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ABSTRACT 15 

 16 

The genetic control of yield and related traits in maize has been addressed by many quantitative 17 

trait locus (QTL) studies, which have produced a wealth of QTL information, also known as 18 

QTLome. In this study, we assembled a yield QTLome database and carried out QTL meta-analysis 19 

based on 44 published studies, representing 32 independent mapping populations and 49 parental 20 

lines.  A total of 808 unique QTLs were condensed to 84 meta-QTLs and were projected on the 10 21 

maize chromosomes. Seventy-four percent of QTLs showed a proportion of phenotypic variance 22 

explained (PVE) smaller than 10% confirming the high genetic complexity of grain yield. Yield 23 

QTLome projection on the genetic map suggested pericentromeric enrichment of QTLs. Conversely, 24 

pericentromeric depletion of QTLs was observed when the physical map was considered, suggesting 25 

gene density as the main driver of yield QTL distribution on chromosomes. Dominant and 26 

overdominant yield QTLs did not cluster differently from additive effect QTLs.  27 

 28 

Keywords 29 
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 31 

 32 

1. Introduction 33 

 34 

Progress in molecular biology and genomics platform allows us to identify the quantitative trait 35 

loci (QTL) that govern the expression of yield and other important agronomic traits, hence providing 36 

unprecedented opportunities to enhance the effectiveness of selection targeting the key loci via 37 

genomics-assisted breeding [1-4]. The number of mapped QTLs for a given trait and species, 38 

collectively known as QTLome [5] is growing at an impressive pace, prompting increased efforts in 39 

the synthesis and interpretation of QTL information.  40 

In maize, grain yield is the most important and genetically complex trait and is generally modelled 41 

as controlled by a large number of small effect QTLs, in the contexts of both phenotypic and marker-42 

assisted selection [6,7,8]. While breeding has certainly succeeded in improving grain yield in maize 43 

during the last century, maintaining the same rate of improvement will be increasingly more difficult 44 

due to more extreme climatic conditions and the need to adopt new cropping systems requiring 45 

reduced inputs [9]. For these reasons, a better understanding of the grain yield QTLome (in terms of 46 

number of QTLs, their map position, size and type of genetic effects and interactions) remains a 47 

priority in maize breeding.  48 
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One way to synthesize QTL information is by QTL meta-analysis [10,11] which allows one to  49 

identify the regions of the genome that more frequently govern trait variation and to narrow down the 50 

confidence intervals of QTLs by leveraging existing information. In maize, MetaQTLs (MQTLs) 51 

were described for flowering time [12,13], leaf architecture [14], grain moisture [15] and ear rot 52 

resistance [16]. Hao et al. [17] used meta-analysis to identify candidate genes potentially involved in 53 

drought tolerance networks. Meta-analysis was also applied to yield and yield components QTLs 54 

[18,19,20]. By collecting QTL [21,22] and transcriptomic [23] data from multiple studies, a 55 

predominant centromeric location of heterotic QTLs was observed.  56 

This study reports the results of the largest MQTL analysis so far conducted for yield and yield 57 

components in maize. QTLs were projected on the genetic and physical maps and utilized to compute 58 

MQTLs. Our main objectives were to produce an informed repository of yield QTL information in 59 

maize and to search for patterns of QTL distribution on chromosomes, with particular attention to 60 

QTLs involved in yield heterosis.  61 

 62 

2. Materials and Methods 63 

 64 

2.1 Bibliographic collection and construction of a maize yield QTLome database 65 

 66 

Literature was retrieved from Web of Science (Thomson ReutersTM) 67 

(http://apps.webofknowledge.com) using the keywords ‘maize yield QTL’ which eventually 68 

identified 44 manuscripts published from 1992 to 2014. While papers presented QTL data for multiple 69 

traits, we only considered yield and yield components traits which were classified in eight main 70 

categories (Table 1). A summary of the QTL studies is reported in Table 2. 71 

The yield QTLome database included information on: parents of the cross, type of cross, number 72 

of progenies, name of QTLs, trait, LOD score, proportion of phenotypic variance explained (PVE) 73 

by each QTL, QTL position on the authors’ linkage map in terms of LOD peak and QTL supporting 74 

or confidence interval (CI) (Supplementary Material 1). In studies reporting multi-environment 75 

results, only QTLs from the overall analysis were considered; alternatively, if two QTLs for the same 76 

trait were reported in two experiments (eg. two different water regimes) in the same study (ie. in the 77 

same publication), and their map positions corresponded, they were considered as the same QTL and 78 

were included in our QTL database as one. 79 

 80 

For each QTL, flanking molecular markers with their genetic position in the original map and 81 

with the highly saturated maize map ‘Genetic’ used as a reference map and  available at 82 

http://apps.webofknowledge.com/
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http://www.maizegdb.org/complete_map?id=1203637, were searched and recorded. In order to avoid 83 

heterogeneity in definition of CI across studies, 95% CI values were estimated using the approach 84 

described by [66] and extended by [67] according to the population type: CI = 163/(N*R2) for 85 

recombinant inbred line (RIL) progenies, and CI = 530/(N*R2) for the rest of non-RIL progenies (i.e. 86 

