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ORIGINAL RESEARCH

Survival Prediction of Trauma Patients: A Study
on US National Trauma Data Bank
Imane Sefrioui1*, Amadini Roberto2, Jacopo Mauro3, Abdellah El Fallahi4 and Maurizio Gabbrielli5

Abstract

Background: Exceptional circumstances like major incidents or natural disasters may cause a huge number of
victims that might not be immediately and simultaneously saved. In these cases it is important to de�ne
priorities avoiding to waste time and resources for not savable victims. Trauma and Injury Severity Score
(TRISS) methodology is the well-known and standard system usually used by practitioners to predict the
survival probability of trauma patients. However, practitioners have noted that the accuracy of TRISS
predictions is unacceptable especially for severely injured patients. Thus, alternative methods should be
proposed.

Methods: In this work we evaluate di�erent approaches for predicting whether a patient will survive or not
according to simple and easy measurable observations. We conducted a rigorous, comparative study based on
the most important prediction techniques by using real clinical data of the US National Trauma Data Bank.

Results: Empirical results show that well-known Machine Learning classi�ers can outperform the TRISS
methodology. Based on our �ndings, we can say that the best approach we evaluated is Random Forest: it has
the best accuracy, the best Area Under the Curve, and k-statistic, as well as the second-best sensitivity and
speci�city. It has also a good calibration curve. Furthermore, its performance monotonically increases as the
dataset size grows, meaning that it can be very e�ective to exploit incoming knowledge. Considering the whole
dataset, it is always better than TRISS. Finally, we implemented a new tool to compute the survival of victims.
This will help medical practitioners to obtain a better accuracy than the TRISS tools.

Conclusion: Random Forests may be a good candidate solution for improving the predictions on survival upon
the standard TRISS methodology.

Keywords: Survival Prediction; Trauma Patients; National Trauma Data Bank; Classi�cation; Machine
Learning; TRISS methodology

1 Introduction
Exceptional circumstances like major incidents or nat-
ural disasters may result in a huge number of victim-
s that might not be immediately and simultaneously
saved, e.g., due to limited resources. In these cases it
is important to de�ne the priorities. In particular, it
would be detrimental to waste time and resources try-
ing to save not savable victims.

The triage is the process of determining the priority
of patients' treatments based on the severity of their
condition. Usually, a primary triage is carried out at
the scene of an accident, while a secondary triage is
performed at a Casualty Clearing Station (CCS), of-
ten located between the inner and outer cordons of the
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major incident. Several triage protocols exist for han-

dling emergencies. One of the most widely used is the

START protocol [1], which is adopted in the United

States, Canada, Saudi Arabia, and Australia. Patients

are assigned to four categories:

� red (top priority) for those requiring immediate

priority and an immediate response;

� yellow (delayed priority) for patients needing ur-

gent medical attention, but can be delayed for a

short time (i.e., should be treated within 20 min-

utes);

� green (minor priority) for patients that are con-

scious, breathing and have minor injuries (i.e.,

should be treated within 1 hour);

� black (low priority) for patients that are dead or

impossible to save.
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Figure 1: Triage Sieve Protocol (Norwegian Air
Ambulance).

Another triage protocol, adopted in part of Europe
and accepted by NATO, is the Triage Sieve [2] depict-
ed in Figure 1 [3]. Similarly to START protocol, also
the Triage Sieve schema classi�es the victims into four
categories according to the patients' conditions.
When more resources are available, the patients will

undergo a further, more detailed triage based on vi-
tal signs. In particular, many di�erent trauma scoring
systems have been developed for measuring the seri-
ousness of the patients and for scheduling the relief
e�orts. For example, some are based on physiological
scores (e.g., the Glasgow Coma Scale [4]) while others
rely on anatomical description (e.g., the Abbreviated
Injury Scale [4]). There is no universally accepted scor-
ing system and each system has its own limitations. In
general, only physiological features such as blood pres-
sure and respiration rate are assigned at �rst contac-
t, while precise determination of anatomical damage
is usually not possible at the scene of injury. Injury
severity can be assessed or estimated by medical ser-
vices physicians in the prehospital phase [5, 6] but the
assessment of injury severity by emergency physicians
based on physical examination at the scene of injury
is not always reliable [7, 8].
In this paper we �rst evaluated di�erent statistical

methods for tackling a major aspect of these more de-
tailed triages that focus on predicting if a patient will
survive or not according to simple and easy measur-
able observations. We conducted a rigorous, compara-
tive study based on some of the most important Ma-
chine Learning (ML) techniques. We validated our ex-
periments by using the information stored in the US
National Trauma Data Bank (NTDB), a database con-
taining over 2.7 million records of patients hospitalized

with traumatic injuries in 2002, 2003, 2004, and 2006.
Since in our case the prediction task is a binary classi-
�cation problem (i.e., the output of a survival predic-
tion is either \dead" or \alive") we evaluated some of
the best-known Machine Learning classi�ers including
Arti�cial Neural Networks, Naive Bayesian Classi�er,
Support Vector Machine, and Decision trees. We com-
pared the obtained results with the Trauma and Injury
Severity Score (TRISS) methodology [9], the standard
model typically used for predicting the survival proba-
bility of trauma patients. Empirical results show that
the accuracy of standard Machine Learning classi�ers
can be better than the TRISS methodology. In par-
ticular, the most accurate method was found to be
Random Forest [10], a ML approach based on decision
trees.
According to the results of the above empirical eval-

uation, we then developed the second major contribu-
tion of this paper: a C++ tool for survival prediction
based on the best ML classi�ers we tested, including
Random Forest and other approaches. The tool takes
as input the patient information (e.g., blood pressure
or respiratory rate) and estimates whether the patient
will survive or not.[1] We hope that this tool can help
practitioners to predict the survival of patients with a
better accuracy than TRISS-based tools (e.g., [11, 12]).
Paper structure. In Section 2 we give some prelim-

inary notions about the TRISS approach, the NTDB
database, and the classi�ers used in the experiments.
Section 3 describes the methodology we followed to
conduct the experiments, while in Section 4 we show
the obtained results. In Section 5 we present the tool
we developed to perform the survival predictions. In
Section 6 we report the related work before conclud-
ing in Section 7.

2 Background
In this section we recapitulate some preliminary no-
tions about the TRISS approach, the NTDB database,
and the classi�ers we evaluated in our experiments.

