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We systematically study the completion of choice problems in the Weihrauch lattice. 
Choice problems play a pivotal rôle in Weihrauch complexity. For one, they can be 
used as landmarks that characterize important equivalences classes in the Weihrauch 
lattice. On the other hand, choice problems also characterize several natural 
classes of computable problems, such as finite mind change computable problems, 
non-deterministically computable problems, Las Vegas computable problems and 
effectively Borel measurable functions. The closure operator of completion generates 
the concept of total Weihrauch reducibility, which is a variant of Weihrauch 
reducibility with total realizers. Logically speaking, the completion of a problem 
is a version of the problem that is independent of its premise. Hence, studying the 
completion of choice problems allows us to study simultaneously choice problems in 
the total Weihrauch lattice, as well as the question which choice problems can be 
made independent of their premises in the usual Weihrauch lattice. The outcome 
shows that many important choice problems that are related to compact spaces are 
complete, whereas choice problems for unbounded spaces or closed sets of positive 
measure are typically not complete.
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1. Introduction

Choice problems play a crucial rôle in Weihrauch complexity. A recent survey on the field can be found 
in [9]. A choice problem is a problem of the logical form

(∀ closed A ⊆ X)(A ∈ D =⇒ (∃x ∈ X)x ∈ A).

Here X is typically a computable metric space, the closed set A ⊆ X is typically given by negative in-
formation in order to make the statement non-trivial, and the premise D could be a property such as 
non-emptiness, sometimes combined with additional properties, such as positive measure, connectedness, 
etc. The multi-valued Skolem function of such a choice problem is a function of the form

CX :⊆ A−(X) ⇒ X,A �→ A,

where A−(X) denotes the space of closed subsets of X with respect to negative information and dom(CX) =
{A : A 	= ∅} is a particular D. If the domain is further restricted to sets of positive measure or connected sets, 
then we denote the problem by PCX and CCX , respectively. By KX we denote compact choice that considers 
compact sets with respect to negative information. Many basic systems from reverse mathematics [22] have 
certain choice problems as uniform counterparts. Also some classes of problems that are computable in a 
certain sense can be characterized as cones below certain choice problems in the Weihrauch lattice. The 
Table 1 gives a survey on such correspondences (see [9] for further details).

Table 1
Weihrauch complexity and reverse mathematics.

Choice problems Reverse mathematics Classes of problems

C1 RCA∗
0 computable

KN BΣ0
1

CN IΣ0
1 finite mind change computable

C2N WKL∗ non-deterministically computable
PC2N WWKL∗ Las Vegas computable
CNN ATR0 effectively Borel measurable functions

We assume that the reader is familiar with Weihrauch reducibility ≤W. The statement f ≤W g roughly 
speaking expresses that the problem f can be computably reduced to the problem g in the sense that each 
realizer of g computes a realizer of f in a uniform way (see [9]). In [6] we have introduced the closure 
operator of completion f �→ f that induces total Weihrauch reducibility ≤tW by

f ≤tW g : ⇐⇒ f ≤W g.

Total Weihrauch reducibility ≤tW is a variant of the usual concept of Weihrauch reducibility ≤W and it can 
be directly defined using total realizers [6]. Our main motivation for studying this total variant of Weihrauch 
reducibility and the completion operator f �→ f is that one can obtain a Brouwer algebra in this way. More 
precisely, if the completion operator is combined with the closure operator f �→ f̂ of parallelization, then 
the resulting lattice structure is a Brouwer algebra, i.e., a model of some intermediate logic that, like in the 
case of the Medvedev lattice, turns out to be Jankov logic [6].
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Formally, the completion f : X ⇒ Y of a problem f :⊆ X ⇒ Y is defined by

f(x) :=
{

f(x) if x ∈ dom(f)
Y otherwise

,

i.e., by a totalization of f on the completions X, Y of the corresponding types.3 Logically, the completion f
of a problem f can be seen as a way to make f independent of its premise. For choice problems this means 
to consider them in the form

(∀A ∈ A−(X))(∃x ∈ X)(A ∈ D =⇒ x ∈ A),

where the existence of x is now independent of the premise A ∈ D. If we use intuitionistic logic, then we 
cannot just export the quantifier without changing the meaning of the formula. Likewise, the computational 
content of the formula with the exported quantifier is different from the original one.

The main question that we study in this article is: which choice problems CX and their variants are 
complete, i.e., when do we obtain CX ≡W CX?

Some examples of complete and incomplete choice problems are the following:

• Complete choice problems: Cn for n ≥ 1, KN , C2N , CC[0,1].
• Incomplete choice problems: C0, CN , CR, CNN , PC2N , PCC[0,1].

From the perspective of a complete problem its lower cones in the Weihrauch lattice and in the to-
tal Weihrauch lattice coincide. Together with the notion of completeness we also study the notion of 
co-completeness. For co-complete problems the upper cones in the two lattices coincide. Since many impor-
tant problems are either complete or co-complete or even both, we obtain very similar reducibility relations 
between important choice problems in the usual and the total Weihrauch lattice. The incomplete problems 
in Fig. 1 are all shown in dashed boxes together with their completions. If we disregard the completions, then 
all relations between any two problems shown in Fig. 1 are the same for ordinary Weihrauch reducibility 
≤W and its total variant ≤tW, except those that involve the weak Bolzano-Weierstraß theorem WBWT2 on 
the space {0, 1}.

However, a certain amount of expressiveness is lost by the transition from the ordinary Weihrauch lattice 
to its total variant:

(1) Finite mind change computable problems and Las Vegas computable problems can be characterized as 
lower cones with Weihrauch reducibility ≤W, but not with total Weihrauch reducibility ≤tW.

(2) Low problems can be characterized as lower cones with strong Weihrauch reducibility ≤sW, but not 
with strong total Weihrauch reducibility ≤stW.

(3) Limit computable problems and non-deterministically computable problems can be characterized as 
lower cones for all mentioned reducibilities.

We provide a list of some references for some crucial reductions and separations given in Fig. 1. Several 
further references can be found in the survey [9].

(a) In Corollary 5.3 we prove that in general CX ≤sW CX ≤sW TCX ≡sW TCX holds. In Theorem 11.6 we 
provide the necessary separations for X = NN and in Corollary 8.3 the corresponding separations 

3 The completion of types has interesting independent applications and was recently introduced and used by Dzhafarov [16] to 
show that a strong variant ≤sW of Weihrauch reducibility actually forms a lattice structure.
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Fig. 1. Basic problems and their completions in the Weihrauch lattice.

for X = N. The reduction lim′ ≤W CNN follows, for instance, from [2, Theorem 7.7]. The reduction 
TCN ≤W K′

N ∗ K′
N follows from Corollary 8.10 and Proposition 8.13.

(b) Neumann and Pauly introduced SORT and proved CN <W SORT<W lim [21, Proposition 24]. This is 
improved by Corollary 8.16, which yields CN ≤W SORT. The reduction SORT≤W K′

N ∗K′
N follows from 

Corollary 8.10 and Proposition 8.13. The reduction CC[0,1] ≤W SORT was proved in [12, Proposition 16].
(c) The reduction CR≤W L was proved in [2, Corollary 4.9, Theorem 8.7]. The separation of L and L and, 

in fact, several other separations in the diagram follow, since WBWT2 �W L by Proposition 9.5 and 
WBWT2 ≤W CN by Proposition 8.8. The problem WBWT2 was introduced in [11]. By [8, Corollary 11.11]
we have BWT2 ≡sW LLPO′ and hence WBWT2 ≤W BWT2 ≤W LPO′.

In the following section 2 we continue the study of precomplete representations that was started in 
[6]. We characterize represented spaces that admit total precomplete representations as spaces that allow 
computable multi-valued retractions from their completions onto themselves. We call such spaces multi-
retraceable. In section 3 we briefly recall some basic facts about total Weihrauch reducibility that were 
provided in [6]. In section 4 we continue the study of completion of problems that was started in [6] and 
we introduce the notion of co-completeness and co-totality. In particular, we introduce a criterion that 
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is sufficient to guarantee co-completeness and co-totality for jumps of non-constant discrete functions. In 
section 5 we start to study the main theme of this article, namely the completion of choice problems. We 
formulate a number of results that hold for general choice problems and in section 6 we focus on choice on 
compact spaces. While choice on Cantor space, on non-empty finite spaces and connected choice on the unit 
interval are complete, most other choice principles that we study are incomplete. In section 7 we establish 
incompleteness of choice problems for sets of positive measure and in section 8 we establish incompleteness 
of choice for natural numbers. In section 9 we briefly discuss lowness and we show that the low problem 
L := J−1 ◦ lim is not complete. Finally, in section 10 we discuss variants of choice on Euclidean space and 
in section 11 choice on Baire space.

2. Precompleteness, completeness and retraceability

We recall that a represented space (X, δ) is a set X together with a surjective (partial) map δ :⊆ NN → X, 
called the representation of X. For the purposes of our topic so-called precomplete representations are 
important. They were introduced by Kreitz and Weihrauch [19] following the concept of a precomplete 
numbering introduced by Eršov [17]. We recall some results on precomplete representations from [6].

Definition 2.1 (Precompleteness). A representation δ :⊆ NN → X is called precomplete, if for any computable 
F :⊆ NN → NN there exists a total computable G : NN → NN such that δF (p) = δG(p) for all p ∈ dom(F ).

We recall that for two representations δ1, δ2 of the same set X we say that δ1 is computably reducible to 
δ2, in symbols δ1 ≤ δ2, if and only if there is a computable F :⊆ NN → NN such that δ1 = δ2F . We denote 
the corresponding equivalence by ≡.

For p ∈ NN we denote by p − 1 ∈ NN ∪ N∗ the sequence or word that is formed as concatenation of 
p(0) − 1, p(1) − 1, p(2) − 1, ... with the understanding that −1 = ε is the empty word. If (X, δX) is a 
represented space, then the precompletion δ℘X of δX is defined by δ℘X(p) := δX(p − 1) for all p ∈ NN such 
that p −1 ∈ dom(δX). In [6, Proposition 3.4] we proved that δ℘X is always precomplete and satisfies δ℘X ≡ δX .

There are also many natural examples for precomplete representations, for instance it is not hard to see 
that the standard representation of a second-countable T0–space is precomplete, if defined appropriately 
(see [23, Lemma 3.4.8 (6)]).

Example 2.2. For every second-countable T0–space X with a countable subbase (Un)n∈N we can define a 
representation δX :⊆ NN → X by

δX(p) = x : ⇐⇒ {n ∈ N : x ∈ Un} = {n ∈ N : n + 1 ∈ range(p)}.

The representation δX is precomplete.

We will also need the fact that other classes of functions can be extended to total ones under precomplete 
representations. In [6] we have introduced the following concept.

Definition 2.3 (Respect for precompleteness). We say that a set P of functions F :⊆ NN → NN respects 
precompleteness, if for every precomplete representation δ and any function F ∈ P there exists a total 
function G ∈ P such that δF (p) = δG(p) for all p ∈ dom(F ).

In [6, Proposition 3.6] we proved that the classes of computable, continuous, limit computable, Borel 
measurable and non-uniformly computable partial functions F :⊆ NN → NN respect precompleteness. 
Later in Corollaries 8.4 and 9.3 we are going to prove that functions that are computable with finitely many 
mind changes and low functions do not respect precompleteness.



6

If (X, δX) is a represented space, then its completion (X, δX) is defined by X := X ∪ {⊥}, where ⊥ /∈ X

and δX(p) := δ℘X(p) if p ∈ dom(δ℘X) and δX(p) := ⊥ otherwise. The concept of completion was introduced by 
Damir Dzhafarov in [16] with a slightly different but equivalent construction. The construction used here was 
introduced in [6]. We note that strictly speaking X does not only depend on X, but also on the underlying 
representation. That is, the completions with respect to two computably equivalent representations are not 
necessarily computably equivalent.