F2, BC, TC), where N is the size of the population and R2 is the proportion of variance explained by 87 

the QTLs. Estimated CI values were utilized for QTL projection (Supplementary Material 1). 88 

When available, the degree of dominance (often indicated as gene action) for each QTL was 89 

recorded as provided by the authors. More specifically, QTLs were declared as heterotic QTLs (HQ) 90 

when gene action was reported as dominant (D, with dominant effect/additive effect > 0.8) or 91 

overdominant (OD, with d/a > 1). QTL were declared as additive (AQ) when gene action was reported 92 

as additive or partially dominant (0 < d/a < 0.8). When not available, the degree of dominance was 93 

attributed on the basis of the type of experimental population, as follows: QTLs identified in RIL 94 

populations were considered as AQ; QTLs identified in mapping populations evaluated as testcrosses 95 

were classified as potentially heterotic QTLs (PHQ).  96 

 97 

2.2. QTL projection and meta-analysis 98 

 99 

QTLs were projected onto the ‘Genetic’ maize reference map available at 100 

http://www.maizegdb.org/complete_map?id=1203637 (see also [68]), using the software 101 

Biomercator v4.1 (http://moulon.inra.fr) [11,69]. The frequency (probability) of identification of 102 

QTL for every cM position in the ‘Genetic’ map was estimated following the approach described as 103 

‘QTL-overview index’ [12]. Meta-analysis was carried out using BioMercator v. 4.1. The input file 104 

for BioMercator is provided as Supplementary Material 2. 105 

For n individual QTLs, BioMercator tests the most likely assumption between 1, 2, 3, 4 and n 106 

underlying QTLs. Decision rules are based on an Akaike-type criterion (AIC) and the one with the 107 

lowest AIC value was considered the best fit. Consensus QTL from the optimum model is regarded 108 

as meta-QTL (MQTL). In order to study the QTL distribution based on physical distances QTLs were 109 

projected onto the B73 RefGen_v2 reference genome [70] (http://www.maizegdb.org/). Additionally, 110 

variation of QTL density across the maize genome was studied by counting QTLs on each 20-cM bin 111 

(roughly equivalent to 1/100 of the genetic map) and on each 25-Mb bin (again roughly equivalent to 112 

1/100 of maize physical map), starting from the centromeric region of each chromosome (ie. the 113 

middle point of a centromere interval was considered as position 0). A QTL was assigned to a bin 114 

based on its LOD peak as reported in original studies. Centromeres positions were obtained from the 115 

http://www.maizegdb.org/ and from [71, 72]. Gene density distribution was determined from the 116 

http://www.maizegdb.org/complete_map?id=1203637
http://www.maizegdb.org/complete_map?id=1203637
http://moulon.inra.fr/
http://www.maizegdb.org/
http://www.maizegdb.org/
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maize genome sequence B73RefGen_v2 available at http://www.maizegdb.org/. QTLs, MQTLs and 117 

overview index were visually represented using CIRCOS [73]. 118 

 119 

3. Results 120 

 121 

3.1.  Main features of QTL mapping experiments in maize 122 

 123 

Our survey covered 44 studies which reported QTLs for yield and yield components in maize, 124 

based on biparental populations and published from 1992 to 2014 (Table 2). The studies covered 32 125 

different experimental crosses, which utilized 47 inbred lines as parents, the  most popular being B73 126 

and Mo17 (six and five crosses, respectively). The most common cross types were F2:3 or F2:4 127 

evaluated per se, RIL per se and F2:3 or F2:4 evaluated as testcross/backcross (14, eight and seven 128 

populations, respectively; Table 2).  129 

Although in many cases the original papers reported on QTLs for multiple morpho-physiological 130 

traits, we focused our survey on QTLs for grain yield (GY) and seven additional grain yield 131 

components of common interest in maize breeding (Table 1). The QTL database eventually included 132 

808 unique QTLs. The number of QTLs per trait ranged from 23 to 253 (Ear Number and GY, 133 

respectively; Supplementary Material 3). The average number of QTL per study was 7.2 for GY, 134 

while it ranged between 4.6 and 7.5 for component traits (for Ear Number and Kernel Weight, 135 

respectively; Supplementary Material 3). 136 

The frequency distribution for the proportion of phenotypic variance explained (PVE) by single 137 

QTLs followed a truncated (on minor values) L-shape with the majority of the QTLs showing low 138 

PVE values (74% of the QTLs with PVE < 0.1. Supplementary Material 4). The shape of the 139 

distribution did not differ between GY and GY components (Supplementary Material 4) and/or 140 

between heterotic and additive QTLs (not shown). 141 

The number of GY (and other traits) QTLs per study did not correlate with population dimension 142 