2.1 TRISS model
The Trauma and Injury Severity Score (TRISS)
method [9, 13, 4] is a standard and well-known model
typically used for predicting the survival probability of
trauma patients. It is based on logistic regression [14]
with four predictors: the age of the patient, the type of
injury (either blunt or penetrating), the Revised Trau-
ma Score (RTS), and the Injury Severity Score (ISS).
RTS and ISS result from a combination of other pa-
rameters. In particular the RTS is the weighted sum of

[1]The tool is available online at https://github.com/

imanesefrioui/tool_prediction_survival_executable

 https://github.com/imanesefrioui/tool_prediction_survival_executable
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the blood pressure, the respiratory rate, and the Glas-
gow Coma Scale (GCS) [4], a neurological scale that
aims to give a reliable, objective way of recording the
conscious state of a person. The ISS provides an over-
all score for injury severity in 6 body regions (head,
face, neck, abdomen, extremities, external) according
to the Abbreviated Injury Scale (AIS) [4]. The severity
of the injuries ranges from 0 (minor injury) to 6 (not
survivable injury). The ISS is the sum of the squares
of the highest injury severity scores.
TRISS determines the probability P of survival for a

patientX via the following logistic regression function:

P[X survives] =
1

1 + e�b

where:

b =

8><
>:

b0 + b1 RTS + b2 ISS if X is less than

55 years old

b0 + b1 RTS + b2 ISS + b3 otherwise

and b0, b1, b2 and b3 are the regression parameters.
The regression parameters were derived from multi-

ple regression analysis of the Major Trauma Outcome
Study (MTOS) database in the 1990s. The MTOS un-
til recently served as a standard reference database of
seriously injured patients in the United States, and
was the basis for many of the analytic methods that
have become nowadays familiar. For blunt injuries
b0 = �0:4499, b1 = 0:8085, b2 = �0:0835, b3 =
�1:7430, while for penetrating injuries b0 = �2:5355,
b1 = 0:9934, b2 = �0:0651, b3 = �1:1360.
Di�erent software tools for automatically computing

the TRISS value starting from the patient input data
have been developed and made available on-line [11,
12].
We would like to remind that TRISS relies on the

AIS which is seldom calculated upon hospital admis-
sion, as it often requires primary, secondary, and ter-
tiary patient surveys to assess all injuries completely.
Thus, TRISS is rarely used for early baseline risk ad-
justment.

2.2 National Trauma Data Bank
Starting from 1982 the American College of Surgeon-
s Committee on Trauma (ACS COT) coordinated the
MTOS. At the conclusion of MTOS, the ACS COT re-
newed its commitment to trauma research and quality
improvement by developing trauma registry software.
In 1997 a subcommittee was established to direct the
National Trauma Data Bank (NTDB) database. The
NTDB is the largest aggregation of US trauma reg-
istry data ever assembled. Currently, the NTDB con-
tains detailed data on over 2.7 million cases from over

900 US trauma centres. These data have been shared
with hundreds of researchers and represented the basis
of numerous scienti�c publications [15, 16].

The NTDB consists of data submitted by partici-
pating hospitals, and is continually cleaned and stan-
dardised to improve data quality and consistency. It
is therefore one of the best sources of information to
test trauma survival prediction models. Each record
of NTDB represents the vital signs of a given patient,
i.e., physiological scores, anatomical descriptions, and
physical measures. More technicalities about NTDB
are given in Section 3.1.

2.3 Machine Learning and Classi�cation

Machine Learning (ML) is a broad �eld that uses con-
cepts from Computer Science, Mathematics, Statistics,
Information Theory, Complexity theory, Biology and
Cognitive Sciences to \construct computer programs
that automatically improve with experience" [17]. In
this paper we are interested in classi�cation, a well-
known ML problem that consists in identifying into
which categories or classes a new observation belongs
by means of appropriate classi�ers. A classi�er is there-
fore a function that maps a new, unseen problem in-
stance characterized by a collection of numerical fea-
tures to one of a �nite number of classes on the basis
of a training set of instances whose class is already
known [17]. In particular, here we are interested in bi-
nary classi�cation: the prediction output for each in-
coming patient is a binary value that can be either
\dead" or \alive". In order to assess what are the best
practices in this context we tested di�erent well-known
classi�ers, that we briey describe in the rest of the
section.

Arti�cial Neural Networks

Arti�cial Neural Networks (ANN) are a family of
learning models inspired by the way the brain and
the nervous system work. They are used to estimate
or to approximate functions that can depend on a
large number of inputs. They are formed by a sys-
tems of interconnected \neurons" which can compute
values from inputs producing output based on suitable
weights. Training an ANN means learning the weight-
s that regulate the output of the neurons. Di�erent
approaches have been proposed in the literature [18].

In this paper we consider one of the simplest ANN
training methods: the back propagation. Weights are
initially random values. Then they are adjusted by ap-
plying a gradient descent method based on the output
expected on some instances used to train the network.
In medical research, the most commonly used arti�cial
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neural networks are theMultilayer Perceptrons (MLP-
s) with backpropagation [19].[2]

Decision Trees

Decision Trees (DTs) techniques rely on trees (or for-
est of trees) for making predictions. The tree structure
basically consists of leaves, representing the class label-
s, and branches, representing conjunctions of features.
Decision Trees and their extensions are widely adopt-
ed in classi�cation since they can lead to very e�ective
performance.

Here in particular we consider two relevant ap-
proaches based on DTs: Random Forest and C4.5.
Random Forest constructs a forest of random trees,
while C4.5 is a method based on the normalized infor-
mation gain ratio. Partial C4.5 DTs are also used by
other ML approaches, for example rule-based meth-
ods relying on PART decision lists. For more de-
tailed explanations about these techniques, please see
[10, 20, 21].

k-Nearest Neighbours

The k-Nearest Neighbours (k-NN) algorithm is a non-
parametric method used for classi�cation and regres-
sion [22]. Given a notion of distance (e.g., Euclidean
or Manhattan distance) the prediction is performed
according to the k > 0 instances closer to the instance
to classify. In classi�cation, a new instance is typi-
cally classi�ed by a majority vote of its neighbours.
The choice of k is critical and typically application-
dependent: generally, larger values of k reduce the ef-
fect of noise but make boundaries between classes less
distinct.

The k-NN algorithm is among the simplest of all ML
algorithms. Its underlying assumption is that \similar
instances have similar behaviours". It is also referred
as a lazy approach, since the learning function is only
approximated locally and all computation is deferred
until classi�cation.

Logistic Regression

Logistic regression (or logit regression, logit model) is
a direct probability model developed by D.R. Cox in
1958 [14]. It uses a logistic function for modelling the
probabilities of the possible outcomes. The logit model
is a generalised linear model dependent on di�erent pa-
rameters. Di�erent methods can be used to estimate
the model parameters, e.g., the maximum likelihood
estimation or the minimum chi-squared estimator for

[2]In our case the learning rate was set to 0:3, the mo-
mentum to 0:2, the number of iterations to 500, and the
hidden layer composed of 9 nodes.

grouped data. Penalized maximum likelihood estima-
tion with a quadratic penalty function is often called
ridge logistic regression [23].

Logistic regression is commonly used in Machine
Learning and applied in many �elds, including med-
ical and social sciences. For example, the aforemen-
tioned TRISS and many other medical methods for
assessing the severity of a patient rely on logistic re-
gression [24, 25, 26, 27].

Naive Bayes

The Naive Bayes classi�er provides a simple ap-
proach for representing, using, and learning proba-
bilistic knowledge. One can view such a classi�er as a
specialised form of Bayesian Network. The term naive
comes from two important simpli�cations: it assumes
that the features are conditionally independent given
the class, and that no hidden feature (i.e., a variable
that is not observable) inuences the prediction pro-
cess. A common assumption, not intrinsic to the Naive
Bayes approach but often made nevertheless, is that
within each class the values of numeric attributes are
normally distributed. These assumptions allows Naive
Bayes to be very e�cient from the computational point
of view. For more information on Naive Bayes classi-
�ers, we refer the interested reader to [28].

