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A B S T R A C T   

The classical view on motor control makes a clear distinction between the role of motor cortex in controlling 
muscles and parietal cortex in processing movement plans and goals. However, the strong parieto-frontal con
nections argue against such clear-cut separation of function. Modern dynamical approaches revealed that pop
ulation activity in motor cortex can be captured by a limited number of patterns, called neural states that are 
preserved across diverse motor behaviors. Whether such dynamics are also present in parietal cortex is unclear. 
Here, we studied neural dynamics in the primate parietal cortex during arm movements and found three main 
states temporally coupled to the planning, execution and target holding epochs. Strikingly, as reported recently 
in motor cortex, execution was subdivided into distinct, arm acceleration- and deceleration-related, states. These 
results suggest that dynamics across parieto-frontal areas are highly consistent and hint that parietal population 
activity largely reflects timing constraints while motor actions unfold.   

1. Introduction 

Like other primates, arm movements to reach and grasp objects are 
fundamental in our daily lives and are mainly driven by vision. Visual 
information enters the cortex at the level of the occipital lobe and pro
ceeds rostrally via the posterior parietal cortex (PPC) to the motor areas 
of the frontal cortex to generate a motor response. The motor cortex has 
been reported to process either low-level signals such as muscle forces 
(Ben Hamed et al., 2007) or torques (Scott and Kalaska, 1997) and 
high-level movement kinematics (Georgopoulos et al., 1982), with its 
precise role in movement generation still under debate (Omrani et al., 
2017). Recent advances in understanding motor processing were made 
by studies that focused on the activity of large populations of neurons in 
motor cortex (Gao and Ganguli, 2015; Luczak et al., 2015; Sadtler et al., 
2014; Shenoy et al., 2013). Differently to classic representational ap
proaches, based on correlations between single cell activity and move
ment features, modern approaches consider the whole neuronal 
population as a ‘dynamical system’, i.e., an internal generator of opti
mized activity patterns that trigger motor behavior (Michaels et al., 
2016; Omrani et al., 2017; Shenoy et al., 2013). The dynamical system 
approach discovered low-dimensional dynamics in motor and premotor 
cortex population activity with important rhythmic and rotational 
components also in non-rhythmic movements such as reaching or 

grasping (Churchland et al., 2012; Gallego et al., 2018; Shenoy et al., 
2013; but see also Suresh et al., 2020). In this view, rotations seem to be 
a simple element of the dynamic oscillatory patterns required to produce 
muscle contractions and relaxations (Shenoy et al., 2013). 

It is commonly accepted that the PPC is the major cortical site of 
multisensory integration for limb movement guidance and single PPC 
neurons show highly heterogeneous responses (Andersen et al., 2014; 
Buneo and Andersen, 2006; Diomedi et al., 2020; Fattori et al., 2017; 
Hadjidimitrakis et al., 2019; Janssen and Scherberger, 2015; Medendorp 
and Heed, 2019; Zhang et al., 2017). Given the extensive bi-directional 
connections within the fronto-parietal network (Gamberini et al., 2020; 
Johnson et al., 1996; Matelli et al., 1998), we examined whether pop
ulation activity in parietal cortex mostly reflected both the temporal 
dynamics and the low-dimensionality of the population activity variance 
observed in frontal areas. We studied neural populations in two medial 
PPC areas, namely V6A and PEc, during a reaching task in 3D space. 
Both areas process visual and somatosensory information (Gamberini 
et al., 2011, 2018) and neural activity is modulated by eye position and 
arm movement related signals (Breveglieri et al., 2012; Fattori et al., 
2001; Galletti et al., 1995; Raffi et al., 2008;). To study population dy
namics, we applied the Hidden Markov Model (HMM), an unsupervised 
machine learning method used for time series analysis (Rabiner, 1989). 
The HMMs identify, within the time-evolving population activity, 
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discrete ‘neural hidden states’ through the observed noisy discharges. In 
premotor cortex, HMMs detected different states of population activity, 
reflecting baseline activity and arm movement planning discharges 
(Kemere et al., 2008). A recent study characterized distinct 
sub-populations in premotor and motor areas applying HMM (Mazurek 
et al., 2018). Additionally, in motor cortex, the decomposition of arm 
movement into two different neural states, corresponding to accelera
tion and deceleration phases, was reported using HMM (Kadmon Harpaz 
et al., 2019). 

In parietal areas V6A and PEc, we reliably detected a number of 
neural states that were tightly linked to distinct periods of the task 
sequence, i.e. the planning and execution phases of movement and the 
holding of target. The states before and after the movement could be 
further segmented into two states related to different stages of move
ment planning and arm posture processing. Rather unexpectedly, we 
found that activity during the movement could be parsed into two states 
of equal duration temporally linked to the acceleration and deceleration 
phases, exactly as observed in motor cortex with a different reaching 
task (Kadmon Harpaz et al., 2019). Our findings suggest that, at least 
during arm reaching in 3D space under static sensory input, PPC cortex 
shows low-level population neural dynamics. In addition, the present 
findings suggest that computational processes in PPC could be better 
understood if studied using a dynamical system approach rather than a 
mosaic of single independent units, as already proposed for the motor 
cortices (Churchland et al., 2012; Shenoy et al., 2013). 

2. Materials and methods 

The current study consisted in an extended computational analysis of 
neural data reported previously (Hadjidimitrakis et al., 2014, 2015). 
Accordingly, the procedures described herein focus on analytical treat
ment of the data and provide only essential details of the experimental 
procedures. Full details of experimental methods are provided in our 
previous reports. 

The study was performed in accordance with the guidelines of the EU 
Directives (86/609/EEC; 2010/63/EU) and the Italian national law (D. 
L. 116− 92, D.L. 26–2014) on the use of animals in scientific research. 
Protocols were approved by the Animal-Welfare Body of the University 
of Bologna. During training and recording sessions, particular attention 
was paid to any behavioural and clinical sign of pain or distress. 

2.1. Experimental procedures 

Two male macaque monkeys (Macaca fascicularis) weighting 4.4 kg 
(M1) and 3.8 kg (M2) were used. Single cell activity was extracellularly 
recorded from the anterior bank of the parieto-occipital sulcus (POs) and 
the adjacent caudal part of SPL. 

Multiple electrode penetrations were performed using a five-channel 
multielectrode recording system (Thomas Recording GmbH, Giessen, 
Germany). The electrode signals were amplified (at a gain of 10,000) 
and filtered (bandpass between 0.5 and 5 kHz). Action potentials in each 
channel were isolated with a waveform discriminator (Multi Spike De
tector; Alpha Omega Engineering Nazareth, Israel) and were sampled at 
100 kHz. The quality of single-unit isolation was determined by the 
visual inspection of spike wave forms and considering refractory periods 
in ISI histograms during spike-sorting. Only well-isolated units with 
homogenous waveforms and clear ISI histogram were considered. The 
animal behaviour was controlled by custom-made software imple
mented in Labview (National Instruments, Austin, TX) environment 
(Kutz et al., 2005). Eye position signals were sampled with two cameras 
(one for each eye) of an infrared oculometer system (ISCAN, Woburn, 
MA) at 100 Hz. The vergence angle was not recorded online, but it was 
reconstructed offline from the horizontal eye positions of the two eyes. A 
sort of control for vergence resulted from the presence of electronic 
windows (one for each eye, 4◦ × 4◦ each) that controlled the fronto
parallel gaze position, so that we could set an offset of the horizontal eye 

position signal for targets located in the same direction, but at different 
depths. 

Histological reconstruction of electrode penetrations was performed 
following the procedures detailed in studies from our lab (Gamberini 
et al., 2011, 2018). Briefly, electrode tracks and location of each 
recording site were reconstructed on Nissl-stained sections of the brain 
on the basis of several cues: 1) marking electrolytic lesions, 2) the co
ordinates of penetrations within the recording chamber, 3) whether the 
electrode passed through another cortical area before reaching the re
gion of interest. Area V6A was initially recognized on functional grounds 
following the criteria described in Galletti et al. (1999) and later 
confirmed based on the cytoarchitectonic criteria reported in Luppino 
et al. (2005). The recording sites were assigned to area PEc according to 
the cytoarchitectonic criteria of Pandya and Seltzer (1982) and Luppino 
et al. (2005). 