By a problem f :⊆ X ⇒ Y we mean a partial multi-valued map f :⊆ X ⇒ Y on represented spaces 
(X, δX) and (Y, δY ). We recall that composition of problems f :⊆ X ⇒ Y and g :⊆ Y ⇒ Z is defined by

g ◦ f(x) := {z ∈ Z : (∃y ∈ f(x)) z ∈ g(y)}

for all x ∈ dom(g ◦ f) := {x ∈ dom(f) : f(x) ⊆ dom(g)}. For two problems f :⊆ X ⇒ Y and g :⊆ X ⇒ Z

with identical source space X we define the juxtaposition (f, g) :⊆ X ⇒ Y × Z by (f, g)(x) := f(x) × g(x)
and dom(f, g) := dom(f) ∩ dom(g). If f, g :⊆ NN ⇒ NN are problems on Baire space, then we also call 
〈f, g〉 := 〈 〉 ◦ (f, g) the juxtaposition of f and g.

We say that a function F :⊆ NN → NN is a realizer of f , if δY F (p) ∈ fδX(p) for all p ∈ dom(fδX). 
We denote this by F � f . We say that f is computable if it has a computable realizer. Other notions, such 
as continuity, Borel measurability and so forth that are well-defined for functions F :⊆ NN → NN are 
transferred in an analogous manner to problems f :⊆ X ⇒ Y .

We also need the notion of a (multi-valued) retraction. For Y ⊆ X we call r : X ⇒ Y a retraction
(onto Y ), if r(x) = x for all x ∈ Y . Often retractions are even single-valued. We call a represented space 
retraceable if it is a computable retract of its own completion.

Definition 2.4 (Retraceability). A represented space (X, δX) is called multi-retraceable if there is a computable 
retraction r : X ⇒ X, and (X, δX) is called retraceable if there is a single-valued computable retraction 
r : X → X.

In [6, Corollary 3.10] we proved that δX is always precomplete and the injection ι : X → X is a 
computable embedding. We recall that a computable embedding is a map f : X → Y that is computable, 
injective and has a partial computable inverse. A computable isomorphism is a computable embedding that 
is bijective.

Corollary 2.5 (Completion). For every represented space (X, δX) the completion δX is a precomplete total 
representation and ι : X → X, x �→ x is a computable embedding.

Sometimes we will have to work with the double completion X, which is not isomorphic to X, since it 
has an extra ⊥–element. However, there is always a computable retraction r : X → X. In fact, we can prove 
the following characterizations of multi-retraceable spaces.

Proposition 2.6 (Multi-retraceability). Let (X, δX) be a represented space. Then the following are equivalent:

(1) X admits a precomplete total representation δ : NN → X with δ ≡ δX .
(2) All computable f :⊆ NN → X have total computable extensions g : NN → X.
(3) For all represented spaces Y and all computable f :⊆ Y ⇒ X there exists a total computable g : Y ⇒ X

with g(y) ⊆ f(y) for all y ∈ dom(f).
(4) X is multi-retraceable, i.e., there is a computable retraction r : X ⇒ X.

Proof. “(1)=⇒(2)” Let δ be a total and precomplete representation of X with δ ≡ δX . Let F :⊆ NN → NN

be a computable realizer of f :⊆ NN → X. Then there exists a total computable G : NN → NN with 
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δF (p) = δG(p) for all p ∈ dom(F ), since δ is precomplete. Since δ is total, G is actually a realizer of a 
function g := δG : NN → X that extends f .
“(2)=⇒(3)” Let f :⊆ Y ⇒ X be computable for some represented space (Y, δY ). Then f has a computable 
realizer F :⊆ NN → NN . Then f ′ := δX ◦ F :⊆ NN → X is computable and by (2) it admits a total 
computable extension g′ : NN → X. Then g := g′ ◦ δ−1

Y : Y ⇒ X is computable and satisfies g(y) ⊆ f(y)
for all y ∈ dom(f).
“(3)=⇒(4)” If we apply (3) to the partial computable inverse ι−1 :⊆ X → X that exists according to 
Corollary 2.5, then we obtain the desired computable retraction r : X ⇒ X.
“(4)=⇒(1)” Let δX be the total completion of δX . Let R : NN → NN be a computable realizer of a 
retraction r : X ⇒ X and let S :⊆ NN → NN be a computable realizer of the embedding ι : X → X

that exists according to Corollary 2.5. Then δ := δX ◦ S ◦ R is a total representation of X that extends 
δX |X . Hence δ ≡ δX |X . On the other hand, δX |X ≡ δX by Corollary 2.5. We still need to prove that δ is 
precomplete. Let F :⊆ NN → NN be a computable function. Since δX is precomplete by Corollary 2.5, 
it follows that there is a total computable G : NN → NN with δX ◦ S ◦ R ◦ F (p) = δX ◦ G(p) for all 
p ∈ dom(S ◦ R ◦ F ) = dom(F ). We note that S ◦ R ◦ F (p) ∈ dom(δX |X) and hence G(p) ∈ dom(δX |X). 
We obtain δ ◦ F (p) = δX ◦ G(p) = δ ◦ G(p) for all p ∈ dom(F ), since δ is an extension of δX |X . Thus δ is 
precomplete. �

This result shows that the notion of multi-retraceability only depends on the equivalence class of δX , 
unlike the notion of completion X which also depends on the explicit underlying representation. For multi-
retraceable spaces X there is not just a computable embedding ι : X → X, but also a computable retraction 
r : X ⇒ X. Hence, these spaces are closer to being isomorphic to their own completion than arbitrary 
represented spaces.

Since by Corollary 2.5 X is always a represented space with a total precomplete representation, it follows 
that this space is an example of a retraceable space.

Corollary 2.7 (Retraction). For every represented space X there is a computable retraction r : X → X, i.e., 
X is retraceable.

Proof. The representation δX of X is total. Hence the names of ⊥ with respect to the representation δ
X

of 
X = X ∪{⊥} are exactly those names p ∈ NN that contain at most finitely many digits different from zero. 
Hence, a retraction r : X → X can be realized basically by the map F :⊆ NN → NN , p �→ p − 1, where the 
output is filled up with zeros if not enough non-zero content in p becomes available. This extends F to a 
total computable map. That is, names of the bottom element ⊥ ∈ X are mapped to names of the bottom 
element ⊥′ ∈ X = X ∪{⊥′} and otherwise the identity is realized, i.e., r|X = idX . Hence, r is a computable 
retraction. �

In particular, X is actually a retract of X in the topological sense.
By Proposition 2.6 multi-retraceability is a rather strong condition and we cannot expect that too many 

spaces satisfy this condition. For instance, NN is not multi-retraceable, since there are partial computable 
F :⊆ NN → NN that do not have total computable extensions. This also shows that there are spaces that 
admit total representations, but no representation that is total and precomplete simultaneously. We assume 
that every represented space is endowed with the final topology of the representation. The following result 
shows that multi-retraceable spaces are necessarily compact (i.e., every open cover has a finite subcover; we 
do not require Hausdorffness).

Proposition 2.8 (Compactness). Let (X, δX) be a multi-retraceable space. Then there is a representation 
δ : 2N → X such that δX ≡ δ. In particular, X is compact.
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Proof. Let us assume that δX is precomplete and total. We consider the computable partial map F :⊆
2N → NN defined by

F (0k01n0+10k1+11n1+10k2+1...) := n0n1n2...

for all ni, ki ∈ N with i ∈ N. Since δX is precomplete, there is a total computable G : NN → NN with 
δXF (p) = δXG(p) for all p ∈ dom(F ). We let δ := δXG|2N . This defines a total representation δ : 2N → X, 
since δX is total, and δ ≤ δX holds by definition. For the inverse direction we consider the computable map 
H : NN → 2N , p �→ 1p(0)+101p(1)+101p(2)+1..., which satisfies δX = δH and hence δ ≡ δX . This implies that 
δ is continuous with respect to the final topology of δX and hence X = δ(2N) is compact. �

We note that the space 2N itself is not multi-retraceable by Proposition 2.6, since not every computable 
function f :⊆ NN → 2N has a total computable extension. Hence, compactness is far from being sufficient 
for multi-retraceability.

Since every space X is retraceable, it is also compact. We can say more in this case. The spaces X are 
also connected and hence they can be seen as simultaneous one-point compactification and connectification 
of X. However, topologically, this is not all too interesting, as the topology of X is always the indiscrete 
topology. By n̂ = nnn... ∈ NN we denote the constant sequence with value n ∈ N.

Proposition 2.9 (Indiscrete topology). Let X be a represented space. The topology of X is {∅, X}.

Proof. On the one hand, the special point ⊥ ∈ X is a member of every non-empty open set, as any prefix 
of a name of a point can be extended to a name of ⊥ by extending it with zeros. More precisely, if U ⊆ X

is open and non-empty, then there exists a finite prefix w ∈ N∗ such that wNN ⊆ δ−1
X

(U) and hence 

⊥ = δX(w0̂) ∈ U . On the other hand, there are names p of ⊥ that start just with zeros and hence any 
finite prefix of p can be extended to a name of any point in X. That is, if ⊥ ∈ U , then 0̂ ∈ δ−1

X
(U) and 

hence 0np ∈ δ−1
X

(U) for every p ∈ NN and a suitable n ∈ N. Since for every x ∈ X there is some p with 
δX(0np) = x, it follows that x ∈ U . Hence, the only possible non-empty open set is X. �

For many represented spaces X we cannot expect computable single-valued retractions r : X → X

to exist, not even multi-valued ones. Sometimes, there are at least retractions with weaker computability 
properties and we give two examples.

Proposition 2.10 (Special retractions). Let (X, δX) be a represented space and δX total. There are retractions 
with the given properties:

(1) r : N → N that is computable with finitely many mind changes,
(2) r : NN → NN that is limit computable,
(3) r : X → X that is limit computable.

Proof. (1) Given a name p of a point in N we generate a name of 0 ∈ N until we find the first non-zero 
entry n + 1 = p(i) for some i ∈ N, in which case we change our mind to a name of n ∈ N. This describes a 
finite mind change computation of a retraction r : N → N.
(2) Given a name p of a point in NN we generate a name of 0̂ ∈ NN that we overwrite with all digits of p −1
whenever we find non-zero content in p. This describes a limit computation of a retraction r : NN → NN .
(3) Follows from (2) since δX is total. �
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3. Total Weihrauch reducibility

In this section we are going to recall the definition of Weihrauch reducibility and of total Weihrauch 
reducibility, which was introduced in [6]. We write F �t f , if F is a total realizer of f . We now recall the 
definition of ordinary and strong Weihrauch reducibility on problems f, g, which is denoted by f ≤W g and 
f ≤sW g, respectively, and we recall the two new concepts of total Weihrauch reducibility and strong total 
Weihrauch reducibility, which are denoted by f ≤tW g and f ≤stW g, respectively.

Definition 3.1 (Weihrauch reducibility). Let f :⊆ X ⇒ Y and g :⊆ U ⇒ V be problems. We define:

(1) f ≤W g :⇐⇒ (∃ computable H, K :⊆ NN → NN)(∀G � g) H〈id, GK〉 � f .
(2) f ≤sW g :⇐⇒ (∃ computable H, K :⊆ NN → NN)(∀G � g) HGK � f .
(3) f ≤tW g :⇐⇒ (∃ computable H, K :⊆ NN → NN)(∀G �t g) H〈id, GK〉 �t f .
(4) f ≤stW g :⇐⇒ (∃ computable H, K :⊆ NN → NN)(∀G �t g) HGK �t f .

For (3) and (4) we assume that we replace each of the given representations of X, Y, U and V by a computably 
equivalent precomplete representation of the corresponding set.

We call the reducibilities ≤W and ≤sW partial in order to distinguish them from their total counterparts 
≤tW and ≤stW. We note that precompleteness is not required or relevant in the partial case, but it can be 
assumed without loss of generality since the concept of partial (strong) Weihrauch reducibility is invariant 
under computably equivalent representations [5, Lemma 2.11]. In [6, Corollary 4.3] we have proved that due 
to precompleteness in the definition above also ≤tW and ≤stW are invariant under equivalent representations. 
We have also proved that the definition does not depend on the choice of the precomplete representation in 
the equivalence class and that it yields preorders ≤tW and ≤stW.