Support Vector Machines

Support Vector Machines (SVMs) are techniques that
aims at �nding the hyperplane that partitions a
dataset into two disjoint subsets. The idea is to con-
sider the hyperplane that allows the samples of each
class to stay on opposite sides of the separating plane.
When there is no hyperplane that can separate the
positive instances from the negative ones, SVMs map
the data to a higher dimensional space that allows to
de�ne a separating hyperplane. To do so, some popular
kernels such as polynomial and Radial Basis Function
are used.

The Sequential Minimal Optimization (SMO) algo-
rithm is a method devised by John Platt for solving
the Quadratic Programming problem that arises dur-
ing the training of support vector machines. SMO is
widely implemented and used for training SVMs. For
more details on SVM and SMO, see [29, 30, 31].

3 Methodology
Taking as baseline the best practices for testing classi-
�cation techniques [32, 33], in this section we present
the main ingredients and procedure that we used for
conducting our experiments and evaluating the classi-
�ers.
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3.1 Dataset

In this work we consider the US National Trauma Da-
ta Bank (NTDB) introduced in Section 2.2. We used
version 7.2 of NTDB, containing the records of almost
2 millions patients hospitalised with traumatic injuries
in 2002, 2003, 2004, and 2006. We focused only on trau-
ma patients, i.e., those having the �eld injury type set
to `blunt' or `penetrating'. For the sake of consisten-
cy, as done in numerous studies and as suggested in
the database manual [34], we discarded all the records
having missing information or out-of-range values.
Following the methodology of [15], every patient is

characterised by 17 di�erent features, 15 numerical and
2 nominal (viz., Gender and Injury Type). The list of
these features is shown in Table 1.

Table 1: Features of a patient in the NTDB database.

Name Range

x1 Age 0-99
x2 Gender Female, Male
x3 Injury Type Blunt, Penetrating
x4 Blood Pressure 0-300
x5 Respiration Rate 0-99
x6 GCS Eye 1-4
x7 GCS Verbal 1-5
x8 GCS Motor 1-6
x9 Head Severity 0-6
x10 Face Severity 0-6
x11 Neck Severity 0-6
x12 Thorax Severity 0-6
x13 Spine Severity 0-6
x14 Abdomen Severity 0-6
x15 Upper Extremity Severity 0-6
x16 Lower Extremity Severity 0-6
x17 External Severity 0-6

y Discharge Status Dead, Alive

We use the data of NTDB for extracting such fea-
tures. For instance, the feature x1 corresponds to the
age of a patient. Since patients having more than 89
years in the NTDB were classi�ed in one class, we as-
sign to these patients the age of 95 as default. The
Injury Type (feature x3) distinguishes between blunt
trauma (i.e., physical trauma such as bone fracture)
and penetrating trauma (i.e., when an object pierces
the skin). The Blood Pressure (feature x4) is given in
mmHg and ranges from 0 to 300, while the Respiratory
Rate (feature x5) is measured in breaths per minute.
Features x6; x7; x8 refer to the Glasgow Coma Scale
(GCS) [4] and examine the eye, the verbal response,
and the motor skill of a patient according to the con-
ditions listed in Table 2.
Features from x9 to x17 evaluate the injury severity

in di�erent body regions according to AIS scale: 0 score
means no injury, 1 a minor injury, 2 a moderate one,

3 a serious one, 4 a severe one, 5 a critical one, and 6
an unsurvivable injury.
To be able to compare the results with the TRIS-

S method we excluded patients having no ISS or an
ISS equal to zero. Since the NTDB distinguishes nine
body regions while TRISS considers only six regions
we applied the rules de�ned in [35] to assign the AIS
scores to the six body regions. Moreover, we discard-
ed the patients having a non-consistent ISS (i.e., the
patients for which the computed ISS score di�ers from
that of NTDB). Each patient is labelled with a Dis-
charge Status indicating whether the patient survived
or not.
We �nally ended up with a dataset � of 656; 092

records, each of which characterised by 17 di�erent
features (15 numerical and 2 nominal). Furthermore,
for testing the prediction model scalability and evolu-
tion when increasing the dataset size, we considered
also six di�erent subsets �1 � � � � � �6 � �. For
k = 1; : : : ; 6 each �k contains 100000 � k instances.
In particular for k = 2; : : : ; 6 every �k was created by
adding to the previous �k�1 dataset 100; 000 di�er-
ent instances randomly chosen from �. The datasets
composition is summarized in Table 3.

Table 3: Datasets composition.
Dataset No. of Patients Alive Patients Dead Patients

�1 100000 95304 4696
�2 200000 191455 8545
�3 300000 287434 12566
�4 400000 383237 16763
�5 500000 478603 21397
�6 600000 574355 25645
� 656092 627099 28993

3.2 Validation
In order to validate and test each classi�er we used
a 10-fold cross validation [36], a standard practice in
the ML community for avoiding over�tting problem-
s. Each dataset D 2 f�;�1; : : : ;�6g we considered
has been randomly partitioned in 10 disjoint subset-
s D1; : : : ; D10 called folds. Then, for i = 1; : : : ; 10 we
used a fold Di as the test set and the union of the
remaining folds

S
j 6=iDj as the training set.

Following the standard terminology [37] four possi-
ble outcomes are possible when evaluating a binary
classi�er that classi�es a given instance as \positive"
or \negative":
� true positive or hit, when the instance is positive
and it is classi�ed as positive;

� true negative or correct rejection, when the in-
stance is negative and it is classi�ed as negative;

� false positive or false alarm, when the instance is
negative and it is classi�ed as positive;
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Table 2: Test scores for the GCS (Glascow Coma Scale)
Score Eye Verbal Motor

1 No eye opening Makes no sounds No motor response
2 Eye opening to pain Incomprehensible sounds Extension to pain
3 Eye opening to voice Utters inappropriate words Flexion to pain
4 Eyes open spontaneously Confused, disoriented Withdrawal from pain
5 N/A Oriented, converses normally Localising pain
6 N/A N/A Obeys command

� false negative or miss, when the instance is posi-
tive and it is classi�ed as negative;

In our case, a positive instance is a surviving patient
while a negative one is a non-surviving patient.
In order to evaluate the performance of the ML clas-

si�ers we considered some standard evaluation metrics.
Formally, if TP , TN , FP , and FN are respectively the
number of true positive, true negative, false positive,
and false negative cases identi�ed by the classi�er over
the test set, we measure the classi�cation e�ectiveness
in terms of:
� Accuracy (ACC): considers the correctly classi-
�ed cases by taking into account both survivors
and non-survivors. Formally,

ACC =
TP + TN

TP + FP + FN + TN

� Sensitivity or True Positive Rate (TPR): is the
ratio between patients classi�ed as survivors and
people that actually survived. This measure, also
known as hit rate or recall, is given by:

TPR =
TP

TP + FN

� Speci�city or True Negative Rate (TNR): is the
ration between patients classi�ed as non-survivors
and people that actually did not survive:

TNR =
TN

FP + TN

� Kappa (�): measures inter-rate agreement be-
tween classi�ers, taking into account also the a-
greement occurring by chance [38]. It is a value
between -1 and 1, where a bigger � means better
accuracy and reliability. Formally,

� =
Pr(a)� Pr(e)

1� Pr(e)

where, denoting with n the number of test in-
stances, we have that:

Pr(a) =
TP + TN

n

is the relative observed agreement;

Pr(e) =
(TP + FN ) � (TP + FP )

n2

+
(FN + TN ) � (FP + TN )

n2

is the hypothetical probability of chance agree-
ment.