2.2. Behavioural task 

Electrophysiological signals were collected while the monkeys per
formed an instructed-delay foveated reaching task (Fig. 1c), towards 
targets that were located at different positions in the 3D space. Monkeys 
sat in a primate chair, with the head restrained, and faced a horizontal 
panel located at eye level. Nine light-emitting diodes (LEDs) mounted on 
the panel at different directions and distances from the eyes were used as 
both fixation and reaching targets (Fig. 1b, left). As shown in the right 
part of Fig. 1b, the LEDs were arranged in three rows: one central, along 
the sagittal midline, and two laterals, at version angles of − 15◦ and 
+15◦, respectively. Along each row, three LEDs were located at vergence 
angles equal to 17.1◦, 11.4◦, and 6.9◦, respectively. The two animals had 
the same interocular distance (3.0 cm), so the targets in each row were 
placed at the same distance from the monkeys’ mid-eye level in both 
animals (nearest/intermediate/far targets: 10/15/25 cm, respectively). 
The range of vergence angles was chosen to be within the limits of 
peripersonal space, so the monkeys were able to reach all target posi
tions. The animals performed the task with the limb contralateral to the 
recording site while maintaining steady fixation. The hand started the 
trial pushing a button (home button, HB, 2.5 cm in diameter, Fig. 1b) 
placed outside the monkeys’ visual field, 5 cm in front of its trunk. After 
1 s, one of the nine LEDs lit up green and the monkeys were required to 
fixate it while keeping the button pressed. The monkeys had to withhold 
any eye or arm movement for 1700–2500 ms, until the ‘go’ signal that 
was the change of LED colour (green to red). After the ‘go’ signal the 
animal had 1 s to release the HB (movement onset) and start an arm 
movement to reach the target. Target touch was acquired as the acti
vation of a micro-switch positioned at LED basis (movement end). After 
reaching the target LED the monkeys had to hold it for 800–1200 msec. 
Then, the LED offset cued the monkeys to release it and move their arm 
backward to press the HB in order to receive reward. Only rewarded 
trials were used in further analyses. 

2.3. Hidden Markov Model 

We used the Hidden Markov Model (HMM) method to examine 
whether the PPC activity could be characterized by sequences of discrete 
and stable patterns of activity termed hidden states. The HMM 
assumption is that a sequence of observable symbols is generated by a 
sequence of underlying hidden, not directly observable states (Fig. 1d). 
The hidden state sequence is a Markov chain (or process) since the future 
state of the system stochastically depends only on the present state and 
not on the past. 

In general, an HMM is characterized by different parameters:  

1 the number (N) of hidden states in the model. We defined S = {S1, S2,

…, SN} the set of possible states and qt the Markov process that 
represents the state of the system at time t. The Markov process 
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assumes the probability of transition from state Si to Sj at time t + 1 
depends only on the state of the system at time t: 

P
(
qt+1 = Sj|qt = Si, qt− 1 = Sk,…

)
= P

(
qt+1 = Sj|qt = Si

)

2 the number (M) of distinct observable symbols i.e. the alphabet size. 
We denote symbols as V = {v1, v2, …, vM}. A so-called emission 
sequence is formed by symbols in V and it represents the experi
mental observations. We will use these emission sequences to train 
and validate the model.  

3 According to the Markov Process, the probability to switch from a 
hidden state to another (state transition) is given by the transition 
matrix A = {aij} where: 

aij = P
(
qt+1 = Sj

⃒
⃒qt = Si

)
1 ≤ i, j ≤ N 

Noteworthy, this matrix tells which status steps are allowed and 
which not, so it defines the topology of the Markov Process itself. Indeed, 
if the system can go from any state to another, we will have aij > 0 ∀i,j. If 
any state transitions are not allowed, we will have the relative element 
aij = 0.  

4 The emission matrix B = {bhj} links the hidden state sequence (i.e. 
the Hidden Markov Process) to the observable emission sequence. In 

brief, it represents the probability to observe the hth symbol during 
the jth state and so: 

bhj = P
(
vh at t

⃒
⃒qt = Sj

)

For neural data, the emission matrix represents the probability to 
observe a spike from the hth neuron during the jth state.  

5 The vector initial probability π = {πi} indicates the initial probability 
for each HMM state at the first observation: 

πi = P(q1 = Si) 1 ≤ i ≤ N 

The initial probability is required to initiate the Markov Process. 
A Hidden Markov Model is identified by these three parameters (A, 

B, π). 

2.3.1. HMM training and decoding of hidden states probability 
We use the Baum-Welch algorithm to train the models and so to 

estimate its main parameters, i.e. the transition and the emission matrix 
(Fig. 1e). This algorithm is an iterative procedure, based on the Expec
tation Maximization algorithm, that starting from an initial model 
defined by choosing randomly initial parameters, it iteratively generates 
a new model upgrading the initial parameters and maximizing the 
probability that the new model has generated the experimental obser
vations used. The algorithm ends either after 500 iterations or when the 

Fig. 1. Anatomical localization of V6A and 
PEc, experimental design and Hidden Markov 
model. a) 3D reconstruction of macaque brain. 
Dorsal view of the left hemisphere and medial 
view of the right hemisphere showing area V6A 
(yellow) and PEc (purple). Abbreviations: as, 
arcuate sulcus; cal, calcarine sulcus; cs, central 
sulcus; cin, cingulate sulcus; ips, intraparietal 
sulcus; lf, lateral fissure; ls, lunate sulcus; pos, 
parieto-occipital sulcus; ps, principal sulcus; sts, 
superior temporal sulcus; D, dorsal; P, poste
rior; A, anterior; L, lateral. b) Experimental 
setup. Reach movements were performed in 
darkness toward 1 of 9 LEDs arranged at eye 
level in front of the monkey. Spatial coordinates 
of targets are indicated as vergence and version 
angles of the eyes. HB: Home Button. c) Task 
sequence. From left to right: trial start (HB 
press), target appearance (T. onset), fixation 
onset (Fixation), go signal (Go), start of the arm 
movement (Mov. onset), touch and holding of 
the target (Touch), return movement (Mov2. 
onset). The rasters reported below are an 
example of neural activity pooled together to 
simulate an ensemble. d) Schematic represen
tation of the HMM and its core parameters. The 
Markov process starts with initial probabilities 
π to be in one of the N states (maximum prob
ability is assigned to the first state) and it pro
ceeds though a series of state transitions with a 
probability determined by the Transition Matrix 
(A). The Markov process itself is not observable 
(hidden), but the Emission Matrix (B) links in 
terms of probability this process to a series of 
observable events [v1, v2, v3 …] that indicate in 
which hidden state is the system. e) HMM 
training and validation on neural data. Spike 
counts are converted in emission sequences. 
During the training phase, the Baum-Welch al
gorithm estimates the model parameters (tran
sition and emission matrices). These are 
validated on new emission sequences to give a 
state probability sequence (HMM validation, 
see Methods).   
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difference between the log-likelihood of the model at kth step and that of 
the (k-1)th is less than 10–6. Given a trained model and an entire 
experimental observation n1:T of length T (i.e. the total number of bins) 
we wanted to decode P

(
qt = Sj|n1:T

)
, i.e. the probability at each time 

instant to be in one of the defined hidden states (Fig. 1e). For this aim we 
used the Forward Backward algorithm. This method uses the forward 
density representing information from the beginning forward to the 
present t: 

αt(j) ≡ P
(
n1:t, qt = Sj

)
=

[
∑N

i=1
αt− 1(i)aij

]

bnt j 

and the backward density that represent the information from time T 
backward to the present t: 

βt(j) ≡ P
(
nt+1:T , qt = Sj

)
=

∑N

i=1
βt+1(i)ajibnt+1 i 

to infer the a posteriori likelihood (APL) that is proportional to the 
probability we wanted to decode (Kemere et al., 2008): 

P
(
qt = Sj|n1:T

)
∝ P

(
n1:T , qt = Sj

)
= αt(j)βt(j)

