
SoftwareX 16 (2021) 100817

G

r
(

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

2P-Kt: A logic-based ecosystem for symbolic AI
iovanni Ciatto a,∗, Roberta Calegari b, Andrea Omicini a

a Department of Computer Science and Engineering (DISI), Alma Mater Studiorum—Univerisità di Bologna, Italy
b Alma Mater Research Institute for Human-Centered Artificial Intelligence (AlmaAI), Alma Mater Studiorum—Univerisità di Bologna, Italy

a r t i c l e i n f o

Article history:
Received 11 January 2021
Received in revised form 8 August 2021
Accepted 13 September 2021

Keywords:
Logic programming
Artificial intelligence
Prolog
Kotlin
tuProlog

a b s t r a c t

To date, logic-based technologies are either built on top or as extensions of the Prolog language, mostly
working as monolithic solutions tailored upon specific inference procedures, unification mechanisms,
or knowledge representation techniques. Instead, to maximise their impact, logic-based technologies
should support and enable the general-purpose exploitation of all the manifold contributions from
logic programming. Accordingly, we present 2P-Kt, a reboot of the tuProlog project offering a general,
extensible, and interoperable ecosystem for logic programming and symbolic AI.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version 0.15.2
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-21-00007
Code Ocean compute capsule –
Legal Code License Apache License, Version 2.0
Code versioning system used Git
Software code languages, tools, and services used Kotlin Multiplatform, JVM, Node JS
Compilation requirements, operating environments & dependencies Kotlin ≥ 1.4.0, JDK ≥ 11, Gradle ≥ 6.7
If available Link to developer documentation/manual http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
Support email for questions giovanni.ciatto@unibo.it

Software metadata

Current software version 0.15.2
Permanent link to executables of this version https://github.com/tuProlog/2p-kt/releases/tag/0.15.2
Legal Software License Apache License, Version 2.0
Computing platforms/Operating Systems Android, Linux, Mac OS X, Microsoft Windows, Unix-like
Installation requirements & dependencies Java Runtime Environment (JRE) ≥ 11 or Node JS ≥ 12, Kotlin v. 1.4.20,

ANTLR Runtime v. 4.8.*, Java FX v. 15, Kt-Math v. 0.2.6, Clikt v. 2.8.0
If available, link to user manual - if formally published include a reference to
the publication in the reference list

http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin

Support email for questions giovanni.ciatto@unibo.it

The permanent link to the GitHub repository of 2P-Kt includes
the README.md and LICENSE files. Source code is partitioned
in many modules: each module has its own src/ directory,
within which source files are organised according to Gradle’s
convention. A tag corresponding with the version of the software

∗ Corresponding author.
E-mail addresses: giovanni.ciatto@unibo.it (Giovanni Ciatto),

oberta.calegari@unibo.it (Roberta Calegari), andrea.omicini@unibo.it
Andrea Omicini).

to be reviewed – namely, 0.15.2 – is defined on the repository.
Documentation generated from the documentation/ module is
publicly available on the Web.

1. Motivation and significance

Computational logic (CL) is a fundamental research area for
artificial intelligence (AI), dealing with formal logic as a means for
computing [1]. Its penetration into symbolic AI is nearly pervasive
nowadays, and increasingly going deeper within sub-symbolic
ttps://doi.org/10.1016/j.softx.2021.100817
352-7110/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2021.100817
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2021.100817&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-21-00007
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
mailto:giovanni.ciatto@unibo.it
https://github.com/tuProlog/2p-kt/releases/tag/0.15.2
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
mailto:giovanni.ciatto@unibo.it
https://docs.gradle.org/current/userguide/organizing_gradle_projects.html
https://docs.gradle.org/current/userguide/organizing_gradle_projects.html
https://docs.gradle.org/current/userguide/organizing_gradle_projects.html
https://docs.gradle.org/current/userguide/organizing_gradle_projects.html
https://docs.gradle.org/current/userguide/organizing_gradle_projects.html
https://docs.gradle.org/current/userguide/organizing_gradle_projects.html
https://docs.gradle.org/current/userguide/organizing_gradle_projects.html
https://docs.gradle.org/current/userguide/organizing_gradle_projects.html
https://docs.gradle.org/current/userguide/organizing_gradle_projects.html
https://docs.gradle.org/current/userguide/organizing_gradle_projects.html
https://docs.gradle.org/current/userguide/organizing_gradle_projects.html
https://docs.gradle.org/current/userguide/organizing_gradle_projects.html
https://docs.gradle.org/current/userguide/organizing_gradle_projects.html
https://docs.gradle.org/current/userguide/organizing_gradle_projects.html
https://docs.gradle.org/current/userguide/organizing_gradle_projects.html
https://docs.gradle.org/current/userguide/organizing_gradle_projects.html
https://docs.gradle.org/current/userguide/organizing_gradle_projects.html
https://docs.gradle.org/current/userguide/organizing_gradle_projects.html
mailto:giovanni.ciatto@unibo.it
mailto:roberta.calegari@unibo.it
mailto:andrea.omicini@unibo.it
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
http://pika-lab.gitlab.io/tuprolog/2p-in-kotlin
https://doi.org/10.1016/j.softx.2021.100817
http://creativecommons.org/licenses/by/4.0/


Giovanni Ciatto, Roberta Calegari and Andrea Omicini SoftwareX 16 (2021) 100817

A
p
e
m
p
r

a

i
i
p
k
(
i
T
y
t
s
T
e

t
f
a
t
s
i
m
p

c

I [2,3]: CL has enabled the development of the former in the
ast, and it is now pushing the latter towards interpretability and
xplainability. Be it either exploited to manipulate symbols or to
ake sub-symbolic solutions human-intelligible, the common ex-
ectation is that CL can endow software systems with automated
easoning.