(Supplementary Material 5). 143 

  144 

3.2. QTL distribution on chromosomes 145 

 146 

As evidenced in Figs. 1A-B, yield QTLs were evenly distributed among the ten chromosomes as 147 

also confirmed by the very high correlation (r = 0.94; P < 0.01) between number of QTLs and 148 

chromosome length. For example, chrs. 6 and 1, the shortest and the longest, respectively, carried the 149 

lowest and the highest number of QTLs (61 and 144, respectively).  150 

http://www.maizegdb.org/
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The projection of all QTLs on the maize genetic reference map showed a statistically significant 151 

clustering of QTLs at centromeric and pericentromeric regions (Fig. 1A, Fig. 2A). A 20-cM interval 152 

spanning from -10 to +10 cM from the centromere and representing approx. 10% of an average 153 

chromosome included 18% of all QTLs (Fig. 2A.). Mid-chromosome arm bins such as those around 154 

-60 and +60 cM from centromeres included significantly fewer QTLs (8 and 12% QTLs. P < 0.01, 2 155 

distribution), and increasingly so at subtelomeric bins (Fig. 2A). No difference in distribution was 156 

observed when the full 808 QTL set was subdivided in QTLs for GY and QTLs for GY component 157 

traits (not shown). 158 

A different distribution pattern was observed when QTLs were projected on the maize reference 159 

physical map (Fig. 1B, Fig. 2B). On the physical map (Fig. 1B), QTLs appeared as almost evenly 160 

distributed with no sign of centromeric clustering (with the exception of chr. 9). When QTL 161 

distribution was tested by assigning QTLs to chromosome regions based on the map position of their 162 

QTL peaks, all the centromeric and pericentromeric 25-Mb bins were depleted of QTLs. For example, 163 

the 25-Mb bins spanning the centromeres had on average just 7% of the QTLs while telomeric bins 164 

at -75 or at +75 Mb distance from centromere each gathered approx. 18% of the QTLs each (P < 0.01, 165 

2 distribution. Fig. 2B). 166 

Prompted by the above-described QTL distribution on chromosomes, we tested the correlation 167 

between yield QTL density and gene density per 25-Mb bin starting from the centromere. QTL and 168 

gene densities showed a highly significant correlation (Pearson r = 0.41, P < 0.01).  169 

Based on QTL-overview index the chromosome bins with the highest frequency of QTLs were 170 

1.06, 2.04, 5.05, 8.05, 9.03 and 10.06. Conversely, bins 3.07-09 and 5.07-08 appeared depleted in 171 

QTLs based on both genetic and physical projections. Small regions with strikingly low QTL density 172 

were observed both on the genetic and physical projections at bins 1.04 (approx. 50 Mb), 1.09 173 

(approx. 255 Mb), 4.03 (approx.. 20 Mb) and 6.06 (approx.. 140 Mb). It should be noted that 174 

subtelomeric bins were not considered in these comparisons since these chromosome portions were 175 

likely underrepresented in the original linkage maps, especially in the earlier QTL mapping studies. 176 

Finally we found no difference in the average QTL PVE values computed considering all QTLs 177 

mapping within each 20-cM bin from centromeres to telomeres (Supplementary Material 6). 178 

 179 

 3.3 Distribution patterns of heterotic QTLs 180 

 181 

Based on population types and QTL gene action as reported on original studies, our collection 182 

included 206 (26%) heterotic QTLs, 136 (17%) potentially heterotic QTLs and 466 (58%) additive 183 

QTLs. The highest proportions (67, 69 and 73%) of heterotic QTLs over the total number of QTLs 184 
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were observed for GY, Ear Length and Kernel Number, respectively, whereas the lowest proportion 185 

(24%) was observed for Ear Row Number (Supplementary Material 3).  186 

Heterotic QTLs mapped unevenly on all chromosomes. Chrs. 1, 8 and 9 showed 35, 32 and 33% 187 

of heterotic QTLs, respectively, while chrs. 5, 4 and 7 showed 16, 18 and 19%, respectively. Like the 188 

global set of QTLs, heterotic and potentially heterotic QTLs clustered at pericentromeric regions 189 

when projected on the genetic map (Fig. 2C) whereas an opposite pattern of higher density at 190 

subtelomeric regions was apparent when physical distance was considered (Fig. 2D). In order to 191 

reduce the bias and noise potentially present in the latter two distributions, GY-only (ie. without grain 192 

yield components) heterotic and additive QTLs were extracted and their distributions compared (Fig. 193 

2E-F). Again, no significant difference between heterotic and additive QTLs was observed in terms 194 

of distribution pattern along genetic maps (2 = 7.97, df = 8, P > 0.1). While the two distributions on 195 

physical maps differed (2 = 22.7,  df = 8,  P < 0.05), the patterns revealed no obvious trend (eg. 196 

higher concentration of HQ vs. AQ at subtelomeric or at pericentromeric regions). 197 

 198 

3.4. Meta-QTL analysis 199 

 200 

Among 808 GY and grain yield-related traits QTLs projected onto the reference ‘Genetic’ map, 201 