2.3.2. Neural implementation of HMM 
In our HMM implementation, we used a single observation variable 

approach for simplicity and in accordance with previous works (Bolli
munta et al., 2012; Mazurek et al., 2018; Mazurek and Schieber, 2019). 
We performed a random selection procedure during data pre-processing 
(see below) to account for multiple observations and avoid information 
loss. In particular, N was the number of the neural states that we ex
pected to be encoded in the population activity. Our alphabet was 
composed by the numbers from 1 to the total number of neurons in the 
population plus 0 that represented the absence of spikes from any 
neuron. The resulting alphabet size M is equal to number of units in our 
population plus one. To feed the HMM algorithm, we needed to generate 
the appropriate emission sequences from the neural data. Starting from a 
spike count for each cell and each trial (2-ms bins) aligned all at the 
same event, in order to generate an emission sequence, we assigned one 
symbol to each bin (Bollimunta et al., 2012; Mazurek et al., 2018). For 
example, we assigned the symbol “2” to a bin in which we recorded a 
spike from the 2-nd neuron of our population. If no cell discharged at a 
particular bin, we put the symbol “0”. If two or more neurons discharged 
in the same bin, we chose one of them in a random way. On average, in a 
trial we had 11 % of the total bins with no spikes, 23 % with only spike 
from 1 neuron and 66 % with spikes from 2 or more neurons. Forcing 
these discharges in a unique emission sequence representative of the 
trial would create a bias due to the randomness of the choice and it 
would lead to a loss of information of about 42 % (considering the 
number of spikes occurred simultaneously that would not be considered 
over the total). To avoid bias and the information loss, we ‘augmented’ 
the initial data by repeating 100 times/trial the procedure, thus 
obtaining 100 emission sequences/trial that were slightly different one 
from another (1000 seq. for each target position tested on 10 trials). This 
procedure, that could be seen as performing a kind of ‘bootstrapping’ 
within the population of neurons active in each bin, enabled us to obtain 
a number of emission sequences that fully represented the original data 
(99.98 % of probability to observe the entire information with 100 
seq./trial vs ≃ 85 % with 50 seq./trial; simulated data). For each neural 
population (M1, V6A and PEc; M2, V6A and PEc), we trained an HMM 
separately for each target position. Because the Baum-Welch maximi
zation is sensitive to the initial values used, during the train step, we ran 
the algorithm 10 times for every position and population starting each 
time with different initial parameters and we selected the model with 
the highest log-likelihood (Mazurek et al., 2018). The elements of the 
emission matrix were initialized as equal to 1/M. The diagonal elements 
of transition matrix (i.e. the probability to remain in a state) were 
initialized with values in the range ai,i ∈ [0.99,0.999], and elements 
above the diagonal (i.e. the probability to proceed to the next state) were 

set as ai,j = (1 − ai,i)/(1 − N) ∀ j > i where N is the total number of the 
states. We then normalized the rows of the matrix to obtain a total 
probability equal to 1. 

To avoid over fitting, the models were cross validated in two 
different ways. For the preliminary consistency analysis (i.e. to choose 
the optimal number of states), we trained the models on emission se
quences generated from all the available trials and we decoded se
quences generated in the same way but with an additional bins shuffling 
step (i.e. the tth-bin of the jth-sequence was randomly substitute with tth- 
bin of the ith-sequence). This atypical cross-validation allowed to test the 
models on data not completely new, but not identical to the training 
dataset, with a great computational advance. For all the subsequent 
analyses, we used a leave-one-out cross-validation (models trained on 9 
trials and validated on the 1 left out) and all the subsequent results here 
reported are referred to the validation dataset, never seen by the models. 

2.4. Consistency and timing analysis 

Given a trained N-state model ([N x N] transition matrix; [n◦ of 
neurons x N] emission matrix), we considered ‘consistent’ with the 
model every emission sequence in which the probabilities of N-states 
crossed a threshold. We arbitrarily chose the threshold to be equal to 
0.7, a slightly higher value compared to similar works (e.g., 0.6 in 
Mazurek et al., 2018). For the timing analysis, we took the first bin in 
which a state rose above the threshold (‘rise’ of the state) or the last bin 
before it fell under the threshold (‘fall’ of the state) considering only 
sequences that were consistent with the model of interest. To compare 
V6A and PEc areas, we performed a series of Wilcoxon test (p < 0.05, 
data from M1 and M2 pooled together) for each state rise and fall. We 
calculated the variability in the timing of the ‘real’ neural transitions 
adjusted for the timing variability of the behavioral events. To do so, we 
subtracted the variance of the reference event timing from the variance 
of the decoded neural transition timing. 

2.5. Gini coefficient 

The Gini coefficient (or index) was used to measure the sparsity of a 
matrix. We computed the Gini index of the emission matrices to inves
tigate which fraction of the population was active during each hidden 
state. Thus, in our case, a highly sparse emission matrix (high Gini co
efficient) indicated that in each hidden state only few neurons were 
likely to discharge. Vice versa, we expected a low Gini coefficient when 
each state involved the activation of the majority of the population (low 
sparsity of the emission matrix). To have reference values, we generated 
3 blocks of synthetic [100 neurons x 3 states] emission matrices (10,000 
each block). The first block contained matrices with only a random 
element between 0 and 1 for each row simulating a population of neu
rons with variable activity in one hidden state (i.e. highly selective). All 
the other elements of the matrices were set to 0. The second block 
contained matrices with two random elements per row in the range [0,1] 
and the other set to 0, while the third block contained matrices with all 
the elements different from 0. Probabilistically, these 3 blocks of syn
thetic emission matrices simulated 3 different neural populations with 
the 1/3 (33.3 %), 2/3 (66.7 %) and 3/3 (100 %) of the units active 
during each state. We computed the Gini coefficient on all the matrices 
to obtain 3 reference distributions of synthetic values. 

2.6. Comparisons between state sequences 

To compare two different state sequences decoded by the HMM al
gorithm and characterized by T bins and N states, we obtained two 
numeric vectors with N x T elements concatenating the probability of 
the N states for each sequence. We then computed the R2 between the 
two vectors as a measure of their similarity (values near 1 meaning that 
the two curves perfectly match). 

Based on this measure, we developed a procedure to test if the two 
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sequences of interest were significantly different or not. Starting from 
the trained models (real models) that had produced the state sequences 
of interest (real state sequences), we generated 200 new state sequences 
(100 fake state sequences for each model to compare) shuffling the 
emission matrices of the real models along the columns (states). Note 
that by shuffling training models we obtained biologically plausible fake 
models (i.e. with plausible probabilities to observe spikes from the cells) 
assigning to one neuron the probability to discharge in the same state of 
a different neuron (randomly chosen without repetition). We then 
computed a Gaussian null distribution calculating the R2 between each 
of the real state sequences and the fake sequences. The null distribution 
represented the reference values of the R2 for different sequences (real vs 
randomly generated). We considered the two real sequences as not 
significantly different if their R2 was higher than the null distribution (Z- 
test, p < 0.05). 

2.7. Sliding window t-test 

To examine whether the results obtained with the HMM were present 
also at single cells, we performed a sliding window t-test analysis. We 
repeated the same procedure within different temporal intervals. Basi
cally, we used the same temporal intervals of interest where we had 
applied HMM and we took a fix time window as reference. This fixed 
time window coincided with one of the average hidden states detected, 
thus its time width depended on the mean duration of the state. For each 
cell, we then performed a series of t-tests (p < 0.05) between the firing 
rate computed in the fixed time window and the firing rate computed in 
a sliding window of equal width that moved in 10-ms steps. For each 
step, we calculated the percentage of the cells in the population that 
showed a significant change in firing rate with respect to the fixed 
window (mean and standard deviation of 5000 bootstrap samples). As a 
control, we repeated the procedure taking as reference an initial and a 
final 300 ms window that extended from − 1000 to − 700 and from +700 
to +1000 ms with respect to movement onset, respectively (Fig. S5). 

