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1 INTRODUCTION

Sometimes, simple objects such as natural numbers can generate theories of marvelous richness,
such as number theory. Something similar happens with the λ-calculus, the universally accepted
model of purely functional programs. Its definition is simple: three constructors and just one
rewriting rule, β-reduction, based on a natural notion of substitution. The theory of β-reduction,
however, is surprisingly rich, and still the object of research, despite decades of deep investigations.

In the eighties, Barendregt’s book [Barendregt 1984] presented a stable operational and denota-
tional theory, Lévy had already developed his sophisticated optimality theory [Lévy 1978], and
languages such as Haskell were using tricky sharing mechanisms in their implementations. In 1987,
however, the linear logic [Girard 1987] earthquake came together with a completely new viewpoint
on the λ-calculus, requiring to revisit the whole theory. For our story, two of its byproducts are
relevant, namely the geometry of interaction [Girard 1989] (shortened to GoI) and game semantics.

GoI, Game Semantics and Abstract Machines. At the time, GoI was a radically new interpretation
of proofs, arising from connections between linear logic and functional analysis, and based on an
abstract notion of interactive execution for proofs. Game semantics was introduced to solve the
full abstraction problem for PCF [Milner 1977], and along the years affirmed itself as the sharpest

Authors’ addresses: Beniamino Accattoli, LIX, Inria & LIX, École Polytechnique, UMR 7161, France, beniamino.accattoli@
inria.fr; Ugo Dal Lago, Università di Bologna, Italy, Inria Sophia Antipolis, France, ugo.dallago@unibo.it; Gabriele Vanoni,
Università di Bologna, Italy, Inria Sophia Antipolis, France, gabriele.vanoni2@unibo.it.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).
2475-1421/2021/1-ART51
https://doi.org/10.1145/3434332

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 51. Publication date: January 2021.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3434332
https://doi.org/10.1145/3434332


51:2 Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni

and most flexible form of semantics for higher-order languages. Roughly, the models known at
the time were not able to capture fine computational behaviorsÐi.e. they were not intensional
enough. Strategies from game semantics, instead, allow to faithfully model these behaviors of
λ-terms: program composition is modeled as the interplay between the corresponding strategiesÐa
concrete form of interactionÐhaving the flavor of executions in some sort of abstract machine. In
fact, there are two styles of game semantics. One, AJM games, is due to Abramsky, Jagadeesan, and
Malacaria [Abramsky et al. 2000], and it is directly inspired by GoI. Another one, HO games, due to
Hyland and Ong [Hyland and Ong 2000], models interaction in a different, pointer-based, way.
The computational content of GoI was first explored by Danos and Regnier [1995] and Mackie

[1995], who proposed a new form of implementation schema called interaction abstract machine

(shortened to IAM). The IAM works in a fundamentally different way with respect to environment-
based abstract machines, which are the standard and time-efficient way of modeling the implemen-
tations of functional languages. The link between game semantics and abstract machines was first
explored by Danos et al. [1996]. They showed the IAM to be the machinery behind AJM games,
and the new pointer abstract machine (PAM) the one behind HO games. They also established a
correspondence between the two styles of games, providing an indirect relationship between the
IAM and the PAM. Finally, from a technical study of the IAM, Danos and Regnier [1999] introduced
an optimized machine, the jumping abstract machine (JAM), claiming it isomorphic to the PAM
despite using different data structures. In the following, we refer collectively to the IAM, the JAM,
and the PAM, as to game machines (interaction machines would be ambiguous, because of the IAM).

A Blind Spot. Despite the existence of a huge literature about GoI and game semantics, their
related abstract machines remainÐsomewhat surprisinglyÐnot well understood. Game machines
are quite sophisticated and their presentations are hard to grasp, sometimes even far from being
formally defined. For instance, the PAM has always been presented informally, as an algorithm
described in natural language or pseudocode. Additionally, the relationship between these machines
is not clear, especially at the level of the relative performances. One of the aims of this paper is
taking the first steps towards a proper theory of the efficiency of game machines.

Space and Interactions. It is well known that environment machines can be space inefficient,
because the environment (or closure) mechanism they rely on uses space proportional to the
number of β-steps, i.e. the natural time cost model of the λ-calculus. Using as much space as time
is in fact the worst one can do, from a space efficiency point of view. The IAM relies on a different
mechanism, thatÐsimilarly to offline Turing machines [Dal Lago and Schöpp 2010]Ðsacrifices time
in order to be space-efficient. This phenomenon was first pointed out by Mackie [1995], but it is the
extensive work by Schöpp and coauthors [Dal Lago and Schöpp 2010; Schopp 2007; Schöpp 2014,
2015] that showed that the IAM allows for capturing sub-linear space computations1, something
impossible in environment machines. Along the same lines, one can mention the Geometry of

Synthesis [Ghica 2007; Ghica and Smith 2010], in which the geometry of interaction is seen as a
compilation scheme towards circuits, and computation space is finite, and of paramount importance.

Time and Interactions. About time, instead, not much is known for game machines. Since the early
papers on the IAM [Danos and Regnier 1995; Mackie 1995], it is known that it can be exponentially
slower than environment machines. As an example, the family of terms tn defined as t1 := I and
tn+1 := tn I (where I is the identity combinator) takes time exponential in n to be evaluated by

1Evaluating a λ-term without fully inspecting it is indeed possible if the term is accessed by way of pointers, in the spirit of
offline Turing machinesÐthemselves an essential ingredient in the definition of complexity classes such as LOGSPACEÐand
this is precisely the way the IAM works. See [Dal Lago and Schöpp 2016] for a thorough discussion about sub-linear space
computations in the λ-calculus.
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the IAM, but only linear time in any environment machine. Therefore, game and environment
machines are fundamentally different devices, and game onesÐat least the IAMÐcan be time-
inefficient. There remain however various open questions. Is the inefficiency of the IAM a general
phenomenon, that is, are all λ-terms concerned? What about the other game machines? How bad
can the aforementioned phenomenon be, quantitatively speaking? On which λ-terms does the
phenomenon show up? The main objective of this paper is to provide answers to these questions.

Jumping is Dizzying. The time inefficiency of the IAM is addressed by Danos and Regnier and
Mackie via an optimized machine, the JAM [Danos and Regnier 1999; Mackie 1995]. In which
relation the JAM is with other machines is unclear. Danos and Regnier present the JAM as an
optimization of the IAM defined on top of proof nets. Then, they claim (without proving it) that if
one considers the call-by-name translation of the λ-calculus into proof nets, the JAM is isomorphic
to the PAM, while they prove that using the call-by-value translation one obtains the KAM. This is
somehow puzzling, since the KAM is a call-by-name machine.

Time, Environments, and Types. Another natural question comes from the study of the rela-
tionship between intersection types and environment machines. The non-idempotent variant of
intersection typesÐhere shortened to multi typesÐprovides a type theoretic understanding of time
for environment machines, as shown by de Carvalho [2018], since the execution time of environ-
ment machines can be extracted from multi types derivations. It is natural to wonder whether
similar connections exist between game machines and multi types, or some other form of type
system. That would be particularly useful as a way of comparing the time behaviour of a given
term when evaluated by distinct machines.

This Paper. The aim of this work is giving the first sharp results about the time (in)efficiency of
the interaction mechanism at work in game machines. We adopt the simplest possible setting, i.e.
weak call-by-name evaluation on closed terms, and we provide four main contributions.

Contributions. (1) A Formal Common Framework Inspired by a very recent reformulation of the
IAM on λ-terms (rather than proof nets, as in the original papers) by Accattoli et al. [2020b], called
λIAM, we provide new similar presentations of the JAM and the PAM, called λJAM and λPAM.
These formulations are easily manageable and comparable, enabling neat formal results about
themÐin particular, ours is the first formal and manageable definition of the PAM.

(2) Comparative Complexity. We provide bisimulations between the λIAM, the λJAM, the λPAM,
and additionally the KAM, taken as the reference for environment machines. This allows for a
precise comparison of the time behavior of the four machines:

(a) Hierarchy: we show that the KAM is never slower than the λJAM which is never slower than
the λIAM, establishing a sort of hierarchy.

(b) λJAM is (slowly) reasonable: a close inspection shows that the λJAM is at most quadratically
slower than the KAM. Since the KAM is a reasonable2 implementation scheme, we obtain
that the λJAM is reasonable as well.

(c) λJAM and λPAM isomorphism: we confirm Danos and Regnier’s claim that the λJAM and the
λPAM are isomorphic (and have the same time behavior), working out the elegant and yet
far from trivial isomorphism3.

2Reasonable is a technical word meaning polynomially related to Turing machines. In our context, a machine for Closed
CbN is reasonable if the number of transition it takes on t is polynomial in the number of weak head β -steps to reduce t and
in the size |t | of t . For more details about reasonable cost models for the λ-calculus, see the overview in [Accattoli 2017].
3In the note [Danos and Regnier 2004], the authors claim that the PAM "is faster than the KAM in many cases" referring to
private communication with Herbelin. Our results falsify the claim, as the PAMÐbehaving as the λJAMÐis never faster and
at most quadratically slower than the KAM.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 51. Publication date: January 2021.



51:4 Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni

(3) λIAM Time and Multi Types.We show how to extract the length of the λIAM run on a term
tÐthat is, the time costÐfrom multi type derivations for t . This study complements de Carvalho’s,
showing that multi types can measure also the time of the λIAM, not just the KAM. A key point is
that, by comparing how multi types measure game and environment machines, we obtain a clear
insight about the time gap between the two approaches: the time usage of the λIAM depends on
the multi type derivation and the size of the involved multi types, while the time usage of the
KAM depends only on the former. Therefore, the gap is bigger on terms whose KAM evaluation is
much shorter than the involved types4. The connection with multi types is obtained in two steps.
First, we introduce a new abstract machine, the SIAM, running over multi type derivations and
inspired by a GoI machine from [Dal Lago and Zorzi 2014], that we prove to be strongly bisimilar
to the λIAM on typable terms. Second, we show how to extract the time of the SIAM from a multi
type derivation, whichÐbecause of the bisimulationÐis also the time of the λIAM. The second
step, despite being a result similar to de Carvalho’s for environment machines, requires a radically
different proof technique, which is a further contribution of the paper.

(4) A Uniform Proof Technique. The proofs of the three bisimulationsÐnamely between the λIAM
and the λJAM, the λJAM and the KAM, and the λIAM and the SIAMÐare all proved using the same
novel technique. To prove the correctness of the λIAM, Accattoli et al. [2020b] study a new invariant,
the exhaustible (state) invariant, expressing a form of coherence of the data structures used by the
λIAM. Our theorems are all proved by adapting the exhaustible invariant to each specific case,
providing concise technical developments and conceptual unity. This point contrasts strikingly
with the original papers on game machines, whose proof techniques are involved, indirect5, and
often informal. The exhaustible invariantÐwhile certainly technicalÐis simpler and provides direct
arguments. It seems to be the key tool to study game machines. As a slogan, interacting is exhausting.

Our Two Cents about Space. At the end of the paper we also briefly discuss space. Specifically, we
provide examples showing that the λIAM can use more space than the λJAM, despite the former
being considered space-efficient and the latter being as space-inefficient as possible. This fact does
not contradict the space efficiency of the λIAM, as it concerns only specific terms. Our example
however shows that space relationships between game machinesÐif they can be established at
allÐare subtler than the time ones, and of a less uniform nature.

Our Results, at a Distance. The body of the paper is quite technical and this is inevitable, because
abstract machinesÐfor as much as they can be abstractÐare low-level tools. It is however easy
to provide a high-level perspective. Comparing with the original papers on game machines, our
presentations play the role of a Rosetta stone, connecting concepts and decoding many technical
subtleties and invariants. Our exhaustible invariant, additionally, removes the need to resort to
game semantics or legal paths when relating the machines. Our complexity study suggests that
interaction as modeled by HO games (seen as the λJAM and the λPAM) is a time-reasonable process,
while as modeled by the GoI and AJM games (seen as the λIAM) is a time-inefficient process6.
Our multi type study, however, suggests that the gap between the two is big only on terms whose
type derivations are much smaller than the involved types. Focusing on HO games, the quadratic
overhead of the λJAM with respect to the KAM shows that interaction as modeled by HO games is
time-reasonable but not time-efficient. Summing up, interacting takes time, and is exhausting.

4Note that even the smallest multi type derivation for the inefficient IAM family tn given above uses types exponential in n
(inside the derivation).
5The relationship between the IAM and the PAM in [Danos et al. 1996] is not direct as it goes through both AJM games and
HO games. Similarly, the relationship between the IAM and the JAM in [Danos and Regnier 1999] is not self-contained, as it
is based on the non-trivial equivalence between regular and legal paths proved in [Asperti et al. 1994].
6Whether the IAM is reasonable is unclear. The mentioned time inefficiency of the IAM is not a proof that it is unreasonable.
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A Summarizing Diagram. The obtained relationships between machines can be summarized by
the following diagram.

�IAM �JAM

�PAM

KAM
potential exponential potential quadratic

SIAM

speedup speedup

Vertical arrows denote isomorphisms: the λIAM and the SIAM are strongly bisimilar (on typable
and therefore terminating terms), and similarly the λJAM and the λPAM are strongly bisimilar (on
whatever term). The horizontal arrows denote bisimulations where the machine on the right is
never slower of the one on the left, and sometimes up to exponentially/quadratically faster.

