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Abstract: Classical general relativity predicts the occurrence of spacetime singularities under very
general conditions. Starting from the idea that the spacetime geometry must be described by suitable
states in the complete quantum theory of matter and gravity, we shall argue that this scenario cannot
be realised physically since no proper quantum state may contain the infinite momentum modes
required to resolve the singularity.
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1. Introduction

Exact solutions to the Einstein field equations containing spacetime singularities have
been known since the early days of general relativity. Moreover, the Penrose theorem
ensures that the gravitational collapse of compact objects will generate geodesically in-
complete spacetimes if a trapping surface occurs [1] (albeit eternal point-like sources were
shown to be mathematically incompatible with the Einstein equations [2]).

It is generically expected that the quantum theory of gravity will fix this incomplete
classical picture, although no general consensus has yet been reached as to how this
happens and on what observable effects that could imply. One of the main difficulties
in quantising the gravitational interaction is given by its non-linear nature already at the
classical level. Building quantum states corresponding to the real objects that we see in the
universe is, therefore, a strongly non-perturbative endeavour.

We will report here on the consequences stemming from the assumptions that (a) the
expectation value of quantum gravity observables on states that are relevant for the de-
scription of reality must be very close to the classical solutions of the Einstein Equations,
where experimental data support general relativity, and (b) those quantum states must
be mathematically well-defined. The second assumption implies that not all classical
solutions may be realised. A well-known example is the hydrogen atom, which should
be unstable according to classical electrodynamics. Instead, quantum mechanics predicts
discrete energy states for the electron, with the ground state spreading several orders of
magnitude around the size of the nucleus.

The above point of view was taken in Ref. [3] for studying the collapse of a ball
of dust of mass M, whose classical radius R → 0 in a finite amount of proper time [4].
The main result that followed was that the ground state is much wider than the Planck
length, and indeed of the order of the gravitational radius RH = 2 GN M, which appears
as a concrete example of classicalisation [5,6]. Moreover, the principal quantum number
of the ground state is proportional to M2/m2

p (we use units with c = 1, GN = `p/mp and
h̄ = `p mp, where `p is the Planck length and mp is the Planck mass). This property was
also recovered in Ref. [7], in which the existence of a proper quantum state reproducing the
outer Schwarzschild geometry was considered to show that no central singularity could be
possibly realised. In that context, the scaling of M2/m2

p with an integer number can then
be interpreted as the quantisation of the horizon area [8].
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2. Quantum Dust Ball

The classical Oppenheimer–Snyder model [4] describes the collapse of a ball of dust
in general relativity. The trajectory of the areal radius R of the ball is a geodesic in the
Schwarzschild spacetime generated by the mass M of the ball itself

ds2 = −
(

1− RH

r

)
dt2 +

(
1− RH

r

)−1
dr2 + r2 dΩ2 . (1)

Consequently, one obtains the conservation of the effective Hamiltonian [3] (Numerical
coefficients of order one are often omitted for the sake of clarity).

H ≡ P2

2 M
− GN M2

R
=

M
2

(
E2

M2 − 1
)
≡ E , (2)

where P is the momentum conjugated to R and E represents the conserved energy conju-
gated to the coordinate time t. It is important to remark that Equation (2) formally equals
the Newtonian conservation law for the energy E , but the general relativistic equation
differs because of the non-linear relation between E and the energy E.

We next quantise the system by assuming the usual canonical commutator[
R̂, P̂

]
= i h̄ , (3)

and the operators R̂ and P̂ act on wavefunctions Ψ = Ψ(R) satisfying the Schrödinger
equation for a gravitational atom

Ĥ Ψ = E Ψ . (4)

The eigenstates of the above equation are given by

Ψn ' e−
x
n L1

n−1

(
2 x
n

)
. (5)

where x = M3 r/m3
p `p, L1

n−1 are generalised Laguerre polynomials with n ≥ 1 (the angular
momentum is zero) and the corresponding eigenvalues read

En

M
' −

G2
N M4

2 h̄2 n2
= − 1

2 n2

(
M
mp

)4
=

1
2

(
E2

n
M2 − 1

)
. (6)

The width of the above eigenstates is given by

Rn ≡ 〈Ψn|R|Ψn〉 '
h̄2 n2

GN M3 = n2 `p

(mp

M

)3
. (7)

In Newtonian physics, there would be no restriction to the spectrum, En, and, since
Rn∼1 ∼ `p (mp/M)3 � `p, one practically recovers the classical singularity with energy
density of the order of M/R3