2.8. Neural trajectories 

We projected the high-dimensional data on a reduced 3D-space using 
a standard Principal Component Analysis (PCA). We analysed re
cordings starting 1000 ms before movement onset and ending 1000 ms 
after. Since neural data were not recorded simultaneously, we aligned 
the data across different trials assigning a fixed number of bins to each of 
the main behavioural epochs (Delay, 370 bins; Reaction time, 130 bins; 
Movement, 190 bins; Hold, 310 bins) such that the total number of bins 
was 1000 and the average bin width was ≈2ms. We then smoothed 
(Gaussian filter, sigma ≈ 110 ms) the binned spike trains for each trial 
separately and computed the condition averages. With these data, we 
built a [m x n] matrix where m = N◦ of cells and n = N◦ bins * N◦

conditions; we normalized in the range [0,1] along the rows to avoid 
high firing rate units to excessively influence the analysis and we then 
performed the PCA on the pooled neural data. 

To investigate the temporal evolution of population activity within 
each hidden state, we fragmented the 3D - neural trajectories averaged 
across trials of the same condition in 6 segments, one for each hidden 
state (DELAY, PREMOV, ACC, DEC, EARLY HOLD, HOLD) obtaining 54 
segments in total (6 states * 9 conditions). Each segment was resampled 
at 20 equally spaced points and the centroid of each segment was 
aligned with the origin of the axes. We computed the mean Euclidean 
Distance between all the points (20) of segments belonging to the same 
state (intra-state distance) or belonging to different states (inter-state 
distance): lower distances meant similar segments shapes (i.e., similar 
temporal evolution of the neural trajectory segments). 

3. Results 

Our dataset consisted of neurons recorded from two areas, namely 

V6A, located in the anterior bank of parieto-occipital sulcus and PEc, in 
the adjacent caudal sector of medial PPC (Fig. 1a). Data were collected 
from two monkeys (M1 and M2) trained to perform an instructed delay 
reaching task towards visual targets (light emitting diodes, LEDs) 
located in 9 different positions (3 directions x 3 depths), placed at eye 
level (Fig. 1b). The animal sat on a primate chair in complete darkness 
and pressed a home button (HB) to begin the trial. Randomly, one of the 
LEDs was switched on and monkey had to fixate its gaze on it. After a 
variable delay, the LED changed colour and this cued the animal to 
perform an arm reaching movement and hold the reached position. After 
a variable period, the LED turned off and the animal moved its arm back 
to the HB position to receive reward (Fig. 1c). Movement onset was 
defined by the release of the HB, as detected by the embedded micro
switch (1 ms resolution). Movement end was measured as activation of a 
microswitch positioned on the target. 

Cells with activity recorded for 10 correct trials for each target were 
used for analysis, without any further preselection. Data from different 
recording sessions were pooled together to construct four neural en
sembles (2 animals x 2 areas) that were analyzed with population 
methods. Neural ensembles consisted of 104 and 93 units from V6A and 
PEc, respectively in monkey M1; 105 and 83 neurons respectively, from 
V6A and PEc in monkey M2 (see Fig. S1a for the recording sites). 

Fig. 1d shows a simple scheme of an HMM. In this view, a neural 
population goes through a chain of hidden states that makes each unit 
discharging with different probabilities. The transition matrix contains 
the probability to switch from each state to another, defining the to
pology of the Markov process. The emission matrix in turn, estimates the 
probability to observe a spike from each neuron in each state and it 
represents the link between the recorded neural activity and the unob
servable sequence of hidden states. Like any machine learning method, 
an HMM involves a training step to estimate the optimal parameters of 
the model i.e. the transition and the emission matrices and the subse
quent decoding on a test data set (Fig. 1e). Then, given an observed spike 
train, we used the estimated model to infer the probability at each time 
instant to be in one of the possible states (i.e. the state probability 
sequence or state sequence, Fig. 1e). We converted the spike counts in 
emission sequences and we cross-validated every model to ensure the 
predictive capacity of our model (see Methods). 

3.1. ‘Macro’ neural states corresponded to main task phases 

A crucial problem in HMMs is the definition of the optimal number of 
hidden states that represent the different patterns of activity. We 
addressed this issue with two different approaches while analyzing a 
time interval spanning from 1000 ms before the arm movement start 
until 1000 ms after to include the main behavioral events of the task. 

First, we checked the consistency of different numbers of states. For 
this analysis, we trained HMMs with different numbers of states (from 2 
to 7), then we used the trained models to decode each testing sequence, 
obtaining each time a different state probability sequence. A state 
sequence decoded by a N-states model was defined ‘consistent’ if the 
algorithm detected N hidden states with a probability above the 
threshold. Optimal was the number of states that decoded the highest 
percentage of consistent sequences in the testing dataset (see Methods). 

Fig. 2a shows the percentage of the emission sequences in which 2, 3, 
4, 5, 6 or 7 neural states were consistently decoded. In both areas, 2 and 
3 states were detected in the 100 % of the emission sequences in both 
animals; 4 states were present in about the 60 % of the sequences (M1: 
59 % and 68 % in V6A and PEc, respectively; M2: 42 % and 69 %). 
Adding more states, the percentage of consistency further decreased. 
According to the percentage of consistent decoded sequences, both 2 and 
3 (scoring a consistency of 100 %) could be considered as the optimal 
number of states. 

The second approach was to compare the goodness of fit (estimated 
as log-likelihood) of the models trained previously (Fig. S1b). The HMM 
with the optimal number of states should have the highest log- 
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likelihood. In agreement with the consistency analysis, the models with 
2 and 3 states had the highest log-likelihoods. In addition, after visual 
inspection of the data it was evident that the states decoded by 2-state 
models could result from 3-state models by merging two adjacent 
states (the first with the second or the second with the third, depending 
on the sequence; see Fig. S1c). Given this, we chose 3 -instead of 2- as the 
optimal number of hidden states for the subsequent analyses. 

Fig. 2b shows the average state probability sequence of 3-state 
HMMs trained separately for each target position. Comparing across 
areas (Fig. 2b, left and right panels) and animals (Fig. 2b continuous and 

dashed line), showed that the probabilities and timing of the activity 
patterns were quite similar. An initial state was present from the start of 
the analysis window (red lines) and its probability sharply decreased 
about 50 ms before arm movement onset. Around this time, a second 
state (green line) emerged and was present for ~0.5 s, until the end of 
movement. After that, a third state (blue line) rose and lasted until the 
end of the analysis window. The thin shaded areas shown in the figure 
indicated a high consistency across trials of the state sequence proba
bility (see also below the little variability of state transition timing). To 
measure the similarity of the state probability sequences across animals 

Fig. 2. Consistency analysis and results for 3- 
state HMM. a) Bars indicate the percentage of 
sequences in which it was possible to find a 
different number of neural states (2-7). We 
found that 3 was the highest number of states 
detectable in almost all the sequences. b) 
Average state sequences for 3-state HMMs. 
Colored lines (continue for M1, dashed for M2) 
represent the time course of the probability of 
each state. Shaded areas: ± S.E.M. across trials.. 
Symbols: timing of main behavioral events 
averaged across trial and positions. Black thick 
lines under symbols: variability of event timing 
(mean ± S.D). Horizontal dashed line: threshold 
set to identify ‘active’ states (0.7). The model 
individuated 3 different neural states along the 
trial highly consistent across animals and areas. 
c) Timing of state rises (i.e., when its proba
bility exceeded the threshold) or falls (when 
vice versa its probability fell above the 
threshold). Y-axis: the frequency expressed as 
percentage of emission sequences. Every col
umn of the histogram has a temporal resolution 
of 40 ms (20 bins). Symbols: timing of main 
behavioral events averaged across trial and 
positions. Black thick lines under symbols: 
variability of event timing (mean ± S.D). The 
distributions of rises / falls indicate that the 
switches between one neural state and another 
were tightly related to main behavioral events.   
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and areas, we computed the R2 between them. The R2 values were 
compared against a null distribution of synthetic shuffled data (see 
Methods). The state sequences were not statistically different in all the 
possible comparisons with R2 values higher than 0.95 (see Table S1). 
The timing of these three states coincided with the main task epochs i.e. 
waiting for the ‘go’ signal, moving the arm towards the target LED and 
holding the target. Accordingly, we named these 3 hidden states after 
the main task epochs as DELAY, MOVE and HOLD. 