610 QTLs were grouped into 84 meta-QTLs (MQTLs) (Supplementary Material 7). The remaining 202 

198 QTLs were not assigned to any MQTL. Confidence intervals (CI) of the MQTLs were narrower 203 

than the mean of the respective original QTL CIs, on average up to 7 fold. MQTLs CI ranged from 204 

0.1 (Seven MQTL with CI < 1 cM) to 8.78 cM, with an average of 3.1 cM. MQTLs mapped on all 205 

ten chromosomes, and like single QTLs, suffered from an enlarged CI when mapped at peri-206 

centromeric regions (Figs. 1A-B). MQTL positions reported in this study were compared with those 207 

reported in Wang et al. [20] (Supplementary Material 8). MQTLs were also tentatively compared 208 

with those reported in Semagn et al [19], although in this case a different map was used for MQTL 209 

projection. Based on overlapping MQTL CIs, 19 MQTLs are common with those reported by Wang 210 

et al. [20] ranging from one MQTL on chr. 3 and 5 to six MQTLs on chr. 4 (Supplementary Material 211 

8). Twenty-six MQTLs are putatively shared with those reported by Semagn et al. [19] involving 212 

yield and related traits and ranging from one MQTL on chrs. 1 and 10 to five on chr. 9 (data not 213 

shown). 214 

 215 

4. Discussion 216 

 217 

4.1. Gene density appears as the main driver of QTL density 218 
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 219 

Based on current knowledge, QTLs result from the genetic segregation of sequence 220 

polymorphisms at functional elements, such as regulatory sequences upstream of genes and/or coding 221 

sequences [74,5]. Therefore, it is expected that QTL density on a genetic map is driven by gene 222 

density, polymorphism rate at functional sites in genic regions and by frequency of recombination. 223 

Our results showed for the first time that the distribution pattern of QTLs on chromosomes differs 224 

strongly between genetic and physical maps. While QTLs appeared to more densely map near 225 

centromeres on genetic maps, they showed higher density at subtelomeric regions on physical maps. 226 

In maize and other species, gene density is higher at subtelomeric regions and lower at 227 

pericentromeric regions [75]. A similar distribution pattern was shown in this study for QTL density, 228 

which correlated well (r = 0.41) with gene density. Interestingly, a recent investigation on crossover 229 

density distribution in maize [76] reported a tight correlation between crossover distribution, gene 230 

density and cytosine methylation. Additionally, the authors showed that recombination is strongly 231 

suppressed in ∼100 Mb interval encompassing the centromere [76], which corresponds well to the 232 

low QTL-density region observed in our study (Fig. 2B).  233 

Testing for the presence of correlation between QTL density and sequence polymorphism rate 234 

appears less straightforward. In maize, sequence polymorphism rate expressed as nucleotide diversity 235 

() drops significantly in the proximity (approx. +/-10 Mb) of centromere regions only, and levels off 236 

in the rest of the chromosomes length [77]. Estimates of molecular polymorphism (e.g. SNP) are 237 

available across the maize genome for coding, coding-enriched or low-complexity regions only [72, 238 

79], however they are expected to be gene-density driven and not expected to represent well 239 

regulatory sequence polymorphism (e.g. allelic difference at promoters or enhancers) often 240 

interspersed with transposons, which have been shown to underpin many QTLs [80]. Finally, given 241 

that recombination is a main factor in enabling purifying selection [81], regions with reduced 242 

recombination are expected to show a higher rate of deleterious variants (as shown in [76]), which 243 

should translate into higher rates of functionally different QTL alleles, and eventually higher QTL 244 

density. However, this is exactly the opposite of what we observed. One possible explanation is that 245 

the reduced gene density in low recombination regions completely overturns the impact of higher 246 

rates of deleterious variants on QTL density. Following the observations above, we have not 247 

attempted to correlate QTLs and sequence polymorphism densities as we felt it to be too speculative. 248 

Taken all these observations together, and accounting for the cline of recombination rate along 249 

chromosomes, gene density appears to be a strong driver of QTL density on chromosomes. 250 

 251 

4.2. Distribution pattern for heterotic QTLs 252 
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 253 

Our study included 206 heterotic QTLs for GY and grain yield components. For GY, the 254 

majority of QTLs (67%) showed dominant or overdominant types of gene action, accordingly with 255 

previous observations [21,22]. The same two former reports [21,22] found a higher-than-expected 256 

clustering of heterotic QTLs at low-recombining pericentromeric regions. Thiemann et al. [23] 257 

complemented the results of Schon et al. [22] by showing that pericentromeric regions are enriched 258 

in genes with an expression pattern correlated with grain yield heterosis. These results appear to 259 

support the dominance hypothesis for heterosis, in this case driven by the low recombination rate at 260 

pericentromeric regions which should maintain higher allelic diversity at different heterotic loci 261 

linked in the repulsion phase [22,82,83]. Our results confirmed the clustering of heterotic QTLs at 262 