Evaluating without Duplicating. Let us provide a conclusive insight. β-reducing a λ-term (poten-
tially) duplicates arguments, whose different copies may be used differently, typically being applied
to different further arguments. The machines in this paper never duplicate parts of the code7, but
have nonetheless to distinguish different uses of a same piece of code during execution. Each one
does it in a clever and sophisticated different wayÐmulti types also fit this view, as they remove
duplications altogether by taking all the needed copies in advance (see Sect. 14). This paper can
then be seen as a systematic and thorough study of the art of evaluating without duplicating.

Related Work. Beyond the works already cited above, game machines are also studied by Curien
and Herbelin [1998, 2007] who consider different machines as directly obtained by game semantics,
Mackie [2017] who derives a proof net based token machine for System T, Pinto [2001] who
develops a parallel implementation of the IAM, and Fernández and Mackie [2002] who extend token
machines to call-by-value. A game machine accommodating the additive connectives of linear logic
is in [Laurent 2001]. Space-efficiency of variants of the IAM is addressed by Mazza [2015]; Mazza
and Terui [2015]. Game machines for languages beyond the λ-calculus, like λ-calculi with algebraic
effects, quantum λ-calculi or concurrent calculi are in [Dal Lago et al. 2014, 2015, 2017; Hoshino
et al. 2014]. A different kind of machine inspired by the GoI is in [Danos and Regnier 1993; Pedicini
and Quaglia 2007]. Interaction and rewriting are mixed in recent work by Muroya and Ghica [2017,
2019]. Clairambault [2011, 2015] uses an abstraction of the PAM to bound evaluation lengths, and
similar studies are also done by Aschieri [2017]. Traversals are another operational tool connected
to HO games, introduced by Ong [2006] and further developed by Blum [2020], see also [Berezun
and Jones 2017].
The space inefficiency of environment machines has already been observed by Krishnaswami,

Benton, and Hoffman, who proposed some techniques to alleviate it in the context of functional-
reactive programming and based on linear types [Krishnaswami et al. 2012].

The time efficiency of environment machines has been recently studied in depth. Before 2014, the
topic had been mostly neglectedÐthe only two counterexamples being Blelloch and Greiner [1995];
Sands et al. [2002]. Since 2014Ðmotivated by advances on time cost models for the λ-calculus by
Accattoli and Dal Lago [2016]Ðthe topic has actively been studied [Accattoli et al. 2014; Accattoli
and Barras 2017; Accattoli et al. 2019a; Accattoli and Guerrieri 2019].

Intersection types are a standard tool to study λ-calculiÐsee standard references such as [Coppo
and Dezani-Ciancaglini 1978, 1980; Krivine 1993; Pottinger 1980]. Non-idempotent intersection
types, i.e. multi types, make their first appearance as a technical tool to study principal intersection

7Note that not all machines in the literature avoid duplications: machines with a single global environment duplicate pieces
of the code, see [Accattoli and Barras 2017]. Perhaps surprisingly, performing duplications is not as costly as one may
expect. Global environment machines are indeed time-efficient and faster than the game machines studied in this paper.
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types in [Coppo et al. 1980]. They were first considered by themselves by Gardner [1994], and then
by de Carvalho [2007, 2018]; Kfoury [2000]; Neergaard and Mairson [2004]Ða survey is [Bucciarelli
et al. 2017]. De Carvalho’s use of multi types to give bounds to evaluation lengths has also been
used in [Accattoli et al. 2020c; Accattoli and Guerrieri 2018; Accattoli et al. 2019b; Bernadet and
Graham-Lengrand 2013; Bucciarelli et al. 2020; de Carvalho et al. 2011; Kesner and Vial 2020].

2 PRELIMINARIES: CLOSED CALL-BY-NAME, AND ABSTRACT MACHINES

Let V be a countable set of variables. Terms of the λ-calculus Λ are defined as follows.

λ-terms t ,u, r ::= x ∈ V | λx .t | tu .

Free and bound variables are defined as usual: λx .t binds x in t . A term is closed when there are
no free occurrences of variables in it. Terms are considered modulo α-equivalence, and capture-
avoiding (meta-level) substitution of all the free occurrences of x foru in t is noted t{x�u}. Contexts
are just λ-terms containing exactly one occurrence of a special symbol, the hole ⟨·⟩, intuitively
standing for a removed subterm. Here we adopt leveled contexts, whose index, i.e. the level, stands
for the number of arguments (i.e. the number of !-boxes in linear logic terminology) the hole lies in.

Leveled contexts

C0 ::= ⟨·⟩ | λx .C0 | C0t ; Cn+1 ::= Cn+1t | λx .Cn+1 | tCn .

We simply write C for a context whenever the level is not relevant. The operation replacing the
hole ⟨·⟩ with a term t in a context C is noted C ⟨t⟩ and called plugging.

The operational semantics that we adopt here is weak head evaluation →wh , defined as follows:

(λy.t)ur1 . . . rh →wh t{y�u}r1 . . . rh .

We further restrict the setting by considering only closed terms, and refer to our framework as
Closed Call-by-Name (shortened to Closed CbN). Basic well known facts are that in Closed CbN the
normal forms are precisely the abstractions and that →wh is deterministic.

Abstract Machines Glossary. In this paper, an abstract machine M = (s,→) is a transition system
→ over a set of states, noted s . The machines considered in this paper move over the code without
ever changing it. A position in a term t is represented as a pair (u,C) of a sub-term u and a context
C such thatC ⟨u⟩ = t . The shape of states depends on the specific machine, but they always include
a position (u,C) plus some data structures.

A state is initial, and noted st , if it is positioned on (t , ⟨·⟩), t is closed, and all the data structures
are empty. We may write sMt to stress the machine, and t is always implicitly considered closed,
without further mention. A state is final if no transitions apply.

A run π : s →∗ s ′ is a possibly empty sequence of transitions, whose length is noted |π |. If a and
b are transitions labels (that is,→a⊆→ and→b⊆→) then→a,b :=→a ∪ →b , |π |a is the number
of a transitions in π , and |π |¬a is the size of transitions in π that are not →a . An initial run is a
run from an initial state st , and it is also called a run from t . A state s is reachable if it is the target
state of an initial run. A complete run is an initial run ending on a final state. Given a machine M,
we write M(t)⇓ if M reaches a final state starting from sMt , and M(t)⇑ otherwise. We say that M
implements Closed CbN when M(t)⇓ if and only if →wh terminates on t , for every closed term t .

3 THE INTERACTION ABSTRACT MACHINE, REVISITED

In this section we provide an overview of the Interaction Abstract Machine (IAM). We adopt the
λ-calculus presentation of the IAM, rather called λIAM and recently developed by Accattoli et al.
[2020b]Ðwe refer to their work for an in-depth study of the λIAM. The literature usually studies
the (λ)IAM with respect to head evaluation of potentially open terms. Here we only deal with
Closed CbN, that is closer to the practice of functional programming and also the setting underlying
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Logged Positions l ::= (t ,Cn ,Ln) Tapes T ::= ϵ | • ·T | l ·T

Logs L0 ::= ϵ Ln+1 ::= l ·Ln Direction d ::= ↓ | ↑

States s ::= (t ,C,L,T ,d)

Sub-term Context Log Tape Sub-term Context Log Tape

tu C L T →•1 t C ⟨⟨·⟩u ⟩ L •·T

λx .t C L •·T →•2 t C ⟨λx . ⟨·⟩⟩ L T

x C ⟨λx .Dn ⟩ Ln ·L T →var λx .Dn ⟨x ⟩ C L (x, λx .Dn, Ln )·T

λx .Dn ⟨x ⟩ C L (x, λx .Dn, Ln )·T →bt2 x C ⟨λx .Dn ⟩ Ln ·L T

t C ⟨⟨·⟩u ⟩ L •·T →•3 tu C L T

t C ⟨λx . ⟨·⟩⟩ L T →•4 λx .t C L •·T

t C ⟨⟨·⟩u ⟩ L l ·T →arg u C ⟨t ⟨·⟩⟩ l ·L T

t C ⟨u ⟨·⟩⟩ l ·L T →bt1 u C ⟨⟨·⟩t ⟩ L l ·T

Fig. 1. Data structures and transitions of the λ Interaction Abstract Machine (λIAM).

the KAM, studied in sections 5 and 8. Keep in mind that the λIAM is an unusual machine, and
that finding it hard to grasp is normalÐprobably, the next sections about the λJAM and the KAM
provide clarifying insights. Also, in [Accattoli et al. 2020b] there is an alternative explanation of
the λIAM, that may be helpful, together with the relationship with proof nets, which is however
not needed here.

Bird’s Eye view of the λIAM. Intuitively, the behaviour of the λIAM can be seen as that of a token
that travels around the syntax tree of the program under evaluation. Similarly to the KAM, it looks
for the head variable of a term, but without storing the encountered β-redexes in an environment.
When it finds the head variable then the λIAM looks for the argument which should replace it,
because having no environment it cannot simply look it up. These two search mechanisms are
realized by two different phases and directions of exploration of the code, noted ↓ and ↑. The
functioning is actually more involved because there is also a backtracking mechanism (which
however has nothing to do with backtracking as modeled by classical logic and continuations),
requiring to save and manipulate code positions in the token. Last, the machine never duplicates
the code, but it distinguishes different uses of a same code (position) using logs. There are no easy
intuitions about how logs handle different usesÐthis is both the magic and the mystery of the
geometry of interaction.

λIAM States. The transitions of the λIAM and all the data structures are defined in Fig. 1. The
λIAM travels on a λ-term t carrying data structuresÐrepresenting the tokenÐstoring information
about the computation and determining the next transition to apply. A key point is that navigation is
done locally, moving only between adjacent positions8. The λIAM has also a direction of navigation
that is either ↓ or ↑ (pronounced down and up). The token is given by two stacks, called log and
tape, whose main components are logged positions. Roughly, a log is a trace of the relevant positions
in the history of a computation, and a logged position is a position plus a log, meant to trace the
history that led to that position. Logs and logged positions are defined by mutual induction9. Note

8Note that also the transition from the variable occurrence to the binder in→var and→bt2 are local if λ-terms are represented
by implementing occurrences as pointers to their binders, as in the proof net representation of λ-terms, upon which some
concrete implementation schemes are based, see [Accattoli and Barras 2017].
9This is similar to the KAM, where closures and environments are defined by mutual induction, but logs and logged positions
play a different role. Moreover, there also is a constraint about the length.
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51:8 Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni

that in the definition of a logged position the log is required to have length n, where n is the level of
the context of the position. We use · also to concatenate logs, writing, e.g., Ln · L, using L for a log
of unspecified length. The tape T is a list of logged positions plus occurrences of the special symbol
•, needed to record the crossing of abstractions and applications. A state of the machine is given by
a position and a token (that is, a log L and a tape T ), together with a direction. Initial states have
the form st := (t , ⟨·⟩, ϵ, ϵ). Directions are often omitted and represented via colors and underlining:
↓ is represented by a red and underlined code term, ↑ by a blue and underlined code context.

Transitions. Intuitively, the machine evaluates the term t until the head abstraction of the head
normal form is found (more explanations below). The transitions of the λIAM are in Fig. 1. Their
union is noted→λIAM. The idea is that ↓-states (t ,C,L,T ) are queries about the head variable of (the
head normal form of) t and ↑-states (t ,C,L,T ) are queries about the argument of an abstraction.

Next, we explain how the transitions realize three entangled mechanisms. Let us anticipate that
the λJAM shall be obtained by short-circuiting the third mechanism, backtracking, and the KAM
by the further removal of the second one, that shall also require to modify the first one.

Sub-term Context Log Tape Dir

(λy .λx .xy)II ⟨·⟩ ϵ ϵ ↓

→•1 (λy .λx .xy)I ⟨·⟩I ϵ • ↓

→•1 λy .λx .xy ⟨·⟩II ϵ • · • ↓

→•2 λx .xy (λy . ⟨·⟩)II ϵ • ↓

→•2 xy (λy .λx . ⟨·⟩)II ϵ ϵ ↓

Mechanism 1: Search Up to β-Redexes. Note
that →•1 skips the argument and adds a • on
the tape. The idea is that • keeps track that an
argument has been encounteredÐits identity is
however forgotten. Then→•2 does the dual job:
it skips an abstraction when the tape carries a
•, that is, the trace of a previously encountered argument. Note that, when the λIAMmoves through
a β-redex with the two steps one after the other, the token is left unchanged. This mechanism
thus realizes search up to β-redexes, that is, without ever recording them. Note that →•3 and →•4

realize the same during the ↑ phase. Let us illustrate this mechanism with an example (on the right):
the first steps of evaluation on the term (λy.λx .xy)II, where I is the identity combinator. One can
notice that the λIAM traverses two β-redexes without altering the token, that is empty both at the
beginning and at the end.

