
Numerical and Experimental Analysis of
the Daughter Distribution in Liquid-Liquid
Stirred Tanks

The drop size distributions (DSDs) of a dilute immiscible liquid-liquid mixture
were measured in a fully turbulent stirred tank operating at different impeller
speeds. The results were used to infer the best daughter distribution function
(DDF) leading to the best reproduction of the shape of the DSD. Bell-shaped,
U-shaped, M-shaped, and uniform statistical DDFs were studied, producing from
two to four daughters from each breakup event. A simplified approach from the
literature was adopted to solve the population balance equation that considers the
spectrum of the turbulence inside the tank obtained from computational fluid
dynamics simulations. The U-shaped distribution producing four fragments better
reproduces the shape of the experimental DSD in the studied system.
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1 Introduction

Liquid-liquid stirred tanks are very common in the oil and gas,
pharmaceutical, food, and process industries. In recent years,
the scientific community has shown how the design and scale-
up of these systems can be carried out using mathematical
modeling tools, based on computational fluid dynamics (CFD)
and population balance modeling (PBM) [1–3]. The most com-
plex part of these models is the description of the interaction
between the eddies and the droplets, which can lead to droplet
coalescence or breakage. Numerous models have been devel-
oped that try to describe these phenomena, and for in-depth
reviews, the reader can refer to previous works [4–7].

In this work, the focus is on a very specific aspect of these
models that has never been treated in depth, namely, the effect
of the different daughter distribution functions (DDFs) on the
model predictions. The daughter size distribution function
expresses, in a mathematical form, the dimensional distribu-
tion of the droplets that are generated following the breakage
of a mother droplet. Since the modeling approach based on the
population balance describes the droplet population as an
ensemble, discontinuous events such as breakage are treated by
associating them with a probability due to their intrinsic chaot-
ic nature. The daughter size distribution predicts the most
probable droplet sizes following a breakage event. Attempts for
obtaining this information from real or numerical experiments
have been described in the literature [8–13], but despite the
best efforts, the procedure is very complex and time consum-
ing. The main reason for such difficulties stems from the num-
ber of breakup events to be detected to reach statistical signifi-
cance for every initial mother size and fluid dynamic

condition, since by varying these two factors the breakage event
may lead to very different outcomes.

Considering the complexity of the phenomenon, two main
modeling approaches are adopted in the literature: a phenome-
nological approach, in which the DDF is derived from an ap-
proximated description of the fluid dynamics of the breakage
event, and a statistical approach, in which the DDF has the
form of a mathematical distribution function that does not vary
depending on the fluid dynamics conditions or the initial
dimension of the mother droplet. Due to the aforementioned
limitations in the experimental validation of these modeling
approaches, the statistical approach is often more popular due
to its simplicity and ease of implementation, especially in case
of CFD-PBM simulations. For this approach, at least three dif-
ferent types of shape for the DDF have been proposed: bell
shape [14], U-shape [15] and M-shape [16], but no general
consensus has been reached on these because the arguments
used to justify the usage are often partial and contradictory.
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In this work, we tried to infer which could be the most
appropriate form of DDF and the average number of fragments
generated by the breakup event, through comparing the
numerical results of a model based on CFD and PBM with the
experimental data measured in a laboratory-scale liquid-liquid
stirred tank. Although other aspects of the model, such as the
description of the coalescence and breakage frequencies and
the fluid dynamics model play an essential role in the predic-
tion of the drop size distribution (DSD), we still find it interest-
ing to show how the DSD changes as only the DDF and the
number of generated fragments vary. Although we are aware
that the results obtained in this work may lack general validity
due to the empirical nature of the investigation approach, the
conclusions of this analysis are in line with some experimental
observations of single-droplet breakage [8, 12, 13] and may
therefore be useful to modelers and users.

2 Experimental Campaign

The system studied in this work was a stirred tank previously
employed in liquid-liquid investigations [17, 18]; it consists of a
cylindrical, flat-bottom, fully baffled tank with both its diame-
ter T1) and its height equal to 0.23 m. The agitation was pro-
vided by a Rushton turbine with a diameter equal to T/3,
mounted on a central shaft with an off-bottom clearance equal
to T/2. The total volume of the mixture was equal to 9.8 L.

The liquid-liquid mixture consisted of commercial diesel fuel
in demineralized water. The fluid densities were rD = 810 kg m–3

and rC = 998 kg m–3, for the diesel fuel and water, respec-
tively, while their viscosities were mD = 3.5 ·10–3 Pa s and
mC = 10–3 Pa s, respectively. The surface tension measured at
room temperature was s = 27.6 mN m–1.