centromeres on the genetic map. Additionally, we found little or no evidence for a distribution pattern 263 

difference between heterotic and additive QTLs, in line with what was reported by Larièpe et al. [22] 264 

based on a smaller set of QTLs. Indeed, the low recombination rate at pericentromeric regions can 265 

favour the fixation of both repulsion-phase and coupling-phase allelic combinations between 266 

breeding pools, potentially leading to large effect QTLs, both ‘heterotic’ and ‘additive’ [22,82]. In 267 

contrast with this last hypothesis, however, our data also showed that the average QTL PVE values 268 

did not significantly change across chromosome regions (Supplementary Material 6). In conclusions, 269 

additional investigations are required to test these hypotheses by also considering the higher 270 

frequency of deleterious variants expected at centromeres (see previous paragraph). 271 

 272 

4.3. Additional observations on QTL distribution pattern 273 

 274 

Some less obvious features were observed in the QTL projections on genetic and physical maps 275 

(Figs. 1A-B). Of the six chromosome bins (1.06, 2.04, 5.05, 8.05, 9.03 and 10.06) characterized by 276 

high QTL density peaks, four were located at pericentromeric regions, leaving little room for 277 

speculation on correspondence with genes. However, two peaks (at bins 8.05, and 10.06) were not in 278 

proximity of centromeres. The peak at bin 8.05 corresponds well with the Vgt1/Vgt2 region [84, 85] 279 

and bin 10.06 peak corresponds with a previously reported flowering time MQTL [12]. Meta-analysis 280 

identified MQTLs in the same positions (MQTL62-63 and MQTL78-79) (Table 3). These QTLs are 281 

among the strongest and most frequently found flowering time QTLs in maize and this 282 

correspondence suggests that their alleles have remarkable effects on grain yield.  283 

It is tempting to link regions with reduced QTL density with chromosome regions which have 284 

undergone selective sweep. Unfortunately, the generally low precision of QTL maps, as compared to 285 

the kb- to Mb-range typical of selective sweep studies (e.g. [86,87]) and the remarkably low linkage 286 
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disequilibrium in maize precluded meaningful comparisons. However, two chromosome regions 287 

identified in our study with a strikingly low level of QTL density (on chr. 1, at approx. 50 Mb and on 288 

chr. 6, at approx. 130 Mb) may correspond to regions characterized by high identity-by-descent of 289 

the parental lines and by a relatively high recombination rate, as identified in the maize HapMap2 290 

study (Supp. Fig. 9 in [77]). 291 

 292 

4.4. Meta-analysis and breeding implications 293 

 294 

Meta-analysis allowed for a remarkable simplification of the yield QTLome since the initial 295 

number of QTLs was reduced by 65% of the initial number of QTLs and the average QTL confidence 296 

interval was reduced 7-fold. However, no clear trend of MQTL distribution on chromosomes was 297 

evidenced. MQTL positions reported in this study have some congruency with other results recently 298 

published. Nineteen MQTLs are shared with [20] using the same reference map for QTL projection 299 

(Supplementary Material 7). In three of these MQTLs (MQTL7, MQTL10 and MQTL36) maize 300 

orthologs of rice yield genes were identified [20]. Additionally, 27 MQTLs are putatively shared with 301 

[19]. In this case, we can only speculate on relative map positions since the map developed by [19] 302 

was based on SNPs and shares no markers with the reference map 'Genetic' used in the present study. 303 

On chromosome 4, our MQTL31 corresponds to the position where Bommert et al. [88] found a QTL 304 

for Ear Row Number containing the candidate gene FASCIATED2 (FEA2).  305 

It should be noted that QTL meta-analysis could gain power and precision if raw genotypic and 306 

phenotypic data from published QTL experiments were made available [5]. 307 

In a breeding perspective, accordingly to Löffler et al. [89], three criteria must be taken into 308 

consideration when deploying MQTL information: i) MQTLs should have small supporting intervals, 309 

ii) a MQTL should include a high number of initial QTLs and iii) the initial QTLs should be 310 

characterized by high PVE. The identification of MQTL-linked markers will help to prioritize 311 

QTL/loci for marker-assisted breeding programs and for QTL cloning [90], thus possibly positively 312 

influencing the improvement of crop models [91]. 313 

 314 

 315 

5. Conclusions 316 

 317 

The analysis of a large set of QTL data enables to verify emerging properties typically precluded 318 

by smaller datasets. In this study, we verified for the first time whether yield QTLs, on a large scale, 319 

are characterized by specific mapping patterns on maize chromosomes. When QTLs were projected 320 
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on the genetic map, clustering at pericentromeric regions was identified as a consequence of the much 321 

lower recombination frequency at the same regions. Conversely, when QTLs were projected on the 322 

physical maps and QTL peaks rather than confidence interval were considered, low QTL density was 323 

observed at centromeric regions and high QTL density at subtelomeric regions. QTL density was 324 

found to be significantly associated with gene density. Despite previous preliminary indications, our 325 

study did not evidence difference in density pattern of heterotic and additive effect QTLs across 326 

chromosomes. However, the inherent statistical noise of QTL data may have precluded us from 327 

revealing the existence of distinguished mapping pattern of heterotic QTLs. 328 

Although our study represents the largest meta- analysis so far carried out in maize, it only 329 

includes a small fraction of all QTL information published in maize. Further extension of the maize 330 

yield QTLome information through the inclusion of QTLs from genome-wide association studies will 331 

improve our understanding of the molecular and evolutionary basis of this key quantitative trait, an 332 

important prerequisite for enhancing the effectiveness of maize breeding.  333 
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Table 1 

List of trait categories utilized in this study.  