To evaluate in finer resolution the timing of transitions between the 
three hidden states and compare it across animals and cortical areas, we 
applied a threshold (0.7, black dashed line in Fig. 2b). Each transition 
included the ‘fall’ of one state (probability<0.7 threshold) and the ‘rise’ 
of the subsequent state (probability> = 0.7). Fig. 2c shows the rise and 
fall distributions, separately for each area (pooling together data from 
the two animals). In all transitions, the distributions of ‘fall’ of one state 
and ‘rise’ of the subsequent overlapped extensively. Importantly, the 
distribution peaks fell remarkably close to the behavioral events. In V6A 
and PEc the state DELAY ended at − 60 ± 146 (mean ± S.D.) and − 89 ±
129 ms, respectively relative to movement onset, whereas the state 
MOVE rose in V6A and PEc at − 28 ± 142 ms and − 59 ± 130 ms, 
respectively, always in relation to the same event. With regards to the 
movement end, the state MOVE fell in V6A and PEc at 45 ± 145 ms and 
0 ± 125 ms, respectively, whereas the state HOLD rose at 78 ± 145 ms 
and 32 ± 124 ms, respectively for V6A and PEc. Comparing the 2 areas, 
we observed statistically significant differences in timing, with PEc 
leading V6A by 38 ms on average (Wilcoxon test, p < 0.05, see 
Methods). Moreover, since the timing of the behavioral events could 
vary on a trial-by-trial basis, correcting for this variability further 
reduced the variability of the state transitions to a range equal to ±
33− 62 ms. 

3.2. Emission matrices reveal the sustained response of neurons over 
multiple neural states 

For each state and neuron, the model estimated a value between 
0 and 1 that quantifies the probability to observe a spike from that 
neuron during a given state and this information was collected in the 
emission matrix. Fig. 3a  illustrates the emission matrix averaged across 
targets, with rows corresponding to the various states and columns 
representing neurons, with the color intensity being proportional to 
their activity. Neurons were sorted in descending order of state selec
tivity measured as the variance of the emission probability vector. 

To test whether the hidden states relied only on the neurons with 
high state selectivity (high variance) or, conversely, on the entire pop
ulation, we trained an additional set of HMMs excluding from the 
population 10 % of the most state selective neurons (the units on the left 
of the matrices shown in Fig. 3a, see Methods). The state sequences 
decoded by these ‘reduced’ HMMs (Fig. S2) were very similar to the ones 
decoded by the ‘complete’ HMMs (Fig. 2b), suggesting that the different 
activity patterns included the whole population and not only the cells 
tuned selectively for certain states. Indeed, the R2 between the ‘reduced’ 
and the ‘complete’ state sequences resulted to be very highly correlated 
(see Table S2 in the Supplementary Material). 

We further investigated the relation between neural states and single 
unit activation by computing the Gini coefficient on the emission matrix 
(Maboudi et al., 2018). The Gini index ranges between 0 and 1 and 
measures the sparsity of a matrix. A high Gini index (≃1) indicates that 
neural states strongly activate a few units. Conversely, a low Gini index 
(≃0) shows that the entire population is active in each neural state. 
Fig. 3b shows the median Gini index in the 4 neural populations and the 
median Gini index value of synthetic populations composed of cells with 
high, medium and low state selectivity (see Methods). The Gini values 

Fig. 3. Single cell contribution to the neural 
states. a) Graphical representation of the emis
sion matrices averaged across positions. Cells 
(columns) are sorted in descending order (left 
to right) based on the variance of the proba
bility to fire a spike in each state. The cells se
lective for one/two states are shown on the left 
part of each matrix and nonselective cells are 
shown on the right part. b) Gini Index calcu
lated on the emission matrices for V6A (left) 
and PEc (right). The index computed on the real 
data is compared with the index computed on 
synthetic data (NULL). In each boxplot, the 
median and the 25th and 75th percentiles, 
respectively, are shown. The whiskers extend to 
the most extreme data points not considered 
outliers. All the 4 populations have Gini Index 
not different from that of a synthetic population 
in which, during each neural state, 2/3 of the 
cells are active. The inserts at the top show in 
detail the distributions of the Gini indexes 
computed on the real data.   
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for the real data were very similar to a synthetic population with a 
median Gini index equal to 0.55 constructed with the assumption that 
the 66 % (2/3) of cells were active during each state. 

3.3. HMMs in restricted time windows revealed several ‘micro’ states 

For simplicity, we will refer to the 3 neural states before mentioned 
as ‘macro’ states because they were detectable in all the analyzed 
emission sequences considering a large temporal window (2000 ms, 
centered on movement onset). Our analyses so far were based on the 3- 
state model; however, 4-state models also provided a high consistency of 
decoding (Fig. 2a). In 4-state models, the 3 ‘macro’ states described 
previously were still detected and in addition a fourth state popped up 
either between DELAY and MOVE, or between MOVE and HOLD states 
(Fig. S3). To investigate these additional states, we analyzed the timing 
of the transitions decoded by the 4-state models (see Methods). We 
found that all the six distributions (falls of states 1, 2 and 3; rises of states 
2, 3 and 4) significantly deviated from unimodality (Hartigan’s Dip test 
for unimodality, p < 0.05). This finding was consistent with the exis
tence of two additional minor states rather than a single fourth ‘macro’ 
state. To further investigate these two minor neural states, we then 
focused our analysis on smaller time windows. Before moving on, please 
note that we defined as ‘micro’ states these additional minor neural 
states that were decoded from only a fraction of the emission sequences 
and that required narrower ad hoc time windows to be properly studied. 

Regarding the first ‘micro’ state that appeared between DELAY and 
MOVE, we examined whether it could be related to the ‘go’ signal event 
and the preparation of the upcoming movement. Thus, we aligned dis
charges at this event and trained a 3-state HMM on a temporal window 
spanning from 250 ms before until 500 ms after. Fig. 4a (cyan color) 
shows that the probability of this state was lower than the ‘macro’ states 
(0.53 and 0.49 at the peak for V6A and PEc, respectively), but it could be 
still decoded in the majority of sequences (M1: 57 % and 66 %, V6A and 
PEc respectively; M2: 46 % and 62 %; see Methods). Note that the state 
probability shown in Fig. 4a is the average of all individual state prob
ability sequences with 3 states which passed the threshold (0.7). Due to 
the fact that the individual states crossed the threshold at variable time 
points, the peak of their average could appear globally lowered and 
below threshold. Moreover, the averaged state sequences were similar 
across areas and animals (R2 > 0.80; Z-test, p < 0.05; see Table S1 for all 
R2 values and null distributions). This first ‘micro’ state emerged 68 ±
154 ms after the ‘go’ signal and disappeared at 28 ± 102 ms before 
movement onset in V6A. In comparison, in PEc the corresponding values 
were 70 ± 152 ms and 34 ± 104 ms (Fig. 4b cyan histograms). After 
accounting for the variability of the movement onset, the timing un
certainty of this ‘micro’ state fall was reduced to ± 36− 52 ms. These 
results suggest that a distinct activity pattern was present in both areas 
during the movement reaction time that we hereafter refer to as PRE
MOVE, thus providing evidence for short-lead movement preparation 
signals in parietal ensemble activity. 

Fig. 4. ‘Micro’ states revealed by applying 
HMM in restricted time windows. a) Average 
state sequences for 3-state HMMs separately 
trained on two periods, one from 250 ms before 
to 500 ms after the ‘go’ signal and the other 
from 250 before to 800 ms after movement end. 
Two ‘micro’ states emerged during movement 
reaction time and during the first 250 ms after 
the movement end. Same conventions as in 
Fig. 2. b) Timing distributions of ‘micro’ states 
rises or falls. Same conventions as in Fig. 2.   
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To probe for a ‘micro’ state also between MOVE and HOLD states, we 
aligned activity at the movement end event and analyzed a window from 
250 ms before until 800 ms after. This window was selected in order to 
supply the model with enough data to correctly detect possible ‘micro’ 
states. Fig. 4a (magenta curves) shows the averaged probability of this 
state across time, with maximum probability being higher than PRE
MOVE state (0.70 and 0.79, respectively for V6A and PEc) and it was 
detected in a higher number of sequences (M1: 69 % and 82 %, V6A and 
PEc respectively; M2: 65 % and 74 %; see Methods). The decoded state 
sequences were similar across animals and areas (R2 > 0.90; Z-test, p <
0.05; see Table S1 for all the values). This ‘micro’ state rose at 77 ± 131 
ms and fell at 314 ± 184 ms after movement end in V6A, while in PEc the 
corresponding values were 35 ± 109 ms and at 314 ± 166 ms (Fig. 4b 
magenta histograms). These findings further substantiated the presence 
of another ‘micro’ state that was active during the first 250 ms of holding 

the target period and thus we will refer to it as EARLY HOLD state. 