Generally speaking, automated reasoning involves three major
spects: (i) logic, (ii) inference rule, and (iii) resolution strat-

egy. Logics formally define how knowledge is represented and
how novel knowledge can be derived from prior one. Each logic
comes with several inference rules, dictating how to produce
new knowledge under particular circumstances. When coupled
with some suitable resolution strategy, inference rules can become
deterministic algorithms that computers can execute.

Many logics exist in CL – e.g. propositional, first-order (FOL),
temporal, deontic, etc. –, each one targeting a specific domain. For
instance, temporal logic enables reasoning about events in time,
deontic logic supports reasoning about permissions/prohibitions
and their circumstances, while FOL is general-purpose. Further-
more, different inference rules exist for different logics. Some
are deductive – drawing conclusions out of premises –, some
are inductive – looking for general rules out of several premises-
conclusion examples –, while others are abductive—speculating
on which premises caused some conclusions. Finally, when a
resolution strategy exists for some inference rule, it can be trans-
lated in some software construct, and used to provide intelli-
gent systems with automated reasoning. Software of that sort
is commonly referred to as a part of the logic programming (LP)
paradigm.

Despite the wide availability of logics, inference rules, and
resolution strategies in the LP literature, only a relatively-small
amount of them have been reified into actual logic-based technolo-
gies (LBT in short henceforth). The Prolog language [4] represents
by far the most successful story here [5]. It consists of a well-
defined language [6,7] coming with several implementations [8–
14].

While standard implementations of Prolog target FOL via
SLDNF inference rule [15,16] and depth-first resolution strat-
egy, most implementors have extended Prolog to support other
resolution strategies as well. This is the case of Prolog imple-
mentations supporting, e.g., constraint logic programming [17],
constraint handling rules [18], tabled resolution [19], etc.

Thanks to the versatility of FOL, it is a common practice in LP
to either develop LBT either on top of Prolog or from scratch. Build-
ng LBT on top of Prolog is often preferred as they automatically
nherit Prolog basic mechanisms, including e.g. the capability to
erform (i) data structures representation via logic terms, (ii)
nowledge representation via Horn clauses, (iii) logic unification,
iv) efficient in-memory indexing of logic information, (v) reason-
ng, via a flexible inference rule, and (vi)meta-level programming.
his is a smart strategy when LBT must be quickly bootstrapped,
et it may result in poorly-interoperable, Prolog-tailored solu-
ions. Conversely, when Prolog capabilities are poorly-suited for
ome particular problem, LBT may be designed from scratch.
his involves re-designing and re-implementing most LP features
x-novo.
In [20] Sterling states that logic unification is one major con-

ribution of LP to software engineering—thus singling a specific
eature out of Prolog for its value and benefits. Similarly, many
spects of LP could be useful in AI by themselves, so each con-
ribution should be conveniently reified into individually-useable
oftware. Accordingly, we aim at creating an open ecosystem for
nteroperable, general-purpose LP libraries, virtually supporting
ultiple logics, inference rules, and resolution strategies—and
ossibly factorising any shared aspect.
The idea of LP as a key technology-enabler of intelligent appli-

ation was already in place decades ago. The tuProlog project [21]

was proposed for this purpose. It consists of a lightweight mal-
leable, object-oriented, Java-based implementation of Prolog [22]
which can be used as a library for JVM projects. Despite several
versions have been proposed – bringing new features, or more
platforms support [23] –, and many research products have been
built upon it – such as TuCSoN [24], ReSpecT [25], LPaaS [26], or
Tenderfone [27], Arg2P [28], etc. –, it still consists of a monolithic
library targetting Prolog alone. However, Prolog is no silver bullet
for LBT, and LP should not be reduced to Prolog alone.

Accordingly, here we propose 2P-Kt: a reboot of the tuProlog
project providing for a common technological ground for LP.
Acknowledging that most mechanisms in LP have the potential
to be of general value – not necessarily tailored to any specific
logic, inference rule, or resolution strategy –, 2P-Kt consists of a
logic-based ecosystem for symbolic AI, designed and implemented
by taking openness, modularity, extensibility, and interoperability
into account.

The tuProlog project has been completely re-designed and re-
written, splitting LP functionalities into minimal, loosely-coupled,
Prolog-agnostic, individually-useable, multi-platformmodules. The
rationale behind this choice is to enable the incremental addition
of novel LP functionalities to the 2P-Kt ecosystem – possibly
targeting other inference rules and search strategies –, minimis-
ing duplication of features and reusing pre-existing ones, while
supporting as many programming platforms as possible. On the
long run, 2P-Kt aims at becoming a comprehensive technolog-
ical playground supporting several sorts of logics and inference
mechanisms.

Finally, we acknowledge the importance of keeping 2P-Kt
widely interoperable at the technological level with as many
platforms as possible—to maximise the pool of potential adopters.
Following this purpose, 2P-Kt leverages on the Kotlin multi-
platform technology: each module currently supports the JVM,
JS, and Android platforms—while others are expected to be sup-
ported soon.

2. Software description

2P-Kt is deeply rooted in LP, a programming paradigm based
on CL [29,30]. In LP, programs are typically theories (a.k.a. knowl-
edge bases, KB), i.e. collections of sentences in logical form, ex-
pressing facts and rules about some domain, typically in the form
of clauses, i.e.:

Head :- Body1, ..., Bodyn

where both Head and Bodyi are atomic formulæ, and the whole
sentence is read declaratively as logical implication (right-to-left).
If n = 0, the clause is called a fact, a rule otherwise. An atomic for-
mula is an expression in the form P(t1, . . . , tm) where P is a m-ary
predicate (m ≥ 0), and tj are terms. Terms are the most general
sort of data structure in LP languages. They can be constant (either
numbers or atoms/strings), variables, or recursive elements named
structures. Structures are used to represent clauses, lists, sets, or
other sorts of expressions.