For the classi�cation models that naturally lead to
probabilistic esteems of class membership (i.e., all the
previously described methods except SVMs), we used
the default threshold of 0.5 to predict if an instance be-
longs to the positive or negative class. To better eval-
uate what happens when di�erent thresholds are con-
sidered, we also plotted the Receiver Operating Char-
acteristic (ROC) curves. ROC is a plot that illustrates
the performance of a binary classi�er system as its
discrimination threshold is varied. The curve is creat-
ed by plotting the sensitivity against the false positive
rate at various threshold settings. The false-positive
rate, also known as the fall-out, can be calculated as
1 - speci�city. Starting from the ROC curve we com-
puted also the Area Under the Curve (AUC) that, as
the names implies, is the area under the ROC curve.
This value represents the probability that a classi�er
ranks a randomly chosen positive instance higher than
a randomly chosen negative example.

3.3 System and Tools
The experiments were conducted by using Intel Dual-
Core 2.93 GHz computers with 3 MB of CPU cache, 2
GB of RAM, and Debian 3.2 operating system. Com-
putation times were tracked thanks to the Unix time

command. We evaluated several o�-the-shelf classi�er-
s by means of WEKA [39], a software including many
data mining algorithms for classi�cation, clustering,
etc. In particular, we tested a number of WEKA classi-
�ers implementing the algorithms described in Section
2.3, namely:
� KNN (weka.classifiers.lazy.IBk), a k-Nearest
Neighbours classi�er;

� J48 (weka.classifiers.trees.J48), (un)pruned
C4.5 decision trees;
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� Logistic (weka.classifiers.functions.Logisti
c), multinomial logistic regression model with a
ridge estimator

� Naive Bayes (weka.classifiers.bayes.NaiveBa
yes), Naive Bayes classi�er using estimator class-
es;

� Neural Net ( weka.classifiers.functions.Mult

ilayerPerceptron), uses Arti�cial Neural Net-
works to classify instances;

� PART (weka.classifiers.rules.PART), exploit-
s PART decision lists;

� Random Forest (weka.classifiers.trees.Rando
mForest), constructs a random forest of decision
trees;

� SMO (weka.classifiers.functions.SMO), im-
plements SMO algorithm for training a support
vector classi�er.

Note that all these algorithms are highly parametris-
able, i.e., they can be con�gured in several di�erent
ways by tuning the algorithm parameters. For exam-
ple, it is possible to set the number of trees for Random
Forest, the complexity constant C for SMO, or the
neighbourhood size k of k-NN. Testing all the possible
parameters con�gurations is outside the scope of this
paper. To avoid biases [40], we decided to test all the
algorithms with their WEKA default parameters.[3]

However, as better detailed in Section 4.11, in this
paper we also provide some examples of parametriza-
tion.

4 Results
According to the methodology described in Section 3
we compared the performance of TRISS against the
eight ML approaches listed in Section 3.3 by using
the datasets introduced in Section 3.1 and the evalua-
tion metrics of Section 3.2. Tables 4, 5, 6, and 7, show
respectively the classi�cation accuracy, the sensitivi-
ty, the speci�city, and the � statistic for each method
and dataset. Every table is sorted from top to bottom
according to the method performance on the whole
dataset �.

4.1 Accuracy
Looking at Table 4, the approach having greater classi-
�cation accuracy on � is Random Forest (97.74%), fol-
lowed by J48 (97.26%) and Neural Network (97.18%).
Conversely, TRISS is second-last with an accuracy of
96.47%, about 1.27% less than Random Forest (i.e.,
about 8332 patients less). Figure 2 shows more clearly
the behaviours of the tested methods as the dataset
size increases. Only Random Forest (shortly, RF) and
KNN approach have a monotonic performance, and in

[3] We used the 3.7.12 version of WEKA.
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Figure 2: Accuracy results. For readability, Naive
Bayes approach is not included.

particular RF is the best approach for each considered
dataset. The accuracy of J48, NeuralNet, PART, S-
MO, and Logistic are quite similar. In particular, it is
interesting to see that the SMO performance is pret-
ty much the same of the Logistic approach. Figure 2
clearly depicts the accuracy di�erence between RF and
TRISS, and in particular the performance divergence
as the number of patients increases.

4.2 Sensitivity

Table 5 shows the sensitivity results, i.e., the ratio be-
tween patients classi�ed as survivors and people that
actually survived. With this measure SMO is the over-
all best approach, i.e., the best classi�er in predicting
the alive patients. It outperforms all the other meth-
ods, with an almost constant performance ranging be-
tween 99.67% and 99.71%. RF, NeuralNet, Logistic,
J48, and PART have a similar performance while KN-
N, TRISS, and Naive Bayes have a lower sensitivity.
TRISS sensitivity tends to decrease as the number of
patients increases. In particular, the performance d-
i�erence on � between SMO and TRISS is evident:
1.56%, i.e., about 10235 patients.

4.3 Speci�city

Speci�city results are reported in Table 6. As can be
seen, results are in sharp contrast w.r.t. those previous-
ly reported. Naive Bayes |clearly the worst approach
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Method �1 �2 �3 �4 �5 �6 �

Random Forest 97 97:35 97:45 97:45 97:51 97:55 97.74

J48 96:84 97:23 97:3 97:33 97:25 97:27 97:26
NeuralNet 96:93 97:24 97:31 97:31 97:28 97:27 97:18
PART 96:73 97:08 97:21 97:23 97:2 97:16 97:1
SMO 96:81 97:09 97:14 97:13 97:04 97:02 96:93

Logistic 96:8 97:09 97:15 97:12 97:04 97:02 96:93
KNN 95:65 96:15 96:31 96:33 96:42 96:51 96:8
TRISS 96.53 96.83 96.86 96.79 96.63 96.58 96.47

Naive Bayes 94:06 94:44 94:51 94:43 94:19 94:14 93:97

Table 4: Accuracy (%).

