performance

of the proposed IFBMC algorithm is illustrated on problem of real and synthetic low-rank matrix

completion and image recovery.
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(a) (b)

(c) (d)

Figure 4. a) Original 512× 512 Boat image with full rank. b) 50-rank approximation: M50. c) Starting
data for the reconstruction: only 30% of M50. d) Recovered Images by both IFBMC and IPSMr (the two

reconstructions are almost identical)

A. PROOF PROPOSITION 4.1

Proof: Since Xk is a global minimum to problem (9), it holds that

Q(Xk, Xk−1) ≤ Q(Xk−1, Xk−1),



31

namely

λR(Xk) +H(Xk−1)+ 〈∇H(Xk−1), Xk −Xk−1〉+
µ

2
‖Xk −Xk−1‖2F ≤

λR(Xk−1) +H(Xk−1).

then,

λ(R(Xk−1)−R(Xk)) ≥ 〈∇H(Xk−1), Xk −Xk−1〉+
µ

2
‖Xk −Xk−1‖2F . (55)

Using Lemma 4.1 with X=Xk and Y = Xk−1, we obtain:

H(Xk−1)−H(Xk) ≥ −〈∇H(Xk−1), Xk −Xk−1〉 −
L

2
‖Xk −Xk−1‖2F . (56)

Since F (Xk−1) = H(Xk−1) + λR(Xk−1) and F (Xk) = H(Xk) + λR(Xk), by using (55) and (56)

it follows that

F (Xk−1)− F (Xk) = H(Xk−1)−H(Xk) + λ(R(Xk−1))− λR(Xk)) ≥

≥µ− L
2
‖Xk −Xk−1‖2F ,

(57)

Since µ > L, it follows that F (Xk) is monotonically nonincreasing and (36) holds.

In order to prove relation (37), we rewrite (57) for k = 1,2,..., and by back-substitution and summing

for k ≥ 1, we obtain

F (X0) ≥
+∞∑
k=1

‖Xk −Xk−1‖2F
µ− L

2

namely
+∞∑
k=1

‖Xk −Xk−1‖2F ≤
2

µ− L
F (X0).

The series
∑+∞

k=1 ‖Xk −Xk−1‖2F is, therefore, finite, it holds then that

lim
k→∞

‖Xk −Xk−1‖F = 0. (58)

Since the sequence {F (Xk)} is monotonically nonincreasing, the boundness of {(Xk)} follows

from the coercivity and from boundness from below of F .

By the Bolzano-Weirstrass theorem, there exists a matrix X∗ and a subsequence {Xkj} such that

limk→∞Xkj = X∗. ut
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B. PROOF LEMMA 4.2

Proof: 1. Since Xk is a global minimum to problem (9), we have

F (Xk) +
µ− L

2
‖Xk −Xk−1‖2F ≤ F (Ξ) +

µ− L
2
‖Ξ−Xk−1‖2F , Ξ ∈Mr

namely

H(Xk) + λR(Xk) +
µ− L

2
‖Xk −Xk−1‖2F ≤ H(Ξ) + λR(Ξ) +

µ− L
2
‖Ξ−Xk−1‖2F , Ξ ∈Mr

(59)

Let X∗ be a point in ω(X0); there exists a subsequence Xkq of Xk that converges to X∗ as q →∞.

Because by (58) ‖Xk −Xk−1‖F → 0, by Assumption A1 H(X) is continuous, and R(X) is lower

semicontinuos functional, from (59) we deduce that:

lim supλR(Xkq ) +H(X∗) ≤ H(Ξ) + λR(Ξ) +
µ− L

2
‖Ξ−X∗‖2F , Ξ ∈Mr

In particular, for Ξ = X∗ we obtain

lim sup
q→∞

R(Xkq ) ≤ R(X∗)

and since R(X) is a lower semicontinuous functional we can assume that R(Xkq )→ R(X∗), as

q →∞.

It follows therefore that

lim
q→∞

F (Xkq ) = lim
q→∞

{
H(Xkq ) + λR(Xkq )

}
= H(X∗) + λR(X∗) = F (X∗),

and thus the Continuity Condition (34) results satisfied.

2. Since by Lemma 4.1 Xk is a bounded sequence , the set ω(X0) is nonempty. Moreover, by (40)

we have that ‖Wk‖F ≤ (µ̄+ L)‖Xk −Xk−1‖F , Wk ∈ ∂F (Xk). By (58) it follows that Wk → 0

as k →∞. Therefore 0 ∈ ∂F (X∗). This proves that X∗ is a critical point of F .

ut
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C. PROOF LEMMA 4.4

Proof: Without loss of generality, we assume that F (X∗) = 0, (otherwise we can consider

F (X) = F (X)− F (X∗)).

