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A Cyber-Physical System for Clothes Detection,
Manipulation and Washing Machine Loading

Alessio Caporali, Wendwosen Bellete Bedada, Gianluca Palli

Abstract—In this paper, a cyber-physical system for the de-
tection and manipulation of clothes and its application to the
problem of their robotized insertion in a washing machine drum
is presented. Starting with the clothes randomly placed inside a
bin next to the appliance, the method describes the approach used
for the laundry bin picking together with a recovery picking from
the drum door region in case some large cloth remains partially
out from the washing machine. The same pointcloud-based
perception algorithm is utilized for both tasks: the approaches
are different only for what concerns the segmentation of the
pointcloud for the extraction of the cloth-related points. The main
algorithm exploits a wrinkledness measure to identify wrinkles
in the cloth surface, to robustly assign spline curves to the
detected wrinkle-like structure and to estimate grasping frames.
In addition, a pointcloud registration technique is applied in the
washing machine recovery task for the segmentation stage. The
planning of the robot operations to execute the cloth grasping is
also presented. The approach has been validated extensively by
performing 100 trials grasps for both tasks.

Index Terms—Deformable Object Manipulation, Clothes State
Estimation, Task-Priority Planning, Cyber-Physical Systems.

I. INTRODUCTION

The sensing and manipulation of deformable objects (DOs)
triggers diverse applications in various fields: from the medical
domain with surgical assistance, passing by the industrial
domain with food handling and end-of-line testing, but also
domestic scenarios with household chores and clothing wash-
ing and ironing.

The challenge of manipulating and sensing DOs is massive
due to their intrinsic property of being deformable. Indeed,
their shape and appearance change during the time. This
implies that the vast majority of the approaches and algorithm
developed for rigid objects need to be modified or are not
applicable at all to DOs.

Clothes are DOs characterized by having one dimension
considerably smaller than the other two (i.e. the thickness of
the fabric) [1]. Their sensing and manipulation have the same
high number of possible industrial or domestic applications.
Consider, as an example, the identification of clothes in an
unstructured environment which is a fundamental requirement
for assistive robots in domestic scenarios [2].
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Fig. 1: Experimental setup.

In this paper, a cyber-physical system for the identification
of grasping poses and the manipulation of clothes is presented
addressing the picking of clothes from a container and from
the drum door area of a washing machine. The first can be
considered the primary task aiming at the robotized insertion
of clothes, from a bin placed nearby, into a washing machine.
The second, instead, can resemble a recovery strategy in case
the insertion of a cloth was not completely achieved.

The core of the proposed approach is a pointcloud-based
algorithm for the identification of optimal grasping poses in
clothes having a crumbled configuration. The contribution of
this paper is an extension and improvement of the algorithm
originally proposed in [3]: the approach here presented pre-
serves the same structure and main components while being
able to selectively identify the wrinkles paths in a more robust
and accurate way thanks to the interpolation of key points with
spline curves. Secondly, in this paper, the initial segmentation
step of the algorithm is also extended by addressing the
problem of segmenting properly clothes hanging down from
the washing machine door opening. The approach used is
based on pointcloud registration. Finally, this paper focuses
on the task-priority based planning of the robot activity to
execute the grasps.

The experimental validation of the overall method is pro-
vided in this work by executing 100 grasp trials on a diverse
clothes test sets for both tasks introduced.



Fig. 2: Schema of the vision algorithm. The input pointcloud is segmented retrieving only the interior point of the bin (yellow).
The entropy map is build utilizing the knowledge embedded into the convexity, curvature and combined (depth + edges) maps.
The grayscale image is shown for clarity.

II. LITERATURE REVIEW

A comprehensive review of the literature for sensing and
manipulation of DOs is provided in a recent survey [1]. In
this study, clothes are classified as biparametric objects not
possessing any compression strength. The term biparamet-
ric indicates the object condition of having one dimension
considerably smaller that its other two, i.e. the thickness
of the fabric. Extensive work has emerged in the literature
specifically related to cloth(es): state estimation of clothes
[4]; grasp point detection [5] and [6]; manipulation tasks as
grasping for garment picking-up [7] and [8], manipulation for
garment reconfiguration [9] and [10]; manipulation for folding
[11].

Clothes, due to the intrinsic nature, can assume infinite
possible different shapes and, additionally, their color and
texture can vary a lot as well. For this reasons, in the literature,
wrinkles are emerged as key feature for working on textile
objects.