1 ∼ (M/mp)9 M `−3
p . However, the non-linear relation for En

in Equation (6) yields the condition

0 ≤ E2
n

M2 ' 1− 1
n2

(
M
mp

)4
⇒ n ≥ NM '

(
M
mp

)2
. (8)

The (minimum) quantum number, NM, for the actual ground state, ΨNM , therefore, depends
on the mass, M, as required by the quantisation of the horizon area [8] and the corpuscular
model of black holes [9,10]. Moreover, ΨNM has a width

RNM ∼ RH , (9)
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which grows with M, hence hinting to classicalisation in Einstein gravity [5]. The ground
state, ΨNM , could be viewed as a black hole, since RNM < RH (see Figure 1 for an example),
but we further need to check that the outer geometry is still very close to the Schwarzschild
metric (1) to support that conclusion.

n=NM=16

n=17

0.0 0.5 1.0 1.5 2.0 2.5 3.0

R

GNM
0.0

0.1

0.2

0.3

0.4

0.5

0.6
dP

Figure 1. Probability density that the ball has radius R, for ground state with n = NM = M2/m2
p:

solid (dashed) line represents the region inside (outside) the gravitational radius RH = 2 GN M;
dotted line is same probability density for first excited state with n = NM + 1.

3. Quantum Schwarzschild Geometry

We next try and reconstruct the geometry outside the collapsed object. For that
purpose, we will use a scalar field Φ = VN/

√
GN for simplicity [7]. Of course, the field

Φ should not be viewed as fundamental but as a convenient representation of the non-
perturbative behaviour of gravity generated by a large compact source.

The important physical assumption is that the quantum gravity vacuum state |0〉
is the realisation of a universe in which no modes (of matter or gravity) are excited. It
is not a priori obvious if it makes any sense at all to associate a Lorentzian metric ηµν

to such an absolute vacuum, but we further notice that this is the metric normally used
to describe linearised gravity and to define both matter and gravitational excitations in
this regime. The linearised theory should provide a reliable description for small matter
sources (say with total energy M� mp) and allow one to recover the Newtonian potential
from simple tree-level graviton exchanges. Of course, the Newtonian potential is not a
fundamental scalar, but it emerges from the (non-propagating) temporal polarisation of
virtual gravitons (see, Ref. [11]). For large sources (that is, with M � mp), one should
reconstruct the proper quantum state from the excitations of the linearised theory, which
appears rather hopeless in this highly non-linear regime. In fact, one then usually assumes
that there exists a classical background geometry to replace ηµν with the solution gµν of
the corresponding classical Einstein’s equations. Since we are interested in static and
spherically symmetric configurations representing a black hole, we will just require that
the quantum state of gravity effectively reproduces (as closely as possible) the expected
Schwarzschild geometry (1), which, in turn, contains only one metric function VN = VN(r).
We will then see that requiring that VN =

√
GN Φ emerges from a properly defined

quantum state leads to specific restrictions that could not otherwise be unveiled.
For the above reasons, we impose that Φ satisfies the free massless wave equation in

Minkowski spacetime in spherical coordinates,[
− ∂2

∂t2 +
1
r2

∂

∂r

(
r2 ∂

∂r

)]
Φ(t, r) = 0 . (10)

Normal modes will then be written in terms of spherical Bessel functions
j0 = sin(k r)/k r as uk(t, r) = e−i k t j0(k r). Annihilation operators âk and creation op-
erators â†

k for these modes satisfy the usual harmonic oscillator algebra and a Fock space
can be built starting from the quantum Minkowski vacuum âk |0〉 = 0. We remark once
more that this Fock space effectively represents excitations that reduce to temporally po-
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larised gravitons in the linear regime and not the independent (propagating) gravitational
degrees of freedom (corresponding to helicity-2 gravitational waves, which should play no
role in purely static configurations).

Classical configurations usually emerge in the quantum theory as coherent states. The
use of coherent states in quantum field theory to describe static configurations is supported,
for instance, by calculations in electrodynamics [12], in Newtonian physics [13] and for the
de Sitter spacetime [14,15]. A general coherent state can be written in terms of Fock states
as

|g〉 = e−NG/2 exp
{∫ ∞

0

k2 dk
2 π2 gk â†

k

}
|0〉 , (11)

and we will then require that√
`p

mp
〈g|Φ̂(t, r)|g〉 = VN(r) =

∫ ∞

0

k2 dk
2 π2 ṼN(k) j0(k r) , (12)

where

VN = −GN M
r

(13)

is the “potential” in the Schwarzschild metric (1). In particular, the occupation numbers for
each mode k is found to be given by

gk = −
4 π M√
2 k3 mp

. (14)

The state |g〉 is well-defined only if it is normalisable. This condition is tantamount to
having a finite total occupation number

NG =
∫ ∞

0

k2 dk
2 π2 g2

k = 4
M2

m2
p

∫ ∞

0

dk
k

. (15)

However, this integral diverges both in the infrared (IR) and the ultraviolet (UV), and
no coherent quantum state exists in our Fock space, which can reproduce the classical
potential in Equation (13) exactly.