Logic solvers exploit KB to answer users’ queries via some
inference procedure and resolution strategy. For instance, Prolog
interpreters exploit a deductive procedure rooted into the SLDNF
resolution principle [16,31], and a depth-first strategy. Yet, other
options exist like, e.g., abductive [32], inductive [33], probabilis-
tic [34] inference. Each of them represents a particular reification
of a logic solver.

A common mechanism in LP is the unification algorithm [35]
for constructing a most general unifier (MGU) among any two
terms. Provided that a MGU exists, its subsequent application to
the terms, makes them syntactically equal. This is a basic brick in
2



Giovanni Ciatto, Roberta Calegari and Andrea Omicini SoftwareX 16 (2021) 100817

v
r

c
o
s
m

irtually all LP algorithms, regardless of the particular inference
ule.

Summarising, LP leverages several mechanisms – terms and
lauses representation, knowledge base storage, unification, res-
lution, etc. –, which constitute the basis of any logic solver. Sub-
ets of these mechanisms may be useful per se. 2P-Kt makes LP
echanisms individually available, while easing the construction

of novel mechanisms on top of the existing ones.

2.1. Software architecture

Architecturally, 2P-Kt is a framework supporting LBT develop-
ment via several loosely-coupled modules. To support reusability,
each module factorises related functionalities via compact API
of OOP types and methods. As modules are the basic deploy-
able units in 2P-Kt, major LP functionalities are partitioned into
modules on a per-usage basis, making them selectively useable
as dependencies by other projects. The 2P-Kt ecosystem itself
incrementally combines such modules, as depicted in Fig. 1.

To maximise interoperability, 2P-Kt modules are individually
available as precompiled libraries both on Maven Central Repos-
itory [36] – for JVM-, Android- or Kotlin-based contexts – and on
the NPM Registry [37] – for JavaScript-based contexts –, whereas
a detailed description of their API is available as a part of 2P-Kt
documentation.

If all 2P-Kt modules were merged together, the most relevant
aspects of their API could be summarised as in Fig. 2. The diagram
shows how relevant LP aspect are reified into types: e.g.

• logic Terms (plus any specific sort of term, e.g. Variables,
Structures, etc.),

• logic Substitutions, unification, and MGU (computed by
an Unificator),

• Clauses (there including Rules, Facts, and Directives),
• knowledge bases and logic Theory,
• automatic reasoning, via Solvers, and
• logic Solutions—i.e. responses to users’ queries.

Interfaces expose relevant aspects, and keep the system extensi-
ble. Developers may for instance define custom implementations
for the Unificator and Solver interfaces, to provide novel
inference mechanisms involving some variant of unification.

Of course, a detailed diagram would include more features,
as 2P-Kt supports: (i) (de)serialisation of logic terms and theo-
ries into/from standard data-representation formats (e.g. JSON, or
YAML), (ii) parsing/formatting terms and theories from/into con-
crete logic syntaxes such as Prolog’s one, (iii) extension of solvers
via libraries of custom LP functionalities, and (iv) exploitation of
solvers via command-line (CLI) or graphical (GUI) user interfaces,
too.

2.2. Software functionalities

Here we enumerate 2P-Kt functionalities on a per-module
basis. Following Gradle convention, we denote modules by :mo-
duleName .

The most fundamental module is :core , which exposes data
structures for knowledge representation via terms and clauses,
other than methods supporting their manipulation—e.g. construc-
tion, unfolding, scoping, formatting, etc. Novel sorts of terms/
clauses may be added by developers, by extending any public
interface in :core . Furthermore, all types in :core leverage an
immutable design, making them well suited for concurrent and
multi-threaded scenarios.

Logic terms and clauses are often compared or manipulated
via unification. Thus, we encapsulate this mechanism within the
:unify module. It provides a general notion of Unificator

– i.e. any algorithm aimed at computing MGU out of terms or
clauses –, and a default implementation based on [35]. Develop-
ers may extend this implementation by configuring when terms
should be considered equal. Similarly, they can provide cus-
tom Unificator implementations, in case they need a specific
unification strategy, or need a different unification algorithm.

Another common need in LP is the in-memory storage of
clauses into ordered (e.g. queues) or unordered (e.g. multisets)
data structures, and their efficient retrieval via pattern-matching
(e.g. unification). The :theory module follows this purpose, by
providing notions such as ClauseQueue, ClauseMultiset—
both involving an immutable (access-efficient) and mutable
(update-efficient) implementation. These types differ from ordi-
nary collections as they support unification-based retrieval and
indexing of clauses. Prolog’s notions of theory and static/dynamic
KB leverage on these types, exploiting the most adequate imple-
mentation in each case.

The practice of LP also involves ancillary operations over terms
and clauses, e.g.: (i) formatting – into some costumisable form
–, (ii) (de)serialisation – into/from data-representation formats
–, and (iii) parsing—out of a particular concrete syntax. While
formatting is a :core functionality, attained via TermFormat-
ters, (de)serialisation and parsing require their own modules.
Accordingly, module :serialize-core (resp. -theory) sup-
ports the (de)serialisation of terms (resp. theories) into JSON or
YAML, via human-readable schemas. Thus, it supports distributed
applications exchanging logic knowledge over the Internet. Simi-
larly, parsing terms (resp. theories) in Prolog syntax is supported
through the :parser-core (resp. -theory) module, leveraging
ANTLR technology [38] for language engineering.

Generic API for logic solvers are available too, via the :solve
module. Essentially, this module exposes the Solver type, repre-
senting any entity capable of performing some sort of logic reso-
lution to provide Solutions to logic queries. However, resolution
involves many practical aspects which are orthogonal w.r.t. any
particular resolution strategy—e.g. errors management, extensi-
bility via libraries, I/O, etc. Thus, :solve is quite an articulated
(yet not directly useable) module.