Method �1 �2 �3 �4 �5 �6 �

SMO 99:67 99:69 99:7 99.71 99:7 99:69 99:68
Random Forest 99:34 99:39 99:41 99:41 99:41 99:4 99:44
NeuralNet 99:23 99:28 99:31 99:36 99:4 99:29 99:36
Logistic 99:22 99:29 99:31 99:3 99:28 99:27 99:25
J48 99:16 99:24 99:26 99:29 99:25 99:26 99:22

PART 99:12 99:21 99:3 99:32 99:37 99:26 99:19
KNN 97:96 98:2 98:28 98:29 98:31 98:36 98:48
TRISS 98.44 98.52 98.51 98.42 98.27 98.21 98.12

Naive Bayes 95:21 95:5 95:58 95:48 95:24 95:18 95:03

Table 5: Sensitivity (%).

according to accuracy and sensitivity| is now by far
the best and more stable approach. Its performance
ranges between 70.11% and 71.01%, and it signi�cant-
ly outperforms the TRISS performance on the whole
dataset � (10.29%, about 67511 patients). Conversely,
the approach with best sensitivity (SMO) is now the
approach with worst speci�city. In other terms, there is
a sort of symmetry: SMO is the best approach in pre-
dicting alive patients and the worst in predicting dead
patients while Naive Bayes works in a diametrically op-
posite way. In contrast, RF shows a good robustness
and quality of performance on the whole dataset �,
where it is also better than TRISS. In particular, the
performance of RF is monotonically increasing from
49.62% of �1 to 61.01% of �.
We would like to remark that from our perspective

it is probably more ethical to avoid false negatives s-
ince we do not want to classify patients that can live
as dead, and therefore do not attempt to save them.
On the other hand, it is also important to not be too
cautious: classifying a dead patient as alive could re-
sult in a waste of time and resources, perhaps at the
expense of other critical |but still savable| victims.

4.4 Kappa statistics
The Kappa statistics reported in Table 7 show that
all the approaches have positive � values, in particu-
lar the tree-based approaches (RF and J48). This is
rather important because having a predictor with a �
greater than 0 means that it is possible to be better
than making the prediction randomly. The results of

the � statistic are somehow similar to the accuracy
results with few swaps in the rankings: RF and J48
are still the best two methods, while Naive Bayes is
the worst. Please note that the � statistic is generally
thought to be a more robust measure than simple per-
cent agreement calculation since it takes into account
the agreement occurring by chance. This is importan-
t for skewed datasets like ours, in which the number
of survivors is far greater than the number of dead
patients.

4.5 ROC and AUC
As previously stated, all the previous results have been
obtained with the default parameters of WEKA. As
for the TRISS method, the default threshold used to
discriminate if an instance belongs to the positive or
negative class is set to 0.5. Clearly, di�erent result-
s can be obtained when di�erent thresholds are used.
To show how the di�erent ML approaches behave when
the threshold changes, we computed their ROC curves
and their AUCs. To do so, with the only exception
of SMO, we used the esteems of the class membership
probabilities given by the classi�ers. For the SMO clas-
si�er only, we employed the Platt scaling method [41],
i.e, a well-known technique that associates to every
prediction its class membership probabilities by �tting
a logistic regression model.[4] This was necessary be-
cause SMO alone does not provide class membership
probabilities.

[4]In WEKA this can be done with the \-M" option of
the SMO classi�er.
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Figure 3: ROC curves
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Method �1 �2 �3 �4 �5 �6 �

Naive Bayes 70:7 70:78 70:11 70:42 70:72 70:84 71.01

Random Forest 49:62 51:49 52:5 52:66 54:84 56:17 61:01
TRISS 57.88 58.89 59.12 59.61 59.99 60.16 60.72

KNN 48:66 50:26 51:38 51:63 54:16 55:06 60:42
J48 49; 72 52; 14 52; 44 52; 31 52; 35 52; 69 54:79

PART 48; 17 49; 35 49; 4 49; 51 48; 77 50:16 51; 89
NeuralNet 50:17 51; 53 51; 5 50:43 49; 86 52; 05 49; 92
Logistic 47:76 47:71 47:55 47:25 46:96 46:54 46:7
SMO 38; 65 38; 76 38; 6 38; 05 37:72 37:3 37:58

Table 6: Speci�city (%).

Method �1 �2 �3 �4 �5 �6 �

Random Forest 0:5937 0:6107 0:6199 0:621 0:6407 0:6503 0:6931
J48 0:5808 0:6025 0:6061 0:6077 0:6055 0:6086 0:6246
KNN 0:4896 0:5072 0:5193 0:5221 0:5453 0:556 0:6084
PART 0:564 0:5762 0:5834 0:5861 0:5851 0:5876 0:5976

NeuralNet 0:5898 0:6008 0:6026 0:5981 0:597 0:6065 0:5958
TRISS 0.5924 0.5970 0.5959 0.5921 0.5860 0.5830 0.5845

Logistic 0:5681 0:5689 0:5686 0:5648 0:5614 0:5572 0:558
SMO 0:518 0:5196 0:5182 0:5091 0:5133 0:5042 0:5065

Naive Bayes 0:4982 0:4937 0:4901 0:487 0:4818 0:4796 0:4805

Table 7: Kappa statistics.

Figure 3 reports the ROC curves obtained by ap-
plying a 10-fold cross-validation on the entire dataset
�. Each classi�er is compared with the ROC curve of
the TRISS method. In every plot we marked the point
obtained with threshold t = 0:5 and the point that
maximizes the Youden's J statistic [42], i.e., the point
where J = sensitivity + specificity � 1 is maximal.
Considering the AUC it is immediately visible that

the best method is Random Forest having an AUC of
0.953. TRISS is better than Random Forest for thresh-
olds close to 1, while the di�erence between the two
approaches is negligible for thresholds lower than 0.4.
These thresholds, however, denote settings that are al-
most useless in a real scenario since they represent the
extreme cases where we assign almost every instance
to either the positive or negative class. Random Forest
instead is able to overcome TRISS when the speci�ci-
ty and the sensitivity are close to 1. The maximal J
reached by Random forest is 0.8025 with a threshold
of 0.9449, a sensitivity of 0.9152, and a speci�city of
0.8873. For TRISS, instead, the maximal J is 0.750375
with a threshold of 0.954555, sensitivity 0.882268, and
speci�city 0.868106.
Usually, the point having maximal J is considered

a good candidate for deciding which threshold to use.
However, since there are other Pareto-optimal points,
other possible thresholds might be adopted. In our
case, since we deem sensitivity more important than
speci�city, we believe that using as threshold the Y-
ouden's J criteria is not a particularly good choice. In

our opinion, it is better to use a higher threshold (e.g.,
0.5 or a bit more) to obtain a higher sensitivity and a
still reasonable speci�city.

Looking at the other plots, we can see that only Ran-
dom Forest and NeuralNet have an AUC bigger than
TRISS. This is due to the fact that, compared to the
TRISS approach, the classi�ers usually have a lower
sensitivity for threshold very close to 1. But when the
threshold decreases all the approaches except Naive
Bayes are able to (sometime only slightly) overcome
the TRISS approach.

All the ROC curves have a similar shape, with the
only exception of KNN. This method has indeed few-
er points in the leftmost part of the plot. We believe
that this is due to how KNN computes the probabil-
ity distribution. Indeed, each k-nearest neighbor �rst
votes for its respective class label. These votes are then
averaged and normalized to create a probability dis-
tribution. In our setting, since the majority class is
overrepresented, it is therefore unlikely to �nd in the
neighborhood a high number of instances voting for
the minority class.