Wrinkles can be used just for the identification of clothes in
an unstructured environment, as in [12]. Here, the authors use a
modified Gabor filter in conjunction with other techniques for
extracting wrinkles features from an image and hence locate
clothes in a domestic scene.

Additionally, wrinkles can carry important pieces of infor-
mation for other tasks, as grasping, manipulation or flattering.
In [13], a wrinkles analysis is carried out on a high definition
2.5D image. The principal dimensions of the wrinkles (height,
width and volume) are estimated and used into a flattering
strategy. In [5], wrinkles are identified via a graspability
measure to decide the best candidate point for grasping the
collar of clothes, the authors called it an informed grasp.

Specifically to the laundry operation, the location of the
grasping point is not relevant. The only requirement is a stable
grasp, since the clothes should be picked up from a container
and placed inside the drum. In the literature, two different kind
of approaches are present for selecting this type of grasping
point: region based and wrinkle based.

In the region based approaches, the grasping point is chosen
based on height information [14], centroid [9] or farthest

interior point to the border [15]. All this kind of methods
present limits in case of non-convex areas [2].

Instead, an example of wrinkle based approach is the already
mentioned work of [5]. Wrinkle based approaches represent a
more robust alternative to the region based ones. Due to their
shape, wrinkles are good candidate for grasping. In fact, the
fingers of the gripper can be positioned at both sides of the
ridge and an easy pinch grasp can follow [2].

III. GRASPING POSE DETECTION

The grasping poses identification algorithm for cloth-like
deformable objects has been already introduced in our previous
work [3]. Here, we briefly recall the original approach and
discuss the improvements and modifications introduced.

The algorithm consists of four distinct steps. The first per-
forms the segmentation of the source pointcloud by identifying
the bin in the scene and by broadcasting to the following
steps only the points inside the bin itself. The second step
applies a wrinkledness measure augmented by additional cues
(convexity and depth) in order to find the areas of the seg-
mented pointcloud with wrinkle-like structures. The third step
is responsible for the fitting of a piecewise curve in each
detected wrinkle area. The last step, number four, estimates
a grasping pose for each piecewise wrinkle-path.

The improved version presented in this paper is based on
the structure described but with major differences in the third
(wrinkle-paths) and forth (poses estimation) steps. The first is
described in Sec. III-A whereas the latter in Sec. III-B. Fig. 2
shows the flow of the discussed algorithm.

A. Wrinkles as Interpolated Splines

The original piece-wise curve fitting presented in [3] turns
out to be brittle and fragile, in particular for what concerns the
nodes selection. To address these limitations, the new idea here
exploited is to build an undirected graph G = (V,E) where
the nodes (V ) are interconnected by the edges (E) based on
some properties. These nodes are arranged into a meaningful
ordered sequence and a spline curve is interpolated to them.
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Fig. 3: Graph structure (a) and interpolated spline (b). In (a),
the points in the graph denote the supervoxels centroids and
the segments connecting them resemble the graph edges. The
different colors in the nodes highlight their different intensities
values. In (b), the segmented entropy map is shown in the
background with the spline in yellow.

Supervoxels Clustering: The supervoxel clustering algo-
rithm [16], utilized with the aim of creating the graph structure,
is applied to the projected segmented entropy map (i.e. the
output of step 2 in [3]).

The algorithm provides, for each supervoxel, its centroid
points and the set of adjacent neighbours. The supervoxels
centroids will be the nodes of the graph, the adjacency
information is used for the introduction of edges. Each node is
also augmented with an intensity attribute related to the wrin-
kledness score of the related area in the entropy map. Figure 3a
displays the result of the clustering with the generated graph.

The obtained graph is clustered based on connected compo-
nents resulting into a set of clusters (subsets) Ci, i = 1, . . . , c
where c is the number of clusters, such that G = ∪Ci.

Path Building Process: A path P over a generic cluster Ci
is a sequence of distinct alternating nodes and edges. We will
denote the i-th path as Pi = {vi1 . . . vil} where l is the total
number of nodes denoting path i. From each cluster Ci a path
is built by arranging the nodes of the graph into an ordered
sequence. To build the path the following is performed: 1)
selection of the maximum intensity node nmax; 2) recovery
of the intensity values of its neighbours; 3) selection of the
two neighbours with the largest intensities, nn1 and nn2; 4)
building of two distinct temporary paths, Ptmp1 and Ptmp2 ; 5)
merging into Pi of the two paths.

