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This document provides the supporting figures and analysis showing how we:

1. Processed the InSAR images

2. Fitted rectangular dislocations to explain the source geometry causing the ground

deformation.

3. Used this source geometry to obtain parameters for use in the analytical model.

4. Computed stress intensity factors for a constant volume crack beneath a half-space.

5. Tested the analytical assumption of a penny-shaped crack and its effect on K.

Text S1.

1. Supporting text and figures

1.1. InSAR processing and additional observations

All interferograms were created using the InSAR Scientific Computing Environment

(ISCE) software (Rosen et al., 2015) that applies conventional differential InSAR process-

ing techniques for stripmap, ScanSAR (ALOS-2), and Terrain Observation by Progressive

Scans (TOPS) (Sentinel-1) data. Topographic contributions to the interferometric phase

are removed using the Deutsches Zentrum für Luft und Raumfahrt (DLR) 12-m resolu-

tion digital elevation model based on TanDEM-X satellite measurements (Wessel et al.,

2018), and interferograms are phase-unwrapped using the Statistical-cost, Network-flow

Algorithm for Phase Unwrapping (SNAPHU) implemented in ISCE (Chen & Zebker,

2001).

1.2. InSAR inversions along track
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Deformation source parameters and uncertainties are estimated using a Bayesian ap-

proach implemented in the Geodetic Bayesian Inversion Software (Bagnardi & Hooper,

2018). The inversion algorithm samples posterior probability density functions (PDFs)

of source parameters using a Markov chain Monte Carlo method, incorporating the

Metropolis-Hastings algorithm, with automatic step size selection. Posterior PDFs are

calculated considering errors in the InSAR data, which we directly quantify using ex-

perimental semivariograms to which we fit an unbounded exponential one-dimensional

function with a nugget (Bagnardi & Hooper, 2018). The exponential function is then

used to populate the data variance-covariance matrix. Prior to inversions, all InSAR data

sets are subsampled using an adaptive quadtree sampling (Decriem et al., 2010) to reduce

the computational burden when calculating the inverse of the data variance-covariance

matrix and in forward model calculations. For all models, we assume that the deforma-

tion sources are embedded in an isotropic elastic half-space with Poisson’s ratio ν = 0.25.

Since no detailed prior information on the deformation source parameters are available,

prior probability distributions are assumed to be uniform between geologically realistic

bounds. In each inversion, posterior PDFs are sampled through 106 iterations. Depth

estimates are referred to as distance from the surface.

At profile locations P1, P4 and P5 in Fig. S2 we estimate source parameters of a

rectangular dislocation with constant opening (Okada, 1985) and retrieve openings of

0.74±0.03, 1.73±0.03 and 2.80±0.03 m respectively, where the value after ± brackets the

2.5 and 97.5 percentile of the results from our Bayesian inversion scheme (Bagnardi &

Hooper, 2018) (Table. S1). Using such solutions the depth of this sill along its path is
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consistently 900-1000 m below the ground surface with a half-width of approximately 1.5

km.

1.3. Choosing physical parameters

We approximate the sill in our analytical analysis as a penny shaped crack. To retrieve

radius c and volume V for this geometry, we compare the ground deformation of a flat

lying rectangular dislocation where the faces open 2 m with a depth d of 950 m and its

third axis extending far out of the plane of observation, to the the analytical solution

describing the uplift due to a pressurised penny-shaped crack under a half-space with

the same d (Sun, 1969). The penny-shaped crack’s ground deformation supplies a radial

deformation pattern, therefore we only fit this to the ground deformation relative to the

short-axis of the sill. Once fitted, we retrieve a radius c= 1900 m and volume V = 1.6πc2

(with the largest error 1.5% and 15% less than the maximum uz and ux value from the

dislocation solution, respectively).

1.4. Comparison of different effects on stress intensity factors

Fig. S4 is computed using a numerical scheme to evaluate how KI in equation 3,

decreases as the crack approaches the free surface (Davis et al., 2019). For c/d=2 as

observed, a dip of 15◦ causes a relative increase and decrease of KI of +30% and -10%

at its highest and lowest edge respectively. A 30% increase corresponds to the same KI

increase as a sill dip of around 15◦ due to (ρr − ρf )g sin(β). As with buoyancy, this effect

increases with crack dip.

1.5. Approximating the sill geometry as a penny
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Here we estimate the error associated with approximating a 3D propagating crack as

penny-shaped. We compare analytical formulas that describe K around the tip-line of

penny-shaped cracks under uniform pressure and linear stress gradients, equation 3 & 4 to

those of a more realistic 3D shape (Fig. S6a). We apply boundary conditions so that the

opening of lengthened-tail crack matches that of the penny-shaped crack, at the location

where the penny’s opening is maximal. For penny-shaped cracks with constant internal

pressure this is the crack centre. For a penny-shaped crack under a linear stress gradient

the maximal opening is located along the direction of the stress gradient at sin(π/4)c.

We find the analytical formulas capture the scale and shape of the problem with some

deviations (Fig. S6b, c and d). Note the accuracy of the numerical boundary element

method to approximate K can have errors of up to 10% and the mesh used in Fig. S6

has ∼2000 triangles (Davis et al., 2019, 2020).