3.4. ‘Micro’ states during movement were related to distinct movement 
phases 

Lately, it has been reported that HMMs divided the motor cortex 
activity during arm movement into two states temporally coupled to the 
two acceleration and deceleration phases of the arm (Kadmon Harpaz 
et al., 2019). Prompted by this finding, we examined the possibility that 
a similar movement decomposition could be detected also in parietal 
cortex ensemble activity. So far single-cell and population parietal ac
tivity were reported to encode more spatial movement parameters like 
direction or trajectory (Mulliken et al., 2008b; Torres et al., 2013). 
HMMs were trained to search for two states during movement, starting 
from its onset until 400 ms after, to include the average movement time. 
Rather unexpectedly for two parietal areas, two states emerged (Fig. 5a) 
in the vast majority of sequences (M1: 88 % and 80 % in V6A and PEc, 
respectively; M2: 72 % and 91 %; see Methods) and the decoded state 
sequence was consistent between animals and areas (R2 > 0.90; Z-test, p 
< 0.05; see Table S1). We refer to these two subsequent ‘micro’ states as 
‘EARLY MOVE’ and ‘LATE MOVE’ (see Discussion for further details on 
their functional meaning). 

Even more importantly, the transition between these two states 
occurred halfway through the analysis window (Fig. 5b) (EARLY MOVE 
fall: 175 ± 99 and 180 ± 74 ms after movement onset; LATE MOVE rise: 
207 ± 99 and 211 ± 72 ms in V6A and PEc, respectively). To examine 
whether these two states were a model artifact, the R2 between the real 
state sequences was compared against a null distribution of synthetic, 
random state sequences and found to be significantly different (Z-test, p 
< 0.05). This confirmed that the EARLY and LATE MOVE states were not 
an artifact but reflected real neural processes. In sum, using HMMs, the 
parietal population activity during the movement was decomposed into 
two different ‘micro’ states that very likely reflect the different phases of 
arm movement (see Discussion). 

3.5. Single cell modulations related to ‘macro’ and ‘micro’ hidden states 

We subsequently tested whether the ensemble activity changes un
derlying the hidden states and their transitions were present in single 
neurons. Thus, for each cell, a series of t-tests was performed to compare 
the firing rate within a fixed window with the firing rates computed in a 
sliding window of equal duration that moved in 10-ms steps, starting 
from 1 s before movement onset until 1 s after. At each step the per
centage of cells with activity significantly different (t-test, p < 0.05) 
between the two windows, was computed. First, we chose as fixed 
window the time interval that corresponded to the mean duration of 
MOVE state (from movement onset until 400 ms after). The sliding 
window spanned from 1000 before movement onset to 1000 after it. As 
illustrated in Fig. 6a, we observed a significant drop in cell modulations, 
occurring around the DELAY-MOVE state transition and a sharp incre
ment during MOVE-HOLD switch. Thus, the incidence of single-cell 
activity modulations matched the three ‘macro’ states temporal evolu
tion (Fig. 6a). In sum, the majority of neurons (≃ 70 %) changed their 
firing twice along the trial, thus giving rise to the ensemble activity 
patterns that were detected by the 3-state HMMs. As a control, we 
repeated the same procedure taking as reference windows one time in
terval that included the first 300 ms of delay epoch and another interval 
at the end (hold epoch) of the temporal window considered for the an
alyses (see Methods). Fig. S5 shows the results with the two curves 
superimposed to highlight the abrupt changes in single cell modulations 
that corresponded to those observed in Fig. 6a. This finding strongly 
supports that the sharp neural changes were not an artifact, or a bias of 

Fig. 5. Segmentation of population activity during movement in two ‘micro’ 
states. a) Time course of average state sequences of 2-state HMMs. Activity from 
movement onset to 400 ms after it were analysed. The transition occurred 
halfway along the movement. Same conventions as in Fig. 2. b) Timing of state 
rises or falls. Same conventions as in Fig. 2. 
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the analysis used but underlying neural dynamics. To investigate also 
the relationship of single cell modulations with the several ‘micro’ 
states, we performed three additional sliding t-test analyses using as 
fixed windows the PREMOVE, EARLY MOVE and EARLY HOLD states, 
respectively (Fig. 6b). Accordingly, in each of these analyses the sliding 
window spanned the same period used to identify the corresponding 
‘micro’ state. Across these tests, we observed that the firing rate of about 
25–60 % of the population was significantly different before and after 
the ‘micro’ states transitions. In particular, within the movement phase 
we found that 35–60 % of units significantly changed their firing rates 
(Fig. 6b middle; see Fig S4 for cell examples). In conclusion, we observed 
that the ‘macro’ and ‘micro’ states of the population activity were linked 
to single cell modulations. 

3.6. Temporal evolution of population activity within HMM states 

To fully examine the complexity of population dynamics, we per
formed a principal component analysis (PCA, see Methods) and pro
jected the ensemble activity into a low-dimensional space defined by the 
first 3 principal components. Fig. 7a shows example neural trajectories 
of the population activity recorded from V6A (left) and PEc (right) in M1 
and M2, respectively (see Fig. S6 for other examples). In both examples, 
9 smooth neural trajectories clearly separated from each other were 
obtained by applying PCA on the condition averaged firing rates (see 
Methods). Note that the reach goal position was cued before the start of 

the analysis window, so the trajectories differed between targets from 
their beginning. In Fig. 7a, on each trajectory the averaged HMM states 
are indicated with different colours. 

It should be noted that the first 3 Principal Components (PCs) 
accounted for a significant fraction of the variance in the neural data 
(M1: V6A [21 %+15 %+12 % = 48 %], PEc [25 %+16 %+ 10 % = 51 
%]; M2: V6A [16 %+12 %+9% = 37 %]; PEc [22 %+18 %+ 9% = 49 
%]). 

Interestingly, the EARLY MOVE-LATE MOVE switch occurred at a 
turning point in population activity halfway between movement onset 
and target touch, thus confirming a significant change in cells’ dis
charges within the reaching phase (see colours in Fig. 7a and Discussion 
for more details). 

To further confirm quantitatively that each state was associated with 
a characteristic path of the neural trajectory and to quantify the evolu
tion of neural trajectories, we segmented the trajectories based on the 
HMM states (Fig. 7b). To this end, we calculated the mean pairwise 
Euclidean distance between points belonging to segments of the same 
state (intra-state distance) or different states (inter-state distance). The 
intra-state distance was significantly lower than the inter-state distance 
for all the 4 (2 animals x 2 areas) neural populations, indicating that 
segments (and so, population activity dynamics) were more similar 
within states than between different states (intra-state distance: 0.17 
[0.13 0.19] vs inter-state: 0.41 [0.32 0.52], median [25th 75th quan
tiles]; Wilcoxon test, p < 0.001). In conclusion, despite the strong 

Fig. 6. Single cell modulations underlying 
population activity neural states. a) Percentage 
of units with significantly different (t-test, p <
0.05) firing activity between a fixed window 
(colored bar below the x-axis corresponding to 
the mean MOVE neural state) and a sliding 
window of equal duration (step: 10 ms). Neural 
data were aligned at movement onset and 
analyzed from 1000 ms before this event until 
1000 after. Shaded areas on the curves illus
trate the bootstrap standard deviations. Two 
sharp change points (− 200 to 0 ms and 200 – 
400 ms) separate more horizontal segments of 
the curve and coincide with the transitions 
between the 3 ‘macro’ neural states b) Per
centage of cells with activity changes at the 
time points around the transitions between the 
several ‘micro’ states. Same conventions of 
Fig. 6a. Curves show steep change points in 
correspondence with transitions between the 
different ‘micro’ neural states.   
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assumption on stationarity that is inherent in the HMM method, it still 
captured the complex neural dynamics of the population activity. 