We have also proved in [6, Corollary 4.7] that the partial Weihrauch reductions imply their total coun-
terparts in the following sense.

Corollary 3.2 (Partial and total Weihrauch reducibility). Let f and g be problems. Then f ≤W g =⇒ f ≤tW g

and f ≤sW g =⇒ f ≤stW g.

This means that all positive results that hold for a partial version of Weihrauch reducibility can be 
transferred to the corresponding total variant.

We note that the reducibilities ≤tW and ≤stW share similar properties as ≤W and ≤sW when it comes 
to the preservation of computability or other properties. We say that a class C of problems is preserved 
downwards by a reducibility ≤ for problems if f ≤ g and g ∈ C imply f ∈ C. In [6, Proposition 4.9] we proved 
that computability, continuity, limit computability, Borel measurability and non-uniform computability are 
preserved downwards by ≤tW.

A class C of functions F :⊆ NN → NN constitutes a property of problems that is preserved downwards 
by total Weihrauch reducibility if the following conditions are satisfied: C contains the identity, is closed 
under composition with computable functions, is closed under juxtaposition with the identity and C respects 
precompleteness. Later we prove that finite mind change computability and Las Vegas computability are 
not preserved downwards by ≤tW, whereas non-deterministic computability is preserved downwards.

4. Completion, totalization and co-completion

In this section we recall the definition of the closure operation f �→ f on (strong) Weihrauch reducibility 
that was introduced in [6] and we prove some further properties of it. For the definition of the completion 
f we use the completion X of a represented space.
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Definition 4.1 (Completion). Let f :⊆ X ⇒ Y be a problem. We define the completion of f by

f : X ⇒ Y , x �→
{

f(x) if x ∈ dom(f)
Y otherwise

We note that the completion f is always pointed, i.e., it has a computable point in its domain. This is 
because ⊥ ∈ X is always computable (as it has the constant zero sequence as a name).

In [6, Lemma 5.2] we have proved that completion generates total Weihrauch reducibility in the following 
sense.

Lemma 4.2 (Completion and total Weihrauch reducibility). For all problems f, g: f ≤W g ⇐⇒ f ≤W g ⇐⇒
f ≤tW g and f ≤sW g ⇐⇒ f ≤sW g ⇐⇒ f ≤stW g.

Thus, we could define total Weihrauch reducibility also using the completion operation and partial 
Weihrauch reducibility.

In [6, Proposition 5.4] we also proved that completion is a closure operator with respect to ≤tW, i.e., 
f ≤tW f , f ≤tW f and f ≤tW g =⇒ f ≤tW g. An analogous result holds for ≤stW.

It is clear that every f is strongly totally equivalent to its completion.

Corollary 4.3. f ≡stW f for every problem f .

In the study of total Weihrauch reducibility the degrees that have identical cones with respect to partial 
and total Weihrauch reducibility play an important rôle. Hence, we introduce a name for such degrees.

Definition 4.4 (Complete problems). A problem f is called complete if f ≡W f and strongly complete if 
f ≡sW f .

It is straightforward to derive the following characterization of completeness, which shows that from the 
perspective of a complete problem the lower cones in the Weihrauch lattice and the total Weihrauch lattice 
are indistinguishable (see also [6, Theorem 5.7]).

Proposition 4.5 (Completeness). Let g be a problem. Then the following hold:

(1) g complete ⇐⇒ (∀ problems f)(f ≤W g ⇐⇒ f ≤W g).
(2) g strongly complete ⇐⇒ (∀ problems f)(f ≤sW g ⇐⇒ f ≤sW g).

Examples of complete problems are abundant. In [6, Proposition 5.8] completeness was proved, e.g., for 
the Turing jump operator J and the binary sorting problem SORT that was introduced and studied by 
Neumann and Pauly [21]. It was also proved that problems such as WBWT2, ACCX , PA and MLR (see [10]
for definitions) are complete. We will see many further examples in form of complete choice problems that 
we study systematically in section 5.

Proposition 4.6 (Complete problems). The following problems are all strongly complete:

(1) J : NN → NN , p �→ p′,
(2) lim :⊆ NN → NN , 〈p0, p1, p2, ...〉 �→ limn→∞ pn,
(3) LPO : NN → {0, 1}, LPO(p) = 0 : ⇐⇒ (∃n ∈ N) p(n) = 0,
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(4) SORT : 2N → 2N with

SORT(p) :=
{

0k1̂ if p contains exactly k ∈ N zeros
0̂ if p contains infinitely many zeros

.

(5) WBWT2 : 2N ⇒ 2N , p �→ {q ∈ 2N : limn→∞ q(n) is a cluster point of p}.

These results show that the cones below the given problems are identical in the total and partial 
Weihrauch lattices. It is known, for instance, that f is limit computable if and only if f ≤W lim [9]. Hence, 
an analogous statement holds for ≤tW, since lim is complete.

One should not come to the incorrect conclusion that all functions are complete. Here is a counter 
example, which is based on the fact that J−1 :⊆ NN → NN has no computable points in its domain.

Example 4.7. J−1 <W J−1.

The operation of completion is somewhat related to totalization.4 Totalization is not a closure operator, 
but it is sometimes easier to handle because it does not involve completions of spaces.

Definition 4.8 (Totalization). For every problem f :⊆ X ⇒ Y we denote by

Tf : X ⇒ Y, x �→
{

f(x) if x ∈ dom(f)
Y otherwise

the total version or totalization of f .

If (X, δX) and (Y, δY ) are represented spaces and f :⊆ X ⇒ Y is a problem, then we call f r :=
δ−1
Y ◦ f ◦ δX :⊆ NN ⇒ NN the realizer version of f . It satisfies f r ≡sW f since f r has exactly the same 

realizers as f . So, f r can be seen as the Baire space version of f . It is clear that totalization is closely related 
to the completion, as we have the following obvious result.

Lemma 4.9 (Completion and totalization). f ≡sW Tf r holds for every problem f :⊆ X ⇒ Y provided f r is 
formed with respect to the precompletions of the original representations of X and Y .

Proof. We consider the represented spaces (X, δX) and (Y, δY ). We obtain the realizer version f
r : NN ⇒

NN , given by

f
r(p) = δ−1

Y
◦ f ◦ δX(p) =

{
(δ℘Y )−1 ◦ f ◦ δ℘X(p) if p ∈ dom(f ◦ δ℘X)
NN otherwise

.

If f r = (δ℘Y )−1 ◦ f ◦ δ℘X , then we obtain f ≡sW f
r = Tf r. �

In other words, completion can be seen as a totalization of the realizer version with respect to precomplete 
representations. More generally, the two operations of completion and totalization coincide under certain 
relatively special assumptions.

Lemma 4.10 (Completion and totalization). Let f :⊆ X ⇒ Y be a problem. Then:

4 The totalization was studied by Brattka, Le Roux and Pauly (unpublished work 2012).
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(1) f ≤sW Tf if X is multi-retraceable,
(2) Tf ≤sW f if Y is multi-retraceable.

Proof. We note that ιX : X → X, x �→ x and ιY : Y → Y , y �→ y are computable by Corollary 2.5. 
If X is multi-retraceable, then by definition there is a computable retraction rX : X ⇒ X. It is clear 
that ιY ◦ Tf ◦ rX(x) ⊆ f(x) for all x ∈ X and hence f ≤sW Tf . If Y is multi-retraceable, then there is a 
computable retraction rY : Y ⇒ Y . In this case we obtain rY ◦ f ◦ ιX(x) = Tf(x) for all x ∈ X and hence 
Tf ≤sW f . �

The second condition can also be converted into a characterization of multi-retraceability. This follows if 
one applies it to the partial computable function f := ι−1

Y :⊆ Y → Y , since Tf : Y ⇒ Y is a retraction.

Corollary 4.11 (Multi-retraceability). A represented space Y is multi-retraceable if and only if Tf ≤W f holds 
for all problems f :⊆ X ⇒ Y .

If a problem g is already total, then Tg = g and hence we obtain the following characterization of 
completeness. The given conditions are necessary since g = f satisfies them (because the completion X of 
any space X is retraceable by Corollary 2.5).

Corollary 4.12 (Completeness). A problem f is complete if and only if f ≡W g for some total problem 
g : X ⇒ Y on multi-retraceable spaces X and Y .

An analogous result holds for strong completeness and ≡sW. The characterization of completeness given 
in Proposition 4.5 suggests a dual notion of co-completeness that we define together with the related notion 
of co-totality. From the perspective of a co-complete problem the upper cones in the Weihrauch lattice and 
the total Weihrauch lattice are indistinguishable.

Definition 4.13 (Co-completeness and co-totality). Let f be a problem.

(1) f is called co-complete if f ≤W g ⇐⇒ f ≤W g holds for all problems g.
(2) f is called co-total if f ≤W Tg ⇐⇒ f ≤W g holds for all problems g.

Likewise we define strongly co-complete and strongly co-total problems f with the help of ≤sW instead of 
≤W.

Due to Lemma 4.9 we obtain that co-totality implies co-completeness.

Corollary 4.14 (Co-completeness and co-totality). Every (strongly) co-total problem f :⊆ X ⇒ Y is 
(strongly) co-complete. If Y is multi-retraceable, then the inverse implication holds true as well.

In Corollaries 8.12 and 11.5 we will see examples that witness that the inverse implication does not hold 
in general. There is an obvious relation between co-completeness of the completion and completeness.

Lemma 4.15 (Completeness and co-completeness). f co-complete =⇒ f complete and f strongly co-complete 
=⇒ f strongly complete hold for every problem f .

There is a useful condition that implies strong co-completeness. We call a problem f :⊆ X ⇒ Y diverse
if for all x ∈ dom(f) there exists a y ∈ dom(f) such that f(x) ∩ f(y) = ∅.



13
Proposition 4.16 (Diversity). Every diverse problem f :⊆ X ⇒ Y is strongly co-complete, and if the repre-
sentation of Y is total, then f is also strongly co-total.

Proof. Let g :⊆ W ⇒ Z be an arbitrary problem. It is clear that f ≤sW g implies f ≤sW g since g≤sW g. 
We now consider computable witnesses H, K :⊆ NN → NN for f ≤sW g. Now, let us suppose that G � g

holds with respect to the precompletions of the underlying representations of W and Z, and let us assume 
that dom(G) contains exactly all names of points in dom(g). Every total extension G′ of G satisfies G′ � g

and hence HG′K � f . Let G′ be such a total extension. We claim that also HGK � f . Let us assume that 
this is not the case. Then there is some name p of a point x ∈ dom(f) such that HGK(p) is not a name 
of a point in f(x). If K(p) ∈ dom(G), then G′K(p) = GK(p). Since K(p) is a name of a point in dom(g), 
this implies that HGK(p) = HG′K(p) is a name of a point in f(x), which is a contradiction. This implies 
that K(p) /∈ dom(G). But then there is a total extension G′′ of G such that HG′′K(p) is a name of some 
point in f(y) for some y ∈ dom(f) such that f(x) ∩ f(y) = ∅, since f is diverse. This is a contradiction to 
HG′′K � f . Hence, the assumption was wrong and we actually have HGK � f . This proves f ≤sW g and 
altogether f is strongly co-complete. Almost the same proof shows that f is also strongly co-total, provided 
that the representation of Y is total, since this ensures that the extensions G′ and G′′ select valid names. �

Since single-valued problems that are not constant are diverse, we obtain the following corollary.

Corollary 4.17 (Single-valuedness). Let f :⊆ X → Y be a single-valued problem that is not constant, then f
is strongly co-complete, and if the representation of Y is total, then f is also strongly co-total.

We note that constant computable problems f are not (strongly) co-complete (except for the nowhere 
defined problems), because if p is a name of a point in the domain of f , then there is a problem g that has 
no point in the domain that can be computed from p and hence f �W g, while f ≤W g. Likewise, id is not 
co-complete and hence diversity is not sufficient for co-completeness in the non-strong case.