Trait Acronym Traits included 1 

Grain Yield 2 GY Grain yield 

Kernel Weight KW Hundred Kernel Weight    

Kernel Weight  

  Kernel Weight per Ear   

Thousand Kernel Weight 

Ear Row Number ERN Ear row number 

Kernel Number KN Kernel Number    

Kernel Number per Ear   

Kernel Number per Plant    

Kernel Number per Row  

Ear Length EL Ear Length 

Ear Diameter ED Ear Diameter 

Ear Number EN Ear Number    

Ear Number per Plant 

Ear Weight EW Ear Weight 

1 Traits as defined from original papers which were 

included in the same category in our study.  

2 Grain Yield trait category strictly included QTL data for 

overall grain production per unit of area, with the 

exception of QTL information from studies [18] and [37], 

where Ear weight per plant and Grain weight per plant 

were provided and utilized, respectively. 
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Table 2 

Summary of QTL studies included in QTL meta-analysis for grain yield and grain yield related traits. 

Reference Cross Population type a Size Exp. 

(no.) b 

Traits c Notes QTLs (no.) 

Ajmone Marsan et al. [24] B73 x A7 F3 as TC 232 1 GY, TW Testers: A1, Mo17 11 

Almeida et al. [25] CML444xSC-Malawi (234) RIL as TC 781 2 GY WW and WS; Testers:CM312,  17 

 CML444xCML441 (300) F2:3 as TC    CML395  

 CML440xCML504 (247) F2:3 as TC      

Barriere et al. [26] F838 x F826 RIL as TC 240 1 GY Tester: F353 8 

Bohn et al. [27] D06 x D408 F3 230 1 GY   6 

Cai et al. [28] Ye478 x Wu312 RIL 218 3 EL, GY, KN, KW LN, LP, normal N and P 47 

Cañas et al. [29] Io x F2 RIL 100 1 EN, EL   2 

Coque & Gallais [30] Io x F2 RIL as TC 99 2 GY, KW, KN HN and LN; Tester: F252 23 

Frascaroli et al. [31] B73 x H99 RIL as BC/TC 142 1 GY, KN, KW Testers: B73, H99, their F1 46 

Guo et al. [32] Zheng58 x Chang7-2 F2:3 231 2 EW, KW, EL, ERN, KN, ED Low density, High density 37 

Huang et al. [33] F2 x F252 F3:4 and IF3 as 

TC 

300, 

322 

1 GY  Tester: MBS847 16 

Jansen et al. [34] B73 x Mo17 RIL (IBMSyn4) 206 1 GY, KW   9 

Lariepe et al. [22] IoxF252 (144); F2xF252 

(113); F2xIo (145) 

RIL as BC/TC 402 1 GY Testers: F2, F252, Io 10 

Li et al. [35] Huangzao 4 x Ye 107 F3 184 2 GY WW and WS 9 

Li et al. [36] Dan232 x N04 F2:3 259 1 KW, EL, ED, ERN, KN   16 

Li et al. [37] 8984 x GY220 F2:3 284 1 GY, KW, EL, ED, ERN, KN   18 

  8622 x GY220 F2:3 265 1 GY, KW, EL, ED, ERN, KN   14 

Li et al.  [18] Dan232 x N04 RIL 258 5 GY, EW, KW, EL, ERN, KN, 

ED 

  58 

Liu et al. [38] Huangzao4 x Mo17 RIL 239 2 KW HN and LN 4 

Liu et al. [39] Huangzao4 x Mo17 RIL 239 2 GY HN and LN 6 

Liu et al. [40] Huangzao4 x Mo17 RIL 239 2 EW HN and LN 2 

Liu et al. [41] Huangzao4 x Mo17 RIL 239 2 ERN, KN HN and LN 8 

Liu et al. [42] Huangzao4 x Mo17 RIL 239 2 KN HN and LN 7 

Liu et al. [43] Ye478 x  Wu312 RIL 218 2 GY   5 

    BC4F3 187 2 GY   5 
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Liu et al. [44] Mc x V671 F2:3 270 1 KW   9 