Let’s focus on Ptmp1 only, since the process performed on
Ptmp2 is the same. The path building process is initialized
by adding, in sequence, nmax and nn1 to Ptmp1 which was
originally an empty queue. Given the path Ptmp1 correctly
initialized, the process loops inside an algorithm which aim is
to propagate the path by adding as many node as possible.

Let’s consider the last node of the path, nl. Its neighbours
Nl are checked and, among them, the remaining set of
neighbours of nl not in the path are processed and denoted
candidate nodes with the symbol nci , with i = 1 . . . s. The
intensity and curvature scores for each candidate node nci are
evaluated. In particular, the product of wrinkledness score and

curvature score is performed. Then, the node with the greatest
product score is selected as next node and added to the path.
If all the candidate nodes have a product score of zero, then
the path is assumed to have reached the end and hence the
looping stopped.

Having computed both Ptmp1 and Ptmp2 , the final path Pi
is obtained just by merging the two portions using nmax as
junction point.

Curvature Score: The curvature score is evaluated between
three nodes: the current last node of the path nl; the second last
element nl−1; the candidate node nci . So the angle between
the two 3D vectors dl = nl−1 − nl and dc = nci − nl can
be computed and denote as φ. The Von Mises distribution is
used to transform the computed angle to a probability value.
The Von Mises probability density function for the angle φ is
given by:

f(φ | µ, κ) =
eκ cos(φ−µ)

2πI0(κ)
(1)

where I0(κ) is the modified Bessel function of order 0, µ
is the mean value (µ = π), φ is the angle considered and
κ is the measure of concentration (κ = 1). With this setting
we prioritize a smooth transition in the curvature between the
nodes.

Spline Interpolation: The nodes centroids are translated
from the projected space back to the original 3D space. Then,
the nodes of each Pi are fed as set of control points to be
interpolated by a spline in the 3D space with a degree of
2. Notice that this is an approximated solution and different
interpolation strategies can be implemented to refine it. The
result of the interpolation for a sample pointcloud is denoted
in Fig. 3b as a yellow curve.

B. Poses Estimation

To enforce the estimation of an orthogonal axis with respect
to the reference plane, the obtained spline curves are projected
again to the reference plane.

On the projected splines, target points are extracted: each
being the closest point on the spline curve to a given control
node. The origin of a reference frame is assigned to each target
point. The sliding axis of the frame is found by approximating
the spline curve in that target point area with a tangent line.
Due to the projection, the orthogonal axis comes for free as
the third one. In the grasping poses of Fig. 2, the blue color
indicates the sliding axes of the robot gripper (i.e. the wrinkle
direction). We remark that, compared to having a single frame
for spline curve [3], here we obtain n frames for each spline,
n being the number of control nodes of the curve.

IV. EXTENSION TO WASHING MACHINES

Inserting a cloth into the washing machine drum is a
complex task. Due to many factors such as the initial point of
grasp and topology/dimension of the cloth considered, it may
happen that, after the insertion, a portion of the object lays
outside the opening door of the washing machine drum. This
situation would be problematic in case of a robotized washing



Fig. 4: Schema of the vision approach for the washing machine
recovery picking. Grayscale image shown for clarity.

machine loading. A possible strategy for the identification
and removal of clothes laying outside the drum door is here
discussed by extending the approach presented in Sec. III
about the bin segmentation.

The idea consists of using a pre-computed pointcloud model
PO of the washing machine for calculating a new pointcloud,
named difference map PD, as the difference between PO and
the current scene PS pointclouds. The obtained PD can be
used for understanding if a misplaced cloth is present. Then,
the grasping pose identification algorithm presented in Sec.
III can be employed for computing the recovery poses for
removing it. Fig. 4 provides a summary view of the approach
described in this section.

A. Pointclouds Registration

In order to calculate PD, PS and PO should be aligned (i.e.
registered). In particular, we need to find the transformation
that would bring PO to overlap PS , obtaining the aligned
model pointcloud PÔ. Notice that PO is computed offline
and represents a portion of a washing machine with the
door opened. The alignment operation can be split into 1)
the problem of determining the initial (rough) transformation
between P0 and PS , and 2) the optimization of the alignment.