Developers may build their inference procedure of choice by
providing an implementation for the Solver interface, possi-
bly reusing features from :solve in a selective way. Two im-
plementations are currently available as part of 2P-Kt, namely
:solve-classic and -streams, both implementing Prolog’s
SLDNF resolution strategy. The latter is based on a state-machine-
based design [22] and is currently stable, while :solve-streams
is an experimental attempt of implementing Prolog via FP, as pro-
posed in [39]. Notably, none of them leverages Warren’s Abstract
Machine [40]—the computational model Prolog is commonly built
upon.

Generic API for developing Prolog-like predicates in Kotlin
are available as well. They exploit FP and OOP to let developers
extend solvers with libraries of complex functionalities which
are easier to implement in Kotlin than LP. There, data streams
are treated as flows of solutions to be consumed by a solver.
This makes 2P-Kt well-suited for handling long/infinite streams
of data [41].

User experience (UX) is enabled by two more modules, namely
:repl and :ide , which provide a CLI and GUI, respectively.
While they both target JVM-specific UX, an experimental web-
based GUI is available at [42], targetting JS-specific UX.

Other modules depicted in Fig. 1 do not need a specific de-
scription here: interested readers may read [43] for further de-
tails.
3



Giovanni Ciatto, Roberta Calegari and Andrea Omicini SoftwareX 16 (2021) 100817

3

I
r
o
q
l
p

s
m
l

e
I
i

Fig. 1. 2P-Kt project map. LP functionalities are partitioned into some loosely-coupled and incrementally-dependent modules.

Fig. 2. 2P-Kt public API. A type is provided for each relevant concept in LP.

. Illustrative examples

The 2P-Kt GUI (Fig. 3(a)) is a minimal IDE based on JavaFX.
t lets users exploit LP interactively, repeatedly editing theo-
ies, performing queries, and inspecting the mutable internals
f logic solvers. Users can open several files at once, perform
ueries one-by-one or all-at-once, or inspect the currently loaded
ibraries, operators, flags, etc. Syntax colouring completes the
icture, easing users’ writing of logic theories.
The CLI (Fig. 3(b)) lets users use logic solvers via a textual con-

ole. It supports both an interactive and non-interactive operation
ode. Thus, it can either enter a Read-Eval-Print-Loop accepting

ogic queries from stdin and progressively prompting solutions
to stdout, or simply accept queries and theories as arguments
and prompts all possible solutions.

The Playground (Fig. 3(c)) is a proof-of-concept Web appli-
cation mimicking the IDE. It demonstrates how 2P-Kt can be
xecuted in-browser in a server-less fashion. It only requires
nternet connection upon page loading. After that, it does not
nteract with the server anymore as the 2P-Kt JS scripts provide
for a self-sufficient environment. Thus, logic computations need
not any sandbox, nor logic solvers need API limitation for security
reasons.

Finally, our Kotlin-based DSL for Prolog [43] can be exploited
within Kotlin projects (Fig. 3(d)), by using any :dsl-* module
as dependencies. It provides logic programmers with a syntac-
tical way to inject LP into Kotlin scripts, making it possible to
inherit the many tools available for Kotlin development, e.g. type

4. Impact

The 2P-Kt technology may impact on many research areas.
As far as LP is concerned, 2P-Kt provides a well-grounded

technological basis for implementing/experimenting/extending
the many solutions proposed in the literature—e.g., abductive
inference [32], rule induction [33], probabilistic reasoning [34],
labelled LP [44].

As shown in [3], the multi-agent systems community has quite
an appetite for interoperable and general-purpose LBT. There,
2P-Kt provides a technological substrate supporting agents’ rea-
soning via manifold mechanisms.

2P-Kt is a valuable choice within the field of coordination [45],
too: many tuple-based coordination models and technologies
leverage LP and LBT [46]. There, 2P-Kt enables the implementa-
tion of interoperable Linda tuple spaces – such as in TuSoW [47]
– or tuple centres—as we plan to do in TuCSoN [24].

Concerning programming paradigms, while most successful
ones are being increasingly blended into modern programming
languages, LP remains somewhat isolated [43]. Our Kotlin DSL
for LP paves the way towards the integration of LP with other
paradigms.

Finally, 2P-Kt has a role to play in the field of XAI [48].
Integrating symbolic and sub-symbolic AI – i.e. using them in
synergy, as an ensemble [49] – is a strategical research direc-
tion [2], and 2P-Kt offers a sound technological foundation for
checking, linting, code completion, debugging, etc. this purpose [50].

4



Giovanni Ciatto, Roberta Calegari and Andrea Omicini SoftwareX 16 (2021) 100817

F
t
u
i

f
e
o

Fig. 3. Usage examples for 2P-Kt.

uture research directions. 2P-Kt already enables the investiga-
ion of relevant research questions involving symbolic manip-
lation or automated reasoning, thanks to its modularity and
nteroperability.

Furthermore, 2P-Kt enables exploring how to: (i) integrate dif-
erent LP aspects, (ii) blend LP with other AI techniques, and (iii)
xploit LP to build flexible intelligent systems. Along these lines,
ur goals involve: (i) creating comprehensive solvers exploiting

multiple inference procedures, knowledge-representation means,

etc. at once in answering users’ queries, (ii) building hybrid sys-

tems where developers can transparently exploit sub-symbolic

AI, and (iii) injecting LP into cognitive agents architectures.

As far as goal (i) is concerned, we are designing a unified API

for probabilistic, abductive, or concurrent resolution. This would
5



Giovanni Ciatto, Roberta Calegari and Andrea Omicini SoftwareX 16 (2021) 100817

e
c
t

A
v
v
o
l
i

w
m
f
t
c
u

2
i
a

l
a
l
m

nable further research towards mixed automated reasoning pro-
esses, where multiple inference procedures are dynamically in-
erleaved within resolution.

As far as goal (ii) is concerned, we are designing logic-based
PI for machine learning and neural networks. Such API allow de-
elopers to define, train, assess, and use sub-symbolic predictors
ia LP. This would enable further research w.r.t. the integration
f symbolic and sub-symbolic AI, the automation of machine
earning workflows, and the exploitation of induced knowledge
n LP.

