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Abstract
The deformation of the middle to lower crust in collisional settings occurs via defor-mation 
mechanisms that vary with rock composition, fluid content, pressure, and temperature. 
These mechanisms are responsible for the accommodation of large tec-tonic transport 
distances during nappe stacking and exhumation. Here, we show that fracturing and fluid 
flow triggered coupled dissolution precipitation and dissolu-tion precipitation creep 
processes, which were responsible for the formation of a mylonitic microstructure in 
amphibolites. This fabric is developed over a crustal thickness >500 m in the Lower 
Seve Nappe (Scandinavian Caledonides). Amphibo-lites display a mylonitic foliation that 
wraps around albite porphyroclasts appearing dark in panchromatic cathodoluminescence 
(CL). The albite porphyroclasts were dissected and fragmented by fractures 
preferentially developed along the (001) cleavage planes and display lobate edges with 
embayments and peninsular features. Two albite/oligoclase generations, bright in CL, 
resorbed and overgrew the porphy-roclasts, sealing the fractures. Electron backscattered 
diffraction shows that the two albite/oligoclase generations grew both pseudomorphically 
and topotaxially at the expense of the albite porphyroclasts and epitaxially around them. 
These two albite/oligoclase generations also grew as neoblasts elongated parallel to the 
mylonitic foli-ation. The amphibole crystals experienced a similar microstructural 
evolution, as evidenced by corroded ferrohornblende cores surrounded by 
ferrotschermakite rims that preserve the same crystallographic orientation of the cores. 
Misorientation maps highlight how misorientations in amphibole are related to 
displacement along frac-tures perpendicular to its c‐axis. No crystal plasticity is observed 
in either mineral species. Plagioclase and amphibole display a crystallographic preferred 
orientation that is the result of topotaxial growth on parental grains and nucleation of new 
grains with a similar crystallographic orientation. Amphibole and plagioclase thermo-

barometry constrains the mylonitic foliation development to the epidote amphibolite facies 
(~600°C, 0.75 0.97 GPa). Our results demonstrate that at middle to lower crustal 
levels, the presence of H2O‐rich fluid at grain boundaries facilitates replace-ment reactions 
by coupled dissolution precipitation and favours deformation by dis-solution precipitation 
creep over dislocation creep in plagioclase and amphibole.

KEYWOR  D S
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1 | INTRODUCTION

The thermomechanical properties of the middle to lower
crust exert a fundamental control on the structure of oro-
genic belts and on the amount and style of shortening dur-
ing continental collision (e.g., Jackson, Austrheim,
McKenzie, & Priestley, 2004; Mouthereau, Watts, &
Burov, 2013). In particular, how strain is distributed verti-
cally and horizontally in orogenic belts is one of the more
important questions in crustal dynamics, and one that can
be addressed by investigating the deformation mechanisms
associated with the accumulation of hundreds of kilometre
tectonic transport distances along thrust faults during
mountain building processes (e.g., Fusseis & Handy, 2008;
Gilotti, 1989; Mouthereau, Lacombe, & Vergés, 2012;
Northrup, 1996; Royden, 1996).

In particular, the deformation processes and rheology of
mafic shear zones are the subject of considerable debate
because their main mineral constituents (e.g., plagioclase,
amphibole, clinopyroxene) are expected to be rheologically
strong at middle to lower crustal conditions (e.g., Bürg-
mann & Dresen, 2008). Thus, the weakening of mafic
assemblages along major thrust faults developed at middle
to lower crustal conditions seems to critically depend on
the occurrence of metamorphic reactions, which can result
in the formation of rheologically weaker phases or in the
formation of fine‐grained material able to deform by grain
size sensitive creep or in both (e.g., Brander, Svahnberg, &
Piazolo, 2012; Okudaira, Shigematsu, Harigane, &
Yoshida, 2017; Rutter & Brodie, 1992). Furthermore, the
presence of H2O‐rich fluid at the grain boundary typically
facilitates dissolution and precipitation processes, which
have been identified as the main deformation mechanisms
in different mid‐crustal lithologies and up to high tempera-
ture and high pressure (HP) conditions (Carmichael, 1969;
Giuntoli, Lanari, & Engi, 2018; Gratier, Dysthe, & Renard,
2013; Imon, Okudaira, & Fujimoto, 2002; Imon, Okudaira,
& Kanagawa, 2004; McAleer et al., 2017; Menegon, Pen-
nacchioni, & Spiess, 2008; Mukai, Austrheim, Putnis, &
Putnis, 2014; Putnis, 2009; Rutter, 1983; Stokes, Wintsch,
& Southworth, 2012; Wassmann & Stöckhert, 2013; Wass-
mann, Stöckhert, & Trepmann, 2011; Wintsch & Yi,
2002). Two main dissolution and precipitation processes
can be distinguished: coupled dissolution precipitation and
dissolution precipitation creep. Coupled dissolution precip-
itation results in the pseudomorphic (maintaining the size
and shape of the pre‐existing phase) and topotaxial (using
the orientation of the pre‐existing phase) replacement of a
parent phase by a product phase from a reaction interface
(e.g., Putnis, 2002; Ruiz‐Agudo, Putnis, & Putnis, 2014).
Dissolution precipitation creep includes the transport of the
chemical constituents from the dissolution sites, of locally
high normal stress, to the precipitation site, of locally low

normal stress (e.g., Imon et al., 2002, 2004; Mukai et al.,
2014; Wassmann et al., 2011). Both processes invariably
require the presence of a fluid.