Mechanism 2: Finding Variables and Arguments. As a first approximation, navigating in direction
↓ corresponds to looking for the head variable of the term code, while navigating with direction ↑

corresponds to looking for the sub-term to replace the previously found head variable, what we call
the argument. More precisely, when the head variable x of the active subterm is found, transition
→var switches direction from ↓ to ↑, and the machine starts looking for potential substitutions for
x . The λIAM then moves to the position of the binder λx of x , and starts exploring the context C ,
looking for the first argument up to β-redexes. The relative position of x w.r.t. its binder is recorded
in a new logged position that is added to the tape. Since the machine moves out of a context of
level n, namely Dn , the logged position contains the first n logged positions of the log. Roughly,
this is an encoding of the run that led from the level of λx .Dn ⟨x⟩ to the occurrence of x at hand, in
case the machine would later need to backtrack.
When the argument t for the abstraction binding the variable x in l is found, transition →arg

switches direction from ↑ to ↓, making the machine looking for the head variable of t . Note that
moving to t , the level increases, and that the logged position l is moved from the tape to the log.
The idea is that l is now a completed argument query, and it becomes part of the history of how
the machine got to the current position, to be potentially used for backtracking. We continue the
example of the previous point: the machine finds the head variable x and looks for its argument in
↑mode. When it has been found, the direction turns to ↓ again.
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Sub-term Context Log Tape Dir

xy (λy .λx . ⟨·⟩)II ϵ ϵ ↓

→•1 x (λy .λx . ⟨·⟩y)II ϵ • ↓

→var λx .xy (λy . ⟨·⟩)II ϵ (x, λx . ⟨·⟩y, ϵ )·• ↑

→•4 λy .λx .xy ⟨·⟩II ϵ •·(x, λx . ⟨·⟩y, ϵ )·• ↑

→•3 (λy .λx .xy)I ⟨·⟩I ϵ (x, λx . ⟨·⟩y, ϵ )·• ↑

→arg I (λy .λx .xy)I⟨·⟩ (x, λx . ⟨·⟩y, ϵ ) • ↓

Mechanism 3: Backtracking. It is started by transition →bt1. The idea is that the search for an
argument of the ↑-phase has to temporarily stop, because there are no arguments left at the
current level. The search of the argument then has to be done among the arguments of the variable
occurrence that triggered the search, encoded in l . Then the machine enters into backtracking
mode, which is denoted by a ↓-phase with a logged position on the tape, to reach the position in l .
Backtracking is over when →bt2 is fired.

The ↓-phase and the logged position on the tape mean that the λIAM is backtracking. In fact, in
this configuration the machine is not looking for the head variable of the current subterm λx .t ,
it is rather going back to the variable position in the tape, to find its argument. This is realized
by moving to the position in the tape and changing direction. Moreover, the log Ln encapsulated
in the logged position is put back on the global log. An invariant shall guarantee that the logged
position on the tape always contains a position relative to the active abstraction. In our running
example, a backtracking phase, noted with a BT label, starts when the IAM looks for the argument
of z. Since λz.z has been virtually substituted for x , its argument its actually y. Backtracking is
needed to recover the variable a term was virtually substituted for.

Sub-term Context Log Tape Dir

λz .z (λy .λx .xy)I⟨·⟩ (x, λx . ⟨·⟩y, ϵ ) • ↓

→•2 z (λy .λx .xy)I(λz . ⟨·⟩) (x, λx . ⟨·⟩y, ϵ ) ϵ ↓

→var λz .z (λy .λx .xy)I⟨·⟩ (x, λx . ⟨·⟩y, ϵ ) (z, λz . ⟨·⟩, ϵ ) ↑

BT →bt1 (λy .λx .xy)I ⟨·⟩I ϵ (x, λx . ⟨·⟩y, ϵ )·(z, λz . ⟨·⟩, ϵ ) ↓

BT →•1 λy .λx .xy ⟨·⟩II ϵ •·(x, λx . ⟨·⟩y, ϵ )·(z, λz . ⟨·⟩, ϵ ) ↓

BT →•2 λx .xy (λy . ⟨·⟩)II ϵ (x, λx . ⟨·⟩y, ϵ )·(z, λz . ⟨·⟩, ϵ ) ↓

→bt2 x (λy .λx . ⟨·⟩y)II ϵ (z, λz . ⟨·⟩, ϵ ) ↑

For the sake of completeness, we conclude the example, which runs until the head abstraction of
the weak head normal form of the term under evaluation, namely the first occurrence of I, is found.

Sub-term Context Log Tape Dir

x (λy.λx .⟨·⟩y)II ϵ (z, λz.⟨·⟩, ϵ) ↑

→arg y (λy.λx .x ⟨·⟩)II (z, λz.⟨·⟩, ϵ) ϵ ↓

→var λy.λx .xy ⟨·⟩II ϵ (y, λx .x ⟨·⟩, (z, λz.⟨·⟩, ϵ)) ↑

→arg I (λy.λx .xy)⟨·⟩I (y, λx .x ⟨·⟩, (z, λz.⟨·⟩, ϵ)) ϵ ↓

Last, note that our example is a linear λ-term. The technical report associated to this paper [Accattoli
et al. 2020a] contains an example showing how the λIAM uses logged positions to deal with
duplications.

Basic invariants. Given a state (t ,C,L,T ,d), the log and the tape, i.e. the token, verify two easy
invariants connecting them to the position (t ,C) and the direction d . The log L, together with the
position (t ,C), forms a logged position, i.e. the length of L is exactly the level of the code context
C10. This fact guarantees that the λIAM never gets stuck because the log is not long enough for
transitions→var and→bt1 to apply.
About the tape, note that every time the machine switches from a ↓-state to an ↑-state (or vice

versa), a logged position is pushed (or popped) from the tape T . Thus, for reachable states, the

10 Then, the length of L is exactly the number of (linear logic) boxes in which the code term is contained.
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number of logged positions in T gives the direction of the state. These intuitions are formalized by
the tape and direction invariant below. Given a direction d we use dn for the direction obtained by
switching d exactly n times (i.e., ↓0 = ↓, ↑0 = ↑, ↓n+1 = ↑n and ↑n+1 = ↓n ).

Lemma 3.1 (λIAM basic invariants). Let s = (t ,Cn ,L,T ,d) be a reachable state and |T |l the

number of logged positions in T . Then

(1) Position and log: (t ,Cn ,L) is a logged position, and

(2) Tape and direction: d = ↓ |T |l .

Final States. If the λIAM starts on the initial state st , the execution may either never stop or end
in a state s of the shape s = (λx .u,C,L, ϵ). The fact that no other shapes are possible for s is proved
in Accattoli et al. [2020b]. The tape and direction invariant guarantees that the machine never
stops because the log or the tape have not enough logged positions to apply a →var, →bt1, or a
→arg transition. Additionally, on states such as (λx .D⟨x⟩,C,L, l ·T ), the logged position l has shape
(x , λx .D,L′), so that transition →bt2 can always applyÐthis is a consequence of the exhaustible
state invariant in Sect. 6, as shown in Accattoli et al. [2020b].

The exhaustible state invariant shall be the technical blueprint for the proof of the relationship
between the λIAM and the λJAM, amounting to short-circuiting backtracking phases. Similarly, we
shall use variants of it to relate the KAM and the λJAM, and the λIAM with multi type derivations.

Implementation. Usually, the λIAM is shown to implement (a micro-step variant of) head re-
duction. The details are quite different from those in the usual notion of implementation for
environment machines, such as the KAM. Essentially, it is shown that the λIAM induces a semantics
J·KλIAM of terms that is a sound and adequate with respect to head reduction, rather than showing a
bisimulation between the machine and head reductionÐthis is explained at length in [Accattoli et al.
2020b]. For the sake of simplicity, here we restrict to Closed CbN. The λIAM semantics then reduces
to just observing termination: JtKλIAM is defined if and only if weak head reduction terminates on t .
Therefore, we avoid discussing semantics and only study termination.

Theorem 3.2 ([Accattoli et al. 2020b]). The λIAM implements Closed CbN.

Cost of λIAM Transitions. For all the abstract machines in this paper we take random access
machines (shortened to RAM) with the uniform cost model as the reference computational model.
This is standard in the time analyses of abstract machines for functional languages. Roughly, it
amounts to seeing variables and positions as objects (namely pointers) whose manipulations take
constant time.
Every λIAM transition can then be implemented on RAM in constant time but for transition

→var, whose cost is bounded by the integer n given by Dn (referring to the notation of the rules),
as the rule needs to split the log after the first n entries. This is in accordance with the proof nets
interpretation of the λIAM, because transitions→var correspond to sequences of IAM transitions
on proof netsÐsee [Accattoli et al. 2020b]11. Note that n is bound by the size |t | of the (immutable)
initial code t . The cost of implementing on RAM a λIAM run π from t then is |π |¬var + |π |var · |t |.

Two Useful Properties of the λIAM. A key property is that the λIAM is bi-deterministic, that is, it
is deterministic and also deterministically reversible. Another more technical property is that it
verifies a sort of context-freeness with respect to the tape T . Namely, extending the tape preserves
the shape of the run and of the final state (up to the extension).

11Actually, also transition→bt2 corresponds to n IAM transitions on proof nets. By implementing logs as bi-linked lists,
however, →bt2 can be implemented in constant time. For →var instead, there is no easy way out.
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Sub-term Context Log Tape Sub-term Context Log Tape

tu C L T →•1 t C ⟨⟨·⟩u ⟩ L •·T

λx .t C L •·T →•2 t C ⟨λx . ⟨·⟩⟩ L T

x C ⟨λx .Dn ⟩ Ln ·L T →var λx .Dn ⟨x ⟩ C L (x, C ⟨λx .Dn ⟩, Ln ·L)·T

t C ⟨⟨·⟩u ⟩ L •·T →•3 tu C L T

t C ⟨λx . ⟨·⟩⟩ L T →•4 λx .t C L •·T

t C ⟨⟨·⟩u ⟩ L l ·T →arg u C ⟨t ⟨·⟩⟩ l ·L T

t C ⟨u ⟨·⟩⟩ (x, D, L′)·L T →jmp x D L′ T

Fig. 2. Transitions of the λ Jumping Abstract Machine (λJAM).

Lemma 3.3 (λIAM tape lift). LetT be a tape and π : s = (t ,C,L,T ′
,d) →n

λIAM
(u,D,L′,T ′′

,d ′) =

s ′ a run. Then there is a λIAM run πT : sT = (t ,C,L,T ′·T ,d) →n
λIAM

(u,D,L′,T ′′·T ,d ′) = s ′T .

4 THE JUMPING ABSTRACT MACHINE, REVISITED

The Jumping Abstract Machine (JAM) is introduced in [Danos and Regnier 1999] as an optimization
of the IAM obtained via a sophisticated analysis of IAM runs. Here we present the λJAM, the
recasting of the JAM in the same syntactic framework of the λIAM. In particular, the λIAM and the
λJAM rest on the same grammars and data structures, they only differ on some transitions.

Jumping Around the Log. The difference between the λIAM and the λJAM is in how they create
logged positions, and consequently on how they backtrack. The λIAM has a local approach to
logs, and backtracks via potentially long sequences of transitions, while the λJAM follows a global
approach to logs, and it backtracks in just one jump. The transition system is presented in Fig. 2.
The details of the two variations over the λIAM are:

• Global logged position: logged positions created by rule →var are now global, in that they
record the global position of the variable, and not only the position relative to its binder.
This way, also the log has to be entirely copied. Differently from the λIAM, there is some
duplication of information.

• Backtracking is short-circuited: backtracking is a phase of a λIAM run which is contained
between→bt1 and→bt2 transitions acting on the same logged position. It starts when the
machine has to rebuild the history of a redex/substitution and ends when the substituted
variable occurrence l is found. The optimization at the heart of the λJAM comes from the
observation that the λIAM backtracks to the exact same state that created l . This way, one use
l to jump directly to that state instead of doing the backtracking. Of course, this is possible
only if positions are saved globally in logged positions: note that the λIAM saves in l only
part of the log of the state creating l , while to jump back and avoid backtracking one needs
to save the whole log.

The absence of the backtracking phase makes the λJAM easier to understand than the λIAM. In
particular, the ↓ and ↑ phases have now a precise meaning: the former being the quest for the head
variable of the current subterm, and the latter being the search of the argument of the only variable
occurrence in the tape. This is the second point of the following lemma.

Lemma 4.1 (λJAM basic invariants). Let s = (t ,Cn ,L,T ,d) be a reachable state. Then

(1) Position and log: (t ,Cn ,L) is a logged position, and

(2) Tape and direction: if d = ↓, then T does not contain any logged position, otherwise, if d = ↑,

then T contains exactly one logged position.
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Since the λJAM is an optimization of the λIAM, its final states have the same shape, namely
(λx .u,C,L, ϵ). The fact that the log is always long enough to apply transition →var is given by the
position and log invariant above. In the next section we shall prove that the λIAM and the λJAM
are termination equivalent, obtaining as a corollary that the λJAM implements Closed CbN.

Sub-term Context Log Tape Dir

(λy .λx .xy)II ⟨·⟩ ϵ ϵ ↓

→•1 (λy .λx .xy)I ⟨·⟩I ϵ • ↓

→•1 λy .λx .xy ⟨·⟩II ϵ • · • ↓

→•2 λx .xy (λy . ⟨·⟩)II ϵ • ↓

→•2 xy (λy .λx . ⟨·⟩)II ϵ ϵ ↓

→•1 x (λy .λx . ⟨·⟩y)II ϵ • ↓

An Example. We present the λJAM execu-
tion trace of the same term considered for
the λIAM. In particular, the first transitions
are identical to the λIAM execution since no
→var and→bt1 rules are involved. Instead, we
observe that full context and log are saved
at the occurrence of→var transitions. We set
lx := (x , (λy.λx .⟨·⟩y)I(λz.z), ϵ).