We close this section with some remarks on the completion of jumps. As a preparation we study compo-
sition. It is easy to see that the completion of a composition is equal to the composition of the completions.

Lemma 4.18 (Composition). Let f :⊆ X ⇒ Y and g :⊆ Y ⇒ Z be problems. Then g ◦ f = g ◦ f .

We recall that the jump f ′ :⊆ X ⇒ Y of a problem f :⊆ X ⇒ Y is defined exactly as f , but the 
represented space (X, δX) on the input side is replaced by X ′ = (X, δ′X), where δ′X := δX ◦ lim. The jump 
was defined in [8] and it is easy to see that for problems of type f :⊆ NN ⇒ NN we have f ′ ≡sW f ◦ lim (see 
also [8, Lemma 5.2] for the single-valued case). We can now draw some conclusions on the completion of 
a jump. In particular, the jumps of strongly complete problems are strongly complete, which yields many 
further examples of complete problems.

Proposition 4.19 (Jumps). f ′ ≤sW f
′ ≡sW f ′ holds for all problems f . In particular, the jump f ′ of every 

strongly complete problem f is strongly complete again.

Proof. We first prove f ′≤sW f
′ for problems of type f :⊆ NN ⇒ NN . For such problems we have f ′≡sW f ◦

lim and hence f ′ ≡sW f ◦ lim = f ◦lim by Lemma 4.18. By Proposition 4.6 lim≡sW lim and hence lim is limit 
computable, i.e., it has a realizer of the form lim ◦K with a computable K. This means that δNN ◦lim ◦K(p) ∈
lim◦δNN (p) for all p ∈ NN . We also consider f r = δ−1

NN
◦f ◦δNN and we obtain f

r◦lim ◦K(p) = δ−1
NN

◦f ◦δNN ◦
lim ◦K(p) ∈ δ−1

NN
◦f◦lim◦δNN (p) = (f ◦ lim)r(p), which implies f ′ ≡sW f ◦ lim r ≤sW f

r◦lim≡sW f
r′ ≡sW f

′. 
For a general problem f :⊆ X ⇒ Y we also obtain f ′ ≤sW f

′, since we can apply the result above to 
f r :⊆ NN ⇒ NN , where we use that jumps and completions are monotone with respect to ≤sW. This 
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reduction also implies f ′ ≤sW f
′
≤sW f

′, since completion is a closure operator. The inverse reduction holds 
for the same reason, i.e., f ′ ≡sW f ′. This shows that the jump f ′ of a strongly complete problem f ≡sW f

is strongly complete. �
This result requires strong completeness, since jumps are not monotone with respect to ≤W in general. 

We also note that the jump of a total problem is an upper bound of its completion, provided that the input 
space has a total representation. This follows from Proposition 2.10 (3).

Corollary 4.20. f ≤sW f ′ for every total problem f : X ⇒ Y such that X has a total representation.

It follows from Theorem 11.6 that this result cannot be generalized to partial problems. With the help of 
jumps we can also express a sufficient criterion that guarantees co-completeness and co-totality for certain 
single-valued maps. We use Sierpiński space S = {0, 1} that is represented by δS(p) = 0 : ⇐⇒ p = 0̂. We 
mention that δS is an example of a precomplete total representation.

Proposition 4.21 (Single-valuedness). Let f :⊆ X → N, fS :⊆ X → S be single-valued problems that are not 
constant. Then:

(1) f ′ is co-complete and co-total.
(2) f ′

S is co-complete.

Proof. (1) It suffices to prove that f ′ is co-total as this implies co-completeness by Corollary 4.14. Hence, 
let f ′ ≤W Tg hold for some problem g :⊆ W ⇒ Z via computable H, K :⊆ NN → NN . We consider a name 
p of a point x ∈ dom(f ′), and we let n := f ′(x). Then there is name r of a point in Z such that H〈p, r〉 is 
a name of n. Hence by continuity of H, a finite prefix w � p is sufficient to guarantee that any extension of 
w is mapped with r by H to n. Since f ′ is not constant, there is a y ∈ dom(f ′) with k := f ′(y) 	= n and 
since we use the jump of a representation for X ′, we have that there is a name q ∈ wNN of y. Suppose q
is mapped by K to a point outside of dom(g). Then there is a realizer G � Tg with GK(q) = r and hence 
H〈q, GK(q)〉 = n, which is incorrect. Hence, all names q ∈ wNN of points y ∈ dom(f ′) with f ′(y) 	= n are 
mapped by K to points inside of dom(g). With a similar argument as before there is also some name s of 
a point in Z such that H〈q, s〉 is a name of k and by continuity of H a finite prefix v of q is sufficient to 
guarantee that H maps any extension of v with s to a name of k. We can assume w � v. As before there 
cannot be any name t ∈ vNN of a point z ∈ dom(f ′) with f ′(z) 	= k that is mapped by K to a point 
outside of dom(g). Altogether, there is no name t ∈ vNN of some point z ∈ dom(f ′) whatsoever that is 
mapped by K to a point outside of dom(g). Since there is a computable function F :⊆ NN → NN that 
maps every name t of a point inside of dom(f ′) to a name F (t) ∈ vNN of the same point, we obtain that 
H〈F, GKF 〉 � f ′ for every G � g, i.e., f ′ ≤W g. This proves that f ′ is co-total.
(2) Let f ′

S ≤W g for some problem g :⊆ W ⇒ Z hold via computable functions H, K :⊆ NN → NN . We 
consider a name p of a point x ∈ dom(f ′

S) with f ′
S(x) = 1. Such a point must exist since f ′

S is not constant. 
Let us assume that K(p) is a name of a point outside of dom(g). Then there is a realizer G � g such that 
GK(p) = 0̂, which is a name of ⊥ ∈ Z. Now H〈p, GK(p)〉 is a name of 1 ∈ S and by continuity of H finite 
prefixes w � p and v � 0̂ suffice to ensure that H maps the corresponding extensions to 1 ∈ S. We note that 
v � 0̂ can be extended to a name of any point in Z, given the way Z is represented, and w � p can also be 
extended to a name of any point in X ′, as we use the jump of a representation. Suppose now that q ∈ wNN

is a name of a point y ∈ dom(f ′
S) such that f ′

S(y) = 0 ∈ S. Such a point exists since f ′
S is not constant. 

Then there is a realizer G1 � g such that v � G1K(q) and hence H〈q, G1K(q)〉 is a name of 1 ∈ S, which is 
incorrect. Hence all names p of points x ∈ dom(f ′

S) with f ′
S(x) = 1 ∈ S are mapped by K to names K(p)

of points inside of dom(g). In particular there exists a name p of a point x ∈ dom(f ′ ) with f ′ (x) = 1 and 
S S
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a corresponding name r of a point in Z such that H〈p, r〉 = 1 and finite prefixes w � p and v � r suffice to 
ensure that H maps all extensions to 1 ∈ S. With a similar argument as above one can show that no name 
q ∈ wNN of a point y ∈ dom(f ′

S) with f ′
S(y) = 0 can be mapped by K to a name K(q) of a point outside of 

dom(g). Otherwise, there would be a realizer G2 � g with G2K(q) = r and hence H〈q, G2K(q)〉 is a name 
of 1, which is incorrect. Hence altogether, each name q ∈ wNN of a point in dom(f ′

S) is mapped by K to a 
name K(q) of a point inside of dom(g). Using a computable function F that maps any name p of a point 
in dom(f ′

S) to a name q ∈ wNN of the same point, we obtain that H〈F, GKF 〉 � f ′
S for every G � g, i.e., 

f ′
S ≤W g. This proves that f ′

S is co-complete. �
Using this result it is now easy to provide some interesting examples of co-complete and co-total problems. 

We note that limN ≡sW id′
N .

Corollary 4.22 (Co-complete and co-total problems).

(1) limN :⊆ NN → N, p �→ limn→∞ p(n) is co-total and co-complete,
(2) LPO′ : (NN)′ → {0, 1} is co-total and co-complete,
(3) LPO′

S : (NN)′ → S, p �→ LPO(p) is co-complete.

In Corollary 8.12 we will see that LPO′
S is not co-total. Hence co-totality and co-completeness are actually 

not equivalent conditions and Proposition 4.21 (2) cannot be strengthened to co-totality.
There is a useful characterization of LPO′ as the infinity problem. By

INF : NN → {0, 1}, p �→
{

1 if p(n) = 0 for infinitely many n ∈ N

0 otherwise

we denote the infinity problem. By INFS : NN → S we denote the analogous problem with output space 
S. These two problems were already studied under the names isInfinite and isInfiniteS by Neumann and 
Pauly [21]. The following is easy to see.

Lemma 4.23 (Infinity problem). LPO′ ≡sW INF and LPO′
S ≡sW INFS.

Proof. Given p ∈ NN , we let K(p)〈n, k〉 = 0 if the word p(0)...p(n) contains the digit 0 less than k times 
and K(p)〈n, k〉 = 1 otherwise. Then

(∀k ∈ N) (limK(p))(k) = lim
n→∞

K(p)〈n, k〉 	= 0

if and only if 0 appears infinitely often in p. Hence LPO′ ◦K(p) = INF(p). Since K is computable, this proves 
INF≤sW LPO′ and INFS ≤sW LPO′

S. Vice versa, given p := 〈p0, p1, p2, ...〉 ∈ dom(lim) we can enumerate the 
numbers 1, 2, 3, ..., into K(p), and for each 〈n, k〉 = 0, 1, 2, ... after the other we do the following: whenever 
we find an i ≥ k such that pi(n) 	= 0, then we enumerate 0 into K(p), and only in this case we move to the 
next 〈n, k〉. Hence K(p) contains infinitely many zeros if and only if (∀n, k ∈ N)(∃i ≥ k) pi(n) 	= 0, which 
holds if and only if (∀n ∈ N)(limi→∞ pi)(n) 	= 0, i.e., LPO′(p) = INF ◦K(p). This proves LPO′ ≤sW INF and 
LPO′

S ≤sW INFS. �
In particular, we can conclude that INF is co-total and INFS is co-complete. INF is clearly not limit 

computable, since

INF−1{1} = {p ∈ NN : (∀k ∈ N)(∃n ≥ k) p(n) = 0}
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is known to be Π0
2–complete (see, e.g., [18, Exercise 23.1]).

Lemma 4.24. LPO′ �W lim.

It is also easy to see that there is a retraction r : NN → NN that is computable with the help of INF. 
This is because INF can detect whether a name p of a point in NN is actually a name of a point in NN , i.e., 
whether p(n) 	= 0 for infinitely many n.

Lemma 4.25. There is a retraction r : NN → NN with r≤W LPO′.

5. Choice problems

Choice principles form the backbone of the Weihrauch lattice, and many other problems can be classified 
by proving their equivalence to a suitable choice problem [9]. Hence, it is important to understand which 
choice principles are complete in order to see how the picture for the total Weihrauch lattice changes 
compared to the partial version.

In order to recall the definition of choice we need to introduce the set A(X) of closed subsets of a 
topological space X. Typically, we will consider computable metric spaces (X, d, α) that are represented by 
their Cauchy representation [25,9]. We denote by B(x, r) := {y ∈ X : d(x, y) < r} the open ball with center 
x ∈ X and radius r ≥ 0. More specifically, we denote by B〈n,〈i,k〉〉 := B(α(n), i

k+1 ) a basic open ball. A 
representation δA−(X) of the set A(X) can now be defined by δA−(X)(p) := X \

⋃∞
n=0 Bp(n). We denote the 

represented space (A(X), δA−(X)) for short by A−(X), where the “−” refers to negative information. The 
computable points in A−(X) are known as co-c.e. closed sets and also as Π0

1–classes in the case of X = NN . 
Since there are numbers n ∈ N with Bn = ∅, it is easy to see that the representation δA−(X) is precomplete 
and it is also total.