Porosity is another essential requirement for the opera-
tion of dissolution and precipitation processes, as it pro-
vides the necessary fluid pathways. Porosity may develop
during replacement reactions due to molar volume differ-
ences between the dissolved and the precipitated minerals
(Engvik, Putnis, Gerald, & Austrheim, 2008) or from dehy-
dration reactions and associated fracturing (Plumper, John,
Podladchikov, Vrijmoed, & Scambelluri, 2017). Other
porosity‐generating mechanisms in metamorphic environ-
ments include dilatancy at grain boundaries (Tullis, Yund,
& Farver, 1996), fracturing (e.g., Brander et al., 2012), and
creep cavitation in fine‐grained ultramylonites deforming
by grain size sensitive creep (Fusseis, Regenauer‐Lieb, Liu,
Hough, & De Carlo, 2009; Menegon, Fusseis, Stünitz, &
Xiao, 2015).

Here, we show that mineral reactions and deformation
in amphibolites occurred mainly by coupled dissolution
precipitation and dissolution precipitation creep at epidote
amphibolite facies conditions, and that fracturing was the
most efficient porosity‐generating mechanism assisting
deformation. Metamorphism and deformation in the amphi-
bolites resulted in the development of a >500 m thick
mylonitic foliation during Caledonian nappe thrusting.

2 | GEOLOGICAL SETTING

The Scandinavian Caledonides developed due to the clo-
sure of the Iapetus Ocean in the Ordovician and the subse-
quent subduction and continent collision of the Baltica
plate below the Laurentia plate in the Silurian to early
Devonian (e.g., Gee, Fossen, Henriksen, & Higgins, 2008;
Roberts, 2003; Roberts & Gee, 1985; Stephens, 1988). In
the Scandinavian Caledonides, tectonic units were trans-
ported up to 400 km to the east (Gayer, Rice, Roberts,
Townsend, & Welbon, 1987; Gee, 1975; Gee, Juhlin, Pas-
cal, & Robinson, 2010; Rice & Anderson, 2016; Roberts
& Gee, 1985) as a result of the collision, creating a nappe
stack of several allochthons units on top of Autochthons
Baltic Shield (Figure 1a,b). After emplacement, the nappe
stack was folded into north‐trending synforms and anti-
forms, possibly related to the crustal extension and normal
faulting occurring during the latest orogenic phases (Berg-
man & Sjöström, 1997). By virtue of their deep erosional
level, the internal parts of the Scandinavian Caledonides
expose middle and lower crustal sections involved in sub-
duction exhumation history and nappe stacking.

The Scandinavian Caledonides are subdivided, from top
to bottom, into an Uppermost Allochthon, an Upper
Allochthon, a Middle Allochthon, and a Lower Allochthon



based on tectonostratigraphy (Figure 1; Gee & Sturt, 1985;
Strand & Kulling, 1972; Strömberg et al., 1984). The Mid-
dle Allochthon, the target of this study, includes several
basement units and associated metasedimentary rocks rep-
resenting the outermost Baltica margin and possibly includ-
ing units derived from an ocean continent transition zone
(e.g., Andréasson, 1994; Gee, Janák, Majka, Robinson, &
van Roermund, 2013; Gee et al., 2008; Roberts, 2003; Ste-
phens, 1988). The upper tectonic unit of the Middle
Allochthon is the Seve Nappe Complex (SNC; e.g., Sjös-
tröm, 1983), which, in the central Scandes, outcrops over a
N S distance of ~1,000 km and an W E distance of
~200 km (Figure 1; Andréasson, 1994).

In the Jämtland region, the SNC can be further subdi-
vided into Lower, Middle, and Upper Seve Nappe by the
presence of internal thrust sheets (Zachrisson & Sjöstrand,
1990). The Lower Seve Nappe is mainly composed of
micaschists, quartzites, and metapsammites with gneisses,
metabasics, and with minor peridotites and serpentinites
(Figure 1c). The Middle Seve Nappe is composed of

similar lithotypes, but overprinted by a pervasive migmati-
zation. Several parts of the Lower and Middle Seve pre-
serve evidence of HP to ultrahigh pressure (UHP‐)
metamorphism (summary in figure 4 of Klonowska, Janák,
Majka, Froitzheim, & Kośmińska, 2016) spanning from
~1.1 GPa and 600°C up to 4 GPa and 800°C, within the
stability field of coesite and diamond (Brueckner & van
Roermund, 2004; Gilio, Clos, & van Roermund, 2015;
Janák, van Roermund, Majka, & Gee, 2013; Klonowska
et al., 2016, 2017; Majka et al., 2014; Van Roermund,
1985, 1989). The HP‐UHP metamorphism is the manifesta-
tion of the Ordovician subduction of the SNC (Brueckner
& Van Roermund, 2007; Ladenberger et al., 2013; Root &
Corfu, 2012). It is worth noting that, to date, no evidence
of (U)HP metamorphism has been recorded in the Lower
Seve Nappe in the central Jämtland. In the Middle Seve
Nappe, the granulite and amphibolite facies metamorphism
appears to postdate the HP‐UHP stage and produced partial
melting at 442 436 Ma (Ladenberger et al., 2013). A
recent study has related the amphibolite facies metamorphic

FIGURE 1 Geological setting of the Scandinavian Caledonides. (a) Tectonic map with inferred paleogeography of the nappes (modified
after Gee et al., 2010). (b) Cross section marked in (a) with vertical exaggeration of 5× and approximate location of the COSC 1 borehole
(modified after Gee et al., 2010). (c) Detail of the study area with location of the COSC 1 drilling site (modified after Strömberg et al., 1984)



“stage” to the exhumation and lateral extrusion of the SNC
(Grimmer, Glodny, Drüppel, Greiling, & Kontny, 2015). In
the Lower Seve Nappe, a pervasive amphibolite facies foli-
ation overprints the (U)HP fabric where present; where not
present, it represents the main metamorphic fabric. In the
Åreskutan area, the amphibolite facies metamorphic stage
was constrained at 550°C and 0.2 0.5 GPa (Arnbom,
1980).