4.6 Calibration Curve

While receiver operating Characterictic (ROC) de-
scribes the ability of the model to distinguish between
patients who died and patients who survived, Calibra-
tion curves on the other hand show how much a model
is reliable by measuring how close the estimates are to
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Figure 4: Calibration Curve (Random Forest vs
TRISS).

the real probabilities. Calibration curves are construct-
ed by plotting the observed binary events against their
predicted probability. An optimally calibrated model
follows the dotted diagonal line. The closer the curve
is to the diagonal line, the better the model.
First, the observations are sorted in an increasing

order of their predicted probability. Then, the obser-
vations are divided into 10 groups (subdivision based
on 10 �xed thresholds (0:1; 0:2; 0:3; � � � ; 1:0)). For each
group, we compute the mean observed and the mean
predicted survival.
In order to evaluate the goodness-of-�t of the pre-

diction models, we used the Hosmer-Lemeshow (HL)
statistic [43]. The smaller the value of HL statistic, the
better is the calibration.
The Hosmer-Lemeshow test statistic is given by [44]:

HL =

10X
j=1

(Oj � Ej)
2

Ej(1� Ej=nj)

where:
nj = Number of observations in the jth group.
Oj =

P
i yij = Observed number of cases in the jth

group.
Ej =

P
i pij = Expected number of cases in the jth

group.
Figure 4 shows the calibration curves for the TRISS

method and the best classi�er (i.e., Random Forest).
One can observe here that RF is well calibrated. We
can see that the RF predictions are much closer to the
observed survival than the TRISS predictions. For the
TRISS method, the observed probabilities are higher

than the predicted values, and the di�erence is largest
for patients with a predicted survival between 0:1 and
0:7. Moreover, the value of the HL statistic of RF (re-
ported in the legend) was signi�cantly better than the
one of the TRISS model (the smaller the better).

4.7 Scalability

In Table 8 we report the time needed for performing
the whole cross-validation. With the only exception
of the KNN method |that does not build a predic-
tion model| the computational times refer basically
to the time needed for building the prediction mod-
el. Once the model is built, the class prediction for
a new instance is instantaneous. Conversely, for the
KNN approach the computational time refers to the
prediction time since no training is required and no
prediction model is learned. In any case, for all the
considered approaches, the class prediction for a given
instance is always computed in few milliseconds.

Naive Bayes and Logistic are the fastest approaches
while PART and SMO require a long training phase
(more than half a day in some cases). We remark that
this is however just the training time, which is per-
formed o�-line once in a while. For this reason we think
that all the studied methods can be used in real life
scenarios where the prediction models can be updat-
ed periodically (e.g., once in a month) to learn from
new incoming patients. All the approaches are scal-
able enough to be used and trained with hundred of
thousand of patients.

In summary, we can say that for all the performance
measures and all the datasets we considered there is
always a ML method able to outperform the TRIS-
S methodology. Looking at the whole dataset �, the
most accurate classi�er is Random Forest. SMO is the
best approach in predicting alive patients, while Naive
Bayes outperforms all the other approaches if we con-
sider the prediction of dead patients. SMO uses a cau-
tious approach: it performs poorly according to accu-
racy and speci�city, but has a high sensitivity. This
is reasonable, since classifying a dead patient as alive
might not have the same bad impact of classifying an
alive patient as dead.

Overall, we can say that the best approach we evalu-
ated is Random Forest: it has the best accuracy, AUC,
and �-statistic, as well as the second-best sensitivity
and speci�city. Furthermore, its performance mono-
tonically increases as the dataset size grows, meaning
that it can be very e�ective to exploit incoming knowl-
edge. Moreover, considering the whole dataset �, it is
always better than TRISS. Finally, its training time is
not negligible but however fairly reasonable.
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Method �1 �2 �3 �4 �5 �6 �

Naive Bayes 12s 23s 33s 45s 57s 1min13s 1min18s
Logistic 55s 1min19s 2min4s 3min3s 5min37s 7min1s 7min46s
J48 7min43s 22min2s 41min48s 32min7s 48min24s 63min56s 74min43s

NeuralNet 38min28s 77min1s 73min57s 96min12s 119min43s 146min9s 157min53s
Random Forest 31min13s 42min50s 74min1s 108min6s 151min58s 186min2s 360min9s

PART 24min20s 42min49s 100min4s 182min47s 710min6s 1057min26s 818min6s
KNN 38min13s 154min37s 206min9s 351min19s 956min30s 1367min44s 1549min36s
SMO 79min4s 131min37s 310min49s 575min12s 963min25s 1429min3s 1811min44s

Table 8: Computational times.

4.8 Imbalanced data

Our dataset is highly unbalanced: slightly less than 5%
of the people is classi�ed as a dead patient. Accuracy
in this case may not be the best metric to use due
to the accuracy paradox [45] stating that models with
low accuracy may have greater predictive power than
models with higher accuracy. For example, considering
our dataset, a classi�er that always assigns a patient
to the alive class has an accuracy of more than 95%.
There are several options for learning from unbal-

anced data. The most common solutions are to discard
some training instances of the most represented class
(undersampling) or, dually, to replicate some instances
of the less represented class (oversampling).
Due to the large size of our dataset we performed

the undersampling. We used the FilteredClassifi-

er implementation of WEKA and we applied a 10-fold
cross-validation in which for every training set we ran-
domly discarded some positive instances.
Table 9 shows the accuracy, sensitivity, speci�city,

and kappa statistics of the 10-fold cross validation ap-
plied on the � dataset. For every metric we report
its value and its di�erence w.r.t. the value obtained
without undersampling (cf. Tables 4-7).
It is immediately visible that when undersampling

is used the accuracy, the sensitivity, and the kappa
statistic decrease while the speci�city increases. The
di�erences can be very signi�cant. If we exclude Naive
Bayes where di�erences are not pronounced, for al-
l the classi�ers the accuracy decreases by more than
7% and the sensitivity by more than 9%. This means
that when undersampling is used a lot of patients that
could live will be predicted as people that are going
to die. In our opinion, these errors may be too numer-
ous to justify the use of the undersampling because, as
previously stated, it is probably more ethical to avoid
false negatives. On the other hand, undersampling in-
creases the speci�city and this could be helpful in dis-
asters or emergencies situations where only a fraction
of the patients that could live can be saved. In these
cases predicting with higher accuracy which patients
will die may become more critical than predicting the
patients that will live.

4.9 Critically Injured Patients
Our dataset presents another unbalance related to the
number of patients that are severely injured w.r.t. to
the patients that have only moderate injures. In our
benchmark �, 80% of the whole population has ISS
� 16, indicating that they are moderately injured [46].
Table 10 shows the ratios and mortalities in the 2
groups. As expected, we can see that the mortality
is higher in the �rst group of severely injured patients
(ISS > 16), and lower in the second group (ISS � 16).

Population Mortality

ISS � 16 80% 1:36%
ISS > 16 20% 16:66%

All 100% 4:4%

Table 10: Statistics for severely injured patients.