Four different operating conditions were studied, corre-
sponding to the impeller rotational speeds N of 500, 600, 700,
and 800 rpm. Water was stirred for several minutes to reach
the steady state and, subsequently, 9.7 mL of diesel fuel was in-
jected close to the impeller, resulting in a diesel fuel volume
fraction of 10–3.

A Spraytec laser diffraction system (Malvern Panalytical)
equipped with a wet sample dispersion unit was employed to
measure the drop size distribution. The light scattered as a laser
beam passed through the liquid-liquid dispersion was collected,
and the intensity was measured, by the instrument by means of
several detectors covering a wide range of angles. The scatter-
ing pattern was then used to reconstruct the size distribution of
the droplets in the sample. A 100-mL mixture sample was
withdrawn from the vessel midway between two consecutive
baffles at 40 min after the diesel fuel injection, to make sure
that the system was at steady state. The sample was continu-
ously recirculated by means of a small impeller through an
optically accessible measurement cell positioned between the
Spraytec transmitter and the receiver units. The influence of
this impeller on the DSD was assessed and an optimal rotation-
al speed of 2500 rpm was selected. The sample measurement
time lasted for around 30 s, with a 10-s window average of the
scattering pattern to allow the totality of the sample to pass
through the measuring cell. The scattering pattern was used to
obtain a discretized DSD in terms of the weighted volume

fractions of diesel fuel in the ith size bin with respect to the
total dispersed-phase volume in the sample. In the present
measurements, multiple scattering does not influence the
accuracy of the results since the detected obscuration was
significantly lower than the critical value above which multiple
scattering must be considered.

The average DSD values obtained from triplicate measure-
ments in the laser granulometry analysis are shown in Fig. 1,
together with error bars denoting the standard deviation for
each diameter class.

The volumetric distributions show two distinct peaks, a
lower one shifted towards smaller diameters and a higher one
shifted towards larger diameters. The measured Sauter mean
diameters in the different conditions are equal to 47.6 mm
for N = 500 rpm, 35.7 mm for N = 600rpm, 32.1 mm for
N = 700rpm, and 25.7 mm for N = 800 rpm.

3 Numerical Simulations

A simplified zero-spatial dimensional model was adopted to
describe the evolution of the DSD in the operating conditions
presented in Sect. 2, just considering the volume distribution of
the turbulent dissipation rate e. To obtain the distribution of e,
single-phase Reynolds-averaged Navier-Stokes (RANS) CFD
simulations were performed in OpenFOAM 5.0 with a high-
quality mesh and a modeling approach that produced grid-
independent turbulent flow fields in good agreement with
experimental data [18]. The model is based on the Eulerian
description of both liquid phases, the two-fluid model, and the
turbulence closure was achieved by means of the standard k-e
turbulence model [18]. Successively, a probability density func-
tion, g(e), for each operating condition was built as:

g eð Þ ¼ 1
V

dv eð Þ
de

(1)

with v(e) being the computational cells volume with a turbu-
lent dissipation rate in the interval e, e + de, and with V being
the total volume of the tank. The volumetric distributions of
e for the four conditions studied in this work are shown in
Fig. 2.

Fig. 2 shows that the volume distribution of e is shifted
towards higher values as the impeller rotational speed increases
and that the shape of the distribution is preserved, as expected
since the tank is in a fully turbulent regime for all four cases
analyzed in this work. The volume average e is equal to 0.75,
1.31, 2.08, and 3.10 m2s–3 for the four simulations obtained at
impeller rotational speeds from 500 to 800 rpm, respectively.

As previously done by Buffo et al. [19], the spatial distri-
bution of e was used to calculate the breakage rate, which in
the present work was modeled with the kernel developed by
Alopaeus et al. [14]. The kernel was modified with the adop-
tion of a scalar correction to account for the grid dependence
of the parameters, as was done in a previous study [18], and
the resulting breakage (h) kernel is reported in Eq. (2).
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where the values of the grid-independent parameters in the
breakup kernel, C0

1 = 2.98, C0
2 = 0.12, and C0

3 = 0.25, were taken

from a previous investigation [18], and the scalar correction F
results from the ratio of the presumed turbulent dissipation
rate in the impeller zone predicted with an infinitely fine mesh
and the turbulent dissipation rate predicted with the adopted
computational grid, and it is equal to 1.17 in this work [18]. In
the very dilute conditions considered in this work, one com-
mon assumption is to neglect the coalescence inside the stirred
tank [20]. Thus, the resulting population balance equation
(PBE) solved in this work is:

¶n Lð Þ
¶t
¼
Z¥

L

b L; ‘ð Þh ‘ð Þn ‘ð Þd‘� h Lð Þn Lð Þ (3)

where n(L) is the DSD and b is the DDF.
Different statistical DDFs corresponding to different shapes

were adopted to describe the fragment generation, and they are
reported in the following in terms of size-based distributions.
The DDF by Laakkonen et al. [21] models the breakage event
as a beta distribution, resulting in a bell shape, in which sym-
metric breakup is considered as the event with the highest
probability, and for a generic number of fragments, p, it reads:
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a) b)

c) d)

Figure 1. Average experimental DSDs obtained at (a) 500 rpm, (b) 600 rpm, (c) 700 rpm, and (d) 800 rpm.
Error bars represent the standard deviation for each class.

Figure 2. Volume distribution of the turbulent dissipation rate
in the tank at the steady state for different impeller rotational
speeds.

Research Article 3

These are not the final page numbers! ((



where Li and Lj are the daughter drop size and mother drop
size, respectively, C4 is a parameter related to the number of

fragments as p ¼ 4
3
þ C4

3

� �
, and therefore, it assumes the val-

ue of 2 for a binary, 5 for a ternary, and 8 for a quaternary
breakage.

The DDF by Diemer and Olson [22] is a generalized form of
the distributions of Hill and Ng [23] and it can assume differ-
ent shapes depending on the value of the parameter q. In this
work, just two values of q were studied, namely, q = 0.5 which
gives a U-shaped DDF and q = 1 which gives a uniform daugh-
ter distribution. The DDF expression reads:

b Li; Lj
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where G denotes the gamma function.
The last DDF studied in this work is a logistic-normal distri-

bution that, for values of the parameter r between 1.5 and 2.2,
assumes an M-shape. In this work, r was taken as equal to 2,
and the expression for this distribution is given in Eq. (6):
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It is worth remarking that, for every DDF, the following rela-
tionships must hold:

p ¼
ZLj

0

b ‘; Lj
� �

d‘ (7)

L3
j ¼

ZLj

0

‘3b ‘; Lj
� �

d‘ (8)

To check if the DDF can be used, these two definite integrals
must be evaluated. Eq. (7) expresses the condition that the mo-
ment of order zero of the DDF must be equal to the number of
fragments, while Eq. (8) forces the third-order moment of DDF
to be equal to the volume of the mother droplet. When such
relationships are not valid, the results obtained may suffer mass
imbalances. For this reason, the M-shaped logistic-normal dis-
tribution was only used in this work by considering p = 2, since
an analytical solution of the integral of the moments of this
statistical DDF does not exist.

The PBE was solved with the quadrature-based method of
moments (QMOM) with six quadrature nodes, with the same
procedure as presented by Buffo et al. [19]. A log-normal dis-
tribution with a mean diameter equal to 1 mm and a standard
deviation equal to 0.15 mm was assumed as the initial DSD.
The differential equation was solved in MATLAB R2019b with
the Adams-Bashforth-Moulton variable-step, variable-order
solver of orders 1 to 13, ode113, with absolute and relative

error tolerances of 10–8. The PBE final resolution time was
determined from a time sensitivity study performed for each
condition, and steady state was assumed once the evolution of
the moments reached a plateau. The volume-averaged kernels
were calculated with the trapezoidal numerical integration
method. The DDFs were integrated with the adaptive quadra-
ture algorithm with an absolute error tolerance of 10–8 and the
validity of Eqs. (7) and (8) was ensured.

By using the QMOM for the solution of the PBE, the infor-
mation regarding the shape of the DSD is lost since only its
moments are evaluated. This is a well-known limitation of the
QMOM, with respect to other methods, such as classes or
Monte-Carlo methods, which are better suited for predicting
the shape of the distribution but, in turn, are more computa-
tionally expensive. However, some techniques to reconstruct
the shape of a distribution from its moments are available [24].
As commonly done in the literature [25, 26], the extended
QMOM (EQMOM) with a log-normal distribution as a kernel
density function was used to obtain the DSD from the moment
set available from the numerical solution [1], thus assuming a
sum of two log-normal distributions with the same variance.
The DSD was successively discretized in the same bins as the
experimental DSD, for a better comparison.