The actual occupation numbers gk for k → 0 and k → ∞ could be determined if
we had a complete quantum theory of gravity, but here we will just consider generic
behaviours that regularise the expression (15). In particular, the IR divergence stems from
the assumption of exact staticity, which lets the potential VN extend to infinity. We can
then introduce a cut-off kIR = 1/τ as a formal way to account for the finite lifetime τ
of a real source. The UV divergence would not be present if the source had finite size
and, from the description of collapsed matter inside black holes in the previous section,
we simply introduce a cut-off kUV ∼ 1/RNM ∼ 1/M. This again yields the horizon area
quantisation [8], that is

NG = 4
M2

m2
p

∫ kUV

kIR

dk
k
' 4

M2

m2
p

ln
(

τ

GN M

)
, (16)

in which the logarithm appears because of the choice of a sharp UV cut-off and would be
replaced with a more accurate description of the matter source. We also notice that the
average radial momentum is given by

〈 k 〉 = 4
M2

m2
p

∫ kUV

kIR

dk = 4
M2

m2
p

(
1

GN M
− 1

τ

)
, (17)
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so that both M and the typical wavelength λG = NG/〈 k 〉 ∼ `p M/mp reproduce the
scaling laws of the corpuscular model of black holes [9].

Having defined a proper quantum state |g〉, we can next obtain the corresponding
geometry by replacing VN in Equation (1) with

VQN '
∫ kUV

kIR

k2 dk
2 π2 ṼN(k) j0(k r) ' VN

{
1−

[
1− 2

π
Si
(

r
GN M

)]}
, (18)

where Si is the sine integral function. The quantum corrected metric still contains a horizon
(see Figure 2 for an example) but the Ricci scalar R ∼ r−2 and the Kretschmann scalar
RαβµνRαβµν ∼ R2 ∼ r−4, for r → 0, whereas the Kretschmann scalar in the classical
Schwarzschild spacetime diverges as r−6. This ensures that tidal forces remain finite at the
centre, as can be seen more explicitly from the relative acceleration of radial geodesics for
r → 0 (In the Schwarzschild spacetime a ∼ r−4; thus, causing the “spaghettification” of
infalling matter),

a ≡ ∆̈r
∆r

= −R1
010 '

G2
N M2

R4
s

, (19)

where ∆r is the separation between two nearby radial geodesics. One can further compute
the effective energy-momentum tensor Tµν from the Einstein tensor Gµν of the metric (18)
and find that the effective energy density ρ ' −G0

0 ∼ r−2, with the effective radial pressure
pr ' G1

1 = −ρ ∼ r−2 and the effective tension pt ' G2
2 ∼ r−2. The integral of these

quantities over space, therefore, remains finite and the point r = 0 is said to be an integrable
singularity. Moreover, there is no second horizon, and the spacetime is not affected by any
of the issues associated with inner Cauchy horizons. From the phenomenological point
of view, it is important that the oscillations shown in Figure 2 occur around the expected
classical behaviour VN and become smaller and smaller for decreasing values of RNM in
the region r > RH (we have just considered RNM = GN M here for the sake of simplicity).

VQN

VN

5 10 15 20

r

GNM

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

V

Figure 2. Quantum corrected potential VQN in Equation (18) (solid line) compared to VN in
Equation (13) (dashed line) for RNM = GN M = RH/2. The horizontal, thin line marks the lo-
cation of the horizon where VN = VQN = −1/2.

4. Conclusions

We briefly reviewed the quantum analyses from Refs. [3,7] for collapsing objects
and black holes. We can summarise the main results by saying that (i) matter-forming
black holes do not end in a singularity but will reach a final configuration of macroscopic
size (much above the Planck length); (ii) the corresponding effective metric is regular
everywhere, including the centre, and contains information about (at least) the size of the
material core, which constitutes a form of quantum hair [16]; and (iii) both the quantum
ground state of the collapsed matter and the quantum state of the outer geometry are
characterised by similar scalings of the mass M2 ∼ NM ∼ NG, from Equations (8) and (16).
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The above picture is thus compatible with the quantisation of the horizon area [8], the idea
that gravity classizalises at large energies [5], and the corpuscular picture of black holes [9].
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