Finally, about goal (iii), we are integrating multiple logics
ithin BDI architectures. Intelligent agents may then adopt the
ost adequate reasoning or knowledge-representation means

or the situation at hand. Thus, 2P-Kt enables further research
owards the exploitation of different logics to support intelligent,
ontext-specific behaviours for software agents, by providing the
nderlying reasoning facilities.

p-kt adoption. While tuProlog has been exploited both in the
ndustry and in the academia [51], 2P-Kt has been used in the
cademia only.
2P-Kt already works (or is going to work) as the under-

ying technology of many scientific contributions. Some, such
s TuCSoN [24], ReSpecT [25], LPaaS [26], or Tenderfone [27]
everaged on tuProlog for their implementation, and are being
igrated on 2P-Kt. Others, such as TuSoW [47], Arg2P [28], or

our Kotlin-based DSL [43] already exploit 2P-Kt.

5. Conclusion

This paper introduces 2P-Kt, an open, general, Kotlin Mul-
tiplatform ecosystem for LP, supporting manifold mechanisms
for automated reasoning, via several loosely-coupled modules.
Each module makes some specific LP aspects individually use-
able. Selectively reusing/extending modules enables bootstrap-
ping novel LBT without re-implementing everything from scratch
or producing Prolog-centered monoliths. In particular, 2P-Kt sup-
ports mixed inference procedures, involving both symbolic and
sub-symbolic techniques.

The 2P-Kt ecosystem is structured by keeping reusability,
extensibility and interoperability in mind. Its functionalities in-
clude knowledge representation, (de)serialisation, parsing (and
formatting facilities), unification, clause in-memory indexing and
storage facilities, logic inference via SLDNF, UX, and rich Kotlin
API for developers. They all support JVM, JavaScript, and Android
platforms.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

R. Calegari has been supported by the H2020 ERC Project
‘‘CompuLaw’’ (G.A. 833647). A. Omicini has been partially sup-
ported by the CHIST-ERA IV project ‘‘EXPECTATION’’ (G.A. CHIST-
ERA-19-XAI-005).

The authors would like to thank Enrico Siboni for his contri-
bution in the early phases of 2P-Kt development.

References

[1] Paulson LC. Computational logic: its origins and applications. Proc R Soc
Lond Ser A Math Phys Eng Sci 2018;474(2210):20170872. http://dx.doi.
org/10.1098/rspa.2017.0872.

[2] Calegari R, Ciatto G, Omicini A. On the integration of symbolic and
sub-symbolic techniques for XAI: A survey. In: Baldoni M, Bergenti F,
Monica S, Vizzari G, editors. Intell Artif 2020;14(1):7–32, Special issue
for the twentieth edition of the workshop ‘from objects to agents’. http:
//dx.doi.org/10.3233/IA-190036.

[3] Calegari R, Ciatto G, Mascardi V, Omicini A. Logic-based technologies
for multi-agent systems: A systematic literature review. In: Bergenti F,
Baldoni M, Winikoff M, Seghrouchni AEF, editors. Auton Agents Multi-
Agent Syst 2021;35(1):1:1–67, Collection ‘‘Current Trends in Research on
Software Agents and Agent-Based Software Development’’. http://dx.doi.
org/10.1007/s10458-020-09478-3.

[4] Colmerauer A, Roussel P. The birth of Prolog. In: Lee JAN, Sammet JE,
editors. History of programming languages conference (HOPL-II). ACM;
1993, p. 37–52. http://dx.doi.org/10.1145/154766.155362.

[5] Calegari R, Ciatto G, Denti E, Omicini A. Logic-based technologies for
intelligent systems: State of the art and perspectives. In: Susilo W,
editor. Information 2020;11(3):1–29, Special Issue ‘‘10th Anniversary
of Information—Emerging Research Challenges’’. http://dx.doi.org/10.3390/
info11030167.

[6] ISO/IEC JTC 1/SC 22 Technical Committee. ISO/IEC 13211-1:1995: Informa-
tion technology — Programming languages — Prolog — Part 1: General core.
ISO/IEC 13211-1, ISO/IEC; 1995, p. 199, URL https://www.iso.org/standard/
21413.html.

[7] ISO/IEC JTC 1/SC 22 Technical Committee. ISO/IEC 13211-2:2000: Informa-
tion technology — Programming languages — Prolog — Part 2: Modules.
ISO/IEC 13211-2, ISO/IEC; 2000, p. 23, URL https://www.iso.org/standard/
20775.html.

[8] BProlog home page. 2021, URL http://www.picat-lang.org/bprolog. [Last
access: August 8, 2021].

[9] Ciao! Prolog home page. 2021, URL https://ciao-lang.org. [Last access:
August 8, 2021].

[10] ECLiPSe Prolog Home page. 2021, URL https://eclipseclp.org. [Last access:
August 8, 2021].

[11] SICSTus Prolog home page. 2021, URL https://sicstus.sics.se. [Last access:
August 8, 2021].

[12] SWI Prolog home page. 2021, URL https://www.swi-prolog.org. Last access:
August 8, 2021.

[13] τProlog home page. 2021, URL http://tau-prolog.org. [Last access: August
8, 2021].

[14] XSB Prolog home page. 2021, URL http://xsb.sourceforge.net. [Last access:
August 8, 2021].

[15] Robinson J. A machine-oriented logic based on the resolution principle. J
ACM 1965;12(1):23–41. http://dx.doi.org/10.1145/321250.321253.

[16] Clark KL. Negation as failure. In: Gallaire H, Minker J, editors. Logic and
data bases. Boston, MA: Springer; 1978, p. 293–322. http://dx.doi.org/10.
1007/978-1-4684-3384-5_11.