4 Results and Discussion

Several simulations were run changing the shape of the DDF
and the number of fragments. Namely, the beta distribution,
Eq. (4), with two, three, and four daughters, the U-shaped
DDF, Eq. (5), with two, three, and four daughters, the uniform
distribution, Eq. (5), with two and three daughters, and the
M-shaped distribution, Eq. (6), with two daughters were stud-
ied, resulting in nine different simulations. The resulting
moments of order k from 1 to 5 were divided by the 0th order
moment, Mk,0, and their percent deviations, Dk0, from the cor-
responding experimental moment ratio were calculated as:

Dk0 ¼
MNum

k;0

MExp
k;0

� 1

					
					 · 100 (9)

where the superscripts Num and Exp indicate the moments
from the numerical simulations and the experiments, respec-
tively. In this way the numerical results and the experimental
data are compared consistently, meaning that, the lower the
deviation for all the first five-order moments, the better is the
agreement between the predicted DSD and the experimental
one. It is also worth remarking that a similar comparison is
uncommon in the literature, since more often only the numeri-
cal and experimental Sauter mean diameters (i.e., the ratio be-
tween the third-order moment and the second-order moment
with respect to the droplet size) are compared, especially when
surface phenomena are of interest. Such an analysis reveals that
all the DDF studied in this work predict a Sauter mean diame-
ter in general agreement with the experimental one, as reported
in Tab. 1, with the maximum deviation from the experimental
data equal to 30.0 % obtained with a beta distribution with four
daughters at 500 rpm, and an overall average deviation of
13.6 %. Thus, when just the Sauter mean diameter is of interest,
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the choice of the DDF does not substantially affect
the predictions.

It is worth mentioning that the kernel parame-
ters were obtained for a binary breakage and there-
fore the Sauter mean diameters obtained with p = 2
are in better agreement with the experiments. In
the present study, changing the kernel parameters
shifts the distribution but it does not change the
shape of the DSD.

The analysis of the deviations from the experi-
mental moment ratio allows the identification of
the DDF that better describes the shape of the ex-
perimental distribution. The deviations for each
moment ratio, for each DDF and number of
daughters in all the operating conditions consid-
ered in this work are reported in Fig. 3.

Fig. 3 shows that increasing the number of
daughters reduces the percent deviation Dk0 and
that the deviations of the lower-order moments
ratio are generally higher than the deviations of the
higher-order moments ratio. The DDF that exhib-
its the lowest deviation from the experiments in all
the operating conditions is the U-shaped DDF with the forma-
tion of four daughter droplets. This finding is consistent with
previous experimental observations [8, 12, 13], in which the
most-observed outcome of a breakage event for a liquid droplet
is the formation of two large droplets and a limited number of
smaller satellite drops. The corresponding DSDs are compared
against the experimental DSDs in Fig. 4.

The numerical simulations that produced the DSD of Fig. 4
predict two distinct peaks as observed in the experimental
volumetric distributions. Both peaks show higher volume frac-
tions than the experimental peaks, since the numerical DSD
are less dispersed than the experimental ones. This behavior

may be due to the choice of the log-normal distribution as
kernel density function for the reconstruction of the distribu-
tion from the moments. Moreover, the lower numerical peaks
are shifted towards larger diameters, with respect to the corre-
sponding experimental peaks, and conversely the higher
numerical peaks are shifted towards smaller diameters with re-
spect to the corresponding experimental ones. The numerical
simulations with the U-shaped DDF predict the overall shape
of the experimental DSDs but cannot fully reproduce their
extents.

The shape of the predicted DSD changes when different
DDFs are used. By means of example, in Fig. 5, the numerical

Chem. Eng. Technol. 2021, 44, No. 00, 1–9 ª 2021 The Authors. Chemical Engineering & Technology published by Wiley-VCH GmbH www.cet-journal.com

Table 1. Sauter mean diameters as obtained from the experiments and from
the simulations with different DDFs at different impeller rotational speeds.

Sauter mean diameter [mm] at

500 rpm 600 rpm 700 rpm 800 rpm

Experimental 47.6 35.7 32.1 25.7

b, two daughters 41.3 34.5 29.7 26.0

b, three daughters 36.1 30.2 26.0 22.8

b, four daughters 33.3 28.0 24.0 21.0

U, two daughters 41.8 35.0 30.1 26.5

U, three daughters 36.6 30.7 26.4 23.2

U, four daughters 34.0 28.5 24.5 21.5

Uniform, two daughters 41.1 34.4 29.6 26.0

Uniform, three daughters 36.0 30.2 26.0 22.8

M, two daughters 41.1 34.3 29.5 25.9

Figure 3. Numerical moment ratio percent deviation from the experimental values (Eq. (9)) for different DDFs and numbers of daughters
in different operating conditions. White squares have deviations equal to or larger than 200 %.
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DSDs as predicted by the bell-shaped, U-shaped, uniform and
M-shaped DDF with two daughters are shown, in terms of
volume density functions.