Sub-term Context Log Tape Dir

x (λy .λx . ⟨·⟩y)I(λz .z) ϵ • ↓

→var λx .xy (λy . ⟨·⟩)I(λz .z) ϵ lx ·• ↑

→•4 λy .λx .xy ⟨·⟩I(λz .z) ϵ •·lx ·• ↑

→•3 (λy .λx .xy)I ⟨·⟩(λz .z) ϵ lx ·• ↑

→arg (λz .z) (λy .λx .xy)I⟨·⟩ lx • ↓

→•2 z (λy .λx .xy)I(λz . ⟨·⟩) lx ϵ ↓

→var λz .z (λy .λx .xy)I⟨·⟩ lx (z, (λy .λx .xy)I(λz . ⟨·⟩), lx ) ↑

Finally, as already explained, backtracking is avoided by jumping: the λJAM restores the previously
encountered state, saved in the logged position lx , when exiting from the right-hand side of an
application. We set lz := (z, (λy.λx .xy)I(λz.⟨·⟩), lx ).

Sub-term Context Log Tape Dir

λz .z (λy .λx .xy)I⟨·⟩ lx lz ↑

→jmp x (λy .λx . ⟨·⟩y)I(λz .z) ϵ lz ↑

→arg y (λy .λx .x ⟨·⟩)II lz ϵ ↓

→var λy .λx .xy ⟨·⟩II ϵ (y, (λy .λx .x ⟨·⟩)II, lz ) ↑

→arg I (λy .λx .xy)⟨·⟩I (y, (λy .λx .x ⟨·⟩)II, lz ) ϵ ↓

As for the λIAM, [Accattoli et al. 2020a] contains an example showing how the λJAM deals with
duplications.

Cost of λJAM Transitions. The cost of implementing λJAM transitions and runs on RAM is exactly
the same as for the IAM: all transitions are atomic but for→var, whose cost is given by the level
n of the involved context Dn , itself bound by the size of the initial code t . Note that this means
that in →var the duplication of the log L amounts to the duplication of the pointer to the concrete
representation of L, and not of the whole of L (that would make the cost of →var much higher,
namely depending on the length of the whole run that led to the transition).

5 KRIVINE ABSTRACT MACHINE

The Krivine abstract machine [Krivine 2007] (KAM) is a standard environment machine for Closed
CbN whose time behavior has been studied thoroughlyÐin Sect. 10 we recall the literature about
it. In particular, it is a time reasonable implementation of Closed CbN, where reasonably means
polynomially related to the time cost model of Turing machines. To be uniform with respect to the
other machines, we present the KAM adding information about the context, which is not needed.

Hopping on Arguments. The KAM (in Fig. 3) differs from the λIAM and λJAM as it does record
every β-redex that it encountersÐthus explicitly entangling time and space consumptionÐusing
two data structures. Log and tape are replaced by the (local) environment E and the (applicative)
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Closures Environments Stacks States

c ::= (t ,C,E) E ::= ϵ | [x�c] · E S ::= ϵ | c · S s ::= (t ,C,E, S)

Term Ctx Env Stack Term Ctx Env Stack

tu C E S →app t C ⟨⟨·⟩u ⟩ E (u, C ⟨t ⟨·⟩⟩, E)·S

λx .t C E c ·S →abs t C ⟨λx . ⟨·⟩⟩ [x�c]·E S

x C E ·[x�(u, D, E′′)]·E′ S →var u D E′′ S

Fig. 3. Data structures and transitions of the Krivine Abstract Machine (KAM).

stack S . The basic idea is that, by saving encountered β-redexes in the environment E, when the
machine finds a variable occurrence x it simply looks up in E for the argument of the binder λx
binding x , avoiding the ↑-phase of the λJAMÐnote that the KAM has no ↑ phase and no logs.
Mimicking the jump terminology, one may say that KAM transition →var hops directly on the
argument, skipping the search for it. The stack S is used to collect encountered arguments that
still have to be paired to abstractions to form β-redexes, and then go into the environment E. The
intuition is that the stack has an entry for every occurrences of • on the tape of the λJAM in the
↓-phase, but such entries are more informative, they actually record the encountered argument
(and a copy of the environment, explained next), and not just acknowledge its presence via •.

Closures, Stacks, and Environments. The mutually recursive grammars for closures and environ-

ments, plus the independent one for stacks are defined in Fig. 3, together with the definition of
states. The idea is that every piece of code comes with an environment, forming a closure, which is
why environments and closures are mutually defined. Also, when the machine executes a closed
term t , every closure (u,C,E) in a reachable state is such that for any free variable x of u there is
an entry [x�c] in E, thus E łclosesž u, whence the name closures.

Transitions, Initial and Final States. Initial states of the KAM are in the form st = (t , ⟨·⟩, ϵ, ϵ).
The transitions of the KAM are in Fig. 3Ðtheir union is noted →KAM . The idea is that the →var

transition looks in the environment for the argument of the variable under evaluation. As for the
other machines, the KAM evaluates the term t until the top abstraction of the weak head normal
form of t is found, that is a run either never stops or ends in a state s of the shape s = (λx .u,C,E, ϵ).
This is guaranteed by the mentioned and standard (but omitted) invariant ensuring that when the
initial term is closed, then every variable appearing in the code has an associated closure in the
environment, so that the KAM never gets stuck on a →var transition. In the next section we shall
prove that the λJAM and the KAM are termination equivalent.

We show the KAM execution trace of our running example. Initially, the KAM looks for the head
variable keeping track of the encountered arguments. We set Q := λy.λx .xy.

Sub-term Context Env. Stack

(λy .λx .xy)II ⟨·⟩ ϵ ϵ

→app (λy .λx .xy)I ⟨·⟩I ϵ (I, QI⟨·⟩, ϵ )

→app λy .λx .xy ⟨·⟩II ϵ (I, Q ⟨·⟩I, ϵ ) · (I, QI⟨·⟩, ϵ )

→abs λx .xy (λy . ⟨·⟩)II [y�(I, Q ⟨·⟩I, ϵ )] (I, QI⟨·⟩, ϵ )

→abs xy (λy .λx . ⟨·⟩)II [x�(I, QI⟨·⟩, ϵ )] · [y�(I, Q ⟨·⟩I, ϵ )] = E ϵ

→app x (λy .λx . ⟨·⟩y)II E (y, (λy .λx .x ⟨·⟩)II, E)

Thanks to the information saved in the environment, the KAM is able to directly hop to the
argument of x , namely the second identity. Moreover, the environment is restored from the closure.
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Sub-term Context Env. Stack

x (λy .λx . ⟨·⟩y)I(λz .z) E (y, (λy .λx .x ⟨·⟩)II, E)

→var (λz .z) (λy .λx .xy)I⟨·⟩ ϵ (y, (λy .λx .x ⟨·⟩)II, E)

Then, the computation continues. All application arguments are saved in the stack as closures,
i.e. together with their environment, and then moved to the environment when a binder λx is
encountered (they are also linked to x ). Whenever a variable x is reached, its argument is retrieved,
together with its environment from the closure linked to that variable x .

Sub-term Context Env. Stack

(λz .z) (λy .λx .xy)I⟨·⟩ ϵ (y, (λy .λx .x ⟨·⟩)II, E)

→abs z (λy .λx .xy)I(λz . ⟨·⟩) [z�(y, (λy .λx .x ⟨·⟩)II, E)] ϵ

→var y (λy .λx .x ⟨·⟩)II [x�(I, QI⟨·⟩, ϵ )] · [y�(I, Q ⟨·⟩I, ϵ )] ϵ

→var I (λy .λx .xy)⟨·⟩I ϵ ϵ

As for the other machines, [Accattoli et al. 2020a] contains an example showing how the KAM
deals with duplications.

Cost of KAM Transitions. The idea is that environments are implemented as linked lists, so that
the duplication and insertion operations in transitions →app and →abs can be implemented in
constant time. Transition →var needs to access the environment, whose size is bounded by |t |, the
size of the initial term t of the run. By adopting smarter implementations of envrionments, one
→var transition costs log |t |Ðsee Accattoli and Barras [2017] for discussions about implementations
of the KAM. Then implementing on RAM a KAM run π from t costs |π |¬var + |π |var · log |t |.

6 THE EXHAUSTIBLE STATE INVARIANT

Here we present the exhaustible (state) invariant. In [Accattoli et al. 2020b], this is a key ingredient
for the proof of the λIAM implementation theorem. In this paper, we give it in various forms to
establish the relationships between the various machines. Here we present the basic concepts.
The intuition behind the invariant is that whenever a logged position l occurs in a reachable

state, it is there for a reason: no logged position occurs in initial states, and transitions only add
logged positions to which the machine may come back. In particular, if the state is set in the right
way (to be explained), the λIAM can reach l , exhausting it.

Preliminaries. Exhaustible states rest on some tests for their logged positions. More specifically,
each logged position l in a state s has an associated test state sl that tunes the data structures of s as
to test for the reachability of l . Actually, there shall be two classes of test states, one accounting for
the logged positions in the tape of s , and one for the those in the log of s . The technical definition
of log tests, however, is in the technical report [Accattoli et al. 2020a]. They are essential for the
proof of the exhaustible invariant, but they are not needed for showing the main consequence of
interest in this section, that is, that backtracking always succeeds (Lemma 6.5 below), which is why
they are omitted.

Tape Tests. Tape tests are easy to define. They focus on one of the logged positions in the tape,
discarding everything that follows that position on the tape.

Definition 6.1 (Tape tests). Let s = (t ,Cn ,Ln ,T
′·l ·T ′′

,d) be a state. Then the tape test of s of focus
l is the state sl = (t ,Cn ,Ln ,T

′·l ,↑ |T
′ ·l |l ).

Note that the direction of tape tests is reversed with respect to what stated by the tape and
direction invariant (Lemma 3.1), and so, in general, they are not reachable states. Such a counter-
intuitive fact is needed for the invariant to go through, no more no less. When we shall use the
properties of tests to prove properties of the λIAM (Lemma 6.5 below), we shall extend their tape
via the tape lifting property (Lemma 3.3) as to satisfy the invariant and be reachable. Exhausting a
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logged position l means backtracking to it. We then decorate the backtracking transition →bt1 and
→bt2 as →bt1,l and →bt2,l to specify the involved logged position l . We also need a notion of state
positioned in l and having an empty tape, which is meant to be the target state of →bt2,l when
exhausting l starting on sl .

Definition 6.2 (State surrounding a position). Let l = (t ,D,L) be a logged position. A state s
surrounds l if s = (t ,Cn ⟨D⟩,L · Ln , ϵ) for some Cn and Ln .

The Exhaustibility Invariant. After having introduced all the necessary preliminaries, we can
now formulate the property of states that we shall next prove to be an invariant.

Definition 6.3 (Exhaustible states). E is the smallest set of states s such that if sl is a tape or a log
test of s then there exists a run π : sl →∗

λIAM→bt2,l s
′, where s ′ surrounds l and for the shortest of

such runs π it holds that s ′ ∈ E. States in E are called exhaustible.

Informally, exhaustible states are those for which every logged position can be successfully
tested, that is, the λIAM can backtrack to (an exhaustible state surrounding) it, if properly initialized.
Roughly, a state is exhaustible if the backtracking information encoded in its logged positions
is coherent. The set E being the smallest set of such states implies that checking that a state is
exhaustible can be finitely certified, i.e. there must be a finitary proof.

Proposition 6.4 (Exhaustible invariant [Accattoli et al. 2020b]). Let s be a λIAM reachable

state. Then s is exhaustible.

A key consequence is the fact that backtracking always succeeds, as it amounts to exhausting
the first logged position on the log.

Lemma 6.5 (Backtracking always succeeds). Let s a λIAM reachable state. If s →bt1,l s
′ then

there exists s ′′ such that s ′ →∗
λIAM

→bt2,l s
′′.

Proof. Consider s = (t ,C ⟨u⟨·⟩⟩, l ·L,T ) →bt1,l (u,C ⟨⟨·⟩t⟩,L, l ·T ) = s
′. Since s ′ is reachable then

it is exhaustible, and so its tape test s ′l := (u,C ⟨⟨·⟩t⟩,L, l) can be exhausted, that is, there is a λIAM
run π : s ′l →∗

λIAM
→bt2,l q for a state q surrounding l . Note that s ′l is s ′ where the tape contains

only l . Now, we lift π to a run πT : s ′ →∗
λIAM

→bt2,l s
′′ using the tape lifting lemma (Lemma 3.3). □

7 RELATING THE λ-IAM AND THE λ-JAM: JUMPING IS EXHAUSTING

In this section we prove that the λJAM is a time optimization of the λIAM via an adaptation of the
exhaustible invariant. Our proof is based on the construction of a bisimulation which also provides,
as a corollary, the implementation theorem for the λJAM. The basic idea is that the two machines
are equivalent modulo backtracking. Indeed, the λJAM evaluates terms as the λIAM, but for the
backtracking phase, which is short-circuited and done with just one jump transition. Then one has
to show that the jump is actually simulated by the λIAM.

Log Tests. For simulating jumps we need log tests. The idea is the same underlying tape tests: they
focus on a given logged position in the log. Their definition however requires more than simply
stripping down the log, as the new log and the position still have to form a logged positionÐsaid
differently, the position and the log invariant (Lemma 3.1) has to be preserved. Roughly, the log test
slm focussing on them-th logged position lm in the log of a state (t ,Cn , ln · · · l2 · l1,T ,d) is obtained
by removing the prefix ln · · · lm+1 (if any), and moving the current position up by n −m levels.
Moreover, the tape is emptied and the direction is set to ↑.