The “Collisional Orogeny in the Scandinavian Cale-
donides (COSC-1; IGSN ICDP5054EHW1001)” borehole
(Lorenz et al., 2015; see location in Figure 1b,c) is located in
the central Jämtland region, near Åre (Sweden). The drill
core provides an almost complete section (recovery rate
higher than 99%) through the Lower Seve Nappe. In detail,
the core comprises alternating layers of felsic gneisses, calc-
silicates, and amphibolites displaying narrow (mm cm) and
localized shear zones from the surface down to 1,700 m
(Hedin et al., 2016). The rocks show strongly deformed fab-
rics from 1,700 to 2,500 m (the end of the core; Lorenz et
al., 2015), with the development of mylonitic fabrics. The
lowermost portion of the core is composed of strongly
deformed metasedimentary rocks. Acoustic televiewer data
indicate that the foliation is generally shallow and trends N
S, but there are remarkable exceptions, where the foliation
has dips to the E or W with angles >50°, related to recum-
bent folds and boudinage (Wenning et al., 2017).

3 | METHODS

3.1 | Scanning electron microscopy

All the scanning electron microscopy (SEM) analyses were
performed on carbon‐coated polished thin sections cut per-
pendicular to the foliation and parallel to the stretching lin-
eation of the sample. Backscattered electron (BSE) and
cathodoluminescence (CL) analyses were performed at the
Open University (UK), using an FEI Quanta 200 three‐
dimensional SEM on carbon‐coated thin sections. Analyses
were conducted under high vacuum, using an accelerating
voltage of 10 kV, a beam current of 3.3 nA, a working dis-
tance of 13 mm, and an electron source provided by a
tungsten filament. The panchromatic CL detector used is a
Centaurus Deben with a photo multiplier tube (Hamamatsu
R316) characterized by sensitivity in the range of 400
1,200 nm.

Electron backscattered diffraction (EBSD) analyses were
conducted with a Jeol‐7001FEG SEM at the Electron
Microscopy Centre, Plymouth University (UK). EBSD pat-
terns were acquired with a 70° tilted sample geometry,
20 kV accelerating voltage, 18 23 mm working distance,
and 1.3 1.7 μm step size. Diffraction patterns were auto-
matically indexed using AZtec (Oxford Instruments). The
indexing match units used for the analysed phases were

“anorthite” (Laue group‐1) for albite and oligoclase and
“hornblende” (Laue group 2/m) for tschermakite fer-
rotschermakite. Both match units were taken from the
American Mineralogist database. Raw maps were processed
with HKL Channel 5 (Oxford Instruments), using the noise
reduction procedure tested by Prior, Wheeler, Peruzzo,
Spiess, and Storey (2002). Wild spikes were removed, and
unindexed points were replaced by the average orientation
of the neighbour points. Grains smaller than three times the
step size were not considered in the analysis. The mean
angular deviation values were 0.3 for amphibole and 0.4
0.6 for plagioclase; the raw indexing rate ranged between
90 and 95%. Crystallographic directions were plotted on
pole figures (upper and lower hemisphere of the stereo-
graphic projection), with X parallel to the stretching lin-
eation and Z parallel to the pole of the mylonitic foliation.
The grain orientation spread maps (GOS maps) were calcu-
lated as the average misorientation between every pixel in
the grain and the grain's average orientation.

3.2 | Electron probe microanalyser

Electron probe microanalyser (EPMA) analyses were con-
ducted at the Open University (UK), using a Cameca
SX100 connected to five spectrometers. Wavelength disper-
sive spectrometers were used for both spot analyses and X‐
ray maps, the latter acquired following the procedure of
Lanari et al. (2013). Spot analyses were acquired first for
each mineral, before performing the X‐ray maps on the
same area. Spot analyses were performed with 20 KeV
accelerating voltage, 20 nA specimen current, and 2 μm
beam diameter. Ten oxide compositions were measured,
using natural standards: K‐feldspar (SiO2, Al2O3, K2O),
bustamite (CaO, MnO), haematite (FeO), forsterite (MgO),
jadeite (Na2O), rutile (TiO2), apatite (P2O5). A ZAF matrix
correction routine was applied; uncertainty on major ele-
ment concentrations was <1%. X‐ray maps were acquired
with 15 KeV accelerating voltage, 100 nA specimen cur-
rent, dwell times of 70 100 ms, and step size of 5 μm. Ten
elements (Si, Ti, Al, Fe, Mn, Mg, Na, Ca, K, and P) were
measured at the specific wavelength in two series. Intensity
X‐ray maps were standardized to concentration maps of
oxide weight percentage using spot analyses as internal
standard. X‐ray maps were processed using XMapTools
2.2.1 (Lanari et al., 2014).