[17] Jaffar J, Lassez J-L. Constraint logic programming. In: 14th ACM SIGACT-
SIGPLAN symposium on principles of programming languages (POPL’87).
New York, NY, USA: Association for Computing Machinery; 1987, p. 111–9.
http://dx.doi.org/10.1145/41625.41635.

[18] Frühwirth TW. Theory and practice of constraint handling rules. J Log
Program 1998;37(1–3):95–138. http://dx.doi.org/10.1016/S0743-1066(98)
10005-5.

[19] Swift T, Warren DS. XSB: Extending Prolog with tabled logic programming.
Theory Pract Logic Program 2012;12(1–2):157–87. http://dx.doi.org/10.
1017/S1471068411000500.

[20] Sterling L, Yaļ cinalp U. Logic programming and software engineering—
implications for software design. Knowl Eng Rev 1996;11(4):333–45. http:
//dx.doi.org/10.1017/S026988890000802X.

[21] Denti E, Omicini A, Ricci A. tuProlog: A light-weight Prolog for Internet ap-
plications and infrastructures. In: Ramakrishnan I, editor. Practical aspects
of declarative languages. Lecture notes in computer science, vol. 1990,
Springer Berlin Heidelberg; 2001, p. 184–98, 3rd International Symposium
(PADL 2001), Las Vegas, NV, USA, 11–12 March 2001. Proceedings. http:
//dx.doi.org/10.1007/3-540-45241-9_13.

[22] Piancastelli G, Benini A, Omicini A, Ricci A. The architecture and design of
a malleable object-oriented Prolog engine. In: Wainwright RL, Haddad HM,
Menezes R, Viroli M, editors. 23rd ACM symposium on applied computing
(SAC 2008), vol. 1. Fortaleza, Ceará, Brazil: ACM; 2008, p. 191–7, Spe-
cial Track on Programming Languages. http://dx.doi.org/10.1145/1363686.
1363739.

[23] Denti E, Omicini A, Calegari R. tuProlog: Making Prolog ubiquitous.
ALP Newsletter 2013. URL http://www.cs.nmsu.edu/ALP/2013/10/tuprolog-
making-prolog-ubiquitous/.
6

http://dx.doi.org/10.1098/rspa.2017.0872
http://dx.doi.org/10.1098/rspa.2017.0872
http://dx.doi.org/10.1098/rspa.2017.0872
http://dx.doi.org/10.3233/IA-190036
http://dx.doi.org/10.3233/IA-190036
http://dx.doi.org/10.3233/IA-190036
http://dx.doi.org/10.1007/s10458-020-09478-3
http://dx.doi.org/10.1007/s10458-020-09478-3
http://dx.doi.org/10.1007/s10458-020-09478-3
http://dx.doi.org/10.1145/154766.155362
http://dx.doi.org/10.3390/info11030167
http://dx.doi.org/10.3390/info11030167
http://dx.doi.org/10.3390/info11030167
https://www.iso.org/standard/21413.html
https://www.iso.org/standard/21413.html
https://www.iso.org/standard/21413.html
https://www.iso.org/standard/20775.html
https://www.iso.org/standard/20775.html
https://www.iso.org/standard/20775.html
http://www.picat-lang.org/bprolog
https://ciao-lang.org
https://eclipseclp.org
https://sicstus.sics.se
https://www.swi-prolog.org
http://tau-prolog.org
http://xsb.sourceforge.net
http://dx.doi.org/10.1145/321250.321253
http://dx.doi.org/10.1007/978-1-4684-3384-5_11
http://dx.doi.org/10.1007/978-1-4684-3384-5_11
http://dx.doi.org/10.1007/978-1-4684-3384-5_11
http://dx.doi.org/10.1145/41625.41635
http://dx.doi.org/10.1016/S0743-1066(98)10005-5
http://dx.doi.org/10.1016/S0743-1066(98)10005-5
http://dx.doi.org/10.1016/S0743-1066(98)10005-5
http://dx.doi.org/10.1017/S1471068411000500
http://dx.doi.org/10.1017/S1471068411000500
http://dx.doi.org/10.1017/S1471068411000500
http://dx.doi.org/10.1017/S026988890000802X
http://dx.doi.org/10.1017/S026988890000802X
http://dx.doi.org/10.1017/S026988890000802X
http://dx.doi.org/10.1007/3-540-45241-9_13
http://dx.doi.org/10.1007/3-540-45241-9_13
http://dx.doi.org/10.1007/3-540-45241-9_13
http://dx.doi.org/10.1145/1363686.1363739
http://dx.doi.org/10.1145/1363686.1363739
http://dx.doi.org/10.1145/1363686.1363739
http://www.cs.nmsu.edu/ALP/2013/10/tuprolog-making-prolog-ubiquitous/
http://www.cs.nmsu.edu/ALP/2013/10/tuprolog-making-prolog-ubiquitous/
http://www.cs.nmsu.edu/ALP/2013/10/tuprolog-making-prolog-ubiquitous/


Giovanni Ciatto, Roberta Calegari and Andrea Omicini SoftwareX 16 (2021) 100817
[24] Omicini A, Zambonelli F. Coordination for internet application develop-
ment. In: Tolksdorf R, Ciancarini P, editors. Auton Agents Multi-Agent
Syst 1999;2(3):251–69, Special Issue: Coordination Mechanisms for Web
Agents. http://dx.doi.org/10.1023/A:1010060322135.

[25] Omicini A, Denti E. From tuple spaces to tuple centres. Sci Comput Program
2001;41(3):277–94. http://dx.doi.org/10.1016/S0167-6423(01)00011-9.

[26] Calegari R, Ciatto G, Mariani S, Denti E, Omicini A. LPaaS as mIcro-
intelligence: Enhancing IoT with symbolic reasoning. Big Data Cogn
Comput 2018;2(3). http://dx.doi.org/10.3390/bdcc2030023.