In the argument for the simulation of jumps given below, we need only log tests of a very simple
form. Namely, given a state s = (t ,C ⟨u⟨·⟩⟩, l · L,T ) from which the λJAM jumps, we shall consider
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the log test sl := (t ,C ⟨u⟨·⟩⟩, l · L, ϵ), that is, the tape is emptied and (in this case) the position does
not change. The more general form of log tests needing the position change is technical and defined
in the technical report [Accattoli et al. 2020a]Ðit is unavoidable for proving the invariant, but we
fear that giving it here would obfuscate the use of the exhaustible technique, whose idea is instead
quite simple.

I-Exhaustible Invariant. The λIAM exhaustible invariant proves that backtracking phases always
succeed, and it is the key ingredient to relate the λIAM and the λJAM. While the underlying idea is
clear, there is an important detail that has to be addressed: to establish the simulation, we have to
prove that the λIAM can exhaust logged positions of the λJAM, rather than its own.
Since the two machines use logs differently, we have to use a function I (·) that maps the log-

related notions of the λJAM to those of the λIAM (where Γ ranges over both logs and tapes):

Logged positions I (x ,C ⟨λx .Dn⟩,Ln ·L) := (x , λx .Dn , I (Ln))

Tapes and Logs I (ϵ) := ϵ I (l ·Γ) := I (l)·I (Γ) I (•·T ) := •·I (T )

States I (t ,C,L,T ,d) := (t ,C, I (L), I (T ),d)

Another point is that the state surrounding the exhausted position now is uniquely determined by
the logged position. Given a logged position l = (x ,D,L), the state induced by l is l◦ := (x ,D,L, ϵ).

Definition 7.1 (I-Exhaustible States). EI is the smallest set of λJAM states s such that for any tape
or log test sl of s of focus l , there exists a run π : I (sl ) →∗

λIAM
→bt2, I (l ) I (l

◦) such that l◦ ∈ EI . States
in EI are called I-exhaustible.

Lemma 7.2 (I-exhaustible invariant). Let s be a λJAM reachable state. Then s is I-exhaustible.

Jumping is Exhausting. From the invariant and the tape lifting property of the λIAM, it follows
easily that jumps can be simulated via backtracking, from which the relationship between the
λIAM and the λJAM immediately follows. We write →jmp,l for a →jmp transition jumping to l .

Lemma 7.3 (Jumps simulation via backtracking). Let s be a λJAM reachable state such that

s →jmp,l s
′. Then I (s) →bt1, I (l )→

∗
λIAM

→bt2, I (l ) I (s
′).

Proof. Let l := (x ,D,L′) and consider s = (t ,C ⟨u⟨·⟩⟩, (x ,D,L′) · L,T ) →jmp,l (x ,D,L
′
,T ) = s ′.

Since s is reachable then it is I-exhaustible, so its log test sl := (t ,C ⟨u⟨·⟩⟩, l · L, ϵ) can be exhausted,
that is, there is a λIAM run π : I (sl ) →∗

λIAM
→bt2, I (l ) I (x ,D,L

′
, ϵ) = s ′′. Note that the first transition

of π is necessarily→bt1, I (l ). Moreover, I (sl ) and s ′′ are exactly I (s) and I (s ′) with empty tape. We
lift π to a run π I (T ) : I (sl )I (T ) →bt1, I (l )→

∗
λIAM

→bt2, I (l ) s
′′I (T ) using Lemma 3.3. Now, π I (T ) is exactly

the λIAM simulation of the jump, because I (sl )I (T ) = I (s) and s ′′I (T ) = I (s). □

From the lemma it easily follows a bisimulation between the λIAM and the λJAM, showing that
the latter is faster. In the technical report [Accattoli et al. 2020a], a general theorem relating also
potentially diverging runs can be found. Here we give only the more concise statement about
complete runs.

Theorem 7.4 (λIAM and λJAM relationship). There is a complete λJAM run π J from t if and

only if there is a complete λIAM run πI from t . In particular, the λJAM implements Closed CbN.

Moreover, |π J | ≤ |πI | and |π J |var ≤ |πI |var.

Exponential Gap. The time gap between the λIAM and the λJAM can be exponential, as it is
shown by the family of terms tn (t1 := I and tn+1 := tn I) mentioned in the introduction. The results
of this paper provide a nice high-level proof. Next section shows that the time of the λJAM is
polynomial in the time of the KAM, that takes time polynomial in the number of β-steps to evaluate
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Logged closures ĉ ::= (t ,Cn+1,E)
Ln Environments E ::= ϵ | [x�ĉ] · E

Logs L0 ::= ϵ Ln+1 ::= l̂ · Ln Closed positions l̂ ::= (t ,Cn ,Ln)
E

Closed Tapes T ::= ϵ | ĉ ·T | l̂ ·T States s ::= (t ,C,L,E,T ,d)

Term Ctx Log Env Cl. Tape Term Ctx Log Env Cl. Tape

tu C L E T →•1/app t C ⟨⟨·⟩u ⟩ L E ĉ ·T

λx .t C L E ĉ ·T →•2/abs t C ⟨λx . ⟨·⟩⟩ L [x�ĉ]·E T

x C ⟨λx .Dn ⟩ Ln ·L E′ ·[x�ĉ]·E T →varJ λx .Dn ⟨x ⟩ C L E l̂ ·T

x C L E T →hop/varK u D l̂ ·L′ F T

where ĉ := (u, C ⟨t ⟨·⟩⟩, E)L in →•1/app

l̂ := (x, C ⟨λx .D ⟩, Ln ·L)
E′·[x�ĉ ]·E in→varJ

E = E′ ·[x�(u, D, F )L
′
]·E′′ and l̂ = (x, C, L)E in →hop/varK.

t C ⟨⟨·⟩u ⟩ L E ĉ ·T →•3 tu C L E T

t C ⟨λx . ⟨·⟩⟩ L [x�ĉ]·E T →•4 λx .t C L E ĉ ·T

t C ⟨⟨·⟩u ⟩ L E l̂ ·T →arg u C ⟨t ⟨·⟩⟩ l̂ ·L E T

t C ⟨u ⟨·⟩⟩ l̂ ·L E T →jmp x D L′ E′ T

where in the last transition l̂ = (x, D, L′)E
′
.

Fig. 4. Data structures and transitions of the Hopping Abstract Machine (HAM).

tn , that is, n. The study of multi types in Sect. 12 instead shows that the time of the λIAM depends
on the size of the smallest type An of tn , which is easily seen to be exponential in n. In fact, using
the notation of Sect. 12, A1 := ⋆, and An+1 := [An] → An .

8 ENTANGLING THE λJAM AND THE KAM: THE HAM

Now we turn to the relationship between the λJAM and the KAM. We prove that KAM runs can be
obtained from λJAM ones via hops that short-circuit the search for arguments realized by the blue
transitions. It then follows that the KAM can be seen as a time improvement of the λJAM.

The HAM. To prove that the KAM is a time improvement of the λJAM, we introduce an inter-
mediate machine, the Hopping Abstract Machine (HAM) in Fig. 4, that merges the two. The HAM
is a technical tool addressing an inherent difficulty: the λJAM and the KAM use different data
structures and it is impossible to turn a KAM state into a λJAM state without having to look at the
whole run that led to that state, as it is instead possible for the λJAM and the λIAM.

The idea behind the HAM is to entangle the data structures of both machines so that their states
get paired by construction, and to allow it to behave non-deterministically either as the λJAM
or as the KAM. The HAM deals with two enriched objects, logged closures ĉ and closed (logged)

positions l̂ (defined in Fig. 4, overloading some of the notations of the previous sections), obtained
by adding a log to closures and an environment to logged positions. Of course, environments and
logs have to be redefined as containing these enriched objects. There is also a (closed) tape T , that is,
a data structure obtained by merging the roles of the stack and the tape and containing both logged
closures and closed positions. In fact the closed tape is obtained from the λJAM tape by upgrading
every • entry to a logged closure ĉ , and every logged position l to a closed one l̂ . Logged closures
and closed positions contain the same information (a term, a context, a log, and an environment)
but they play different roles.
The non-determinism of the machine amounts to the presence of two transitions →varJ and

→hop/varK for the variable case, that are simply the var transitions of the λJAM and the KAM, lifted
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to the new data structures. In particular, transition →hop/varK short-circuits a whole ↑ phase of the
λJAM hopping directly to the argument.

It is evident that by removing environments, turning every logged closure into •, and removing
→hop/varK we obtain the λJAM. Similarly, by removing logs,→varJ, and the ↑ transitions, one obtains
the KAM. We avoid spelling out these immediate projections. Instead, we see KAM runs inside the
HAM as given by the transition→HAMK

:=→•1/app ∪ →•2/abs ∪ →hop/varK. Similarly, the λJAM is
seen as transition→HAMJ , defined as the union of all HAM transitions but →hop/varK.
The HAM verifies the same basic properties of the λJAM, simply lifted to the enriched data

structures. Moreover, it verifies a tape lifting property.

Lemma 8.1 (HAM tape lift). Let π : s = (t ,C,L,E,T ′
,d) →n

HAM
(u,D,L′,E ′

,T ′′
,d ′) = s ′ be a run

and T be a tape. Then there is a run πT : sT = (t ,C,L,E,T ′·T ,d) →n
HAM

(u,D,L′,E ′
,T ′′·T ,d ′) = s ′T .

9 HOPPING IS ALSO EXHAUSTING

Since jumping and hopping amount to a similar idea, the proof technique that we use to relate the
λJAM and the KAM is obtained by another variation on the exhaustible invariant.

Testing Logged Closures. The main difference is that now we exhaust logged closures instead of
logged positions. Via the ↑-exhaustible invariant below we shall show that the HAM can exhaust a
logged closureÐthat is it can recover the argument in the closureÐby using only λJAM ↑ transitions.
This capability shall then be used to show that the λJAM can simulate hops.

Since logged closures are both in the environment and in the tape, we have two kinds of test.
The definition of tape tests is in the technical report [Accattoli et al. 2020a]. They are essential for
the proof of the ↑-exhaustible invariant, but they are not needed for the argument at work in the
simulation, spelled out below.

Environment Tests. Given a HAM state (t ,C,L,E,T ,d) consider an entry [x�ĉ] in E. The idea is
that one wants to exhaust ĉ to return to the state saved in ĉ . Remember that the λJAM looks for the
argument starting from the binder of x . Then, the test associated to ĉ is obtained by positioning the
machine on the binder λx for x , and modifying the log and the environment accordingly. Moreover,
the tape is emptied.

Definition 9.1 (HAM environment tests). Let s = (t ,C ⟨λx .Dn⟩,Ln ·L,E
′·[x�ĉ]·E,T ,d) be a state.

Then, sĉ := (λx .Dn ⟨t⟩,C,L,E, ϵ) is an environment test for s of focus ĉ .

As in the previous section, we need a notion of state induced by a logged closure ĉ , that is the
state reached by a run exhausting ĉ . The definition may seem wrong, an explanation follows.

Definition 9.2 (HAM state induced by a logged closure). Given a logged closure ĉ = (u,D⟨t ⟨·⟩⟩,E)L ,
the state ĉ◦ induced by ĉ is defined as ĉ◦ := (t ,D⟨⟨·⟩u⟩,L,E, ϵ).

The previous definition is counter-intuitive, as one would expect ĉ◦ to rather be the state
s ′ := (u,D⟨t ⟨·⟩⟩,L,E, ϵ), but for technical reasons this is not possible. In the simulations of hops
below, however, ĉ◦ is tape lifted to a state that makes a→arg transition to (a tape lifting of) s ′, as
one would expect. We set →↑:=→•3,•4,arg, jmp.

Definition 9.3 (HAM ↑-Exhaustible states). E↑ is the smallest set of those states s such that for
any tape or environment test sĉ of s , there exists a run π↑ : sĉ →∗

↑
ĉ◦ and ĉ◦ ∈ E↑. States in E↑ are

called ↑-exhaustible (pronounced up-exhaustible).

Lemma 9.4. Let s be a HAM reachable state. Then s is ↑-exhaustible.
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Simulating Hops. From the invariant and the tape lifting property of the HAM, it follows easily
that hops can be simulated via →↑, as the next lemma shows.

Lemma 9.5 (Hops simulation via ↑). Let s be a HAM reachable state and s →hop/varK s ′. Then

s →varJ→
∗
↑
→arg s

′.

Proof. The hypothesis is: s = (x ,C,L,E,T ) →hop/varK (u,D⟨t ⟨·⟩⟩, l̂ ·L′, F ,T ) = s ′ where E =

E ′·[x�ĉ]·E ′′ with ĉ = (u,D⟨t ⟨·⟩⟩, F )L
′
and l̂ := (x ,C,L)E . From s the HAM can also do a →varJ

transition: s = (x ,C ′⟨λx .D ′
n⟩,Ln ·L

′′
,E ′[x�ĉ]E ′′

,T ) →varJ (λx .D
′
n ⟨x⟩,C

′
,L′′,E ′′

, l̂ ·T ) =: s ′′ where
L = Ln ·L

′′ and C = C ′⟨λx .D ′
n⟩. Now consider the environment test s ′ĉ = (λx .Dn ⟨x⟩,C,L

′′
,E ′′
, ϵ).