3.3 | Geothermobarometry

3.3.1 | Amphibole–plagioclase
thermobarometry

Temperature was estimated using the Holland and Blundy
(1994) geothermometer, which is based on element



exchange between amphibole and plagioclase pairs in equi-
librium. The calibration reaction edenite+albite=rich-
terite+anorthite was constrained from experimental and
natural data for silica‐saturated and silica‐rich igneous and
metamorphic rocks in the range of 0.1 1.5 GPa and 400
1,000°C.

Pressure was estimated using two geobarometers: Bha-
dra and Bhattacharya (2007) and Anderson and Smith
(1995). The former is based on element distribution
between amphibole and plagioclase pairs in equilibrium.
Experimental data were conducted on silica‐saturated
assemblages in the P T range of 0.1 1.5 GPa and 650
950°C, and on the reaction tremolite+tschermakite+2
albite = 2 pargasite+8 quartz. The latter is based on the
increase of Al in hornblende with increasing pressure and is
calibrated on experimental data at 675 and 760°C, account-
ing for the effects of temperature and fO2. Pressure and tem-
perature were calculated using the Plagioclase Hornblende
Thermobarometry spreadsheet (Anderson, Barth, Wooden,
& Mazdab, 2008) and the spreadsheet of Wallis, Phillips,
and Lloyd (2014) (the latter was used to derive pressure
from the calibration of Bhadra & Bhattacharya, 2007).

3.3.2 | Chlorite+Quartz+H2O thermometry

Chlorite+Quartz+H2O thermometry was performed using
the program CHLMICAEQUI (Lanari, 2012). The crystalliza-
tion temperature of chlorite and the XFe3+ were computed
at a fixed pressure of 0.7 GPa in the range of 100 550°C
from the convergence of four equilibria involving five
chlorite end‐members, quartz, and H2O (Lanari et al.,
2012; Vidal, Lanari, Munoz, Bourdelle, & De Andrade,
2016) using standard state properties and solid solution
models of Vidal, Parra, and Vieillard (2005) and Vidal
et al. (2006).

4 | RESULTS

4.1 | Petrography and microstructure

In the middle and lower portions of the COSC‐1 borehole
(~1,500 2,300 m depth), amphibolites show a mylonitic
foliation. The studied sample (International Geological Sam-
ple Number: ICDP5054EX8E601) was extracted from a
depth of 2,206.97 m from the surface and is similar to sev-
eral amphibolite samples present between ~1,600 and
~2,300 m depth. In this sample, the mylonitic foliation is
subhorizontal, it wraps around plagioclase porphyrocrysts
and is defined by amphibole, plagioclase (with smaller grain
size, details in the following), chlorite, quartz, epidote, and
ilmenite (Figure 2). Quartz and calcite occur mainly in veins
subparallel to the mylonitic foliation or as fine grains dis-
persed in the mylonitic foliation, typically along the phase
boundaries between plagioclase and amphibole.

Plagioclase is present as zoned porphyrocrysts (up to
0.5 1 cm in size) wrapped by the mylonitic foliation, and
as finer (up to hundreds of μm in size) albite/oligoclase
grains elongated parallel to the mylonitic foliation (aspect
ratios up to ~5; mean ~2). Plagioclase porphyrocrysts have
albite cores that appear turbid due to abundant fine‐grained
(up to 30 μm in size) inclusions of ilmenite, rutile, and epi-
dote. Ilmenite crystals are also included with bigger grain
size (100 μm in size); quartz is present as inclusions with
variable grain size (tens to hundreds of μm in size; Fig-
ures 3 and 4). The inclusions locally define a rotated inter-
nal foliation (upper plagioclase porphyrocryst in
Figure 3a). These cores are porphyroclastic and are cut by
fracture systems and some are dismembered parallel to the
foliation (see details in Section 4.2). The cores are always
surrounded by albite/oligoclase rims. Pores are evident in
the albite/oligoclase rims: they are few microns in size and

FIGURE 2 Amphibolite with Pl porphyroclast displaying a mylonitic foliation defined by Amp, Pl, Chl, Qz, Ep, and Ilm. Cal and Qz
ribbons, presumably representing transposed veins, are parallel to the foliation. Both dextral (clasts close to Figure 3 rectangle, marked by the
white arrow) and sinistral sense of shear (C′ planes, red dashed line) are visible. (a) plane polarized light; (b) crossed polarized light. Mineral
abbreviation from Whitney and Evans (2010)



occur in trails parallel to fracture systems that dissect the
plagioclase core (Figure 4). Several mineral inclusions also
occur along such trails, ranging from a few microns to tens
of microns in size. These are muscovite, epidote, and cal-
cite, with rare Ba‐rich muscovite (Figure 4). Such inclu-
sions confer a turbid aspect to plagioclase rim in plane‐
polarized light micrographs (Figure 3a; Table 1).

Amphibole is pleochroic, with absorption colours rang-
ing from light brown to dark green blue; in some bigger
crystals absorption colours highlight a paler core and a dar-
ker rim. Amphibole displays the C‐axis parallel to the
stretching lineation and a maximum grain size >1 mm.
Chlorite has a pleochroism varying from light yellow to
light green, a negative optical sign and grain size similar to



the amphibole. Asymmetric pressure shadows around pla-
gioclase porphyroclasts indicate both dextral and sinistral
sense of shear. In these pressure shadows amphibole,
albite/oligoclase grains and chlorite crystallize intergrown
and elongated parallel to the mylonitic foliation. C′ planes
display a dominant sinistral sense of shear and are defined
by the same minerals found along the mylonitic foliation
(Figures 2 and 3a,b). Opaque minerals include mostly ilme-
nite, up to 1 mm in size, with minor magnetite and pyrite.