Since it may be more important to have reliable pre-
diction on severely injured patients, the unbalance may
constitute a thread to the validity of our results. The
huge number of moderately ill patients may indeed
worsen the prediction performances for other, more
relevant, classes.
To show that this is not the case, we report on Ta-

ble 11 the performance of Random Forest and TRISS
when we are restricting only to the classes of severe-
ly injured patients. We can notice that the accuracy,
sensitivity and speci�city of RF is quite the same for
patients having ISS > 16, which means that the ap-
proach is not very inuenced by the minimally injured
patients. The accuracy and sensitivity of Random For-
est is higher than TRISS. The speci�city of TRISS in-
stead is slightly better than RF. This is probably due
to the fact that TRISS in this case predicts a lot of
patients as dead.

4.10 Clusterization of Old Patients
Another thread to the validity of our results is due to
the fact that the NTDB database does not discrimi-
nate old patients having more than 89 years old since it
clusters them in a unique group. Unfortunately, age is
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Method
Accuracy Sensitivity Speci�city Kappa

Value Di�. Value Di�. Value Di�. Value Di�.

Naive Bayes 92.75 -1.72 93.54 -2.02 75.71 4.70 0.4466 -0.0339
NeuralNet 89.84 -7.34 89.96 -9.40 87.29 37.37 0.3910 -0.2048

J48 88.83 -8.43 88.86 -10.36 88.15 33.36 0.3681 -0.2565
Random Forest 89.18 -8.56 89.11 -10.33 90.70 29.69 0.3839 -0.3092

SMO 89.86 -7.07 90.08 -9.60 85.21 47.63 0.3855 -0.1210
Logistic 89.48 -7.45 89.64 -9.61 85.91 39.21 0.3775 -0.1805
PART 88.39 -8.71 88.46 -10.73 86.73 34.84 0.3536 -0.2440
KNN 86.48 -10.32 86.51 -11.97 85.90 25.48 0.3115 -0.2969

Table 9: 10-fold cross-validation with undersampling on �.

Accuracy Sensitivity Speci�city
RF TRISS RF TRISS RF TRISS

ISS > 16 93.08% 86:84% 99.44% 90.4% 61:22% 69.08%

All 97.74% 96:47% 99.44% 98.12% 61.01% 60:72%

Table 11: Performance for Random Forest and TRISS Models for severely injured patients.

an important predictor for the of outcome of a trauma.
Mortality indeed increases between the ages of 45 and
55 for the same injury severity and is doubled above
75 years. As can be seen from Table 12, the mortali-
ty ratio for the patients having more than 89 years is
very di�erent from the one of younger patients and this
di�erence may impact the prediction performances.

Population Mortality

Age � 89 98% 4:33%
Age > 89 2% 8:64%

All 100% 4:4%

Table 12: Statistics for patients based on their age.

Luckily, as happens with the critically injured pa-
tients, RF has been proven to be quite robust. Table 13
shows the performance of Random Forest and TRISS
when we restrict ourself to consider only the patients
for which we know their true age (i.e., patients hav-
ing less than 90 years). We can clearly notice that the
performance of RF and TRISS stay almost the same.
The only di�erence is that the speci�city of the TRIS-
S method decreases when the eldery patients are not
considered and is surpassed by the speci�city of Ran-
dom Forest. This is expected since the TRISS predicts
usually more people as dead and the mortality rate for
elderly patients is higher than the mortality rate for
younger patients.

4.11 Parameter Tuning
Machine learning classi�ers usually comes with a lot
of parameters that can be set. Trying all the possible
values is almost impossible due to the combinatori-
al explosion of the parameter settings. Moreover, the

tuning of the parameters can lead to an over�tting of
the model and to a selection bias [40]. For these rea-
sons, the results presented so far are obtained by using
the WEKA default parameters of each classi�er.

However, in this section we would like to provide an
example of parameter tuning. We take the best \de-
fault" classi�er (i.e., Random Forest) and we show how
it can be improved by tuning its parameters. In par-
ticular, we varied the number of trees employed by
Random Forest.

Table 14 reports the results of the 10-fold cross vali-
dation when Random Forest with 32, 64, 128, 256, 512,
and 1024 trees are used. Since the di�erences in per-
centage are small, for presentation purposes we also
show the absolute di�erence between the tuned ap-
proach and the default one.

The performance tends to increase as the number of
trees increases. However, after using 256 trees we see
that the accuracy still improves but its increase is due
to the increment of the speci�city while the sensitivity
decreases. As expected, since Random Forest is an en-
semble method that averages over many trees, after a
certain point even the accuracy stabilizes and the cost
of collecting a large sample of trees becomes higher
than the bene�t in accuracy obtained from such larger
sample of trees.

Overall, the increments in performance are modest
(please note that 50 patients are less than 0:008% of
the population).

Clearly, it is di�cult to decide a priori what is the
best number of trees to use since the use of a large
number of trees may cause over�tting and longer train-
ing times. In general, the problem of selecting the best
con�guration of parameters is a challenging task which
is outside the scope of this paper.
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Accuracy Sensitivity Speci�city
RF TRISS RF TRISS RF TRISS

Age � 89 97.77% 96:55% 99.44% 98:1% 61:02% 62:36%

All 97.74% 96:47% 99.44% 98.12% 61.01% 60:72%

Table 13: Performance for Random Forest and TRISS Models for patients with less than 90 years.

Trees
Accuracy Sensitivity Speci�city Kappa

Value Patients Value Patients Value Patients Value

32 97.6965 -279 99.4310 -37 60.1800 -242 0.6861
64 97.7285 -69 99.4367 -1 60.7801 -68 0.6913

100 97.739 0 99.4369 0 61.0147 0 0.6931

128 97.7444 35 99.4399 19 61.0699 16 0.6938
256 97.7456 43 99.4402 21 61.0906 22 0.694
512 97.7467 50 99.4390 13 61.1424 37 0.6943
1024 97.7428 25 99.4357 -8 61.1289 33 0.6939

Table 14: Results of 10-fold cross-validation by varying number of trees for Random Forest on �. The default
number of trees is 100.