Lu et al. [45] LH200 x LH216 F2syn as BC 351 1 GY Testers: LH200, LH216 29 

Lu et al. [46] Zong 3 x 87-1 RIL 221 2 GY, EL, KN, KW WW and WS 26 

Lu et al. [47] Ye478 x Dan340 F2:3 397 1 ERN   13 

Marino et al. [48] B73 x H99 RIL 142 1 EL, EW, KW, KN   22 

Melchinger et al. [49] KW1265 x D146 F3 as TC  451 1 GY, KW Testers: KW4115, KW5361 20 

Messmer et al. [50] CML444 x SC-Malawi RIL 236 2 GY, KW, KN WW and WS 20 

Moreau et al. [51] F2 x F252 F3:4 as TC 300 1 GY, KW, KN Tester: MBS847 13 

Ribaut et al. [52] Ac7643S5 x 

Ac7729/TZSRWS5 

F3 234 4 GY, EN, KN WW, IS, WS and IS+WS 30 

Ribaut et al. [53] Ac7643S5 x 

Ac7729/TZSRWS5 

F3 240 2 GY, KN, KW, EN HN and LN 21 

Stuber et al. [54] B73 x Mo17 F3 as BC 264 1 GY Recurrent parents: B73, Mo17  11 

Tang et al. [55] Zong3 x 87-1 IF2 294 1 GY, EL, ERN, KW   8 

Tian et al. [56] Y1648 x Y2348 F2:3, F2:4 180 1 ERN   9 

Tuberosa et al. [57] Lo964 x Lo1016 F3 171 2 GY WW and WS 13 

Veldboom et al. [58] Mo17 x H99 F2:3  150 1 GY, KW, EN, EL, ED, ERN   21 

Wassom et al. [59] (((IHO90 x B73) x B73) S1)  BC1S1 as TC  150 1 GY Tester: Mo17 3 

Xiao et al. [60] B73 x X178 F2:3 234 2 KW, EN, EW, GY, KN WW and WS 26 

Yan et al. [61] Zong3 x 87-1 F2:3 266 1 GY, KN, ERN, KW   20 

Yang et al. [62] 8984 x GY220 RIL 282 1 GY, EW, KN, KW, EL, ED, 

ERN 

  48 

  8622 x GY220 RIL 263 1 GY, EW, KN, KW, EL, ED, 

ERN 

  40 

Zhang et al. [63] Huangzao4 x Mo17 RIL 239 2 EL, ED HN and LN 5 

Zhang et al. [64] Huang C x Xu178 IF2 243 1 KW   6 

Zheng et al. [65] Qi-319 x Mo17 F2:3 166 1 GY, ED, KW   11 

a RIL: recombinant inbred line; TC: testcross, BC: backcross; IF2: immortalized F2; 

b Number of experiments 

c GY: grain yield, KW: kernel weight, KN: kernel number, ER: ear number, ERN: ear row number, EW: ear weight, EL: ear length, ED: ear diameter. 

WS: water stress, WW: well watered, IS: intermediate stress, HN: high nitrogen, LN: low nitrogen, LP: low phosphorus. 
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Table 3 

Summary of MQTL information for grain yield and grain yield-related traits.  

Chromosome MQTL Position a CI b 

(cM) 

QTLs c 

(no.) 

Traits 

1 1 40.69 2.48 33 ED, EL, EN, ERN, GY, KN, KW  
2 75.2 2.09 7 EL, KN, KW  
3 100.31 1.08 12 ED, EW, GY, KN, KW  
4 112.72 2.74 7 EL, GY, KW  
5 132.52 3.24 6 ED, GY, KN, KW  
6 139.7 0.1 3 GY, KW  
7 162.37 2.48 19 ED, EL, ERN, GY, KN, KW  
8 191.91 3.11 6 ED, GY  
9 243.49 0.65 16 EL, EN, ERN, EW, GY, KN, KW 

2 10 10.57 3.06 6 ED, EL, EW, KN, KW  
11 33.13 6.29 3 ERN, GY, KW  
12 49.27 8.31 1 KW  
13 61.1 0.2 4 GY, KW  
14 71.72 3.96 7 EN, GY, KW  
15 85.48 4.75 5 GY, KN, KW  
16 96.58 3.99 7 ERN, GY, KW  
17 112.5 1.91 6 ED, EL, ERN, GY, KN  
18 124.66 3.74 2 GY, KW  
19 152.75 0.78 9 ED, EL, EW, GY, KW 

3 20 8.06 3.72 11 ED, EL, ERN, GY, KN, KW  
21 34.43 3.27 11 ERN, EW, GY, KN, KW  
22 47.13 3.58 11 ED, EL, EW, GY, KN, KW  
23 68.08 4.42 8 EL, ERN, EW, KN, KW  
24 90.73 4.75 6 EW, GY, KN  
25 105.94 5.28 5 EN, ERN, GY, KN  
26 139.01 2.97 6 ERN, GY, KN, KW  
27 172.73 0.7 7 ED, EL, ERN, KW 