Lemma 5.1. Let X be a computable metric space. Then δA−(X) is a precomplete and total representation of 
A−(X). In particular, A−(X) is multi-retraceable.

The choice problem CX of a given space X is the problem of finding a point in a given closed A ⊆ X. 
By choosing appropriate spaces X one obtains several important Weihrauch degrees. There are ways of 
extending the definition of δA−(X) to other represented spaces than computable metric ones [2]. We are not 
going to use these extensions here, hence the following definition is typically used for computable metric 
spaces X.

Definition 5.2 (Choice). The problem CX :⊆ A−(X) ⇒ X, A �→ A, defined on dom(CX) := {A : A 	= ∅} is 
called the choice problem of the represented space X.

Here the description A �→ A of the map is to be read such that on the input side A ∈ A−(X) is a point 
of the input space, whereas on the output side it is a subset A ⊆ X of possible results. Many restrictions 
of the choice problem have been considered. For instance, CCX denotes connected choice, i.e., CX restricted 
to non-empty connected closed subsets A ⊆ X.

One of our goals is to understand the completions CX of choice problems. Fortunately, the conditions 
given in Lemma 4.10 (1) are satisfied by Lemma 5.1 for all choice principles of computable metric spaces. 
We even obtain the following.

Corollary 5.3 (Completion of choice). CX ≤sW CX ≤sW TCX ≡sW TCX for all computable metric spaces X.
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Proof. By Corollary 2.5 there is a computable embedding ι : X → X. Hence, we obtain f := ι ◦
TCX ≡sW TCX . Moreover, f : A−(X) ⇒ X has a total precomplete representation on the input side 
by Lemma 5.1 and a total precomplete representation on the output side by Corollary 2.5. Hence, TCX is 
strongly complete by Corollary 4.12 and Proposition 2.6. The reduction CX ≤sW TCX is obvious, the other 
reductions follow since completion is a closure operator. �

An analogous statement holds true if CX is replaced by any restriction such as CCX in all occurrences. 
The advantage of this result is that TCX is conceptually simpler than CX , as it does only involve the original 
spaces and no completions. We can also characterize the completion of the jump of choice.

Proposition 5.4 (Completion of jumps of choice). C′
X ≡sW CX

′ holds for every computable metric space X.

Proof. We have C′
X ≤sW CX

′ by Proposition 4.19. We need to prove the inverse reduction. Given a name 
p = 〈p0, p1, p2, ...〉 such that lim(p) exists, we can compute K(p) that replaces all numbers 0 in p by a fixed 
number k + 1 such that Bk = ∅. Then also lim(K(p) − 1) exists and if lim(p) − 1 ∈ dom(δA−(X)), then

δA−(X)(lim(p) − 1) = δA−(X)(lim(K(p) − 1)).

In the case that lim(p) −1 is only a finite word, lim(K(p) −1) is a name of some set. Since a realizer of CX
′

with such an input p can produce any name of a point in X as an output, the reduction also works in this 
case. Altogether, this proves CX

′ ≤sW C′
X . �

Again, an analogous statement holds if CX is replaced by any restriction of it.

6. Choice on compact spaces

Even though the assumptions of Lemma 4.10 (2) are not satisfied in many cases, we can often even prove 
TCX ≤sW CX using a computable multi-valued retraction r : A−(X) ⇒ dom(CX). We illustrate this with 
choice on Cantor space 2N .

Proposition 6.1 (Choice on Cantor space). C2N ≡sW C2N ≡sW TC2N .

Proof. We consider X = 2N . By Corollary 5.3 it suffices to prove TCX ≤sW CX . Firstly, we note that the 
set

B := {〈k, 〈n0, ..., nk〉〉 ∈ N : Bn0 ∪ ... ∪Bnk
= X}

is computable, as we can easily check whether there is a point x ∈ X that is not covered by Bn0 ∪ ... ∪Bnk
. 

Hence, given a list p ∈ NN of balls Bp(i) with A = X \
⋃

i∈N Bp(i) we can check for every i ∈ N whether 
Bp(0) ∪ ... ∪Bp(i−1) 	= X and Bp(0) ∪ ... ∪Bp(i) = X. Since X is compact, this test will eventually be positive 
if and only if A = ∅. As soon as this happens, we modify p to q such that q(j) := p(j) for j < i and 
q(j) := p(i − 1) for j ≥ i − 1 (where we assume that Bp(−1) = ∅ if i = 0). The map p �→ q is a computable 
realizer for a multi-valued retraction r : A−(X) ⇒ dom(CX) onto the non-empty sets, i.e., r(A) = A for 
A 	= ∅ and r(∅) 	= ∅. Such a retraction is all what is needed to prove TCX ≤sW CX . �

The problems f ≤W C2N have been characterized in [2] exactly as the non-deterministically computable 
problems. Hence we obtain the following by Lemma 4.2.

Corollary 6.2 (Non-deterministic computability). Non-deterministic computability is preserved downwards 
by total Weihrauch reducibility.
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This proof of Proposition 6.1 can be seen as a prototype of a completeness proof for a choice principle 
and several other choice principles can be proved to be complete in a similar manner. There are three 
essential points that one needs to check: whether the space X is compact, whether a suitable set B ⊆ N is 
computable and whether there is a suitable computable retraction r. This is the case, for instance, for all 
non-empty finite spaces X = n = {0, ..., n − 1} with n ∈ N with essentially the same proof as above.

Proposition 6.3 (Finite choice). Cn ≡sW Cn ≡sW TCn for all n ≥ 1.

We note that the above proof does not work in case of n = 0 = ∅, since then there is no possible retraction 
r. In this case we have C0 ≡sW C1, which one can easily check directly. We can conclude from this result 
that the principles Cn form a strictly increasing chain with respect to total Weihrauch reducibility (as they 
do with respect to partial Weihrauch reducibility by [24, Theorem 5.4]).

Corollary 6.4. Cn <tW Cn+1 for all n ≥ 1.

In the following we use the parallelization f̂ of a problem f and the finite parallelization f∗ in a purely 
non-technical way. Hence we refer the reader to [9] for the definitions. The choice principle C2 is also known 
as LLPO and hence Proposition 6.3 shows that LLPO is strongly complete. We could also use the fact that 
the parallelization of a complete problem is complete (by [6, Proposition 6.3]) to derive Proposition 6.1, as 
is known that C2N ≡sW Ĉ2 [5, Theorem 8.5]. Likewise it is known that the compact choice principle KN can 
be characterized by KN ≡sW C∗

2 [8, Proposition 10.9], which we take as the definition of KN for the purposes 
of this article, and hence, with the help of the fact that finite parallelization and jumps preserves (strong) 
completeness (by [6, Proposition 6.3] and Proposition 4.19), we arrive at the following conclusion.

Corollary 6.5. KN ≡sW KN and K′
N ≡sW K′

N .

The proof of Proposition 6.1 can also be transferred to the case of connected choice.

Proposition 6.6 (Connected choice). CC[0,1] ≡sW CC[0,1] ≡sW TCC[0,1].

Proof. We proceed as in the proof of Proposition 6.1 with X = [0, 1]. By Lemma 4.10 and analogously 
to Corollary 5.3 it suffices to prove TCC[0,1] ≤sW CC[0,1]. For m = 〈k, 〈n0, ..., nk〉〉 ∈ N we define l(m) :=
sup{x ∈ [0, 1] : [0, x] ⊆ Bn0 ∪ ... ∪Bnk

} and r(m) := inf{y ∈ [0, 1] : [y, 1] ⊆ Bn0 ∪ ... ∪Bnk
}. Here we assume 

l(m) := 0 and r(m) := 1 if the respective sets are empty. Then the set

B := {m ∈ N : l(m) ≤ r(m)}

is computable, as the values l(m) and r(m) can be computed as rational numbers. Hence, given a list 
p ∈ NN of balls Bp(i) with A = X \

⋃
i∈N Bp(i) we generate a list q of numbers of open rational intervals 

[0, l(m)) and (r(m), 1] with m = 〈i, 〈p(0), ..., p(i)〉〉 as long as l(m) ≤ r(m) and we indefinitely continue 
with the last rational intervals with this property if eventually l(m) > r(m) (which means that A = ∅). 
Due to compactness of [0, 1] it is guaranteed that q is a name of the set A, if this set A is a non-empty 
closed and connected set and it is a name of some other non-empty closed and connected set, otherwise. 
That is The map p �→ q is a computable realizer for a multi-valued retraction r : A−([0, 1]) ⇒ dom(CC[0,1])
with r(A) = A for non-empty connected A ⊆ [0, 1], and r(A) is some non-empty connected subset of [0, 1]
otherwise. Such a retraction is all what is needed to prove TCC[0,1] ≤sW CC[0,1]. �

Some important choice problems are also co-complete. We prove a rather technical but fairly general 
result about restrictions of choice first.
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Proposition 6.7. Let D ⊆ A−[0, 1] be such that [a, b] ∈ D and C[0,1]|D ≤W C[a,b]|D for all [a, b] ⊆ [0, 1] with 
a < b. Then C[0,1]|D is co-complete and co-total.

Proof. Without loss of generality, we assume that D contains only non-empty sets. We prove that C[0,1]|D
is co-total. By Corollary 4.14 it follows that it is also co-complete. Let g :⊆ (X, δX) ⇒ (Y, δY ) be some 
problem. We assume that C[0,1]|D ≤W Tg is witnessed by computable H, K :⊆ NN → NN . Let G � Tg and 
let p be a name of [0, 1]. Then H〈p, GK(p)〉 determines a real number x with precision ε < 1

3 after reading 
only a finite prefix of w � p. We now consider the set

A := {J ∈ D : (∃p ∈ wNN)(δA−([0,1])(p) = J and δXK(p) /∈ dom(g))}.

We claim that there is some [a, b] ⊆ [0, 1] with a < b and such that for all J ⊆ [a, b] with J ∈ D we have 
J /∈ A. Let us assume the contrary. Then for I0 := [0, 13 ] and I1 := [ 23 , 1] there are Ji ⊆ Ii with Ji ∈ D such 
that Ji ∈ A for i ∈ {0, 1}. This implies that there are names pi ∈ wNN of Ji for i ∈ {0, 1} such that K(pi)
is not a name of a point in dom(g). Hence, there is a realizer G1 of Tg with GK(p) = G1K(p) = G1K(pi)
for i ∈ {0, 1}. This is a contradiction since the distance between I0 and I1 is 1

3 . Hence, we have proved 
the claim and there is a [a, b] ⊆ [0, 1] with the desired properties. That means that K, H also witness 
C[a,b]|D ≤W g, where we use that δA−([0,1])|wNN ≡ δA−([0,1]). This implies C[0,1]|D ≤W C[a,b]|D ≤W g, which 
means that C[0,1]|D is co-total. �

This result can be readily applied to several important variants of choice. In particular, we obtain the 
following. We note that C2N ≡sW C[0,1] by [2, Corollary 4.6].

Corollary 6.8. C2N and CC[0,1] are co-complete and co-total.

7. Positive choice

In this section we want to study PCX , which is CX restricted to sets of positive measures. This requires 
that we have a fixed Borel measure on X and we are mostly interested in the cases X = 2N , X = [0, 1]
and X = R. In the first case we use the uniform measure μ and in the second and third case the Lebesgue 
measure λ. It is known that PC2N ≡sW PC[0,1] ≡sW WWKL (see [7, Proposition 8.2] for these results and 
the definition of WWKL). By PCCX we denote the restriction of PCX to connected sets. The following 
observation is a direct consequence of Proposition 6.7.

Corollary 7.1. PC2N and PCC[0,1] are co-complete and co-total.

The following result allows us to show that neither PC2N nor PCC[0,1] are complete.

Proposition 7.2. PCC[0,1] �W PC[0,1].