Ilmenite crystals are elongate and lie parallel to the myloni-
tic foliation.

4.2 | Microstructure and chemistry of
plagioclase

Backscattered electron images highlight two plagioclase gen-
erations: dark cores with an albitic composition (Pl1) are sur-
rounded by brighter plagioclase rims with higher anorthite

FIGURE 4 Details of the microstructures shown in Figure 3c. BSE images. (a) Dark Pl1, highlighted by the dashed yellow line, with lobate
edges and peninsular features rimmed by Pl2 and Pl3. (b) Iso oriented Ilm and Rt inclusions in Pl1. Note the two perpendicular trails of pores in
Pl2 and Pl3. (c) Detail of the pore trails and associated Ms and Cal inclusions. (d) Close up of (c) highlighting pores, abundant Ms inclusions
and rare Ba rich Ms

FIGURE 3 More detailed areas of sections shown in Figure 2. (a) Ab porphyroclasts with dark trails of inclusions of Ep and Cal few μm in
size. The Ab porphyroclasts are wrapped by the mylonitic foliation defined by Amp, Olig, and Chl. The white rectangle indicates the site of the
EBSD map shown in Figure 7 (plane polarized light). (b) X ray map showing Pl, Amp, Chl, and Ep that crystallize in the pressure shadows of
Ab porphyroclasts. (c) BSE image showing zoned Pl with dark cores (Pl1) and brighter rims (Pl2 and Pl3). Bright inclusions inside Pl are Ilm
crystals. (d) CL image highlighting the difference between Ab cores (dark, Pl1) rimmed by Pl with higher An content (bright, Pl2 and Pl3). This
bright Pl crystallizes also in the pressure shadows and in the fractures that dissect the Ab cores. (e) Standardized X ray map of the X anorthite
(XAn) in the Pl. Note the fractures in Pl1 sealed by Pl3 and sheared off fragments of Pl1 rimmed by Pl2 and Pl3 (see text and Figure 5 for
distinction). (f) Standardized X ray map of Amp crystals displaying relic cores higher in Mg# (Amp1) and rims lower in Mg# lengthened as the
main foliation (Amp2). A minor but consistent shift towards higher Mg# is visible from the top to the bottom of the picture, probably related to
an analytical artefact



content (Pl2 and Pl3, as defined based on chemistry in the
next paragraph; Figures 3c and 4). Furthermore, the cores
are cut by fractures filled with plagioclase with the same
composition as the plagioclase rims. The distinction of these
plagioclase generations is more evident in the CL images,
where plagioclase cores appear moderately luminescent and
are surrounded by bright plagioclase rims (Figure 3d). The
fractures dissecting the cores are as bright as the plagioclase
rims. The plagioclase cores (Pl1) are locally fragmented and
display lobate edges and embayments that are typically sur-
rounded by bright plagioclase (Figures 3d, 7a and 8b). In
some areas, the plagioclase rims can be further subdivided

into two generations based on the brightness of their CL
response: a brighter plagioclase generally surrounded by a
darker one (Pl2 and Pl3, respectively).

Compositional maps of plagioclase display a perfect
match with the CL images (Figure 3e). The maps highlight
three plagioclase compositions, numbered from the older to
the younger: Pl1 (XAn 0 0.05), Pl2 (XAn 0.13 0.25), Pl3
(XAn 0.05 0.13; Figures 5a and 7b; Table 2). The plagio-
clase core (Pl1) has an albite composition and is overgrown
by the two albite/oligoclase rims (Pl2 and Pl3). Pl2 is pre-
sent only locally and is overgrown by Pl3, as shown in the
top right corner of Figure 3e. Furthermore, Pl3 seals the

FIGURE 5 Mineral chemistry of Pl, Amp, and Chl. The
subdivision in generations was made based on microtextures.
(a) Pl groups based on the XAb and XAn content: Pl1 XAn 0
0.05; Pl2 XAn 0.05 0.13; Pl3 XAn 0.13 0.25. Compare with
Figure 3e. (b) Amp groups based on the Mg# and Si apfu
content: Amp1 Mg# 0.5 0.44, Si apfu 7 6.5; Amp2 Mg#
0.44 0.36, Si apfu 6.5 6.1. Compare with Figure 3f. (c)
Compositional map of Chl Mg# for 0% Fe3+. The crystals
display homogeneous compositions (Chl1 Mg# 0.59 0.56),
except at grain boundaries and along C′ band where lower
values are present (Chl2 Mg# 0.55 0.52). (d) Diagram of
classification of calcic amphibole plotted with the average
chemical compositions of Amp1 and Amp2 (from Leake et al.,
1997)



fractures inside Pl1. Pl1 forms porphyroclasts wrapped by
the mylonitic foliation, whereas Pl2 and Pl3 occur in the
pressure shadows of Pl1.

4.3 | Microstructure and chemistry of
amphibole and chlorite

Compositional maps of amphibole crystals display corroded
cores, higher in Mg# (Mg#=Mg/(Fe2++Mg); Amp1: Mg#
0.5 0.44, Si apfu 7 6.5), and rims, lower in Mg# (Amp2:
Mg# 0.44 0.36, Si apfu 6.5 6.1; Figures 3f and 5b;
Table 2). Based on the classification of Leake et al. (1997),
the Amp1 is at the compositional boundary between tscher-
makite ferrotschermakite magnesiohornblende ferrohorn-
blende; Amp2 is a ferrotschermakite (Figure 5c). There are
local exceptions to this zoning pattern, in which the two
peripheral areas have higher Mg# (Figure 9c). Amp2 and
Pl3 grains displaying mutual intergrowths and elongation
parallel to the foliation (Figure 3c f).