4. Discussion 

In the present study we examined the dynamics of the population 
activity in two medial parietal areas, namely V6A and PEc, well known 
to contain highly heterogeneous populations that process a variety of 
spatial and motor features and are active during several phases of the 
arm reaching task. Using HMMs and PCA analysis, we found these dy
namics to be strikingly similar to those reported in motor and premotor 
cortices, thus highlighting common computational principles during 
motor control. 

4.1. Time course of ‘macro’ states supports anatomical and functional 
parieto-frontal gradients 

Along the task progress, we observed three main hidden neural states 
i.e., DELAY, MOVE and HOLD in the two parietal areas (‘macro’ states). 
The transition between the DELAY and MOVE states occurred about 60 
ms before the movement onset (45 and 75 ms in V6A and PEc, respec
tively). This transition could reflect a shift from a visuospatial encoding 
of target location using eye position signals to a somatomotor processing 

related to the upcoming arm movement. Strong eye position signals have 
been indeed reported both in V6A and in PEc (Breveglieri et al., 2012; 
Diomedi et al., 2020; Galletti et al., 1995; Raffi et al., 2008). 

The MOVE state rose before the movement onset, probably carrying 
information about an efferent copy of the motor command sent to PPC to 
construct a forward model of the movement state (Mulliken et al., 2008a). 
The most likely source of efferent copy signals is the dorsal premotor 
cortex (PMd) that sends feedback projections to V6A and PEc (Bakola 
et al., 2010; Gamberini et al., 2009; Johnson et al., 1996). In this regard, a 
reaching study in PMd (Kemere et al., 2008) using HMMs reported that 
the MOVE state emerged about 100 ms before movement onset, thus 
leading by 55 and 25 ms the MOVE state in V6A and PEc, respectively. 
This timeline, despite differences in tasks with Kemere et al. (2008), is 
consistent with an anterior-to-posterior propagation of 
movement-related signals in the fronto-parietal reaching network. This 
pattern of information flow has been recently proposed in a revised ac
count of sensorimotor processing in PPC (Medendorp and Heed, 2019). 

The transition from MOVE to HOLD state was detected about 40 ms 
(60 and 15 ms, respectively for V6A and PEc) after the end of movement, 
thus suggesting that HOLD state encoded somatosensory responses that 
are known to occur 30− 50 ms after stimulation (Cameron et al., 2014; 
Fromm and Evarts, 1981; Fetz et al., 1980; Soso and Fetz, 1980). The 
slightly earlier transition to HOLD in PEc compared to V6A could be 

Fig. 7. Neural trajectories and their HMM- 
based segmentation. a) Neural trajectories 
averaged across trials relative to each target 
position (for their precise location, see the 
schematic legend above) plotted in the 3 first 
PC’s space (left panel: M1 V6A; right: M2 PEc). 
Different colours correspond to HMM states. 
Behavioural events: instruction onset (white 
circle), onset of the movement (white upward 
triangle) and start of the hold phase (black 
downward triangle). The population activity for 
different targets is clearly segregated in the 3D 
space, but it shows similar evolution in the 9 
conditions. The first 3 PCs explained 37–51% of 
the total variance. b) Segments of neural tra
jectories cut following the hidden state transi
tions and with centroids aligned. Same colour 
code as Fig. 7a). The segments of population 
activity associated with the neural states show 
characteristic temporal dynamics that are 
different from state to state.   
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attributed to the fact that PEc receives strong somatic inputs directly from 
PE and area 2 of the somatosensory cortex (Bakola et al., 2010), whereas 
V6A receives these inputs indirectly from PEc (Gamberini et al., 2009, 
2020). Compared to parietal, in frontal cortex (ventral premotor cortex, 
PMv) the hold state emerged about 95 ms after the movement end 
(Mazurek et al., 2018). This timing is consistent with the sensory feedback 
flow from somatosensory to frontal areas via PPC. In sum, the time course 
of the ‘macro’ states reported here agrees with previous evidence on PPC 
organization (Andersen et al., 2014; Buneo and Andersen, 2006; Gam
berini et al., 2020; Hadjidimitrakis et al., 2019). At the same time, they 
support revised views on PPC that extend its role as body state estimator 
and propose a gradient within PPC that connects a caudal pole which 
mainly projects body information to the environment to a rostral one 
performing the opposite function (Medendorp and Heed, 2019). Based on 
a recent account of the anatomical inputs and functional properties of 
single neurons in V6A and PEc (Gamberini et al., 2020), it could be argued 
that these two areas lie just in between these poles. 

4.2. ‘Micro’ states could reflect several sensorimotor processes 

In a data driven fashion, we analyzed restricted trial periods to test 
whether a finer segmentation of population activity was possible. We did 
find additional ‘micro’ states that were detected in a variable percentage 
of the emission sequences and therefore their average probability 
remained lower than the ‘macro’ states. Accordingly, the ‘micro’ states 
were associated with more transient and weaker cell activation patterns. 
First, PREMOVE state extended within the movement reaction time 
(~70 ms after the ‘go’ signal until 30 ms before movement start). This 
suggests that PREMOVE reflected a stimulus-driven activity pattern that 
triggered an internally determined movement preparation period. The 
70-ms interval between the ‘go’ signal and PREMOVE rise is consistent 
with visual processing latencies in PPC (Kutz et al., 2003; Mulliken et al., 
2008a). Although PREMOVE likely reflects sensory processing, pro
cessing related also to motor preparation cannot be excluded. A com
bination of both sensory and motor processing delays in the reaction 
time activity was reported in PMd (Thura and Cisek, 2014). In PMd, 
Kemere et al. (2008) reported a transition to a planning HMM state 
occurring about 100 ms after the’ go’ signal, in line with earlier visual 
processing in parietal compared to premotor cortex (Cisek and Kalaska, 
2010). 

Similarly to PREMOVE, the EARLY HOLD followed a behavioral 
event, emerging slightly after the movement end. It was followed by the 
HOLD state that included the rest of the holding period. EARLY HOLD 
could reflect phasic somatosensory discharges related to the initial touch 
of the target and the subsequent hand stabilization transient phase, 
whereas HOLD could represent tonic activity required for the mainte
nance of arm posture. Both phasic and tonic signals related to arm 
posture have been reported in somatosensory cortex and area PE 
(Georgopoulos et al., 1984; Hamel-Pâquet et al., 2006; Soso and Fetz, 
1980) and they could be relayed to PEc and V6A (Bakola et al., 2010; 
Gamberini et al., 2020). Another important aspect regards the nature of 
neural representations during MOVE state. Besides the well-established 
role in the visuospatial encoding of motor goals (Andersen et al., 2014), 
parietal cortex is also involved in the arm movement trajectory planning 
and online control (Archambault et al., 2009; Mulliken et al., 2008b; 
Torres et al., 2013). From behavioral data, arm movement velocity has 
been reported to show a roughly bell-shaped profile with peak velocity 
reached approximately 40–50 % after the movement start (Castiello and 
Dadda, 2019; Churchland et al., 2006; Roy et al., 2000). Consistent with 
behavior, our HMM algorithm detected two ‘micro’ states within the 
movement period that well corresponded to the acceleration and 
deceleration phases, respectively, of the arm movement, with their 
transition occurring half-way through the movement. To our knowl
edge, a temporal segmentation of population activity like the one 
observed here has been reported only recently in primary motor cortex 
where two Markov hidden states coupled to the acceleration and 

deceleration of the arm were identified (Kadmon Harpaz et al., 2019). 
Considering that V6A and PEc are caudal PPC areas located far from 
motor output, this similarity in temporal structure of movement activity 
is noteworthy. In motor cortex, it was proposed that the two HMM states 
could originate from the sequential recruitment of two different sub
populations that would drive agonist muscles during acceleration phase 
and antagonist during deceleration phase (Hoffman and Strick, 1990; 
Kadmon Harpaz et al., 2019). 

