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I. SYNTHESIS AND CHARACTERIZATION OF THE SAMPLES

The investigated polycrystalline LaFeAsO1−xFx sample has been prepared using a two-step solid-state reaction
similarly to what is described in Ref. 1. In the first step, LaAs was prepared from La lumps (Chempur, 99.9%)
and As lumps (Chempur, 99.999%) reacting a stoichiometric ratio in an evacuated quartz tube placed in a two-zone
furnace. In the second step, we used the resulting LaAs and mixed it with Fe (Alfa Aesar, 99.998%), Fe2O3 (Chempur,
99.999%), and FeF3 (Alfa Aesar, 97%) in a stoichiometric ratio. All starting materials were homogenized by grinding
in a ball mill. The resulting powder was pressed into pellets under Ar atmosphere using a pressure of 20 kN, and
subsequently annealed in an evacuated quartz tube in a two-step annealing process at 940◦C for 8 h and at 1150◦C
for 48 h.
The structural characterization of the obtained polycrystalline sample was performed by means of powder x-ray

diffraction (XRD) on a Huber Guinier camera (Co Kα radiation). LaFeAsO1−xFx is reported to crystallize in a
tetragonal structure with space group I4/m (No. 87).2 All the reflections observed in our powder XRD data are
consistently indexed with this structure (Fig. 1). Lattice constants a = 4.0363 Å and c = 8.7298 Å are estimated.
The microstructure and composition of the sample were examined by scanning electron microscopy (XL30 Philipps,

IN400) equipped with an electron microprobe analyzer for semi-quantitative elemental analysis using the wavelength
dispersive x-ray mode. We yield a F content of x = 0.13, corroborating that the current LaFeAsO1−xFx sample is
optimally doped in agreement with the critical temperature observed by dc magnetometry.
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FIG. 1: Experimental data (black dots), simulated intensities (red line), Bragg positions (green bars) and the residual intensity
(blue line) of XRD data taken on the investigated LaFeAsO1−xFx sample.
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II. MUON-SPIN SPECTROSCOPY (µ+SR)

Measurements of zero- and transverse-field (ZF and TF, respectively) µ+SR were performed at the Paul Scherrer
Institute on the GPS and GPD spectrometers (πM3 and µE1 beamlines, respectively) for 1.6 K < T < 200 K. In
a µ+SR experiment, a beam of spin-polarized positive muons µ+ is implanted in well-defined crystallographic sites
of the investigated material.3,4 The time (t) dependence of the spin (de)polarization of µ+, PT (t) = AT (t)/A0, can
be monitored as a function of temperature (T ) and, accordingly, detailed information can be achieved about the
local magnetic features characteristic of the material. Here, AT (t) is the so-called asymmetry function (see below)
while A0 is an experimental instrument-dependent parameter. In the case of superconductors, TF-µ+SR is one of
the most suited techniques in order to directly quantify the penetration length λ and, for single-crystalline and high-
purity samples, to investigate the symmetry of the superconducting gap in detail.3–10 Differently from, e. g., inductive
techniques, TF-µ+SR has then the great advantage of allowing one to properly achieve the absolute value of λ and
not only its variations.
Data obtained in the low-background spectrometer GPS are used as reference for the more subtle analysis performed