1.6. Free surface effects

To quantify the effects of the free surface on the crack, we use the same input parameters

as those for the simulation in Fig. 4 but remove all stresses and buoyancy forces acting on

the faces of the crack apart from the internal fluid pressure. We reduce Kc to 1 MPa·m0.5

such that the crack can reach the surface. The aim of this test is to see how the crack

grows and responds to the free surface in our simulation. Fig. S7 shows its influence when

this is flat-lying. Here the crack grows into an axi-symmetric bowl like form. Fig. S8

tests this for the same start geometry we use in our full simulation, and angles the free

surface to match the topographic slope. In this simulation the crack reaches the surface

at the location where the free surface was originally closest to the start geometry.
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Figure S1. Vertical GPS movement’s from continuous GPS stations GV01, 02 and

04 situated on Sierra Negra’s summit. See Fig. 1 for station location. Data downloaded

from http://geodesy.unr.edu
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Figure S2. Profiles used to estimate intrusion geometry. a) InSAR as in Fig. 2c) with

the location of the profiles (P1 - P7) marked by blue shading. Gray polygons show the

extent of the lava flows emplaced during the time period spanned by the interferogram.

Yellow lines mark the location and extent of all eruptive fissures. b) Each plot shows the

line-of-sight ground displacement for each data point included in profiles 1-7. Vertical

scale is not constant. c) As in b) but all profiles have a constant vertical scale, (∼ W-E).

c)
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Profile Opening [m] Dip◦ Dip Direction◦ Depth [m] Down-dip width [m] Along-strike width [m]

P1 0.7/0.7/0.8 0.6/1.6/2.7 19/21/23 861/899/958 2907/2949/2986 2554/3175/4503

P2 1.0/1.0/1.0 11.0/12.8/15.4 136/140/142 998/1058/1335 2527/2637/3787 2356/2387/2421

P3 1.2/1.2/1.2 3.0/5.5/7.5 138/140/142 939/992/1040 3541/3891/13903 2119/2140/2172

P4 1.7/1.8/1.8 16.7/17.4/18.1 199/199/200 1053/1084/1115 3296/3604/3653 1754/1771/1789

P5 2.8/2.8/2.8 14.0/14.5/15.0 210/210/210 994/1010/1026 2196/2210/2224 2838/2850/2859

P6 2.80/2.83/2.85 14.1/14.6/14.9 352/353/353 976/993/1007 2322/2340/2353 2826/2840/2851

Table S1. Bayesian inversion results for profiles shown in Fig. S2, using rectangular

dislocations (Okada, 1985). The 2.5 percentile value, the maximum a posteriori probabil-

ity solution, and the 97.5 percentile value are shown for each parameter. The results for

P7 are not shown, due to unsatisfactory fits to the data.
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Figure S3. Magnitude of stress gradients, topographic vs buoyancy. Top panel shows

in black the topographic profile of the volcano (profile A-A’ in Fig. 3) and in blue an

approximation of this profile used to calculate the analytical solution (Savage et al., 1984).

Bottom panel shows the required crack dip β such that the two competing gradients match,

according to (ρr − ρf )g sin(β) = δσv/δh. Plane strain boundary element method result

due to the topography is shown in black, the result of the analytical solution (Savage et

al., 1984) due to the approximate slope shown is shown in blue.
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Figure S4. Half-space effects on KI at the upper and lower tips of a dipping penny-

shaped crack. Maximum and minimum KI values (solid and dashed) for constant volume

cracks, depth d below a half-space, with radius c. Values relative to K∞, equation 3. Note

the offset from 1 when c/d=0, indicates the size of the numerical error.
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Figure S5. Summary of changes in K due to different effects on the sill at Sierra

Negra. Cross sections of cracks showing changes in stress intensity, KI , at the crack tip

due to different processes. Crack opening exaggerated by 300, red patches show the 2nd

invariant of stress computed from K at the tip. a) crack in a full space, b) crack under

topographic stress gradient, topography exaggerated, c) crack with 15◦ dip, buoyancy as

defined in text, d) interacting cracks with separation defined in text, e) flat crack close to

the free surface, f) crack close to free surface with dip, only internal pressure.
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Figure S6. Comparison of KI around a penny-shaped and elongated penny-shaped

crack. a) The mesh used for this analysis. θ is defined in degrees away from the tip

(y = 1). Comparison of KI from equation 4 to that for an elongated penny-shaped crack

as in a), assuming b) a stress gradient along the x-axis; c) a stress gradient along the y-

axis. d) Comparison of KI from equation 3 to that for an elongated penny-shaped crack

with uniform pressure. Note some slight numerical inaccuracies are present.
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Figure S7. Simulation of a sill growing beneath a flat free surface (dashed line on right

hand plot). Stress intensity around the tip-line is shown in the colourbar (MPa·m0.5). Sill

started as a flat circular crack with a radius of 1900 m, at a depth of 1200 m.
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Figure S8. Simulation of a sill growing beneath a dipping free surface (dashed line on

right hand plot). Stress intensity around the tip-line is shown in the colourbar (MPa·m0.5).

Sill started as a flat crack (shown), at a depth of 1200 m.
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