[27] Ciatto G, Mariani S, Omicini A, Zambonelli F. From agents to blockchain:
Stairway to integration. In: Tonelli R, Ortu M, Pinna A, editors. In: Advances
in blockchain technology and applications 2020, Appl Sci In: Advances
in blockchain technology and applications 2020, 2020;10(21):7460:1–
22.Special Issue ‘‘Advances in Blockchain Technology and Applications
2020’’. http://dx.doi.org/10.3390/app10217460,

[28] Pisano G, Calegari R, Omicini A, Sartor G. Arg-tuProlog: A tuProlog-based
argumentation framework. In: Calimeri F, Perri S, Zumpano E, editors. CILC
2020 – Italian conference on computational logic. Proceedings of the 35th
italian conference on computational logic. CEUR workshop proceedings,
vol. 2719, Aachen, Germany: Sun SITE Central Europe, RWTH Aachen
University; 2020, p. 51–66, URL http://ceur-ws.org/Vol-2710/paper4.pdf.

[29] Lloyd JW, editor. Computational logic. In: Computational logic: Its origins
and applicationsogic. ESPRIT basic research series, Berlin, Heidelberg:
Springer; 1990, http://dx.doi.org/10.1007/978-3-642-76274-1.

[30] Metakides G, Nerode A. Principles of logic and logic programming.
Studies in computer science and artificial intelligence, Amsterdam, The
Netherlands: North-Holland; 1996, URL https://www.elsevier.com/books/
principles-of-logic-and-logic-programming/metakides/978-0-444-81644-
3.

[31] Kowalski RA. Predicate logic as programming language. In: Rosenfeld JL,
editor. Information processing. Proceedings of the 6th IFIP congress.
North-Holland; 1974, p. 569–74.

[32] Fung TH, Kowalski R. The IFF proof procedure for abductive logic program-
ming. J Log Program 1997;33(2):151–65. http://dx.doi.org/10.1016/S0743-
1066(97)00026-5.

[33] Muggleton S, de Raedt L. Inductive logic programming: Theory and meth-
ods. J Log Program 1994;19–20(Suppl. 1):629–79, Special Issue: Ten Years
of Logic Programming. http://dx.doi.org/10.1016/0743-1066(94)90035-3.

[34] de Raedt L, Kimmig A. Probabilistic (logic) programming concepts. Mach
Learn 2015;100(1):5–47. http://dx.doi.org/10.1007/s10994-015-5494-z.

[35] Martelli A, Montanari U. An efficient unification algorithm. ACM Trans
Program Lang Syst 1982;4(2):258–82. http://dx.doi.org/10.1145/357162.
357169.

[36] 2P-Kt. Artefacts on Maven Central Repository. 2021, URL https://search.
maven.org/search?q=g:it.unibo.tuprolog. [Last access: August 8, 2021].

[37] 2P-Kt. Artefacts on NPM registry. 2021, URL https://www.npmjs.com/org/
tuprolog. [Last access: August 8, 2021].

[38] Parr T. The definitive ANTLR 4 reference. 2nd ed. Pragmatic Book-
shelf; 2013, URL https://www.oreilly.com/library/view/the-definitive-antlr/
9781941222621/.

[39] Carlsson M. On implementing Prolog in functional programming. New
Gener Comput 1984;2(4):347–59. http://dx.doi.org/10.1007/BF03037326.

[40] Warren DH. An abstract Prolog instruction set. Technical note 309, AI
Center, SRI International; 1983, URL https://www.sri.com/publication/an-
abstract-prolog-instruction-set/.

[41] Ciatto G, Calegari R, Omicini A. Lazy stream manipulation in Prolog via
backtracking: The case of 2p-kt. In: Faber W, Friedrich G, Gebser M,
Morak M, editors. Logics in artificial intelligence. Lecture Notes in Com-
puter Science, vol. 12678, Springer; 2021, p. 407–20, 17th European
Conference, JELIA 2021, Virtual Event, May 17–20, 2021, Proceedings.
http://dx.doi.org/10.1007/978-3-030-75775-5_27.

[42] 2P-Kt. Playground. 2021, URL https://pika-lab.gitlab.io/tuprolog/2p-kt-web.
[Last access: August 8, 2021].

[43] Ciatto G, Calegari R, Siboni E, Denti E, Omicini A. 2P-kt: logic programming
with objects & functions in Kotlin. In: Calegari R, Ciatto G, Denti E,
Omicini A, Sartor G, editors. WOA 2020 – 21th workshop ‘‘from objects
to agents’’. CEUR workshop proceedings, vol. 2706, Aachen, Germany:
Sun SITE Central Europe, RWTH Aachen University; 2020, p. 219–36,
21st Workshop ‘‘From Objects to Agents’’ (WOA 2020), Bologna, Italy,
14–16 September 2020. Proceedings. URL http://ceur-ws.org/Vol-2706/
paper14.pdf.

[44] Calegari R, Denti E, Dovier A, Omicini A. Extending logic programming with
labelled variables: Model and semantics. In: Fiorentini C, Momigliano A,
Pettorossi A, editors. Fund Inform 2018;161(1–2):53–74, Special Issue CILC
2016. http://dx.doi.org/10.3233/FI-2018-1695.

[45] Malone TW, Crowston K. The interdisciplinary study of coordination.
ACM Comput Surv 1994;26(1):87–119. http://dx.doi.org/10.1145/174666.
174668.

[46] Ciatto G, Di Marzo Serugendo G, Louvel M, Mariani S, Omicini A, Zam-
bonelli F. Twenty years of coordination technologies: COORDINATION
contribution to the state of art. In: De Nicola R, editor. J Logical Algebr
Methods Program 2020;113:1–25. http://dx.doi.org/10.1016/j.jlamp.2020.
100531.

[47] Ciatto G, Rizzato L, Omicini A, Mariani S. TuSoW: Tuple spaces for edge
computing. In: The 28th international conference on computer communi-
cations and networks (ICCCN 2019). Valencia, Spain: IEEE; 2019, p. 1–6.
http://dx.doi.org/10.1109/ICCCN.2019.8846916.