on data under P in the spectrometer GPD (see the data comparison in Fig. 2 later on). For measurements in GPD, the
sample is inserted into a double-wall pressure cell (PC) made up of MP35N alloy. P is triggered by pistons of MP35N
alloy, while the transmitting medium is Daphne oil 7373, ensuring almost-optimal conditions of hydrostaticity up to
P ∼ 2 GPa.12,13 The actual value of P is measured at low-T by checking the superconducting transition temperature
of a small indium manometer inside the cell by means of ac susceptibility. The ratio of incoming µ+ implanted into
the sample vs. incoming µ+ implanted into the PC is ∼ 35 %. For this reason, it is crucial to characterize the
magnetic behaviour of the cell in a separate set of TF-µ+SR measurements in the same experimental conditions.
In the case of superconducting materials for T < Tc, a stray magnetic field is induced outside the sample when an
external field is applied. Accordingly, also µ+ implanted into the PC and close enough to the sample will probe a
distribution P (Bµ) of local magnetic field resulting in a corresponding damping of the relative TF-µ+SR signal. The
typical fitting function employed in order to analyse data is written as14
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The parameter as is introduced in order to quantify the fraction of µ+ implanted into the sample [specular to (1− as)
which accounts for µ+ implanted into the PC], while Bµ quantifies the local magnetic field probed by µ+ (the resulting
oscillation is phase-shifted by the factor φ while γ = 2π × 135.54 MHz/T represents the gyromagnetic ratio of µ+).
The T -independent Gaussian relaxation rate σn accounts for nuclear magnetism in the sample, while the T -dependent
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FIG. 2: Left panel: comparison of σsc data at ambient pressure as obtained in the low-background spectrometer GPS (without
pressure cell) and in the spectrometer GPD with the sample loaded in the pressure cell. Right panel: FC magnetization of the
investigated sample at H = 600 Oe for different P values within the experimental range of interest (after subtraction of the
background contribution from the pressure cell).
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Gaussian contribution σsc is the main outcome of the experiment, namely the extra-damping induced by the vortices.
The relaxation rates σPC and λPC describe the intrinsic magnetic properties of the PC, where the distribution P (Bµ)
is induced by the stray magnetic field from the sample. The actual shape of P (Bµ) is chosen in order to maximize
the agreement between GPS and GPD data (ambient pressure). In the current case, P (Bµ) is such that 2/3 of the
pressure cell (“inner shell”, close to sample) feels a magnetic field equally distant from the magnetic field inside the
sample (Bµ) and the externally applied field He (the precise value of this latter quantity being estimated for T > Tc)
while the remaining 1/3 of the pressure cell (“outer shell”, far from the sample) feels a magnetic field equal to the
externally applied field He. Results of the comparison between GPS and GPD data are shown in Fig. 2 (left panel),
where an excellent agreement can be observed. The actual shape of P (Bµ) is kept constant at all P values. This
latter approximation is substantiated by measurements of the field-cooled magnetization of the sample at He = 600
Oe, namely, in the same conditions of the µ+SR experiment (see the right panel of Fig. 2). The magnetization is
indeed unchanged with increasing P , suggesting that the influence on the pressure cell should be similar and giving
some independent strong ground to the assumption of independence of P (Bµ) on pressure.
The actual value of the external TF was chosen after performing a H-scan at T = 1.6 K aiming at maximizing the

value of σSC . The overall σSC vs. H trend is in excellent quantitative agreement with previously reported data.11

Accordingly, the value H = 600 Oe was selected for the T scans, both in GPS and in GPD.

III. DC MAGNETIZATION

The diamagnetic response of the sample was carefully studied by means of dc magnetometry in zero-field cooling
(ZFC) conditions and upon the application of P . In particular, as discussed in the paper, the following information was
extracted about superconductivity, namely Tc, transition width and superconducting shielding fraction. Measurements
were performed in a commercial superconducting quantum interference device (SQUID) magnetometer MPMS-XL5
(Quantum Design). A homemade PC was employed, whose design is similar to that of a diamond anvil cell. Two
opposing cone-shaped ceramic anvils compress a gasket with a small hole that serves as a sample chamber.15 The
applied uniaxial pressure onto the gasket is transformed into hydrostatic pressure in the sample chamber by using
Daphne oil 7373 as transmitting medium. A single powder-grain is used as a sample. The actual P value is measured
by monitoring the superconducting transition temperature of a small Pb manometer inside the sample chamber. All
the mechanical parts are made of weakly-magnetic materials allowing a dramatic reduction of the background signal
even in the (current) case of samples with tiny dimensions.