An alternative view posits that neural computations and their neural 
states are shaped by behavioral constraints (Jin et al., 2014; Suway 
et al., 2018). Indeed, since during reaching there are two main behav
ioral constraints, i.e. movement start (mostly feedforward) and end 
(feedback) it is plausible to have two separate states of neural activity. 
Importantly, the fact that these two states were observed in both parietal 
and motor cortical areas that lie at different levels in the sensorimotor 
network, strongly supports this alternative view and suggest that it is a 
general principle. Accordingly, it is likely that parieto-frontal areas do 
not control movement in a hierarchical manner but show synchronized 
intrinsic network dynamics to prepare and generate and execute 
movements. In this view, even if the dynamics in parietal and frontal 
areas share the same temporal structure, the information they carry 
could be qualitatively different due to the heterogeneity of the parietal 
neurons and the variety of their sensory inputs. In this work, due to the 
simplicity of the motor task used and the static conditions, we have been 
able to highlight mainly the temporal similarities between the two nodes 
of the fronto-parietal network. To unravel more structural and infor
mation processing differences, further studies are necessary that will 
involve more complex tasks with sensory perturbations (e.g. target/
hand perturbations, interceptive movements) and task context infor
mation (e.g. serial movements, anti-reaches). 

4.3. Single-cell activity modulations and population activity covariance 
support HMM states 

To gain more insight into the underlying mechanisms, we examined 
the contribution of single neurons in the main HMM states. Gini index 
analysis revealed that in both parietal areas, the neurons in the popu
lation were on average active during two ‘macro’ states. This clearly 
demonstrates that the subpopulations that processed each neural state 
showed an extensive overlap. This finding is in line with previous ac
counts of V6A and PEc showing that during reach tasks significant 
numbers of cells were tuned for various spatial and movement param
eters at multiple epochs (Diomedi et al., 2020; Hadjidimitrakis et al., 
2015, 2017). Despite being active during multiple states, single neurons 
showed clear modulations of activity in the transitions between both 
‘macro’ and ‘micro’ states. To evaluate the effect of these single neural 
behaviors on the ensemble activity, we adopted a population approach 
different from HMM and explored the population dynamics in contin
uous neural space using PCA analyses. In particular, recent evidence 
from motor and premotor cortex suggests that population activity can be 
represented in the low-dimensional space by a unique neural trajectory 
with specific dynamics (Afshar et al., 2011; Churchland et al., 2012; 
Kadmon Harpaz et al., 2019; Petreska et al., 2011). 

Similarly, we found here that parietal ensemble activity was repre
sented by smooth trajectories that reflected the spatio-temporal features 
of the task. Superimposing the neural trajectory of the population ac
tivity in the various task conditions with the neural states, we observed 
that they were not represented by separated points (or small clouds of 
points), as it would be expected given that stationary firing rate within a 
state is assumed for Markov processes, but by segments with charac
teristic paths (Fig. 7). This result further confirmed the HMMs findings 
and paves the way for a more detailed exploration of parietal neural 
dynamics during various tasks with state space methods. 

Another interesting finding of the neural trajectories’ analysis 
regarded the relative extent of the various states in the neural space. 
With respect to the states immediately before (PREMOV), during (MOV) 
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and just after the arm movement (EARLY HOLD), the activity in the 
initial (DELAY) and final (HOLD) states was much less dynamic. This 
could be attributed to the fact that our task involved mostly stable 
sensory processing, with static eye and arm position signals present in 
DELAY and HOLD states. Overall, it should be acknowledged that our 
task was somehow biased towards motor-related processing and neural 
dynamics in parietal cortex should be also studied under more dynamic 
sensory stimulation (e.g. target/hand perturbation, interceptive move
ments, bimanual coordination) to study how feedback loops are inte
grated in population dynamics. 

Moreover, since the present study focused only on a restricted part of 
medial PPC, it remains to be shown whether motor-like neural dynamics 
are present in other neighbouring areas. In this regard, there is recent 
evidence that during grasping control the lateral PPC area AIP exhibits 
neural dynamics very similar to that of area F5 of the ventral part of 
premotor cortex (Michaels et al., 2018). Future work is needed to 
describe the motor neural dynamics in other associative and cognitive 
areas of the parietal cortex. Another limitation of our study is that no 
recordings of arm kinematics and muscle activity were performed. This 
information would have helped us to give a better functional charac
terisation of the microstates, especially those that emerged during 
movement and hold phase. In particular, EMG and kinematics could 
help us to understand how the movement phases are related to specific 
patterns of muscle activities during reaching and during the stabilization 
of the hand. 

In conclusion, the present work highlights important similarities 
between parietal and motor cortices population activity not reported 
before. These results support the interpretation of the parietal cortex as a 
dynamic computational node that is able to cancel out extrinsic inputs 
and tune its population activity with the premotor and motor cortices to 
generate movement. 

Author contributions 

S.D. and F.E.V. were responsible for designing and performing the 
analysis. S.D., F.E.V. and K.H. interpreted the results. S.D. and F.E.V. 
wrote the original draft. P.F., C.G. and K.H. assisted in manuscript re
view, P.F. provided funding and facilities. All authors contributed to 
editing the manuscript. 

Funding 

This work was supported by grant H2020-EIC-FETPROACT-2019- 
951910-MAIA. 

Declaration of Competing Interest 

The authors declare no competing interests. 

Acknowledgments 

We thank Drs. Rossella Breveglieri, Annalisa Bosco, Federica Ber
tozzi, and Giulia Dal Bo’ for their help in the recordings; Dr. Lauretta 
Passarelli, Massimo Verdosci and Francesco Campisi for technical 
assistance; and Dr. Michela Gamberini for anatomical reconstructions. 

Appendix A. The Peer Review Overview and Supplementary 
data 

The Peer Review Overview and Supplementary data associated with 
this article can be found in the online version, at doi:https://doi.org/10 
.1016/j.pneurobio.2021.102116. 

References 

Afshar, A., Santhanam, G., Yu, B.M., Ryu, S.I., Sahani, M., Shenoy, K.V., 2011. Single- 
trial neural correlates of arm movement preparation. Neuron 71 (3), 555–564. 
https://doi.org/10.1016/j.neuron.2011.05.047. 

Andersen, R.A., Kellis, S., Klaes, C., Aflalo, T., 2014. Toward more versatile and intuitive 
cortical brain-machine interfaces. Current biology: CB 24 (18), R885–R897. https:// 
doi.org/10.1016/j.cub.2014.07.068. 

Archambault, P.S., Caminiti, R., Battaglia-Mayer, A., 2009. Cortical mechanisms for 
online control of hand movement trajectory: the role of the posterior parietal cortex. 
Cereb. Cortex 19 (12), 2848–2864. https://doi.org/10.1093/cercor/bhp058. 

Bakola, S., Gamberini, M., Passarelli, L., Fattori, P., Galletti, C., 2010. Cortical 
connections of parietal field PEc in the macaque: linking vision and somatic 
sensation for the control of limb action. Cereb. Cortex 20 (11), 2592–2604. https:// 
doi.org/10.1093/cercor/bhq007. 

Ben Hamed, S., Schieber, M.H., Pouget, A., 2007. Decoding M1 neurons during multiple 
finger movements. J. Neurophysiol. 98 (1), 327–333. https://doi.org/10.1152/ 
jn.00760.2006. 

Bollimunta, A., Totten, D., Ditterich, J., 2012. Neural dynamics of choice: single-trial 
analysis of decision-related activity in parietal cortex. J. Neurosci. 32 (37), 
12684–12701. https://doi.org/10.1523/JNEUROSCI.5752-11.2012. 

Breveglieri, R., Hadjidimitrakis, K., Bosco, A., Sabatini, S.P., Galletti, C., Fattori, P., 2012. 
Eye position encoding in three-dimensional space: integration of version and 
vergence signals in the medial posterior parietal cortex. J. Neurosci. 32 (1), 
159–169. https://doi.org/10.1523/JNEUROSCI.4028-11.2012. 

Buneo, C.A., Andersen, R.A., 2006. The posterior parietal cortex: sensorimotor interface 
for the planning and online control of visually guided movements. Neuropsychologia 
44 (13), 2594–2606. https://doi.org/10.1016/j.neuropsychologia.2005.10.011. 
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