Proof. We consider the problem

P : A−[0, 1] ⇒ [0, 1], A �→
{

A if A = [a, b] ⊆ [0, 1] with a < b

[0, 1] otherwise

Clearly, P ≤W PCC[0,1] and hence it suffices to show P �W PC[0,1]. In [7, Proposition 15.1] we proved 
CC[0,1] �W PC[0,1] and literally the same proof can be used to show P �W PC[0,1]. This is because the proof 
does only exploit the values of CC[0,1] on non-singleton intervals and the fact that CC[0,1] is also somehow 
defined on singletons. In both respects, P behaves like CC[0,1]. The fact that the output is considered on 
[0, 1] instead of [0, 1] also causes no changes, since we only exploit outputs that are actually in [0, 1]. �
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As a consequence of this result we obtain that positive choice is actually not complete.

Corollary 7.3. PC2N <W PC2N and PCC[0,1] <W PCC[0,1].

The problems f ≤W PC2N have been characterized in [7] exactly as the Las Vegas computable problems 
f . Hence we obtain the following by Corollary 4.3.

Corollary 7.4 (Las Vegas computability). Las Vegas computability is not preserved downwards by (strong) 
total Weihrauch reducibility.

Now we want to prove that PCC[0,1] �W PCR holds. For this purpose it is useful to use fractality as a 
property. We recall that a problem f is called a fractal [8], if there is a problem F :⊆ NN ⇒ NN such that 
F ≡W f and F |A ≡W F holds for every clopen A ⊆ NN with A ∩ dom(F ) 	= ∅. If F can be chosen to be 
total, then f is called a total fractal and if we can replace ≡W by ≡sW, then we speak of a strong (total) 
fractal. In [7, Lemma 15.5] it was proved that CC[0,1] is a total fractal. We follow the lines of that proof to 
obtain the following result.

Lemma 7.5. PCC[0,1] is a strong total fractal.

Proof. In [4, Proposition 3.6] it was proved that PCC[0,1] ≡sW B−
I , where

B−
I :⊆ R< ×R> → R, (a, b) �→ [a, b]

with dom(B−
I ) := {(a, b) ∈ R2 : a < b}. (PCC[0,1] was called C−

I in [4].) Here R< and R> are represented 
by representations ρ< and ρ> as limits of increasing and decreasing sequences of rational number, respec-
tively [25]. We consider the problem G :⊆ NN ⇒ NN that maps every name of a pair (a, b) ∈ R< × R>

with a < b to any name of any point y ∈ R with a ≤ y ≤ b and that is undefined for other inputs. Then 
G = (B−

I )r ≡sW B−
I . There is a computable function K : NN → NN that maps every pair 〈p, q〉 ∈ NN , where 

p, q ∈ NN are interpreted as sequences (an)n and (bn)n of rational numbers, to a pair 〈p′, q′〉 that satisfies 
the following conditions: p′ and q′ encode increasing and decreasing sequences (cn)n and (dn)n of rational 
numbers, respectively, with cn < dn and if (an)n and (bn)n are also increasing and decreasing, respectively, 
with an < bn and supn∈N an ≤ infn∈N bn, then cn = an and dn = bn for all n ∈ N. Such a computable 
K can be realized by going through the sequences (an)n and (bn)n and as long as a0 ≤ a1 ≤ ... ≤ ak and 
b0 ≥ b1 ≥ ... ≥ bk and ak < bk we choose ci := ai and di := bi for i = 0, ..., k and as soon as one of the 
conditions is violated, we just continue with the last consistent pair (in the case that there is no such pair, 
we use ci := 0 and di := 1). Then F := GK :⊆ NN ⇒ NN is an extension of G, which is only undefined 
if the input is a name of a pair (a, b) ∈ R< ×R> with a = b. We also have F ≡sW G ≡sW B−

I ≡sW PCC[0,1]. 
Hence, it suffices to show that F : NN ⇒ NN is a strong total fractal. In fact, we claim that F r ≤sW F

r|A
for every clopen A := wNN ⊆ NN . Let u := w − 1. Then u determines a finite prefix v of K(uNN) of the 
same length as u and this prefix encodes a rational interval [a, b] with a < b; if u = v = ε, then we assume 
[a, b] := [0, 1]. Now we can use a computable bijective map T : R → (a, b) and its computable inverse T−1

to reduce F
r to F

r|A. Hence, F r and F are strong total fractals. �
Using this lemma we can apply a choice elimination result by Le Roux and Pauly [20, Theorem 2.4] to 

obtain the following corollary. We use the compositional product of problems defined by f ∗g := max≤W{f0 ◦
g0 : f0 ≤W f, g0 ≤W g} [8,14].

Corollary 7.6. PCC[0,1] �W PCR.
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Proof. By [7, Corollary 6.4, Proposition 7.4] we have PCR≡W PC2N ∗ CN . Hence, PCC[0,1] ≤W PCR would 
imply PCC[0,1] ≤W PC2N by [20, Theorem 2.4], since PCC[0,1] is a total fractal by Lemma 7.5. This contradicts 
Proposition 7.2. �

This implies in particular PC2N �W PCR. In [4, Proposition 3.8] it was proved that PCC[0,1] ≤W CN

holds. This implies that PCC[0,1] is not a total fractal (since otherwise PCC[0,1] ≤W id would follow by 
[20, Theorem 2.4], which is incorrect as PCC[0,1] is not computable). The cited reduction also implies 
PCC[0,1] ≤W CN . However, by Lemma 7.5 and [20, Theorem 2.4] we obtain the following conclusion.

Corollary 7.7. PCC[0,1] �W CN .

In order to get some upper bounds on PC2N and in order to separate it from C2N it is useful to consider 
the negligibility problem, i.e., the characteristic function of sets of measure zero:

NEG : A−(2N) → {0, 1}, A �→
{

1 if μ(A) = 0
0 otherwise

.

It is easy to see that the negligibility problem is equivalent to LPO′.

Lemma 7.8 (Negligibility). LPO′ ≡sW NEG.

Proof. We note that μ : A−(2N) → R> is computable (see also [7, Lemma 2.7]), where R> denotes the set 
of upper reals that are represented as an infimum of a decreasing sequence of rational numbers. Since the 
identity ι : R> → R, x �→ x is limit computable, i.e., ι ≤sW lim, and LPO can be used to decide equality 
on the reals, we obtain a computable K : A−(2N) ⇒ NN such that NEG = LPO ◦ lim ◦K. This proves 
NEG≤sW LPO′.

For the other direction we use Lemma 4.23 and we prove INF≤sW NEG. Given a sequence p ∈ NN , 
we want to find out whether there are infinitely many n ∈ N with p(n) = 0. Hence we compute a name 
K(p) of the set A with A = 2N \

⋃k
i=0 1i0NN , provided that we find k ∈ N ∪ {∞} many zeros in p. Then 

μ(A) = 0 ⇐⇒ k = ∞ ⇐⇒ INF(p) = 1. Hence INF = NEG ◦ δA−(2N) ◦K, which proves INF≤sW NEG. �
The negligibility problem can be used to reduce TPC2N to PC′′

2N and in consequence to separate PC2N

from C2N .

Corollary 7.9 (Positive choice). PC2N <W PC2N ≤W TPC2N <W C2N and we have TPC2N ≤W PC′′
2N .

Proof. By Corollary 7.3 we have PC2N <W PC2N . By the remark after Corollary 5.3 we obtain PC2N ≤W
TPC2N . Clearly TPC2N ≤W PC′′

2N , as NEG can be used to decide whether the input of TPC2N is in its domain, 
and Lemma 7.8 implies that NEG≤W LPO′ ≤W lim′. By [7, Corollary 14.9] it is known that C2N �W PC′′

2N . 
Hence, TPC2N <W TC2N ≡W C2N by Proposition 6.1. �

In particular, this result shows that TPC2N and PC2N are probabilistic in the sense defined in [7].

8. Choice on the natural numbers

In this section we study choice on natural numbers. Since limN ≡sW CN , we get the following conclusion 
from Corollary 4.22.

Corollary 8.1. CN is co-complete and co-total.



22
On the other hand, CN is not complete. Since it is known by [8, Theorem 7.12] that f ≤W CN holds if 
and only if f is computable with finitely many mind changes, it suffices to show that CN is not computable 
with finitely many mind changes in order to conclude that CN <W CN holds.

Proposition 8.2 (Choice on natural numbers). CN is limit computable and not computable with finitely many 
mind changes, and TCN is not even limit computable.

Proof. CN is computable with finitely many mind changes and hence, in particular, limit computable. By 
Corollary 4.3 we have CN ≡stW CN . Since limit computability is preserved downwards by total Weihrauch 
reducibility [6, Proposition 4.9], it follows that CN is limit computable. We prove that CN is not computable 
with finitely many mind changes. This implies that TCN is also not computable with finitely many mind 
changes by Corollary 5.3. Since the output space of TCN is N, this implies that TCN is not even limit 
computable by [8, Proposition 13.10]. Let us assume the contrary and let us consider a Turing machine 
that computes CN with finitely many mind changes. Upon input of a name of N ∈ A−(N), the machine 
eventually has to produce a natural number n0 as output after seeing only a finite prefix of the input. After 
this finite prefix the input can be modified to a name of the set N \ {n0}, in which case the machine has 
to change its mind and produce a new output n1 	= n0 after seeing a longer prefix of the input. Now one 
can change the input to an input of N \ {n0, n1}, in which case the machine has to change its mind again 
and it has to produce an output n2 /∈ {n0, n1}. This process can be continued inductively and it produces a 
name of co-infinite (possibly empty) set A ∈ A−(N) upon which the given machine has to change its mind 
infinitely often. Since A ∈ dom(CN), the machine does not operate with finitely many mind changes on a 
valid input. �

Proposition 8.2 implies that for the space X = N the choice principle CX , its completion and its total-
ization lead to three different degrees.

Corollary 8.3 (Choice on natural numbers). CN <W CN <W TCN .

This also means that finite mind change computability is not preserved downwards by total Weihrauch 
reducibility and by a contrapositive version of the reasoning used for the proof of [6, Proposition 4.9], it 
follows that finite mind change computability does not respect precompleteness.

Corollary 8.4. Finite mind change computability is not preserved downwards by (strong) total Weihrauch 
reducibility and does not respect precompleteness.

As TCN ≤W T lim is easy to see, Propositions 8.2 and 4.6 imply the following.

Corollary 8.5. lim≡sW lim<W T lim.

Since lim≡sW J by [2, Lemma 8.9] and TJ = J, this also proves that f �→ Tf is not a closure operator 
with respect to ≤W.

We mention that the given proof of Proposition 8.2 does not change in presence of any oracle. Hence, 
CN is not finite mind change computable with respect to any oracle and hence not even reducible to CN

with respect to the continuous version of Weihrauch reducibility. Using a jump inversion property [12, 
Theorem 11] and Proposition 5.4 this yields the following corollary.

Corollary 8.6. C′
N <W C′

N ≡sW CN
′.

Alternatively, we could also prove Proposition 8.2 by showing that CN is a total fractal. This fact is useful 
by itself and will be used later.
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Lemma 8.7. CN is a strong total fractal.

Proof. We consider the representation δ of A−(N) given by δ(p) := N \ range(p − 1). It is easy to see that 
we have δ ≡ δA−(N). We consider F : NN ⇒ NN defined by

F (p) :=
{

(δ℘N)−1 ◦ CN ◦ δ℘(p) if p ∈ dom(CN ◦ δ℘)
NN otherwise

As explained in the proof of Lemma 4.9 we have F ≡sW CN . If w := a0...ak ∈ N∗ and hence A := wNN is 
a clopen set, then we can also prove that F ≤sW F |A. We define K(p) such that the prefix w is filled up 
with a word v that contains all numbers up to m := max{a0, ..., ak} + 1 and then for all numbers i ≥ 2
in range(p) the number i + m − 1 is added, i.e., K(p) = wvq with q(n) := p(n) + m − 1 if p(n) ≥ 2 and 
q(n) = p(n) if p(n) ≤ 1. Together with a computable function H with H(r)(n) := max(0, r(n) −m + 1) the 
function K witnesses F ≤sW F |A. �

It is worth noting that there is also a specific interesting problem below CN that is not below CN . We 
recall that the Bolzano-Weierstraß theorem on the two point space {0, 1} is defined by BWT2 : 2N ⇒
{0, 1}, p �→ {i : i is a cluster point of p}. This problem was studied in [8]. Above we have already introduced 
the weak version WBWT2 : 2N ⇒ 2N of it that has been studied in [10].