IV. NON-MAGNETIC IMPURITY SCATTERING IN A s
± SUPERCONDUCTOR

Here, we present the derivation of the superconducting gap equations for the s± superconductor in presence of
non-magnetic impurities, following Ref. 16. Here, the superconducting gaps are formed on the electron and on the
hole bands of similar magnitudes but of opposite signs. In addition, the electron pockets are located around the
(π, 0) points of the BZ, which have lower symmetry than the Γ-point or the M = (π, π) points of the BZ, where hole
pockets are located. As a result, one should allow the cos 2θ modulation of the gap on the electron pocket. Due to
internal sign change of the gap between the electron and the hole pockets the effect of the non-magnetic impurity can
be separated into the scattering within either hole and/or electron pockets (denoted as Γ0), which does not influence
the superconducting gap and Tc and the scattering between electron and hole pockets (here Γπ), which behaves as
magnetic impurity in this case with strong pair-breaking effects.
To find the gap equations we write the first two Gorkov equations for the hole and the electron pockets

[iωm + Γ0Ḡh + ΓπḠe − ξh]Gh +[∆h + Γ0F̄h + ΓπF̄e]F
†
h = 1,

[iωm + Γ0Ḡe + ΓπḠh − ξe]Ge +[∆e(θ) + Γ0F̄e + ΓπF̄h]F
†
e = 1 (2)

where

Gh = Gh(∆̃
h
m, ω̃h

m), Fh = Fh(∆̃
h
m, ω̃h

m),

Ge = Ge(∆̃
e
m, ω̃e

m) , Fe = Fe(∆̃
e
m, ω̃e

m)

are the normal and the anomalous Green’s function for the hole and the electron pockets, and Ḡh and Ḡe satisfy the



4

equations

Ḡh =
1

π

∫

dξhGh,

Ḡe =
1

π

∫

dξeGe.

In this model, the ansatz for the s±-wave gap is

∆e(θ) = ∆e ±∆ē cos(2θ) (3)

and ∆h = −∆e. In the presence of impurities one defines the new Matsubara frequencies,

iω̃h
m = iωmηhm= iωm + Γ0Ḡh + ΓπḠe,

iω̃e
m = iωmηem= iωm + Γ0Ḡe + ΓπḠh, (4)

as well as the superconducting gaps

∆̃h
m = ∆̄h

mηhm =∆h + Γ0F̄h + ΓπF̄e,

∆̃e
m(θ) = ∆̄e

m(θ)ηem=∆e(θ) + Γ0F̄e + ΓπF̄h. (5)

In Eq. (5), expressions for ∆̄h
m and ∆̄e

m can be written with the help of ηhm and ηem that are the renormalization factors
for hole and electron pockets and introduce ∆̄h = −∆̄e

m and ∆̄e
m(θ) = ∆̄e

m ± ∆̄ē
m cos(2θ). Then, the first two Gorkov

equations can be written as

(iω̃h
m − ξh)Gh + ∆̃hF

†
h = 1,

(iω̃e
m − ξe)Ge + ∆̃e(θ)F

†
e = 1

where

Ge =
iω̃e

m + ξe

(ω̃e
m)2 + ξ2e + |∆̃e

m(θ)|2
, Gh =

iω̃h
m + ξh

(ω̃h
m)2 + ξ2h + |∆̃h

m|2

are the normal Green’s function for the electron and hole bands. Substituting Gh and Ge in Eq. (4) we find

ηhm = 1 + Γ0
1

√

(ωh
m)

2
+ |∆̄h

m|2
+ Γπ

〈

1
√

(ωe
m)

2
+ |∆̄e

m(θ)|2

〉

θ

(6)

and 〈·〉θ = 1
2π

∫ 2π

0 dθ is the average with respect to the angle θ. In a similar way one obtains ηem

ηem = 1 + Γ0

〈

1
√

(ωe
m)

2
+ |∆̄e

m(θ)|2

〉

θ

+ Γπ
1

√

(ωh
m)

2
+ |∆̄h

m|2
. (7)