Fig. 5 shows that the highest peak of the DSD is consistently
predicted in all the simulations, and, for all the DDFs, it is
located at a diameter of about 47–30 mm, depending on the
impeller rotational speed, with deviations between 16.2 and
17.9 % from the experimental DSD, depending on the operat-
ing conditions and the DDF adopted. The largest differences
are observable in the position of the second peak, which also
changes the overall dispersion of the DSD. The bell-shaped
DDF predicts two peaks that are close to each other, while the
peaks predicted by the U-shaped DDF are separate. The posi-
tion of the second peak predicted by the uniform and
M-shaped DDFs is very similar and it lies in between the posi-
tions of the second peaks predicted by the beta and U-shaped
DDFs.

Increasing the number of daughter droplets produced by a
breakage event shifts the distributions towards smaller diame-
ters, but it does not alter the shape of the final DSD, as shown
in Fig. 6.

By means of example, Fig. 6 shows the DSD obtained by
changing the number of produced fragments at the impeller
rotational speed of 800 rpm. The behavior is similar in the
other operating conditions and for different DDFs, which are
not shown for brevity. Besides the noticeable shift produced by

a different number of fragments, increasing this number also
increases the relative importance of the lowest peak, and this
may contribute to explain why increasing p leads to a better
agreement with the experimental moment ratio, as observed in
Fig. 3.

5 Conclusions

In this study, the effect of the DDF on the resulting DSD was
explored, it was shown that different DDFs change the shape of
the final DSD, and the effect of the number of daughters pro-
duced by a breakage event was presented.

In this work, the experimental distributions are obtained
from the analysis of a sample withdrawn from a stirred tank
rather than reconstructing them from multiple measurements
of single droplets breaking in controlled environments, and the
shape of the resulting DSD can be better described with a
U-shaped DDF with four fragments, which is consistent with
the outcome of single-droplet breakage experiments [8, 12, 13].

The DDFs studied in this work did not allow obtaining com-
plete agreement with the experimental DSD in the different
operating conditions. To reach a better agreement between
simulations and experiments, a comprehensive analysis would
need to investigate different breakup and coalescence kernels,
but this is outside the goal of this work.

Chem. Eng. Technol. 2021, 44, No. 00, 1–9 ª 2021 The Authors. Chemical Engineering & Technology published by Wiley-VCH GmbH www.cet-journal.com

a) b)

c) d)

Figure 4. Experimental (in blue) and numerical (in red) DSDs, obtained with the U-shaped DDF producing
four droplets for impeller rotational speeds equal to (a) 500 rpm, (b) 600 rpm, (c) 700 rpm, and (d) 800 rpm.
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Symbols used

C0
1 [m–2/3] grid-independent parameter of the

breakup kernel
C0

2 [–] grid-independent parameter of the
breakup kernel

C0
3 [–] grid-independent parameter of the

breakup kernel
C4 [–] daughter distribution function

parameter
F [–] grid-dependent scalar correction of

the breakup kernel
g(e) [s3m–2] turbulent dissipation rate

probability density function
h [s–1] breakup frequency
Dk0 [–] numerical moment ratio percent

deviation from the experimental
moment ratio
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a) b)

c) d)

Figure 5. Numerical volume density function, obtained with different DDFs producing two droplets, for im-
peller rotational speeds equal to (a) 500 rpm, (b) 600 rpm, (c) 700 rpm, and (d) 800 rpm.

Figure 6. Numerical volume density function obtained at
800 rpm with the U-shaped DDF producing different numbers
of daughter droplets.

Research Article 7

These are not the final page numbers! ((



L [mm] droplet diameter
Mk,0 [–] ratio between the k-th and 0-th

orders moment
n [m–3] drop size distribution number

density function
N [rpm] impeller rotational speed
p [–] number of fragments
q [–] daughter distribution function

parameter
r [–] daughter distribution function

parameter
t [s] time
T [m] tank diameter
V [m3] tank volume
v(e) [m3] volume of a computational cell

Greek letters

b [–] daughter distribution function
e [m2s–3] turbulent dissipation rate
m [Pa s] viscosity
r [kg m–3] density
s [N m–1] interfacial tension

Sub- and superscripts

C continuous phase
D dispersed phase
Exp experimental
i daughter droplet
j mother droplet
k moment order
Num numerical

Abbreviations

CFD computational fluid dynamics
DDF daughter distribution function
DSD drop size distribution
EQMOM extended quadrature method of moments
PBE population balance equation
QMOM quadrature method of moments
RANS Reynolds-averaged Navier-Stokes
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