4 28 13.38 2.07 12 ED, EL, ERN, EW, GY, KN, KW  
29 46.55 3.14 5 ERN, EW, GY  
30 65.37 3.9 4 EL, GY, KN  
31 76.04 4.35 8 ED, ERN, GY, KN  
32 96.08 3.08 4 EL, ERN, KW  
33 104.55 1.08 5 ED, ERN, KW  
34 127.13 2.55 6 ED, ERN, GY, KN, KW  
35 135.72 3.75 4 ERN, GY  
36 146.46 3.7 8 ED, ERN, GY, KN  
37 170.18 0.28 9 ED, EL, ERN, GY, KN, KW 

5 38 3.91 3.13 3 EL, GY, KN  
39 31.44 3.64 9 EL, ERN, KN, KW  
40 47.22 2.28 10 EL, ERN, EW, KW  
41 63.54 2.73 14 EL, EW, GY, KN, KW  
42 84.21 1.96 16 ED, ERN, GY, KN, KW  
43 108.62 4.97 5 EL, ERN, GY, KW  
44 117.36 3.62 2 ED, KW  
45 135.36 0.33 12 EL, GY, KN, KW 

6 46 25.54 2.18 23 EL, EW, GY, KN, KW  
47 48 3.17 8 GY, KN, KW  
48 62.75 8.78 2 ERN, KW  
49 94.59 2.22 8 ED, EL, EN, GY, KN, KW 
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50 114.5 2.1 6 ED, ERN, GY, KW  
51 131.34 1.24 5 EL, GY, KN, KW 

7 52 31.85 2.39 16 ED, ERN, GY, KN, KW  
53 64.69 1.71 10 ED, EL, GY, KN, KW  
54 76.52 3.47 8 EW, GY, KW  
55 88.08 1.81 7 ERN, GY, KW  
56 113.52 1.57 9 EL, ERN, GY, KN, KW  
57 144.95 1.49 4 EL, GY, KN 

8 58 25.03 4.57 4 GY, KN, KW  
59 49.18 2.28 8 ERN, GY, KN, KW  
60 57.09 2.8 6 ERN, GY, KN, KW  
61 67.4 6.16 4 GY, KN  
62 87.89 4.45 6 ERN, GY, KW  
63 92.81 1.27 7 EL, EW, GY, KW  
64 105.3 3.6 8 ED, EL, EN, ERN, GY, KN  
65 121.99 2.63 8 EL, EN, GY, KN, KW  
66 142.49 2.03 2 EL, KN 

9 67 6.05 1.8 2 KW  
68 27.95 3.95 6 EW, GY, KN, KW  
69 50.82 3.18 7 ED, EN, ERN, GY, KN, KW  
70 62.14 3.31 6 ED, EN, GY, KN, KW  
71 66.26 2.21 5 ERN, EW, GY  
72 76.29 5.32 4 EL, ERN, GY, KN  
73 85.61 6.33 2 EW, KN  
74 96.54 5.16 3 GY, KW  
75 107.66 4.06 5 EN, ERN, GY, KN, KW  
76 147.25 1.94 4 EL, ERN, GY, KW 

10 77 27.39 7.37 6 EL, GY, KN  
78 56.63 3.26 7 EL, ERN, EW, GY  
79 67.08 3.64 8 EL, GY, KN, KW  
80 80.63 4.27 4 EL, GY, KN, KW  
81 89.02 2.68 10 ED, EL, ERN, EW, GY, KW  
82 101.17 1.28 7 ERN, EW, GY, KN, KW  
83 119.72 3.79 4 ERN, GY, KW  
84 132.09 1.09 1 KW 

a Most probable position on the consensus map in cM. 

b Length of the 95% confidence interval (CI) centered on the most probable position in cM 

c Number of QTLs corresponding to the same MQTL 
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Figure legends 

 

 

Figure 1. Concentric circles showing yield QTL distribution on: A) maize reference map ‘Genetic’ 

and B) B73 RefGen_v2 reference genome. 1) Reference chromosomes with positions of bins as 

alternating gray and white bands. Approximate centromere positions are indicated by black bands. 2) 

QTL positions represented by confidence interval. Red bars correspond to QTLs with heterotic effect 

(HQ) and black bars correspond to all other QTLs. 3) Frequency of QTLs computed as QTL-overview 

index (Chardon et al., 2004). 4) MQTLs position with a CI of 95%. 

 

Figure 2. Distribution of QTLs on chromosomes expressed as QTL frequency (%) per bin distance 

(20 cM- or 25 Mb-bin) from centromere. Histograms report mean QTL frequency values of ten 

chromosomes, with the following exceptions: -60 cM, mean value of six chrs; -40 cM, nine chrs; 

+100 cM, eight chrs; -75 Mb, five chrs; +125 Mb, 6 chrs.  A and B) Distribution of all QTLs (total 

no.: 808). C and D) Distribution of 342 QTL with heterotic and potentially heterotic effects (PHQ). 

E and F) Distribution of 91 additive grain yield QTLs (GY AQ) and 96 heterotic grain yield QTLs 

(GY HQ). See Materials and Methods for definition of AQ, HQ and PHQ QTLs. 
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