Chlorite is characterized by a homogeneous Mg# (Mg#
0.59 0.56, Chl1), except along grain boundaries and the C′
planes, where some lower values are visible (Mg# 0.55
0.52, Chl2; Figure 5c; Table 3). Chl1 grains occur as inter-
grown with Pl3 and Amp2 along the mylonitic.

4.4 | Amp‐Pl thermobarometry

Thermometric estimates for the Pl1 and Amp1 pair yield
400°C; thermobarometric estimates for the Pl2 and Amp1
pair and the Amp2 and Pl3 pair yield 615°C and 0.97 GPa

TABLE 1 Metamorphic and deformation evolution of sample
ICDP5054EX8E601

Minerals Premain foliation Main foliation C′ planes
Amp

Pl Ab core Ab/Olig Rims

Chl

Qz

Cal

Ep

Ilm

TABLE 2 Representative average composition analysis (wt%) of
Pl and Amp

Pl Amp

Core (Pl1)
Rim1
(Pl2)

Rim2
(Pl3)

Core
(Amp1)

Rim
(Amp2)

SiO2 68.21 62.95 64.99 43.52 41.62

TiO2 0.01 0.01 0.01 0.22 0.35

Al2O3 19.08 24.37 21.55 13.21 15.42

FeO 0.03 0.03 0.06 18.41 18.56

MnO 0.00 0.00 0.00 0.17 0.17

MgO 0.00 0.00 0.00 8.34 7.37

CaO 0.11 4.30 2.30 11.42 10.72

Na2O 12.34 8.93 10.47 1.72 2.02

K2O 0.04 0.05 0.05 0.21 0.35

Sum 99.83 100.64 99.43 97.22 96.57

Formulae based on 8 O
Formulae based on
23 anhydrous O

Si 2.99 2.76 2.88 6.49 6.26

Ti 0.02 0.04

Al 0.99 1.26 1.12 2.33 2.73

Fe3+ 0.41 0.49

Fe2+ 1.89 1.85

Mn 0.02 0.02

Mg 1.86 1.65

Ca 0.01 0.20 0.11 1.83 1.73

Na 1.05 0.76 0.90 0.50 0.59

K 0.00 0.00 0.00 0.04 0.07

Sum 5.04 4.99 5.01 15.38 15.42

Mg# 0.45 0.41

XAn 0.01 0.21 0.11

XAb 0.99 0.79 0.89

TABLE 3 Representative average composition analysis (wt%) of
Chl

Chl

Chl1‐High Mg# Chl2‐Low Mg#

0% XFe3+ 30% XFe3+ 0% XFe3+ 30% XFe3+

SiO2 25.70 25.70 26.52 26.69

Al2O3 22.33 22.34 21.70 21.69

FeO 22.00 21.98 22.60 22.41

Fe2O3 0.02 0.21

MnO 0.15 0.15 0.15 0.14

MgO 16.43 16.43 15.37 15.42

CaO 0.02 0.02 0.03 0.03

Na2O 0.01 0.01 0.01 0.02

K2O 0.00 0.00 0.01 0.01

Sum 86.63 86.65 86.38 86.62

Formulae based on 14 anhydrous O

Si 2.69 2.63 2.78 2.74

Al 2.75 2.70 2.68 2.62

Mg 2.56 2.51 2.41 2.36

Fe3+ 0.00 0.57 0.00 0.58

Fe2+ 1.92 1.32 1.98 1.35

Sum 9.92 9.73 9.85 9.65

Mg# 0.57 0.66 0.55 0.64



and 605°C and 0.74 GPa, respectively (±50°C ± 0.2 GPa,
Table 4; see Section 5.1 for discussion on the plagioclase
and amphibole growth zones that we consider to be in
equilibrium).

4.5 | Chlorite+Quartz+H2O thermometry

Chlorite+Quartz+H2O thermometry was performed on the
two different chlorite groups, Chl1 and Chl2 (Figure 5c), at
a fixed pressure of 0.7 GPa. The Chl1 displays two peaks
in the T‐frequency diagram (Figure 6a): one close to the
temperature limit of the thermometer (550 450°C) and one
at lower temperature (400 250°C). Chl2 yields a range of
200 350°C, with a peak at ~250°C (Figure 6b), with only
one grain yielding a higher value (~500°C).

4.6 | EBSD analysis

Figures 7 and 8 show the results of EBSD analysis of
two microstructural domains (see Figures 2 and 3 for the
location of EBSD maps): domain 1 includes a plagioclase
porphyrocryst with a core of Pl1 composition rimmed by
Pl2 and Pl3 compositions. The porphyroclast Pl1 is cut by
a network of intracrystalline microfractures oriented NW
SE and filled with Pl2‐Pl3. Domain 1 also includes clus-
ters of amphibole and plagioclase grains around the pla-
gioclase porphyrocryst (Figure 7). Domain 2 contains an

aggregate of amphibole grains, mostly elongate parallel to
the foliation, and several grains of plagioclase showing a
core‐and‐rim zoning in CL images (Figure 8).