Next, one derives in a similar fashion a set of self-consistent gap equations

∆̄h
m = ∆h − Γπ(∆̄

h
m − ∆̄e

m)

〈

1
√

ω2
m + |∆̄e

m(θ)|2

〉

θ

,

∆̄e
m = ∆e − Γπ(∆̄

e
m − ∆̄h

m)
1

√

ω2
m + |∆̄h

m|2
,

∆̄ē
m = ∆ē − Γπ∆̄

ē
m

1
√

ω2
m + |∆̄h

m|2
− Γ0∆̄

ē
m

〈

1
√

ω2
m + |∆̄e

m(θ)|2

〉

θ

.

(8)
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Note that the equations for the bare superconducting gaps in the clean case without impurities ∆h, ∆e and ∆ē are
given by

∆h =− πT

Λ
∑

ωm

[

|ξh(k
′)|<ωD
∑

k′,θ′

2Uhh∆̄
h
m

ω2
m + ξh(k′)2 + |∆̄h

m|2

+

|ξe(k
′)|<ωD
∑

k′,θ′

2Uhe∆̄
e
m + 4Uheαhe∆̄

ē
m cos2 2θ′

ω2
m + ξe(k′)2 + |∆̄e

m(θ′)|2

]

,

∆e =− πT

Λ
∑

ωm

[

|ξh(k
′)|<ωD
∑

k′,θ′

2Uhe∆̄
h
m

ω2
m + ξh(k′)2 + |∆̄h

m|2

+

|ξe(k
′)|<ωD
∑

k′,θ′

2Uee∆̄
e
m + 4Ueeαee∆̄

ē
m cos2 2θ′

ω2
m + ξe(k′)2 + |∆̄e

m(θ′)|2

]

,

∆ē =− πT

Λ
∑

ωm

[

|ξh(k
′)|<ωD
∑

k′,θ′

4Uheαhe∆̄
h
m

ω2
m + ξh(k′)2 + |∆̄h

m|2

+

|ξe(k
′)|<ωD
∑

k′,θ′

4Ueeαee∆̄
e
m + 8Ueeβee∆̄

ē
m cos2 2θ′

ω2
m + ξe(k′)2 + |∆̄e

m(θ′)|2

]

.

(9)

These equations hold for two equivalent hole pockets at the Gamma point at k = (0, 0) and for two circular symmetry
related electron pockets at the X and Y point at q1 = (π, 0) and q2 = (0, π). The intra- and inter-pocket interactions
assumed here have the usual form17

Uhh1,2
(φ, φ′) = Uhh,

Uhe1,2(φ, θ
′) = Uhe(1± 2αhe cos 2θ

′),

Ueiei(θ, θ
′) = Uee(1± 2αee(cos 2θ + cos 2θ′) + 4βee cos 2θ cos 2θ

′),

Ue1e2,e2e1(θ, θ
′) = Uee(1± 2αee(cos 2θ − cos 2θ′)− 4βee cos 2θ cos 2θ

′)

(10)

and the s± solution is guaranteed for U2
he > UhhUee. We further assume that the angular dependence of the gap on

the electron pockets is not strong enough to produce accidental nodes as, experimentally, there is no evidence for them
in LaFeAsO1−xFx. The London penetration depth λ(T ) scales as 1/

√

ρs(T ), where ρs(T ) is the superfluid density.
The latter is, up to a factor, the zero frequency value of the current-current correlation function and can be written
in the following form for the s± superconductor

ρs(T )

ρs0
=

πT

2

∑

ωm

|∆̄h
m|2

ηhm(ω2
m + |∆̄h

m|2)3/2
+

〈

|∆̄e
m|2

ηem(ω2
m + |∆̄e

m(θ)|2)3/2

〉

θ

. (11)

∗ E-mail: g.prando@ifw-dresden.de
1 A. Kondrat, J. E. Hamann-Borrero, N. Leps, M. Kosmala, O. Schumann, A. Köhler, J. Werner, G. Behr, M. Braden, R.
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