The initial alignment is obtained by exploiting the Samples
Consensus Prerejective (SCP) [17] method. It evaluates the
correspondences between feature points, as features we select
the Fast Point Features Histograms (FPFH) [18], and provides
the initial guess for the transformation. This is refined by the
Iterative Closest Point (ICP) algorithm [19] which minimize
the Euclidean distance error metric between the overlapping
areas of the pointclouds.

B. Difference Map

A reference plane is estimated from PÔ and both point-
clouds are projected on this plane. Each point in PS is
matched with a point in PÔ and the two point-to-plane
distances between each of them and pref are computed. Then
the distances are evaluated and their difference stored inside
PD, Fig. 4 provides an example of difference map where the
point intensity values are encoded in the color-map (reddish
means close to zero). Thus, PD is used to display the regions
of the washing machine where PÔ and PS differ the most.
PD is segmented by discarding all the points with a negligi-
ble difference (distance) based on an user-defined threshold.
Notice that if all the points in the difference map do not satisfy
the threshold, then this can be interpreted as a signal of not
presence of misplaced cloth.

C. Grasping Poses Generation

The segmented PD is employed directly from step 2 to the
execution of the algorithm (Sec. III) aiming at finding possible
recovery grasping poses (grasping poses example shown in
Fig. 4). We remark that the only difference in the algorithm
resides in the initial segmentation (step 1).

V. TASK-PRIORITY BASED GRASP EXECUTION

A 7-DoFs robot arm is exploited for the implementation of
the task under investigation. The arm is velocity controlled
and, for grasp execution, the redundancy of the arm is ex-
ploited in the task-priority framework in such a way that low
priority tasks are fulfilled in the null space of higher priority
tasks [20]. The tasks implemented in the controller are, from
the higher to lower priority, joint limit avoidance, end-effector
pose control, elbow pose control, singularity avoidance and
velocity minimizer task. For a general robotic system with n-
DoF, in a given configuration, q = [q1, q2, . . . , qn]T , a forward
kinematics of a particular task x ∈ Rm can be expressed as a
function of joint configuration: x(t) = x(q(t)). For such task
variable, we also assume the existence of Jacobian relationship
between task space velocity ẋ and the system velocity vector
q̇ as ẋ = J(q)q̇; where J(q) ∈ Rm×n is the Jacobian matrix.
Given a reference task space velocity vector ẋ, the joint
velocity vector q̇ that satisfies ẋ in the least-square sense can
be computed using the pseudoinverse as

min
q̇

∥∥ẋ− Jq̇∥∥2 =⇒ q̇ = (JTJ)#JT ẋ (2)

where the dependency of the Jacobian matrix from q is
omitted for brevity and the symbol # represents the matrix
pseudoinverse. To manage multiple tasks that may be not all
active at the same time, such as in case of tasks devoted to
ensure joint limits or collision avoidance, the task activation
matrix A is introduced into (2) to allow smooth transition
during task activation and deactivation

min
q̇

∥∥A(ẋ− Jq̇)
∥∥2 + ‖Jq̇‖2A(I−A) +

∥∥V T q̇∥∥2
P

(3)

where V T is the right orthonormal matrix of the SVD
decomposition of JTAJ = UΣV T and P is a diagonal
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Fig. 5: Grasp pose and generated way-points. From bin-top
(a) and during washing machine recovery grasp (b).

regularization matrix where each element p(i,i) is a bell-shaped
function of the corresponding singular value of J , or zero if
the corresponding singular value do not exist. The notation
‖ · ‖P indicates the weighted norm, i.e. ‖q̇‖2P = q̇TP q̇. The
generalized solution of (3) provides the desired arm joint
velocity

q̇ = (JTAJ + V TPV )#JTAAẋ

+ (I − (JTAJ + V TPV )#JTAAJ)q̇0
(4)

where q̇0 can be exploited to implement lower priority tasks
in hierarchy. Finally, the end-effector trajectory is generated
in the operational space by interpolating the current pose and
the grasp pose as shown in Fig. 5a and Fig. 5b, and the end-
effector pose control task takes care of driving the robot along
the desired path while ensuring the satisfaction of the other
tasks according to their priority.