By ↑-exhaustibility we obtain π : s ′ĉ →∗
↑
ĉ◦ = (t ,D⟨⟨·⟩u⟩,L′, F , ϵ) Then, lifting ĉ◦ with the tape

l̂ ·T , one has ĉ◦
l̂ ·T
= (t ,D⟨⟨·⟩u⟩,L′, F , l̂ ·T ) →arg (u,D⟨t ⟨·⟩⟩, l̂ ·L′, F ,T ) Thus, s →varJ s

′′ →∗
↑
ĉ◦
l̂ ·T

→arg

s ′. □

From the lemma it easily follows a bisimulation between the λJAM and the KAM, showing that
the latter is faster. In the technical report [Accattoli et al. 2020a], there is a theorem relating their
runs inside the HAM, considering also potentially diverging runs. Here we give only the more
concise statement about complete runs.

Theorem 9.6 (λJAM and KAM relationship). There is a complete λJAM run π J from t if and

only if there is a complete KAM run πK from t . Moreover, |π J | = |πK | + |π J |↑ and |π J |var = |πK |var.

10 THE λ-JAM IS SLOWLY REASONABLE

In this section we provide bounds for the complexity of the λJAM. First, we show that it is quadrati-
cally slower than the KAM, and then, by using results from the literature about the KAM, we obtain
bounds with respect to the two parameters for complexity analyses of abstract machines, namely,
the size |t | of the evaluated term and the number #β of→wh-steps to evaluate t .

Locating the λJAM. We have proved in the previous two sections that a run π J of the λJAM from
t is such that |πK | ≤ |π J | ≤ |πI |, where πK and πI are the runs from t respectively of the KAM
and of the λIAM. However, this tells nothing about the inherent complexity of evaluating a term
with the λJAM. In fact, it is well known that |πK | is polynomial in #β and |t | (namely quadratic
in #β and linear in |t |), while |πI | can be exponential in both #β and |t | (the typical example of
exponential behavior being the family of terms tn defined as t1 := I and tn+1 := tn I). What about
the λJAM? Is it polynomial or exponential? It turns out that the λJAM is polynomial, and precisely
at most quadratically slower than the KAM.

Bounding ↑ Phases. Since the KAM is the λJAM less the (blue) ↑ phases, and the complexity of
the KAM is known, we only have to study the length of ↑ phases. The length of a ↑ phase extending
a run π from t is bound by |π |var · |t |, and the length of all ↑ phases together is bound by |π |2var · |t |.
The proof is in three steps. First, we show that in absence of jumps a ↑ phase cannot be longer than
|t |. An immediate induction on |C | proves the following lemma.

Lemma 10.1. Let π : (t ,C,L,T ) →∗
•3,•4 s . Then |π | ≤ |C | ≤ |C ⟨t⟩|.

Second, we need an invariant. To estimate the number of jumps in a ↑ phase, we need to link the
structure of logs with the number of →var transitions encountered so far. We introduce the notion
of depth of a tape/log Γ, defined in the following way:

depth(ϵ) := 0 depth(• ·T ) := depth(T )

depth(l · Γ) := depth(l) depth((x ,C,L)) := 1 + depth(L)
depth(t ,C,L,T ,↑) := depth(T ) depth(t ,C,L,T ,↓) := depth(L)
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Proposition 10.2 (Depth invariant). Let π : st →∗
λJAM

s be an initial run of the λJAM. Then

depth(s) = |π |var. Moreover depth(s) ≥ depth(l) for every logged position l in s .

Third, we bound ↑ phases. The number of jumps in a single phase s →∗
↑
s ′ of ↑ transitions is

bound by depth(s), and pairing it up with Lemma 10.1 we obtain a bound on the phase. By the depth
invariant the bound can be given relatively to |π |var, and a standard argument extends the bound to
all ↑ phases in a run, adding a quadratic dependency. Let |π |↑ be the number of→↑ transitions in π .

Lemma 10.3 (Bound on ↑ phases).

(1) One ↑ phase: if s = (t ,C,L,T ) is a reachable state and π : s →∗
↑
s ′ then |π | ≤ depth(s) · |C ⟨t⟩|.

(2) All ↑ phases: if π : st →∗
λJAM

s then |π |↑ ≤ |π |2var · |t |.

The Complexity of the KAM. We need to recall the complexity analysis of the KAM from [Accattoli
et al. 2014; Accattoli and Barras 2017; Accattoli and Dal Lago 2012]. The length of a complete KAM
run π from t verifies |π | = |π |var + 2 · |π |abs and we have |π |var = O(|π |2

abs
) (the bound is tight, as

there are examples reaching it). Since |π |abs is exactly the number #β of→wh steps to evaluate t
(the cost model of reference for Closed CbN), we have that |π | = O(#β2). Now since the cost of
implementing KAM single transitions on RAM is bound by |t |, the complexity of implementing the
KAM is O(#β2 · |t |), that is, the KAM is a reasonable machine.

The Complexity of the λJAM. From the complexity of the KAM, the fact that the λJAM and the
KAM do exactly the same number of→var transitions, and that the number of ↑ transition of the
λJAM are bound by |π |2var · |t |, we easily obtain the following results.

Theorem 10.4 (λJAM complexity). Let t be a closed term such that t →n
wh

u, u be →wh normal,

and π J and πK be the complete λJAM and KAM runs from t . Then:

(1) The λJAM is quadratically slower than the KAM: |πK | ≤ |π J | = O(|πK |
2 · |t |).

(2) The λJAM is (slowly) reasonable: |π J | = O(n4 · |t |), and the cost of implementing π J on a RAM

is also O(n4 · |t |).

11 THE POINTER ABSTRACT MACHINE, REVISITED

The Pointer Abstract Machine (PAM), due to Danos and Regnier [Danos et al. 1996; Danos and
Regnier 2004], gives an operational account of the interaction process at work in Hyland and Ong
game semantics. The machine is always described rather informally via a pseudo-code algorithm.
Here we define it according to our syntactic style, calling it λPAM, and provide its first formal and
manageable presentation as an actual abstract machine.
Our result concerning the λPAM is that it is strongly bisimilar to the λJAM. Roughly, the two

are the same machine, with exactly the same time behavior, they just use different data structures.
This connection is mentioned in [Danos and Regnier 1999], but not proved. We find it instructive
to spell it out, as the connection is elegant but far from being evident.

Fragmented vs Monolitic Run Traces. Both machines jump and need to store information about
the run, to jump to the right place. They differ on how they represent this information. The λJAM
uses logged positions, that is, positions coming with the information to be restored after the jump.
The approach can be seen as fragmented, as the trace of the run is distributed among all the logged
positions in the state. The λPAM adopts a monolitic approach, storing all the information in a
unique history H , a new data structure encoding the whole run in a minimalistic and sophisticated
way. Roughly, the history H saves all the variable positions p for which an argument as been found,
each one with a pointer (under the form of an index i) to a previous variable position p ′ in H . The
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index i intuitively realizes a mechanism to retrieve the log associated to p by the λJAM. We first
define the machine and then explain the relationship between the two approaches.

Data Structures. All the data structures of the PAM are defined in Fig. 5. Positions are no longer
logged, and noted with p, p ′, etc. An index i is simply a natural number. Indexed positions are pairs
(p, i). A history H is a sequence of indexed variable positions (accumulated from right to left). The
idea is that indices are pointers to entries in the history, that is, if the i-th entry of H is (p, j) then j

points to a previous entry in H , that is, j < i . The tape of the λPAM is a stack containing variable
positions and occurrences of •.

Transitions and Look-Up. Initial states have the form st := (t , ⟨·⟩, ϵ, 0, ϵ), the transitions of the
λPAM are in Fig. 5, they are labeled exactly as in the λJAM, and their union is noted →λPAM.
Transitions→var and→jmp need to retrieve information from the history H , for which there are
some dedicated notations. We use iH

k
,xH

k
,DH

k
to denote, respectively, the index, variable, and context

of the k-th indexed position in H .
Transition →var moreover looks up into H in an unusual way. The idea is that it accesses H

n times to retrieve an index. The first time it retrieves the indexed position (p1, j1) of index i , to
then retrieve the position (p2, j2) of index j1, and so on, until it retrieves jn and makes it the new
state index. This is formalized using the look-up function ϕH : N→ N defined as ϕH (k) := iHk , and

whose powers ϕn
H
are defined as ϕn

H
(k) := ϕH (ϕ

(n−1)
H

(k)), where ϕ0
H
(k) := k . Note that implementing

→var on RAM then costs n, that is bound by the size |t | of the initial term, exactly as for the λJAM,
while all other transitions have constant cost.

Sub-term Context Hist. Index Tape Dir

(λy .λx .xy)II ⟨·⟩ ϵ 0 ϵ ↓

→•1 (λy .λx .xy)I ⟨·⟩I ϵ 0 • ↓

→•1 λy .λx .xy ⟨·⟩II ϵ 0 • · • ↓

→•2 λx .xy (λy . ⟨·⟩)II ϵ 0 • ↓

→•2 xy (λy .λx . ⟨·⟩)II ϵ 0 ϵ ↓

→•1 x (λy .λx . ⟨·⟩y)II ϵ 0 • ↓

An Example. As for the other ma-
chines we have considered in this
paper, we give the execution trace of
the λPAM on the term (λy.λx .xy)II.
The reader can grasp some intu-
ition considering that the PAM is
strongly bisimilar to the λJAM. In
particular, the λPAM considers explicit pointers. Indeed, as we have already pointed out, λJAM
logs are not actually copied in the λJAM →var transition: what is duplicated is just a pointer to
them. The λPAM handles this mechanism directly in its definition, and can thus be considered
as a low-level implementation of the λJAM. In the following we will explain this in more detail.
After having looked for the head variable through the spine of the term, the λPAM, now in ↑mode,
queries the argument of x , namely λz.z, that then explores. The argument of its head variable z is
y, that has to be found via backtracking or jumping. We set px := (x , (λy.λx .⟨·⟩y)I(λz.z)).

Sub-term Context Hist. Index Tape Dir

x (λy .λx . ⟨·⟩y)I(λz .z) ϵ 0 • ↓

→var λx .xy (λy . ⟨·⟩)I(λz .z) ϵ 0 px ·• ↑

→•4 λy .λx .xy ⟨·⟩I(λz .z) ϵ 0 •·px ·• ↑

→•3 (λy .λx .xy)I ⟨·⟩(λz .z) ϵ 0 px ·• ↑

→arg (λz .z) (λy .λx .xy)I⟨·⟩ (px , 0) 1 • ↓

→•2 z (λy .λx .xy)I(λz . ⟨·⟩) (px , 0) 1 ϵ ↓

→var λz .z (λy .λx .xy)I⟨·⟩ (px , 0) 1 (z, (λy .λx .xy)I(λz . ⟨·⟩)) ↑

The jump is simulated by the λPAM retrieving the position saved in the history at the current in-
dex, and then updating the index accordingly, i.e. diminishing it by one. Intuitively, this corresponds
to the ’unpacking’ made by the λJAM in the→jmp transition. We set pz := (z, (λy.λx .xy)I(λz.⟨·⟩))

and py = (y, (λy.λx .x ⟨·⟩)II).
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Positions p ::= (t ,C) Tapes T ::= ϵ | • ·T | p·T

Histories H ::= ϵ | (p, i)·H States s ::= (t ,C,H , i,T ,d) i ∈ N

Sub-term Context Hist. Index Tape Sub-term Context Hist. Index Tape

tu C H i T →•1 t C ⟨⟨·⟩u ⟩ H i •·T

λx .t C H i •·T →•2 t C ⟨λx . ⟨·⟩⟩ H i T

x C ⟨λx .Dn ⟩ H i T →var λx .Dn ⟨x ⟩ C H ϕn
H
(i) (x, C ⟨λx .Dn ⟩)·T

t C ⟨⟨·⟩u ⟩ H i •·T →•3 tu C H i T

t C ⟨λx . ⟨·⟩⟩ H i T →•4 λx .t C H i •·T

t C ⟨⟨·⟩u ⟩ H i p ·T →arg u C ⟨t ⟨·⟩⟩ (p, i)·H |H | + 1 T

t C ⟨u ⟨·⟩⟩ H i T →jmp xHi DH
i H i − 1 T

Fig. 5. Data structures and transitions of the λ Pointer Abstract Machine (λPAM).

Sub-term Context Hist. Index Tape Dir

λz .z (λy .λx .xy)I⟨·⟩ (px , 0) 1 pz ↑

→jmp x (λy .λx . ⟨·⟩y)I(λz .z) (px , 0) 0 pz ↑

→arg y (λy .λx .x ⟨·⟩)II (pz, 0)·(px , 0) 2 ϵ ↓

→var λy .λx .xy ⟨·⟩II (py, 0)·(pz, 0)·(px , 0) 0 py ↑

→arg I (λy .λx .xy)⟨·⟩I (py, 0)·(pz, 0)·(px , 0) 3 ϵ ↓

As for the other machines, the technical report [Accattoli et al. 2020a] contains an example
showing how the λPAM deals with duplication.

Final States and Invariants. Final states of the λPAM have, as expected, shape (λx .t ,C,H , i, ϵ,↓).
This follows from the fact that the machine is never stuck on→var steps because ϕnH (i) is undefined.
Note indeed a subtle point: ϕH (0) is undefined, so, potentially, ϕnH (i) may be undefined. We then
need an invariant ensuring thatÐin the source state of→varÐ ϕn

H
(i) is always defined. The next

statement collects also other minor invariants of the λPAM.
We say that H has depth (at least) n ∈ N at i if n = 0 or if n > 0 and ϕm

H
(i) > 0 for everym < n.