[48] Arrieta AB, Rodríguez ND, Ser JD, Bennetot A, Tabik S, Barbado A, García S,
Gil-Lopez S, Molina D, Benjamins R, Chatila R, Herrera F. Explainable Artifi-
cial Intelligence (XAI): concepts, taxonomies, opportunities and challenges
toward responsible AI. Inf Fusion 2020;58:82–115. http://dx.doi.org/10.
1016/j.inffus.2019.12.012.

[49] Cambria E, Li Y, Xing FZ, Poria S, Kwok K. SenticNet 6: Ensemble
application of symbolic and subsymbolic AI for sentiment analysis. In: 29th
ACM international conference on information & knowledge management
(CIKM’20). New York, NY, USA: Association for Computing Machinery;
2020, p. 105–14. http://dx.doi.org/10.1145/3340531.3412003.

[50] Pisano G, Ciatto G, Calegari R, Omicini A. Neuro-symbolic computation for
XAI: Towards a unified model. In: Calegari R, Ciatto G, Denti E, Omicini A,
Sartor G, editors. WOA 2020 – 21th Workshop ‘‘from Objects To Agents’’.
CEUR workshop proceedings, 2706, Aachen, Germany: Sun SITE Central
Europe, RWTH Aachen University; 2020, p. 101–17, 21st Workshop ‘‘From
Objects to Agents’’ (WOA 2020), Bologna, Italy, 14–16 September 2020.
Proceedings. URL http://ceur-ws.org/Vol-2706/paper18.pdf.

[51] tuProlog. Users. 2021, URL http://apice.unibo.it/xwiki/bin/view/Tuprolog/
Users. [Last access: August 8, 2021].
7

http://dx.doi.org/10.1023/A:1010060322135
http://dx.doi.org/10.1016/S0167-6423(01)00011-9
http://dx.doi.org/10.3390/bdcc2030023
http://dx.doi.org/10.3390/app10217460
http://ceur-ws.org/Vol-2710/paper4.pdf
http://dx.doi.org/10.1007/978-3-642-76274-1
https://www.elsevier.com/books/principles-of-logic-and-logic-programming/metakides/978-0-444-81644-3
https://www.elsevier.com/books/principles-of-logic-and-logic-programming/metakides/978-0-444-81644-3
https://www.elsevier.com/books/principles-of-logic-and-logic-programming/metakides/978-0-444-81644-3
https://www.elsevier.com/books/principles-of-logic-and-logic-programming/metakides/978-0-444-81644-3
https://www.elsevier.com/books/principles-of-logic-and-logic-programming/metakides/978-0-444-81644-3
http://refhub.elsevier.com/S2352-7110(21)00112-6/sb31
http://refhub.elsevier.com/S2352-7110(21)00112-6/sb31
http://refhub.elsevier.com/S2352-7110(21)00112-6/sb31
http://refhub.elsevier.com/S2352-7110(21)00112-6/sb31
http://refhub.elsevier.com/S2352-7110(21)00112-6/sb31
http://dx.doi.org/10.1016/S0743-1066(97)00026-5
http://dx.doi.org/10.1016/S0743-1066(97)00026-5
http://dx.doi.org/10.1016/S0743-1066(97)00026-5
http://dx.doi.org/10.1016/0743-1066(94)90035-3
http://dx.doi.org/10.1007/s10994-015-5494-z
http://dx.doi.org/10.1145/357162.357169
http://dx.doi.org/10.1145/357162.357169
http://dx.doi.org/10.1145/357162.357169
https://search.maven.org/search?q=g:it.unibo.tuprolog
https://search.maven.org/search?q=g:it.unibo.tuprolog
https://search.maven.org/search?q=g:it.unibo.tuprolog
https://www.npmjs.com/org/tuprolog
https://www.npmjs.com/org/tuprolog
https://www.npmjs.com/org/tuprolog
https://www.oreilly.com/library/view/the-definitive-antlr/9781941222621/
https://www.oreilly.com/library/view/the-definitive-antlr/9781941222621/
https://www.oreilly.com/library/view/the-definitive-antlr/9781941222621/
http://dx.doi.org/10.1007/BF03037326
https://www.sri.com/publication/an-abstract-prolog-instruction-set/
https://www.sri.com/publication/an-abstract-prolog-instruction-set/
https://www.sri.com/publication/an-abstract-prolog-instruction-set/
http://dx.doi.org/10.1007/978-3-030-75775-5_27
https://pika-lab.gitlab.io/tuprolog/2p-kt-web
http://ceur-ws.org/Vol-2706/paper14.pdf
http://ceur-ws.org/Vol-2706/paper14.pdf
http://ceur-ws.org/Vol-2706/paper14.pdf
http://dx.doi.org/10.3233/FI-2018-1695
http://dx.doi.org/10.1145/174666.174668
http://dx.doi.org/10.1145/174666.174668
http://dx.doi.org/10.1145/174666.174668
http://dx.doi.org/10.1016/j.jlamp.2020.100531
http://dx.doi.org/10.1016/j.jlamp.2020.100531
http://dx.doi.org/10.1016/j.jlamp.2020.100531
http://dx.doi.org/10.1109/ICCCN.2019.8846916
http://dx.doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/10.1145/3340531.3412003
http://ceur-ws.org/Vol-2706/paper18.pdf
http://apice.unibo.it/xwiki/bin/view/Tuprolog/Users
http://apice.unibo.it/xwiki/bin/view/Tuprolog/Users
http://apice.unibo.it/xwiki/bin/view/Tuprolog/Users

	2P-Kt: A logic-based ecosystem for symbolic AI
	Motivation and significance
	Software description
	Software architecture
	Software functionalities

	Illustrative examples
	Impact
	Conclusion
	Declaration of competing interest
	Acknowledgements
	References