5 Trauma Survival Prediction Tool
On the top of the best classi�ers evaluated in Section 4
we developed a C++ tool for predicting if a patient will
survive or not according to his/her features. This tool
can help practitioners to predict the survival probabil-
ity for a given trauma patient. It might be used for re-
placing, or maybe complementing, the TRISS method-
ology.
Figure 5 shows a screenshot of the calculator inter-

face. The graphical interface is rather simple and al-
lows the user to de�ne the value of the features listed
in Table 1. To guide the user, every �eld has restricted
values that are presented for the user convenience. For
instance, the �eld abdomen (�rst on the right colum-
n), presents the user with 6 di�erent choices linking
the numerical number with a short description of the
meaning of the numerical value. As example, for the
value 4 selected the user is reminded that this corre-
sponds to a severe abdomen injury.
When all the �elds are set, the user can choose one

of the available classi�ers (viz. Random Forest, Neu-
ralNet, J48, SMO, Naive Bayes) to compute the pre-
diction if the patient will live of die. The choice of the
prediction algorithm to use is done by using a selection
button. The algorithm is then executed when the user
press the \Predict" button. The tool in few millisec-
onds returns the predicted class (i.e., dead or alive).
Moreover, it also gives an estimation of the probability
of the outcome based on the selected machine learning
approach.
The tool comes with a prediction model for all the

machine algorithms supported. The models are gener-
ated o�-line by using the entire dataset � obtained
from the NTDB database and better described in
Section 3.1. The algorithm and implementation used
are exactly those presented and used in the previous

section. For this reason, if the patients to examine
present the same statistical patterns of those recorded
in the NTDB database, the accuracy of the predic-
tions should follow the one presented in the previous
section. Thanks to the results obtained by using the
cross-validation as validation mechanism, we are fairly
con�dent that the models are general enough and not
over�tting the data.
The tool is publicly available at https:

//github.com/imanesefrioui/tool prediction

survival executable. Since the tool relies on WE-
KA classi�ers and Qt libraries, it requires the Java
Runtime Environment [47], the installation of WEKA
and the Qt libraries. All these dependencies are
available for free.

6 Related work
Several approaches relying on Machine Learning and
Arti�cial Intelligence techniques have been used in
medicine to predict diseases and survival probabilities.
Schetinin et al. [15] proposed a solution based on

Bayesian Model Averaging over Decision Trees to pre-
dict survival of trauma patients. Their technique con-
sists of drawing n samples of decision trees using a
Monte Carlo Markov Chain method. They predictive
survival probability is then computed by using the n
decision trees generated and the Bayes rule. However,
as the authors said, the Bayesian risk assessments are
computationally expensive and further research should
be conducted to make this method tractable for large
scale datasets.
In [48] a Neural Network model is used to predict

the probability of survival of trauma patients. They
used the same features listed in Table 1. Similarly
to what we did, they proposed a Multilayer Percep-
tron model with three layers, one single hidden layer

https://github.com/imanesefrioui/tool_prediction_survival_executable
https://github.com/imanesefrioui/tool_prediction_survival_executable
https://github.com/imanesefrioui/tool_prediction_survival_executable
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Figure 5: Screenshot of the tool for survival prediction.

and two hidden units by using Back Propagation and
Quasi-Newton method for training their model. They
show that neural networks yield better results than the
TRISS method, but, unlike us, they did not compare
their method with other promising techniques such as
SVMs.

Similarly, in [49] authors use a Neural Network mod-
el to predict the mortality in intensive care units. Their
approach was compared with a logistic regression mod-
el on a total of about 13000 adult patients that were
randomly divided into training (66%) and test (33%)
sets. The two methods were evaluated in terms of Re-
ceiver Operator Characteristic (ROC) curves, and ex-
perimental results have shown that Neural Network
outperformed the logistic regression.

A Multilayer Perceptron is also used in [50] to pre-
dict heart disease using factors such as family histo-
ry, smoking, blood pressure. In [51] authors propose
a method for classifying medical brain images as nor-
mal or abnormal according to a Neural Network scat-
ter search. These approaches have however a di�erent
goal since we are not concerned with predicting risk
diseases.

Sujin et al. [52] compared the intensive care u-
nit mortality prediction built with di�erent Machine
Learning techniques on a database of the University of
Kentucky Hospital. They used about 38000 patients,
15 features, and di�erent ML approaches, namely: Ar-
ti�cial Neural Networks, Support Vector Machines,
Decision Trees and Logistic Regression. These meth-
ods have been implemented in a software tool [53]. In
their experiments the best performing model was the
Decision Tree model, followed by SVM, Logistic Re-
gression, and ANN. The motivations of their study are
similar to ours, even though we had to face di�erent
parameters and a large dataset of patients.
In [54], Random Forest was used for classify trau-

ma patients into two categories: upper level admission
(i.e., patients requiring level I trauma center care) and
lower level admission (i.e., patients not requiring level
I trauma center care). However, di�erently from our
study, they used 83 attributes and less than 2000 pa-
tients. Moreover, they did not compare their �ndings
w.r.t. other classi�ers.
In [55] Naive Bayes, DT, SVM and ANN were used to

predict the survival of burn patients. In their case the
best predictor was the Naive Bayes approach. Even
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though they rely like us on the Weka framework for
building the predictors, they limited their study only
to burn patients using only 180 patients with 10 fea-
tures (viz., age, gender, and percentages of burn in the
eight body regions).
As far as the prediction methods are concerned we

would like to recall also the Revised Injury Severity
Classi�cation (RISC) introduced in 2009 and later re-
vised as RISC II [56] in 2014. RISC is a new predic-
tion algorithm based upon 2008 severely injured pa-
tients from TR-DGU, the trauma registry of the Ger-
man Society for Trauma. Contrary to TRISS, this s-
core includes laboratory parameters such as base d-
e�cit, haemoglobin, and partial thromboplastin time,
as well as interventions like cardiopulmonary resusci-
tation (CPR) [57]. It is based on a logistic equation
that calculates the probability of survival by using the
coe�cients for 11 variables. Authors reports that the
updated RISC II prognostic has outperform the RISC
model and the TRISS in terms of discrimination, pre-
cision and calibration. Unfortunately, by relying on the
data of the NTDB database only, the comparison be-
tween Random Forest and RISC II can not be per-
formed since the NTDB has no attribute represent-
ing the hemoglobin or the partial thromboplastin time
which are essential to compute the RISC. For this rea-
son, �nding a big database for evaluating, if statisti-
cally Random Forest are comparable with the RISC
II, is left as a future work.

7 Conclusions
The surge of Machine Learning techniques has found
fertile ground in medical sciences. In this paper we con-
ducted a rigorous study applying the most common
and used classi�cation methods for predicting the sur-
vival of trauma patients. We used a set of simple and
easy to get features, and a huge dataset of patients ex-
trapolated from NTDB, the largest aggregation of US
trauma registry data ever assembled.
Overall, we can say that the best prediction method

tested is the Random Forest classi�er. In a not negli-
gible number of cases (i.e., thousands of patients) it is
able to outperform the TRISS methodology, which is
the standard technique currently used to predict the
survival probability of trauma patients.
On the basis of these �ndings we developed a tool for

computing the survival prediction by means of Ran-
dom Forest and some other promising classi�ers. We
hope that this tool, maybe used in combination with
other approaches, can help the practitioners to im-
prove the accuracy of the survival predictions.
As future works we are planning to integrate these

experiments by evaluating more Machine Learning ap-
proaches and new, di�erent features. Interesting direc-
tions concern also the parameters con�guration of the

classi�ers and the selection of the most informative fea-
tures. It would be interesting also to integrate the tool
with new functionalities, for example by embedding it
in decision systems for disaster-management [58] and
check what is the impact on the prediction accuracy
when unreliable data gather quickly during the emer-
gency is used. Another direction worth investigation
is to use merge existing databases to make a compari-
son between o�-the-shelf machine algorithms and oth-
er survival prediction tools such as the RISC II.
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