Lemma 11.1 (λPAM invariants). Let s = (t ,Cn ,H , i,T ,d) be a reachable PAM state. Then:

(1) Depth: H has depth n at i . Moreover, if ((u,Dm), j) is the k-th indexed position of H , with k > 0,
then H has depthm at k − 1.

(2) Tape, index, and direction: if d = ↓, then i = |H | and T does not contain any logged position,

otherwise if d = ↑ then T contains exactly one position.

History, Indices, and Logs. Let’s now explain the relationship between the λJAM and the λPAM.
The historyH essentially stores the sequence of→var queries, consisting of the position of a variable
needing an argument, that the λPAM has completed, that is, for which it has found the argument.
The key point is that it stores them with an index i . Indices are a low-level mechanism to retrieve
logs, that are crumbled and shuffled all over H .
Let us explain how a log (p1,L1)· . . . ·(pn ,Ln) of a reachable λJAM state is represented by the

index i1 and the history H of the corresponding λPAM state. There are two ideas:

• The sequence of positions: p1 is in the i1-th entry (p1, i2) of H , p2 is in the i2-th entry (p2, i3),
and so on.

• The log of each position: the log L1 of p1 is represented in H (recursively following the same
principle) starting from index i1 − 1, the log L2 starting from index i2 − 1, and so on.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 51. Publication date: January 2021.



The (In)Efficiency of Interaction 51:23

The Bisimulation. The given explanation underlies the following definition of relations ≃T
,≃LH and ≃ between data structures and states of the λJAM and the λPAM, that induce a strong
bisimulation. The intended meaning of the relation L ≃LH (H , i) is that the log L is represented in
the history H starting from index i .

Definition 11.2. The relations ≃T ,≃LH and ≃ are defined as follows.

Tapes ϵ ≃T ϵ

TJ ≃T TP

•·TJ ≃T •·TP

TJ ≃T TP

(x ,C,L)·TJ ≃T (x ,C)·TP

Log-Histories ϵ ≃LH (H , 0)

(x ,C) = (xHi ,D
H
i ) L ≃LH (H ,ϕH (i)) L′ ≃LH (H , i − 1)

(x ,C,L′)·L ≃LH (H , i)

States

TJ ≃T TP L ≃LH (H , i)

(t ,C,L,TJ ,d) ≃ (t ,C,H , i,TP ,d)

Note that in the second rule for ≃LH the index i is ≥ 1, and that ≃ contains all pairs of initial
states. Note also that the (logged) positions case of ≃T (rightmost rule for ≃T ) the log L has no
matching construct on the λPAM side. This is why the next theorem is stated together with an
invariant (the moreover part), allowing to retrieve that log from the history.

Theorem 11.3 (≃ is a strong bisimulation).

(1) for every run π J : s
λJAM
t →∗

λJAM
s J there exists a run πP : sλPAMt →∗

λPAM
sP such that s J ≃ sP

and |π J | = |πP | and performing exactly the same transitions;

(2) for every run πP : sλPAMt →∗
λPAM

sP there exists a run π J : s
λJAM
t →∗

λJAM
s J such that s J ≃ sP

and |π J | = |πP | and performing exactly the same transitions.

Moreover, if s J = (t ,C,L,TJ ,↑) ≃ (t ,C,H , i,TP ,↑) = sP and (x ,D,L′) is the unique logged position in

TJ then L′ ≃LH (H , |H |).

Strong bisimulations trivially preserve termination and the length of runs.

Corollary 11.4 (Termination and λPAM implementation). λJAM(t)⇓ if and only if λPAM(t)⇓,

and the two runs use exactly the same transitions. Therefore, the λPAM implements Closed CbN.

12 SEQUENCE TYPES

Here we introduce a type system that we shall use to measure the length of λIAM runs.

Intersections, Multi Sets, and Sequences. The framework that we adopt is the one of intersection
types. As many recent works, we use the non-idempotent variant, where the intersection type
A ∧A is not equivalent to A, and which has stronger ties to linear logic and time analyses, because
it takes into account how many times a resource/type A is used, and not just whether A is used or
not. Non-idempotent intersections are multi sets, which is why these types are sometimes called
multi types and an intersection A ∧ B ∧A is rather noted [A,B,A]. Here we add a further change,
we also consider non-commutative multi types. Removing commutativity turns multi sets into lists,
or sequencesÐthus, we call them sequence types. Adopting sequences is an inessential tweak. Our
study does not really depend on their sequential structure, we only need to use bijections between
multi sets, to describe the SIAM, and these bijections are just more easily managed using sequences
rather than multi sets. This rigid approach has been already used fruitfully by Tsukada et al. [2017]
and Mazza et al. [2018].

Basic Definitions. As for multi types, there are two layers of types, linear types and sequence types,
mutually defined as follows.
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x : [A] ⊢ x : A
T-Var

Γ,x : S ⊢ t : A
Γ ⊢ λx .t : S → A

T-λ
Γ ⊢ λx .t : ⋆

T-λ⋆

Γ ⊢ t : [A′
1, . . . ,A

′
n] → A [∆i ⊢ u : A′

i ]i ∈[1, ...,n]

Γ ⊎
∑

i ∈[1, ...,n] ∆i ⊢ tu : A
T-@

Fig. 6. The sequence type system.

Linear types A,A′ ::= ⋆
�

� S → A Seqence types S, S ′ ::= [A1, . . . ,An]

Since commutativity is ruled out, we have, e.g., [A,A′] , [A′
,A]. We shall use [·] as a generic list

constructor not limited to types, thus writing [2, 1, 12, 4] for a list of natural numbers, and also
use it for lists of judgments or type derivations. Note that there is a ground type ⋆, which can be
thought as the type of normal forms, that in Closed CbN are precisely abstractions. Note also that
arrow (linear) types S → A can have a sequence only on the left. The empty sequence is noted [],
and the concatenation of two sequences S and S ′ is noted S ⊎ S ′.
Type judgments have the form Γ ⊢ t : A, where Γ is a type environment, defined below. The

typing rules are in Fig. 6, type derivations are noted π and we write π ▷ Γ ⊢ t : A for a type
derivation π of ending judgment Γ ⊢ t : A. Type environments, ranged over by Γ,∆ are total maps
from variables to sequence types such that only finitely many variables are mapped to non-empty
sequence types, and we write Γ = x1 : S1, . . . ,xn : Sn if dom(Γ) = {x1, . . . ,xn}Ðnote that type
environments are commutative, what is non-commutative is only the sequence constructor [·].
Given two type environments Γ,∆, the expression Γ ⊎ ∆ stands for the type environment assigning
to every variable x the list Γ(x) ⊎ ∆(x). A sequence Γi1 , . . . , Γik of type environments is also noted
{Γi }i ∈[i1, ...,ik ], or {Γi }i ∈I with I = [i1, . . . , ik ]. Moreover, we use

∑

i ∈I Γi for the type environment
defined as

∑

i ∈I Γi := [] if I = [], and
∑

i ∈I Γi := Γi1 ⊎
∑

i ∈I ′ Γi if I = [i1] ⊎ I ′.
In the following we use two basic properties of the type system, collected in the following

straightforward lemma. One is the absence of weakening, and the other one is a correspondence
between sequence types and axioms. We write |S | for the length of S as a sequence.

Lemma 12.1 (Relevance and axiom seqences). If π ▷ Γ ⊢ t : A then dom(Γ) ⊆ fv(t), thus if t is

closed then Γ is empty. Moreover, there are exactly |Γ(x)| axioms typing x in π , which appear from left

to right as leaves of π (seen as an ordered tree) in the order given by Γ(x) = [A1, . . . ,Ak ] and that the

i-th axiom types x with Ai .

Characterization of Termination. It is well-known that intersection and multi types characterize
Closed CbN termination, that is, they type all and only those λ-terms that terminate with respect
to weak head reduction. If terms are closed, the same result smoothly holds for sequence types,
as we now explain. The only point where non-commutativity is delicate for the characterization
is in the proof of the typed substitution lemma for subject reduction (and the dual lemma for
subject expansion), as substitution may change the order of concatenation in type environments.
In our simple setting where terms are closed, however, the term to substitute is closed12 andÐ
by the relevance lemmaÐits type derivation comes with no type environment, so the order-of-
concatenation problem disappears. Therefore, sequence types characterize termination in Closed
CbN too. Thus from now on we essentially identify multi and sequence types.

Theorem 12.2. A closed term t has weak head normal form if and only if ⊢ t : ⋆.

12It is well known that in Closed CbN the substitutions t {x�u } associated to reduced β -redexes are such that u is closed.
The term t is of course (potentially) open, and its type derivation has a type environment Γ, but the important point here is
that the type derivation of u has no type environment, so that the substitution does not concatenate sequence types.
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KAM λIAM

⊢1
T-Var

⊢w

⊢w+1
T-λ

⊢0
T-λ⋆

⊢w [⊢vi ]i ∈[1, ...,n]

⊢w+
∑

vi+1
T-@

[A] ⊢∥A ∥ A
T-Var

Γ, S ⊢w A

Γ ⊢w+∥S→A∥ S → A
T-λ

Γ ⊢0 ⋆
T-λ⋆

Γ ⊢w [A′
1, . . . ,A

′
n ] → A [∆i ⊢

vi A′
i ]i ∈[1, ...,n]

Γ ⊎
∑

i ∈[1, ...,n] ∆i ⊢
w+

∑

vi+∥A ∥ A
T-@

Fig. 7. The weight assignmentsWKAM (·), on the left, andWλIAM(·), on the right.

Sequence Types and KAM Time. Multi types have been successfully applied in quantitative
analyses of normalization, starting with de Carvalho [2007, 2018] who used them to give a bound
to the length of KAM runs. De Carvalho’s technique can be re-phrased and distilled as a decoration
of type derivations with weights, that is, cost annotations, following the scheme of Fig. 7. Please
note that the weight assignment is blind to types, and thus relies only on the structure of the type
derivation. De Carvalho’s result can be formulated as follows.

Theorem 12.3 (De Carvalho). There is a complete KAM run of length n from t if and only if

exists π such that π ▷ ⊢ t : ⋆ andWKAM (π ) = n.

The KAM being deterministic, one has that all derivations ⊢ t : ⋆ induce the same weights.

Sequence Types and λIAM Time. We use the same idea to capture the length of a λIAM run. We
keep the same type system but we change the weight assignment to typing rules. First, we have to
define a norm on types and sequence types, counts the number of occurrences of ⋆:

∥⋆∥ := 1 ∥S → A∥ := ∥S ∥ +∥A∥




[A1, . . . ,An]




 :=
∑

1≤i≤n ∥Ai ∥

Then we define the weight systemWλIAM(·) in Fig. 7. Observe how this weight system is structurally
very similar to WKAM (·), the only difference being the fact that whenever the latter adds 1 to the
weight, the former adds the number of occurrences of ⋆ in the underlying type. The next section
proves the following theorem, that is the λIAM analogous of de Carvalho’s theorem.

Theorem 12.4. There is a complete λIAM run of length n from t if and only if exists π such that

π ▷ ⊢ t : ⋆ and WλIAM(π ) = n.

13 THE SEQUENCE IAM

This section introduces yet another machine, the Sequence IAM, or SIAM, that mimics the λIAM
directly on top of a type derivation π . It is the key tool used in the next section to show that the
λIAM weights on type derivations do measure the time cost of λIAM runs.

The SIAM. The idea behind the SIAM is simple but a formal definition is a technical nightmare.
Let us explain the idea. The machine moves over a fixed type derivation π ▷ ⊢ t : ⋆, to be thought as
the code. The position of the machine is expressed by an occurrence of a type judgment13 J of π . As
the λIAM, the SIAM has two possible directions, noted ↓ and ↑14. In direction ↑ the machine looks
at the rule above the focused judgment, in direction ↓ at the rule below. The only "data structure" is
a type context B isolating an occurrence of ⋆ in the type A of the focused judgment (occurrence)
Γ ⊢ u : A, defined as follows (careful to not confuse type contexts B with type environments Γ):

Type ctxs B ::= ⟨·⟩
�

� S → B
�

� S→ A Seqence ctxs S ::= [A1, ..,Ak ,B,Ak+1..,An]

13A judgment may occur repeatedly in a derivation, which is why we talk about occurrences of judgments. To avoid too
many technicalities, we usually just write the judgment, leaving implicit that we refer to an occurrence of that judgment.
14Type derivations are upside-down wrt to the term structure, then direction ↓ of the λIAM becomes here ↑, and ↑ is ↓.
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⊢ t : S → A [⊢]

⊢ tu : B⟨⋆↑⟩(= A) →•1

⊢ t : S → B⟨⋆↑⟩ [⊢]

⊢ tu : A

⊢ t : A(= B⟨⋆⟩)

⊢ λx .t : S → B⟨⋆↑⟩ →•2

⊢ t : B⟨⋆↑⟩

⊢ λx .t : S → A

⊢ t : S → B⟨⋆↓⟩ [⊢]

⊢ tu : A(= B⟨⋆⟩) →•3

⊢ t : S → A [⊢]

⊢ tu : B⟨⋆↓⟩

⊢ t : B⟨⋆↓⟩(= A)

⊢ λx .t : S → A →•4

⊢ t : A
⊢ λx .t : S → B⟨⋆↓⟩

⊢ x : B⟨⋆↑⟩i (= Ai )
i

....

⊢ λx .C ⟨x ⟩ : [...Ai ...] → A′ →var

⊢ x : Ai
i

....