The comparison between EBSD maps, CL images, and
compositional maps shows that the Pl1 porphyroclasts,
which EBSD identifies as one individual grain (i.e., it
does not contain high‐angle boundaries with misorienta-
tion >10°), actually include areas with Pl2 and Pl3 com-
positions, which maintain the original crystal shape and
crystallographic orientation of Pl1 (Figures 7 and 8). The
internal distortion of the compositionally zoned porphyro-
crysts, as evaluated with the GOS, is rather low (GOS
values lower than 2°: Figures 7c and 8e). Low‐angle
boundaries (misorientations 2 10°) are preferentially dis-
tributed along the microfractures. The analysis of local
misorientations within Pl1 cores indicates that Pl2 and Pl3
areas have misorientations of up to 2° with respect to the
Pl1 cores (Figure 7d). Higher misorientations (up to 3°)
are found in the plagioclase porphyrocryst of the domain
2 (Figure 8d).

In domain 1, the compositionally zoned plagioclase por-
phyrocryst is surrounded by Pl2‐Pl3 grains that range in
size between 30 and 200 μm, delimited by high‐angle
boundaries with misorientation >10° from the porphyro-
cryst. The Pl2 and Pl3 grains have mean GOS values lower
than 1°, with one maximum value of 4°.

Amphibole generally shows GOS values lower than 2°,
with a few maxima of up to 7° (Figures 7e, 8g, and 9d).
Misorientations progressively increase towards fractures
perpendicular to the crystal elongation and, locally, towards
very few low‐angle boundaries oriented subparallel to the
crystal elongation (Figures 7f, 8h, and 9f). The misorienta-
tion profile in Figure 9e highlights a jump in misorientation
of up to 7° across the low‐angle boundary.

The crystallographic orientation of the new grains of
Pl2 and Pl3 displays a variable degree of overlap with the
one of the Pl1 core that they overgrow (Figures 10a,b and
11a,b). In some cases, all the new grains inherit the crystal-
lographic orientation of the Pl1 core (Figure 10a,b),
whereas in other cases, the overlap is more limited and the

TABLE 4 Results of amphibole plagioclase geothermobarometry
computed from the values of Table 2

Amp‐Pl couples
Thermometer

Barometer

HB (°C) BB (GPa) AS (GPa)

Amp1 Pl1 392

Amp1 Pl2 615 0.97 0.87

Amp2 Pl3 605 0.74 1.09

Note.. Thermometer abbreviation: HB: Holland and Blundy (1994). Barometer
abbreviations: BB: Bhadra and Bhattacharya (2007); AS: Anderson and Smith
(1995). The favoured results are highlighted in bold (see Section 5.1 for
details).

FIGURE 6 Chlorite+Quartz+H2O
thermometry results calculated at a pressure
of 0.7 GPa and a range between 0 and 50%
of Fe3+



new grains show a significant dispersion of crystallographic
directions with respect to the Pl1 cores (Figure 11). The
crystallographic inheritance is more evident if we consider
the crystallographic orientation of the Pl2‐Pl3 grains in
direct contact with the Pl1 core (Figures 10a and 11b). The

Pl2‐Pl3 grains dispersed in the mylonitic matrix show a
wide range of crystallographic orientations, which do not
necessarily overlap with those of the Pl1 cores included in
the map (Figures 10b and 11a). EBSD analysis also shows
that the most common fracture set in the Pl1 porphyroclasts

FIGURE 7 Details of the microstructure shown in Figure 3 (referred to as domain 1 in the text). (a) CL image of a dark Pl1 porphyroclast with
fractures and rims containing the bright Pl2 3. (b) Standardized X ray map of the XAn content showing the overlap between the bright CL areas and the
Pl2 Pl3 compositions. (c) EBSD GOS map superposed to the band contrast (BC) map of the same area shown in (a). White lines: low angle boundaries
2 10°. Black lines: high angle boundaries >10°. Light blue lines: Twin boundaries in Pl. (d) EBSD texture component map (TCM) of the Pl1
porphyroclast, showing the misorientation from the reference point marked by the red cross. White lines: low angle boundaries 2 10°. Black lines: high
angle boundaries >10°. Light blue lines: Twin boundaries in Pl. (e) EBSD GOS of Amp from the area shown in (a). White lines: low angle boundaries
2 10°. Black lines: high angle boundaries >10°. (f) EBSD TCM of Amp, showing the misorientation from the reference point marked by the red cross.
White lines: low angle boundaries 2 10°. Black lines: high angle boundaries >10°





is parallel to the (001) plane, which is a perfect cleavage
plane in plagioclase (Figure 11a).

Amphibole has a strong CPO, with the (100) and [001]
subparallel to the foliation and to the stretching lineation,
respectively (Figures 10c and 11c). The misorientation
angle distribution of amphibole displays the strongest peaks
between 2 and 25° and ~50 and 180°, with higher values
for the correlated pairs (Figure 11d). The misorientation
axes of amphibole, plotted in crystal coordinates, show
maxima around the c‐axis for misorientations up to 30°,
which, in sample coordinates, is oriented subparallel to the
stretching lineation of the mylonite (Figure 11d).

5 | DISCUSSION

5.1 | P–T conditions of metamorphism and
deformation

The Anderson and Smith (1995) geobarometer calibration
was based on rocks that equilibrated in the presence of

melt. There is no evidence of melt in our sample; therefore,
we favour the pressure results from Bhadra and Bhat-
tacharya (2007; Table 4). However, both results are kept as
the Plagioclase Hornblende Thermobarometry spreadsheet
(Anderson et al., 2008) that were used to compute P T uti-
lizes a convergence between the results of Anderson and
Smith (1995) geobarometer and Holland and Blundy
(1994) geothermometer. As a test, the Bhadra and Bhat-
tacharya (2007) pressure results were used as input for the
Holland and Blundy (1994) geothermometer and coincident
temperature results were obtained, within error.