VI. EXPERIMENTS

To validate the proposed approach, the algorithm is im-
plemented in the ROS environment with the 7-DoF Baxter
robot arm, while a 3D PicoFlexx camera in an eye-in-hand
configuration is employed for the vision system. The schematic
representation of the proposed cyber-physical system is re-
ported in Fig. 6. In the experiments, the performance of the
robot in the grasps with the poses provided by the proposed
method is tested. Since the algorithm provides as output
several target poses (one for each control node of the spline
curves), we needed to decide which of the computed poses
to use as reference for the experimentation. Concerning the
bin picking task, we select as reference target pose the one
with the greatest depth from the bin bottom plane. This
to ensure a greater range of motion during the grasping
operation. Regarding the task involving the washing machine,
we prioritize the most distant pose from the drum center point,
since this would allow the insertion of a greater portion of the
cloth inside the drum.

Five clothes shown in Fig. 7 are used as test set. These
clothes are selected in order to increase the variance for
what concerns the dimensions of the item but also the type
of fabric (e.g. ”harder” or ”softer”) aiming at providing a
comprehensive analysis. In this regard, the shirt has the softest
fabric in the set, whereas the jeans have the hardest. The other
clothes can be classified between them.
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Fig. 6: Vision and control scheme implementation.

Fig. 7: Clothes test set with rulers in centimeters for scale.

A. Graspability Tests

The experiments are carried out for the two tasks already
introduced throughout this paper: the bin picking and washing
machine recovery picking.

1) Bin Picking Task: This test is experimented having a
single cloth of Fig. 7 in a bin. At the beginning of the
experiment, the cloth is arranged into a random configuration.
Then, the execution of the picking task is performed. In
sequence, the vision system provides a new target pose (as
explained in Sec. III), the robot attempt the grasp, lift the
item 1 meter and release it. Hence, the cloth falls back down
in the bin assuming a new random configuration. The picking
task sequence is repeated 10 times for each cloth.

2) Washing Machine Recovery Picking Task: This test is
carried out similarly to the bin picking one. The clothes of
Fig. 7 are tested one at the time. For each cloth tested, 10 grasp
trials are performed. The cloth is placed along the drum door
partially hanging out from it to simulate an incorrect insertion.
The vision system computes a target pose as described in
Sec. IV. The robot attempts the grasp, moves the grasped cloth
vertically toward the drum center, then it releases the grasp.
In this case, after each grasp, the cloth is rearranged manually
in a new configuration along the drum door.
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Fig. 8: Sequence of motion during laundry manipulation from
Bin and Washing Machine (WM).

In Fig. 8, the sequence of actions performed for each task is
depicted for clarity. Instead, Fig. 9 provides a chart showing
the success rates of the grasps for the two tasks from the
point of view of each type of cloth. The average success
rate in the bin picking task is 0.70, while it is 0.82 in the
washing machine one. Considering the total set of 100 grasps
attempted, our algorithm provides a target pose that results
on a successful grasp in 76% of the cases. The failure in the
grasps are mostly related to wrong orientations of the target
frame resulting from an erroneous identification of the wrinkle
path. In a smaller extend, failures can be also associated to
measurement errors of the camera, calibration errors for the
eye-in-hand and accuracy of the robot arm itself.

B. Additional Experiment

A second type of experiments are performed related not only
to the assertion of the correctness of the target poses provided
by the algorithm, but also to the capability of those poses to
allow the robot to reach a goal state with a reasonable amount
of grasps. In particular, the capability of emptying a bin full of
4 test clothes is tested. Performing 5 trials, an average number
of 5.2 grasps are required for accomplishing this tasks.

The capability of inserting completely a cloth hanging down
from the drum door is also evaluated by performing 5 trials
for each cloth tested. In this case, we adopt the small and big
towels from the test set: for the first, an average number of 1.8
grasps are necessary; for the second, 3.2 grasps are needed;

It is important to remark that the trajectories used in those
experiments are quite simple and the results are only prelimi-
nary since an in-depth study about the optimal trajectory and
also grasp pose selection is still in progress.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a pointcloud-based approach for the perception
of clothes aiming at the robotized insertion of clothes inside
a washing machine is proposed. The approach is validated
extensively for both the bin picking and washing machine
recovery picking tasks. The performances are satisfactory
allowing a successful grasp in 76% of the attempts. In the
future, we will work on integrating the approach presented into
a complex robotic behavior fully autonomous. In addition, we
will experiment about extending the approach to the picking
of clothes from inside the washing machine drum.

Fig. 9: Success rates for the bin picking and washing machine
recovery picking actions.
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