⊢ λx .C ⟨x ⟩ : [...B⟨⋆↓⟩i ...] → A′

⊢ x : Ai (= B⟨⋆⟩i )
i

....

⊢ λx .C ⟨x ⟩ : [...B⟨⋆↑⟩i ...] → A′ →bt2

⊢ x : B⟨⋆↓⟩i
i

....

⊢ λx .C ⟨x ⟩ : [...Ai ...] → A′

⊢ t : [...B⟨⋆↓⟩i ...] → A′ ⊢i u : Ai (= B⟨⋆⟩i )

⊢ tu : A′ →arg

⊢ t : [...Ai ...] → A′ ⊢i u : B⟨⋆↑⟩i

⊢ tu : A′

⊢ t : [...Ai ...] → A′ ⊢i u : B⟨⋆↓⟩i (= Ai )

⊢ tu : A′ →bt1

⊢ t : [...B⟨⋆↑⟩i ...] → A′ ⊢i u : Ai

⊢ tu : A′

Fig. 8. The transitions of the Sequence IAM (SIAM).

Summing up, a state s is a quadruple (π , J ,B,d). If J is in the form Γ ⊢ u : A, we often write s as
⊢ u : B⟨⋆d ⟩, where B⟨⋆⟩ = A. In fact we shall see that type environments play no role.

Transitions. The SIAM starts on the final judgment of π , with empty type context B = ⟨·⟩

and direction ↑. It moves from judgment to judgment, following occurrences of ⋆ around π . The
transitions are in Fig. 8, their union noted→SIAM, as we now explain themÐthe transitions have
the labels of λIAM transitions, because they correspond to each other, as we shall show.
Let’s start with the simplest, →•2. The state focusses on the conclusion judgment J of a T-λ

rule with direction ↑. The eventual type environment Γ is omitted because the transition does not
depend on itÐnone of the transitions does, so type environments are omitted from all transitions.
The judgment assigns type S → A to λx .t , and the type context is S → B, that is, it selects an
occurrence of ⋆ in the target type A = B⟨⋆⟩. The transition then simply moves to the judgment
above, stripping down the type context to B, and keeping the same direction. Transition •4 does
the opposite move, in direction ↓, and transitions •1 and •3 behave similarly on T-@ rules: [⊢]
simply denotes the right premise that is left unspecified since not relevant to the transition.

Transitions→arg: the focus is on the left premise of a T-@ rule, of type S → A′ isolating⋆ inside
the i-th type Ai in S . The transition then moves to the final judgment of the i-th derivation in the
right premise, changing direction. Transition →bt1 does the opposite move.

Transitions →var and →bt2 are based on the axiom sequences property of Lemma 12.1. Consider
a T-λ rule occurrence whose right-hand type of the conclusion is S → A′. The premise has shape
Γ,x : S ⊢ t : A′, and by the lemma there is a bijection between the sequence of linear types in S and
the axioms on x , respecting the order in S . The left side of →bt2 focuses on the i-th type Ai in S
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and the SIAM moves to the judgment of the axiom corresponding to that type, which is exactly the
i-th from left to right seeing the derivation as a tree where the children of nodes are ordered as in
the typing rules. Transition→var does the opposite move, which can always happen because the
code is the type derivation of a closed term.

The only typing rule not inducing a transition is T-λ⋆. Accordingly, when the SIAM reaches one
of these rules it is in a final state. Exactly as the λIAM, the SIAM is bi-deterministic.

Proposition 13.1. The SIAM is bi-deterministic for each type derivation π ▷ ⊢ t : ⋆.

An example. We present below the very same example analyzed in Section 3. We have reported
its type derivation, with the occurrences of ⋆ on the right of ⊢ annotated with increasing integers
and a direction. The occurrence of ⋆marked with 1 represents the first state, and so on.

x : [[⋆] → ⋆] ⊢ x : [⋆↓16] → ⋆↑6 y : [⋆] ⊢ y : ⋆↑17
y : [⋆],x : [[⋆] → ⋆] ⊢ xy : ⋆↑5

y : [⋆] ⊢ λx .xy : [[⋆↑15] → ⋆↓7] → ⋆↑4
⊢ λy.λx .xy : [⋆↓18] → [[⋆↑14] → ⋆↓8] → ⋆↑3 ⊢ I : ⋆↑19

⊢ (λy.λx .xy)I : [[⋆↑13] → ⋆↓9] → ⋆↑2

z : [⋆] ⊢ z : ⋆↑11
⊢ λz.z : [⋆↓12] → ⋆↑10

⊢ (λy.λx .xy)I(λz.z) : ⋆↑1
One can immediately notice that every occurrence of ⋆ is visited exactly once. Moreover, the
sequence of the visited subterms is the same as the one obtained in the example of Section 3.

14 λ-IAM TIME VIA EXHAUSTING SEQUENCE TYPES

The aim of this section is to explain the strong bisimulation between the SIAM and the λIAM, that,
once again, is based on a variation on the exhaustible invariant. A striking point of the SIAM is
that it does not have the log nor the tape. They are encoded in the judgment occurrence J and in
the type context B of its states, as we shall show. But first, let’s make a step back.

Handling Duplication. β-reducing a λ-term (potentially) duplicates arguments, whose different
copies may be used differently, typically being applied to different further arguments. The machines
in this paper never duplicate arguments, but have nonetheless to distinguish different uses of a same
piece of code. This is why the λIAM uses logged positions instead of simple positions: the log is a
trace of (part of) the previous run that allows to distinguishing different uses of the positionÐthe
closures of the KAM or the history mechanism of the λPAM are alternatives.

The key point of multi/sequence type derivations is that duplication is explicitly accounted for,
somewhat in advance, by multi-set/sequences: all arguments come with as many type derivations
as the times they are duplicated during evaluation. Note indeed that the type derivation may be
way bigger than the term itself, while this is not possible with, say, simple types. Therefore, there is
no need to resort to logs, closures, or histories to distinguish copies, because all copies are already
there: simple positions in the type derivation (not in the term!) are informative enough.
In the technical report [Accattoli et al. 2020a] we provide the execution of the term (λx .xx)I,

that actually duplicates the sub-term I, for all the machines presented in the paper.

Relating Logs and Tapes with Typed Positions. In the λIAM, the log L = l1· . . . ·ln has a logged
position for every argument u1, . . . ,un in which the position of the current state is contained. The
argument ui is the answer to the query of an argument for the variable in the logged position li .
The SIAM does not keep a trace of the variables for which it completed a query, but the answers
to those (forgotten) queries are simply given by the sub-derivations for u1, . . . ,un in which the
current judgment occurrence J is containedÐthe way in which lk identifies a copy of uk in the

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 51. Publication date: January 2021.



51:28 Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni

λIAM corresponds on the type derivation π to the index i of the sub-derivation (in the sequence of
sub-derivations) typing uk in which J is located. Note that the λIAM manipulates the log only via
transitions→arg and→bt1, that on the SIAM correspond exactly to entering/exiting derivations
for arguments. The tape, instead, contains logged positions for which the λIAM either has not yet
found the associated argument, or it is backtracking to. Note that the λIAM puts logged positions
on the tape via transitions →var and →bt1, and removes them using →arg and →bt2. By looking at
Fig. 8, it is evident that there is a logged position on the λIAM tape for every type sequence S in
which it lies the hole ⟨·⟩ of the current type context B of the SIAM.

These ideas are used to extract from every SIAM state s a λIAM state ext(s) in a quite technical
way. A notable point is that the extraction procedure is formally defined by means of yet another
reformulation on the SIAM of the exhaustible invariant, called S-exhaustibility, relying on tests
induced by a SIAM state built following the explained correspondence. For lack of space the
technical development is in [Accattoli et al. 2020a]. The extraction process induces a relation
s ≃ext ext(s) that is easily proved to be a strong bisimulation between the SIAM and the λIAM.

Proposition 14.1. Let t a closed and→wh-normalizable term, and π ▷ ⊢ t : ⋆ a type derivation.
Then ≃ext is a strong bisimulation between SIAM states on π and λIAM states on t .

Weights and the Length of SIAM Runs via Acyclicity. We now turn to the proof of the correctness
of the weight assignment WλIAM(π ), that is, the fact that it correctly measures the length of λIAM
complete runs. While the weight assignment for the λIAM is similar to de Carvalho’s one for the
KAM, the proof of its correctness is completely different, and it must be, as we know explain.

The KAM performs an evaluation that essentially mimics cut-elimination and so the number of
KAM transitions to normal form is obtained via a refined, quantitative form of subject reduction.
One may say that it is obtained in a step-by-step manner. The λIAM, instead, does not mimic subject
reduction. It walks over the type derivation without ever changing it, potentially passing many times
over the same judgment (because of backtracking). Correctness of weights cannot then be obtained
via a refined subject reduction property, because the reduced derivation gives rise to a different
run, and not to a sub-run. It must instead follow from a global analysis of a fixed derivation, that
we now develop. The proof technique is an original contribution of this paper.

Weights as in WλIAM(π ) count the number of occurrences of ⋆ in π , and every such occurrence
corresponds to a state of the SIAM. Proving the correctness of the weight system amounts to
showing that every state of the SIAM is reachable, and reachable exactly once. In order to do so,
we have to show that the SIAM never loops on typed derivations.

Note a subtlety: by the bisimulation with the λIAM (Prop. 14.1) we know that the run of the
SIAM terminates, but we do not know whether it reaches all states. What we have to prove, then,
is that there are no unreachable loops, that is, loops that are not reachable from an initial state. The
next easy lemma guarantees that this is enough.

Lemma 14.2. Let T be an acyclic bi-deterministic transition system on a finite set of states S and

with only one initial state si . Then all states in S are reachable from si , and reachable only once.

We show the absence of loops using a sort of subject reduction property. We first show that if
the SIAM loops on π ▷ ⊢ t : ⋆ and t →wh u, then there is a type derivation π ′

▷ ⊢ u : ⋆ on which
the SIAM loopsÐthat is, SIAM looping is preserved by reduction of the underlying term. This is
done by defining a relation ▶ between the SIAM states on π and on π ′Ðsee [Accattoli et al. 2020a].

Proposition 14.3. ▶ is a loop-preserving bisimulation between SIAM states.

Other works dealing with the GoI also prove the absence of unreachable loops, for instance
[Baillot 1999; Baillot et al. 2011]. Then, by the trivial fact that the SIAM does not loop on →wh-
normal terms (as they are typed using just one rule, namely T-λ⋆), we obtain that it never loops.
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Corollary 14.4. Let π ▷ ⊢ t : ⋆ be a type derivation. Then the SIAM does not loop on π .

The correctness of the weights for the length of SIAM runs immediately follows, and, via the
strong bisimulation in Prop. 14.1, it transfers to the λIAM.

Theorem 14.5 (λIAM time via seqence types). Let t be a closed term that is→wh-normalizable,

σ the complete λIAM run from st , and π ▷ ⊢ t : ⋆ a type derivation for t . Then |σ | =WλIAM(π ).

15 OUR TWO CENTS ABOUT SPACE

Here we provide an interesting example about space usage, with the only purpose of stressing that
the situation is subtler than for time. Among the machines we have presented, the λIAM is the
only one tuned for space efficiency, as shown by the literature [Dal Lago and Schöpp 2010; Ghica
2007; Ghica and Smith 2010; Mazza 2015; Mazza and Terui 2015; Schopp 2007]. In fact, the space
used by the λJAM (thus the λPAM) and the KAM is proportional to their time, i.e. their space usage
is inflationary. Nonetheless, there are terms for which the λJAM outperforms the λIAM in space
consumption, showing that the space relationship between the λIAM and the λJAM is less smooth
than the time one.

Proposition 15.1. Let rh
k
be defined as rh

k
:= (λx1...λxk .λy.y(λz1...λzh .λz.z))t1...tk (λw .wu1 ...uh).

The the λIAM space consumption for the evaluation of rh
k
is 2 logged positions plus h + k occurrences

of •, while the λJAM needs 2 logged positions plus max{h,k + 1} occurrences of •.

16 CONCLUSIONS

In this paper, we give alternative presentation of three game machines, namely the IAM the JAM
and the PAM, formulated as ordinary abstract machines on λ-terms, and analyze their relative time
performances. Our results can be summarized as follows:

�IAM �JAM

�PAM

KAM
exponential speedup

w/o backtracking

quadratic speedup

w/o ↑-mode

SIAM

Here, thicker arrows represent a stronger correspondence, i.e., the λPAM and λJAM are isomorphic,
the λJAM improves the λIAM with a possibly exponential advantage, while the KAM improves the
λJAM (thus the λPAM) with a potential quadratic speedup.

Besides settling the question about the relative efficiency of the main game machines, we also
prove non-idempotent intersection types to be able to precisely characterize the time performance
of the λIAM when run on the typed term, in analogy with the results on environment machines
by de Carvalho [2018]. This way, the time behavior of two heterogeneous machines, namely the
KAM and the λIAM, on a given normalizing term t can be captured by just comparing two different
ways of weighting the same sequence type derivation, the former attributing weight 1 to any
instance rule in the type derivation, the latter taking into account the size of the underlying type in
an essential way. In other words, the bigger the types, the more inefficient the λIAM.

Among the topics for future work, we can certainly mention the extension of the results obtained
here to call-by-value game machines, which seems within reach. A study on the relative space
efficiency of game machines is more elusive, as the example in Section 15 shows.
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