Proposition 8.8 (Weak Bolzano-Weierstraß theorem). We have WBWT2 ≤W CN and WBWT2 �W CN .

Proof. Given a binary sequence p ∈ 2N , we generate a list K(p) of all natural numbers n = 0, 1, 2, ... as 
long as we see zeros in p. Whenever we see a one in p, then we repeat the previous digit on the output (or 
zero, if no output has been written yet). That is we compute a name K(p) of a set A ⊆ N which is empty 
if and only if p contains infinitely many zeros. Given a point n ∈ CN(A) together with p we try to check 
whether the set represented by K(p) contains n. As long as n has not been removed from this set, we build 
an infinite binary sequence q ∈ 2N that consists of digits 1. In the moment where we find that n is removed 
from the set represented by K(p), we change to producing digits 0. That will happen if and only if A is 
empty, i.e., if and only if p contains infinitely many zeros. In this case the output is of the form q = 1k0̂. 
In the case that A is not empty, q = 1̂. In any case, we have that limi→∞ q(i) is a cluster point of p, i.e., 
q ∈ BWT2(p). This proves WBWT2 ≤W CN .

It is easy to see that WBWT2 �W CN , as BWT2 ≤W limN ∗WBWT2 and BWT2 is not limit computable 
by [8, Proposition 12.5], whereas limN ∗CN ≡W CN by [8, Proposition 3.8] and [2, Corollary 7.6] and CN is 
limit computable. �

As a direct corollary we can conclude that WBWT2 is not co-complete.

Corollary 8.9. WBWT2 is not co-complete.

There are also specific interesting problems that are below TCN and not below CN , and problems that 
are below CN ∗CN and not below TCN . The problem CN ∗CN belongs to a class that is interesting by itself 
and that was already studied by Neumann and Pauly [21].

Corollary 8.10. CN ∗ CN ≡W CN ∗ TCN ≡W CN ∗ SORT≡W CN ∗ LPO′.

Proof. The equivalences CN ∗TCN ≡W CN ∗SORT≡W CN ∗ INFS were proved in [21, Corollary 30]. We note 
that INFS ≡W LPO′

S by Lemma 4.23 and LPO′ ≤W LPO∗LPO′
S ≤W CN ∗INFS. This proves CN ∗LPO′ ≡W CN ∗

INFS, as LPOS ≤sW LPO and CN ∗ CN ≡W CN . It is clear that CN ≤W TCN implies CN ∗ CN ≤W CN ∗ TCN . 
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By Proposition 2.10 there is a retraction N → N that is computable with finitely many mind changes and 
by Corollary 2.5 there is a computable injection ι : A−(N) → A−(N). This implies TCN ≤W CN ∗ CN and 
hence CN ∗ TCN ≡W CN ∗ CN as CN ∗ CN ≡W CN . �

As a corollary we obtain the following.

Corollary 8.11. We obtain

(1) LPO′ ≤W CN ∗ CN , but LPO′ �W TCN .
(2) LPO′

S ≤W TCN , but LPO′
S �W CN .

Proof. LPO′ ≤W CN ∗ CN holds by Corollary 8.10. Since LPO′ is co-total by Corollary 4.22, it follows that 
LPO′ �W TCN holds, since otherwise LPO′ ≤W CN would follow, which is false as LPO′ is not limit com-
putable by Lemma 4.24. LPO′

S ≤W TCN was proved in [21, Proposition 24]. Since LPO′
S is co-complete by 

Corollary 4.22, it follows that LPO′
S �W CN holds, since otherwise LPO′

S ≤W CN would follow, which is false 
as LPO′ ≤W CN ∗ LPO′

S. �
As a direct corollary we obtain that LPO′

S is not co-total.

Corollary 8.12. LPO′
S is not co-total.

Completeness can also be used as a separation tool, as we illustrate with the following result. Basically, the 
point is that an incomplete problem cannot be factorized into complete problems. We use that C′

N ≡W C′
N ∗

C′
N holds; this is easy to see and was already stated in the proof of [12, Proposition 21].

Proposition 8.13. K′
N <W K′

N ∗ K′
N <W C′

N and CN ∗ CN ≤W K′
N ∗ K′

N .

Proof. The first reduction is obvious, the second reduction follows as KN ≤sW CN and C′
N ∗C′

N ≡W C′
N . The 

reduction CN ∗CN ≤W K′
N ∗K′

N holds, as CN ≤W K′
N by [15, Proposition 7.2], completion is a closure operator 

and K′
N is complete by Corollary 6.5. Let us assume that K′

N∗K′
N ≤W K′

N holds, then SORT≤W CN∗SORT ≤
CN ∗ CN ≤W K′

N follows by Corollary 8.10, in contradiction to [12, Propositions 16 and 20]. Hence, the first 
reduction is strict. The second reduction is strict, as K′

N is complete by Corollary 6.5, C′
N is not complete 

by Corollary 8.6 and the compositional product preserves completeness by [6, Proposition 7.6]. �
Altogether we obtain the following reduction chain for some of the discussed classes.

Corollary 8.14. TCN <W CN ∗ CN <W C′
N .

Proof. The reduction TCN ≤W CN ∗CN was proved in the proof of Corollary 8.10 as well as CN ∗CN ≡W CN ∗
LPO′. Since LPO′ ≤W C′

N and C′
N ≡W C′

N ∗ C′
N , we obtain CN ∗ LPO′ ≤W CN ∗ C′

N ≡W C′
N . The strictness 

of the first reduction follows from Corollary 8.11 and the strictness of the second reduction from Proposi-
tion 8.13. �

Since CN is not complete, the cone below CN in the Weihrauch lattice differs from the cone below CN

and hence it is important to check how this impacts on separation results. An important separation is 
CC[0,1] �W CN [4, Proposition 4.9]. This was strengthened to CC[0,1] �W K′

N in [12, Proposition 20]. With 
the help of Corollary 6.8 we can strengthen the separation in another direction.

Corollary 8.15. CC[0,1] |W TCN .



25
Here TCN �W CC[0,1] follows since CC[0,1] is limit computable and TCN is not by Proposition 8.2. Since 
CC[0,1] ≤W SORT by [12, Proposition 16], we obtain SORT �W TCN . Since SORT is also limit computable, we 
obtain TCN �W SORT and SORT |W TCN . This was also proved by Neumann and Pauly [21, Proposition 24]. 
In this context it is interesting to note that CN ≤W SORT holds.

Corollary 8.16. CN ≤sW SORT.

Proof. Neumann and Pauly [21, Proposition 24] proved CN ≤W SORT and the proof even shows 
CN ≤sW SORT (see also [12, Proposition 12]). Since completion is a closure operator and by Proposition 4.6
we obtain CN ≤sW SORT≡sW SORT. �
9. Lowness

Proposition 2.10 can also be used to prove that CN is not low. We recall that a problem f :⊆ X ⇒ Y

is called low, if it has a realizer of the form F = L ◦ G with some computable G :⊆ NN → NN and 
L := J−1 ◦ lim. Lowness was studied, for instance, in [2,1]. By [2, Theorem 8.10] f is low if and only if 
f ≤sW L. Likewise, f is called low2, if f ≤sW L2, where L2 := J−1 ◦ J−1 ◦ lim ◦ lim.

Corollary 9.1. CN is low2 but not low.

Proof. We first prove that CN is not low. By Proposition 2.10 there is a retraction r : N → N that is 
computable with finitely many mind changes and together with Corollary 2.5 we obtain TCN ≤sW r ◦ CN . 
Since r is computable with finitely many mind changes, it is in particular limit computable, and since TCN

is not limit computable by Proposition 8.2, it follows that CN cannot be low since the composition of a limit 
computable problem with a low problem is limit computable by [2, Corollary 8.16].

Neumann and Pauly [21, Corollary 32] proved lim ∗ lim ∗SORT≡W lim ∗ lim, and since lim ∗ lim≡W lim′

is a cylinder, we obtain lim′ ∗SORT≤sW lim′. By [10, Proposition 14.16] this implies that SORT is low2. By 
Corollary 8.16 we have CN ≤sW SORT, which implies CN is also low2. �

By [2, Corollary 8.14] we have CN ≤sW L and hence CN ≤sW L. Hence Corollary 9.1 implies that L is not 
strongly complete.

Corollary 9.2 (Low map). L<sW L.

This in turn implies that lowness is not preserved downwards by total Weihrauch reducibility.

Corollary 9.3. Lowness is not preserved downwards by (strong) total Weihrauch reducibility and does not 
respect precompleteness.

Proof. By [2, Theorem 8.10] f is low if and only f ≤sW L. By Corollary 9.2 it follows that L is not low 
and since L≡stW L, it follows that strong total Weihrauch reducibility does not preserve lowness. Hence 
total Weihrauch reducibility also does not preserve lowness. By the reasoning used for the proof of [6, 
Proposition 4.9], one can conclude that lowness would preserve strong total Weihrauch reducibility if it did 
respect precompleteness (in the strong case one does not need closure under juxtaposition with the identity, 
which is not given for low functions by Lemma 9.4). Hence, lowness does not respect precompleteness. �

We mention that L is not a cylinder.

Lemma 9.4. L and L are not cylinders.
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Proof. By [2, Theorem 8.8] we have L<sW L× L = (L× id) ◦ (id× L). By [2, Proposition 8.16] low problems 
are closed under composition. Hence id × L≡sW L × id cannot be low, i.e., id × L �sW L and hence L is not 
a cylinder. By [6, Proposition 6.19] this implies that L is also not a cylinder. �

Finally, we prove that L is not complete, i.e., L<W L. We even prove a more general result.

Proposition 9.5. WBWT2 �W L.

Proof. By ϕ we denote a Gödel numbering of all computable functions ϕn :⊆ N → N. For every problem 
f :⊆ NN ⇒ Y we denote by fϕ :⊆ N ⇒ Y its Gödelization defined by fϕ(n) := f(ϕn) with dom(fϕ) :=
{n ∈ N : ϕn total and ϕn ∈ dom(f)}. By the universal Turing machine theorem one obtains fϕ ≤W f . 
Hence, it suffices to show W := WBWT2ϕ �W L in order to prove our claim. We prove that W ≤W L implies 
B := BWT2ϕ ≤W lim. But the latter implies (B̂WT2)ϕ ≤W B̂≤W lim, where the first reduction holds by the 
smn-theorem. But this is a contradiction, since it is known that B̂WT2 ≡W WKL′ [8, Corollaries 11.6, 11.7 
and 11.12] and hence by the relativized Kleene tree construction WKL′ and thus B̂WT2 have computable 
inputs with no limit computable solution. We now show that W ≤W L implies B≤W lim. To this end, let 
H, K :⊆ NN → NN be computable functions such that H〈id, GK〉 is a realizer for W whenever G is a 
realizer for L = J−1 ◦ lim. Up to extension the only realizer of L is L itself, hence we can assume G = L. By 
the smn-theorem there are two computable functions r0, r1 : N → N such that JLK(ϕn)(ri〈n, k〉) = 1 if and 
only if H〈ϕn, LK(ϕn)〉(m) = i for all m ≥ k. Intuitively speaking, ri inspects the outcome of H〈ϕn, LK(ϕn)〉
with respect to the question whether it is eventually constant with value i, which is possible if the Turing 
jump of LK(ϕn) is known, since q �→ H〈ϕn, q〉 is computable uniformly in n. Now JL = lim and hence the 
inner reduction function K also witnesses the reduction B≤W lim. More precisely, given an input 〈n, q〉 the 
corresponding outer reduction function H ′ only has to search for some (i, k) with i ∈ {0, 1} and k ∈ N such 
that q(ri〈n, k〉) = 1 and output (a name of) i in this case. Such a function H ′ is clearly computable and 
satisfies H ′〈n, limK(ϕn)〉 ∈ B(n). �

We obtain the following corollary with Proposition 8.8 and Corollary 8.16.