By Proposition (32) it holds that:

F (Xi)− F (Xi+1) ≥ µ− L
2
‖Xi+1 −Xi‖2F . (60)

We observe that ϕ′(F (Xi)) makes sense since 0 < F (Xi) < η for hypothesis (48) (being F (X∗) =

0), and ϕ′(F (Xi)) > 0. Hence, by multiplying both sides of (60) for ϕ′(F (Xi)) we have

ϕ′(F (Xi))(F (Xi − F (Xi+1)) ≥ ϕ′(F (Xi))
µ− L

2
‖Xi+1 −Xi‖2F (61)

Due to the concavity of ϕ and by using (61) it follows that

ϕ(F (Xi))− ϕ(F (Xi+1)) ≥ ϕ′(F (Xi))(F (Xi)− F (Xi+1)) ≥ ϕ′(F (Xi))
µ− L

2
‖Xi+1 −Xi‖2F .

(62)

We now prove by induction relation (50). Let us first check (50) for k = 0 and k = 1.

From hypothesis (49) it follows that X0 ∈ B(X∗, ρ).

As to X1, relation (60) yields, in particular, for i = 0,

µ− L
2
‖X1 −X0‖2F ≤ F (X0)− F (X1) ≤ F (X0) (63)

Hence

‖X1 −X∗‖F ≤ ‖X1 −X0‖F + ‖X0 −X∗‖F ≤
√

2

µ− L
√
F (X0) + ‖X0 −X∗‖F (64)

Hence, from hypothesis (49) it follows that X1 ∈ B(X∗, ρ).

By induction, we now prove that Xk ∈ B(X∗, ρ) for all k ≥ 0. This being true for k ∈ {0, 1}, let us

assume that it holds up some k ≥ 1.

For 0 ≤ i ≤ k, becauseXi ∈ B(X∗, ρ), and 0 < F (Xi) < η, we can write the Kurdyka-Loyasiewicz

inequality at Xi

ϕ′(F (Xi))dist(0, ∂F (Xi)) ≥ 1 (65)
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By (33), we have that

‖Wi‖F ≤ (µ̄+ L)‖Xi −Xi−1‖F (66)

with Wi ∈ ∂F (Xi). We can then write:

ϕ′(F (Xi)) ≥
1

‖Wi‖F
≥ 1

(µ̄+ L)‖Xi −Xi−1‖F
(67)

By combining (62) and (67), we have

M (ϕ(F (Xi))− ϕ(F (Xi+1))) ≥ ‖Xi+1 −Xi‖2F
‖Xi −Xi−1‖F

(68)

where M = 2 µ̄+L
µ−L .

Inequality (68) can be rewritten as:

M(ϕ(F (Xi))− ϕ(F (Xi+1)))‖Xi −Xi−1‖F ≥ ‖Xi+1 −Xi‖2F (69)

Taking the square root of both sides of the relation (69)

√
‖Xi −Xi−1‖F (M(ϕ(F (Xi))− ϕ(F (Xi+1))))

1/2 ≥ ‖Xi+1 −Xi‖F (70)

and by recalling that αβ ≤ (α2 + β2)/2, relation (70) can be rewritten as:

‖Xi −Xi−1‖F +M(ϕ(F (Xi))− ϕ(F (Xi+1)) ≥ 2‖Xi+1 −Xi‖F (71)

This inequality holds for 1 ≤ i ≤ k; let us sum over i:

‖X1 −X0‖F +M(ϕ(F (X1))− ϕ(F (Xk+1)) ≥
k∑
i=1

‖Xi+1 −Xi‖F + ‖Xk+1 −Xk‖F (72)

Due to the monotonicity of ϕ and F (Xk), we can write

‖X1 −X0‖F +Mϕ(F (X0)) ≥
k∑
i=1

‖Xi+1 −Xi‖F (73)

By considering that

Xk+1 −X∗ = X2 −X1 +X3 −X2 + · · · ·+Xk+1 −Xk +X1 −X∗,

and by using triangular inequality and relation (73), we get

‖Xk+1 −X∗‖F ≤
k∑
i=1

‖Xi+1 −Xi‖F + ‖X1 −X∗‖F ≤Mϕ(F (X0)) + ‖X1 −X0‖F + ‖X1 −X∗‖F
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that, by hypothesis (49) and relations (63) and (64), implies Xk+1 ∈ B(X∗, ρ). It results, thus,

proved (50).

Indeed inequality (71) holds for i ≥ 1; let us sum it for i running from some k to some K > k

‖Xk −Xk−1‖F +M(ϕ(F (Xk))− ϕ(F (XK+1)) ≥
K∑
i=k

‖Xi+1 −Xi‖F + ‖XK+1 −XK‖F (75)

Hence

‖Xk −Xk−1‖F +Mϕ(F (Xk)) ≥
K∑
i=k

‖Xi+1 −Xi‖F (76)

Letting K →∞ and by using (60), we conclude that

∞∑
i=k

‖Xi+1 −Xi‖F < +∞, (77)

which implies that the sequence (Xk)k∈IN is a convergent Cauchy sequence and, by (44), converges

to X∗. Moreover, by (45), it follows that X∗ is a critical point of F (X). ut
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