Corollary 9.6. L is not complete, CN �W L and SORT �W L.

10. Choice on Euclidean space

By Lemma 8.7 CN is a total fractal. This fact allows us to give a very simple proof of the following result.

Proposition 10.1 (Choice on Euclidean space). CR<W CR and PCR<W PCR.

Proof. Let us assume that CR≤W CR. Then we obtain

CN ≤W CR≤W CR≡W C2N ∗ CN ,

where the first reduction holds since CN ≤W CR and completion is a closure operator and the last mentioned 
equivalence is known [8, Example 4.4 (2)]. By the choice elimination principle [20, Theorem 2.4] it follows that 
CN ≤W CN ≤W C2N , which is known to be false [4, Corollary 4.2]. PCR<W PCR can be proved analogously, 
since PCR≡W PC2N ∗ CN by [7, Corollary 6.4, Proposition 7.4]. �

Analogously, one could also prove CN <W CN . As a corollary of the proof of Proposition 10.1 we also 
obtain the following separation, which is also a consequence of Corollary 9.6.



27
Corollary 10.2. CN �W CR.

Since f × g≤sW f × g by [6, Proposition 6.3] and using Proposition 6.1 we obtain

CR≤sW C2N × CN ≤sW C2N × CN ≤sW C2N × CN

and one could ask whether the inverse reduction holds too. The following choice and completion elimination 
principle is quite useful and can be used to prove that this is not so. It has some similarities to the 
displacement principle formulated in [13, Theorem 8.3, Corollary 8.4] and shows that if the completion of a 
problem g can compute another problem f together with C2, then the uncompleted problem by itself can 
already compute f .

Proposition 10.3 (Depletion). f × C2 ≤W g =⇒ f ≤W g holds for all problems f, g. An analogous property 
holds for ≤sW instead of ≤W in both instances.

Proof. If f is nowhere defined, then the statement holds obviously. Hence, let f be defined somewhere. We 
consider g :⊆ X ⇒ Y and g : X ⇒ Y . Let p ∈ NN be a name of some point x ∈ dom(f) and let q ∈ NN

be a computable name of the set {0, 1} ∈ A−({0, 1}). Let f × C2 ≤W g be witnessed by some computable 
functions H, K. Let us assume that K〈p, q〉 is a name of a point outside of dom(g). Then a realizer G of 
g can produce any value on this input, for instance, GK〈p, q〉 = 0̂. Then H〈〈p, q〉, ̂0〉 = 〈s, t〉 where s is a 
name of a point in f(x) and i = t(0) ∈ {0, 1}. Since H is continuous, there are finite prefixes w � p and 
v � q that suffice to produce the value i = t(0). Moreover, there is a name q′ of {i − 1} with v � q′, and 
there is a realizer G of g that produces a value r = GK〈p, q′〉 that starts with sufficiently many zeros (which 
is possible with respect to the representation δY ) such that H〈〈p, q′〉, r〉 = 〈s′, t′〉 with the same i = t′(0) as 
above. But in this case the result is incorrect. Hence, the assumption was incorrect and K〈p, q〉 is always a 
δX–name of a point in dom(g) for every name p of a point in dom(f) and the fixed computable q. Hence K ′

with K ′(p) := K〈p, q〉 −1 is a name of the same point with respect to δX and H ′〈p, r〉 := π1 ◦H〈〈p, q〉, r−1〉
is a computable function such that K ′ and H ′ witness f ≤W g. The proof for ≤sW is analogous. �

One application of Proposition 10.3 shows that CN × C2N ≤W CR would imply CN ≤W CR, which is false 
by Corollary 10.2. An analogous observation holds for PCR.

Corollary 10.4. CR<W C2N × CN and PCR<W PC2N × CN .

This corollary provides natural examples of problems such that the product of the respective completions 
is stronger than the completion of the products. The existence of such examples was already proved in [6, 
Lemma 6.9]. Another conclusion that we can draw from Proposition 10.3 is that every incomplete problem 
above C2 has a completion that is not idempotent. We recall that a problem f is called idempotent if 
f × f ≡W f holds.

Corollary 10.5 (Idempotency and completeness). If f is incomplete and C2 ≤W f , then f is not idempotent.

In particular, this means that our incomplete choice problems are not idempotent. By [6, Proposition 6.19]
a problem that is incomplete has a completion which is not a cylinder. We recall that a problem f is called 
a cylinder if f ≡sW id × f .

Corollary 10.6. CN , CR, PCC[0,1], PC2R , PCR and CNN are not idempotent and not cylinders.

Here the statement for CNN already uses CNN <W CNN , which is only proved in Theorem 11.6.
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11. Choice on Baire space

Next we want to study the choice problem on Baire space CNN . For this purpose we consider the well-
founded tree problem, i.e., the characteristic function of the singleton with the empty set as its member:

WFT : A−(NN) → {0, 1}, A �→
{

1 if A = ∅
0 otherwise

.

By [3, Theorem 5.2] the set {∅} ⊆ A−(NN) is equivalent to the set of wellfounded trees that is known to 
be Π1

1–complete. By WFTS : A−(NN) → S we denote the wellfounded tree problem with target space S.
We start with proving that for every closed set A ⊆ NN that is given with respect to the jump represen-

tation, we can compute a closed set B ⊆ NN such that π1(B) = A. Here π1 : NN → NN , 〈p, q〉 �→ p.

Proposition 11.1 (Projections). There following problem is computable:

P : A−(NN)′ ⇒ A−(NN), A �→ {B : π1(B) = A}

Proof. Given A ∈ A−(NN)′ we can compute by [11, Proposition 3.6], [8, Proposition 9.2] a (possibly empty) 
sequence (pi)i∈N of points pi ∈ NN such that A is the set of cluster points of A. We now start to generate a 
list of all balls nNN with n ∈ N as output while we inspect the sequence (pi)i∈N in stages i = 0, 1, 2, .... We 
say that a pi is fresh if it has no common non-empty prefix with any other previous pj, j < i. If, in stage i, 
we encounter some fresh pi, then we select some k ∈ N such that 〈pi(0), k〉NN was not yet enumerated as 
output and we skip the corresponding ball on the output side (while we continue to enumerate all other balls 
nNN). Additionally we enumerate all balls of the form 〈pi(0), k〉nNN with n ∈ N. If at some later stage j, 
we encounter some pj that is not fresh, but that has a prefix in common with pi of length greater or equal 
than 2, then we select an l ∈ N such that 〈pi(0), k〉〈pi(1), l〉NN was not yet enumerated, we skip this ball 
on the output side and we additionally start enumerating all balls of the form 〈pi(0), k〉〈pi(1), l〉nNN with 
n ∈ N. We continue like this inductively. Whenever a non-fresh pi has a prefix in common with an already 
enumerated pj that is longer than the depth of the corresponding sequence of balls that is enumerated on 
the output side, then we propagate the corresponding enumeration to the next deeper layer. As a result of 
this, the enumeration of balls on the output side describes the complement of a closed set B ⊆ NN such 
that π1(B) is the set of cluster points of (pi)i∈N , i.e., π1(B) = A. �

If B ∈ P (A) then B = ∅ ⇐⇒ A = ∅. Hence we obtain the following corollary.

Corollary 11.2 (Jump of wellfoundedness). WFT′ ≡sW WFT and WFT′
S ≡sW WFTS.

Now we can easily derive the following completeness and co-completeness properties of the wellfounded-
ness problem.

Corollary 11.3 (Wellfoundedness).

(1) WFT is strongly complete, co-total and co-complete,
(2) WFTS is strongly complete and co-complete.

Proof. We first prove both statements on strong completeness. The space A−(NN) is multi-retraceable by 
Lemma 5.1. Hence there is a computable multi-valued retraction r : A−(NN) ⇒ A−(NN). By Corollary 2.5
the identity ι : NN → NN is a computable embedding. Altogether this shows that WFT≤sW WFT, i.e., 
WFT is strongly complete. Also the representation δS is easily seen to be precomplete and total and hence S
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is multi-retraceable too by Proposition 2.6. Hence WFTS is strongly complete by Corollary 4.12. Co-totality 
and co-completeness of WFT and co-completeness of WFTS follow from Proposition 4.21 with the help of 
Corollary 11.2. �

Here we are in particular interested in the co-completeness and co-totality results, since they help us to 
establish the following result by an interesting bootstrapping argument.

Proposition 11.4 (Wellfoundedness).

(1) WFTS ≤W TCNN and WFTS �W CNN ,
(2) WFT≤W CNN ∗ TCNN and WFT �W TCNN .

Proof. It is easy to see that WFTS ≤W TCNN : given A ∈ A−(NN) we determine a point p ∈ TCNN (A) and 
we check whether p ∈ A. If not, then we will eventually recognize that, in which case A = ∅. If A 	= ∅, then 
the search will never terminate, but this is sufficient to compute WFTS(A) ∈ S. The identity ι : S → {0, 1}
is easily seen to be equivalent to LPO and WFT = ι ◦ WFTS. Hence the function f : NN → {0, 1} with 
f := WFT◦δA−(NN) satisfies WFT≡W f ≤W LPO∗WFTS ≤W CNN ∗TCNN . On the other hand, f is not Borel 
measurable by [3, Theorem 5.2] (essentially, since the set of wellfounded trees is Π1

1–complete and hence not 
Borel). Hence WFT≡W f �W CNN by [2, Theorem 7.7] (this theorem says that the single-valued functions 
g : X → Y on complete computable metric spaces X, Y with g≤W CNN are exactly the effectively Borel 
measurable g). Since WFT is co-total by Corollary 11.3, WFT �W CNN implies WFT �W TCNN . Now suppose 
that WFTS ≤W CNN . Since WFTS is co-complete by Corollary 11.3, this would imply WFTS ≤W CNN , which, 
as above, leads to WFT≤W LPO ∗ WFTS ≤W CNN ∗ CNN ≡W CNN , where the last equivalence holds by [2, 
Corollary 7.6]. Since WFT �W CNN , we obtain WFTS �W CNN . �

We can also conclude that WFTS is not co-total, since otherwise WFTS ≤W CNN would follow.

Corollary 11.5. WFTS is not co-total.

Proposition 11.4 leads to the following classification of choice problems related to choice on Baire space.

Theorem 11.6 (Choice on Baire space). We obtain:
CNN <W CNN <W TCNN <W CNN ∗ CNN ≡W CNN ∗ TCNN .

Proof. By Corollary 5.3 the reductions CNN ≤W CNN ≤W TCNN are clear and this implies CNN ∗
CNN ≤W CNN ∗ TCNN . By Proposition 2.10 there is a limit computable retraction r : NN → NN and 
lim≤W CNN holds by [2, Example 3.10]. By Corollary 2.5 the identity ι : A−(NN) → A−(NN) is a 
computable embedding. Altogether, this implies TCNN ≤W CNN ∗ CNN . Since CNN ≡W CNN ∗ CNN by [2, 
Corollary 7.6], this in turn implies CNN ∗ TCNN ≤W CNN ∗ CNN ∗ CNN ≡W CNN ∗ CNN . The separation 
statements in CNN <W TCNN <W CNN ∗ CNN follow from Proposition 11.4. If we had CNN ≤W CNN , then 
CNN ∗ CNN ≤W CNN ∗ CNN ≡W CNN would follow, which is not correct. �

By Corollary 4.17 we obtain the following conclusion on single-valued functions. We note that for constant 
f one can easily prove the statement directly.

Corollary 11.7 (Single-valuedness). Let X, Y be complete computable metric spaces and f : X → Y a 
function. Then f ≤sW CNN ⇐⇒ f ≤sW CNN ⇐⇒ f ≤sW TCNN .

By [2, Theorem 7.7] the first given condition is exactly satisfied for the effectively Borel measurable 
functions f .
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Question 11.8. Can we replace ≤sW by ≤W in Corollary 11.7?
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