The oldest metamorphic stage preserved in the sample
is represented by the albite cores (Pl1) with their oriented
inclusions of epidote, ilmenite, and rutile. In particular,
rutile inclusions suggest relatively HP, but the coexistence
with albite crystals would constrain the maximum pressure
of this metamorphic stage below the albite breakdown reac-
tion (albite=jadeite+quartz; Newton & Smith, 1967). How-
ever, the exact conditions of this first metamorphic stage
were not constrained in this study.

FIGURE 9 Details of Figure 2. (a) Sigmoidal grain of Amp surrounded by Chl along the foliation wrapping around Pl porphyroclasts.
Several brittle fractures perpendicular to the Amp elongation are visible (plane polarized light). The white rectangle encompasses the site of the
EBSD maps shown in (d) and (f). (b) X ray map of the mineral phases in (a). (c) Standardized X ray map showing the variation in Mg# of Amp
grains (scale bar on the right hand side). Amp displays cores higher in Mg# (Amp1) and rims lower in Mg# (Amp2) elongate parallel to the
foliation (compare with Figure 3f). (d) EBSD GOS map of Amp. The black line is the trace of the misorientation profile a b shown in (e). See
(a) for the location of the map. (e) Misorientation profile a b drawn across a low angle boundary. (f) EBSD TCM showing the misorientation
from the reference point marked by a red cross

FIGURE 8 Details of Figure 2 (referred to as domain 2 in the text). (a) Light microscopy microstructure of the site analysed with EBSD.
(b) CL image of the site shown in (a). Dark Pl1 porphyroclasts are overgrown by bright Pl2 and Pl3. (c) EBSD phases map of the site shown in
(a). Note the epitaxial growth of Pl2 and Pl3 on Pl1, as indicated by the lack of high angle boundaries separating Pl1 from Pl2 and Pl3, and the
very few low angle boundaries in the Pl1 porphyroclast. (d) EBSD TCM showing the misorientation from reference point (red cross) in Pl1
porphyroclasts. Note the correlation between higher misorientation and Pl2 Pl3 overgrowth on the right hand side of the reference point. (e)
EBSD GOS map suggesting that the Pl crystals are very low internal strain. (f) EBSD TCM showing the misorientation from reference point of
another Pl1 porphyroclast. (g) EBSD GOS map of Amp. (h) EBSD TCM showing the misorientation from reference point in an Amp crystal
elongate parallel to the foliation



The microstructural relationships between Pl1 and Amp1
are equivocal; therefore, it is difficult to prove that they
grew in equilibrium. Their compositions suggest that had

they grown in equilibrium, they would have crystallized at
400°C (Table 4). These results, however, are far away from
the lower limits of the calibration of Bhadra and

FIGURE 10 Pole figures of the crystallographic orientation data of Pl (colour coding as in the grain size maps) and Amp; same site as
maps shown in Figure 8. X is the extensional instantaneous stretching axis, Z is the pole of foliation, stereographic projections, lower hemisphere
if not specified; U: upper hemisphere, L: lower hemisphere. (a) Subset of the Pl porphyroclast and adjacent grains sharing the same
crystallographic orientation, with the exception of a few data points. The Pl displays a CPO with the (100) and (001) maxima approximately at
45° from X. The (010) maximum is perpendicular to X. a: 189029 Pl data points. (b) Subset of the Pl crystals of the matrix (Pl2 and Pl3) not
adjacent to the porphyroclast. A weak CPO similar to Figure 11a is visible. 34676 Pl data points. (c) Amp displaying a CPO with the (100) and
[001] perpendicular and parallel to X, respectively. 671 Amp data points (one point per grain). n = number of grains. Half width 10° and cluster
size 5°, maximum value is given. Contouring is 1



Bhattacharya (2007; 650 950°C) and Anderson and Smith
(1995; 675 760°C): for this reason, pressures were not
computed for the Amp1‐Pl1 pairs. Furthermore, Pl1 is out
of the compositional range of the Bhadra and Bhattacharya
(2007) equilibration (table 10 of that contribution).

Within uncertainty, the temperature results of Amp1‐Pl2
and Amp2‐Pl3 pairs lie just within the lower limits of the
two calibrations. The P T estimates from the Amp1‐Pl2 and
Amp2‐Pl3 pairs are coincident within error (±0.2 GPa and
±50°C). This is due to the subtle chemical differences exist-
ing between these two generations. Thermobarometric cal-
culations suggest that Pl2 may have grown synchronously
with Amp1 at 615°C and 0.97 GPa. The crystallization of
Pl2 marks the first stage of the mylonitic foliation develop-
ment, as evidenced by the presence of Pl2 in the pressure
shadows of Pl1 (Figures 3, 5a and 7). The mylonitic folia-
tion continued to develop under conditions of ~600°C and
0.75 GPa (Amp2‐Pl3 pair), as supported by the microtextu-
ral observation of Amp2, Pl3, and Chl1 intergrowths within
the Pl1 pressure shadows (Section 4.1). This temperature
result is coincident, within error, with the Chlo-
rite+Quartz+H2O thermometry results for Chl1 (550°C;
higher temperature peak in Figure 6a).

The XAn increase from Pl1 to Pl2 and Pl3 could reflect
the following reaction from Apted and Liou (1983) for a
pressure of 0.7 GPa:

epidoteþ albiteþ hornblende1þ quartz

¼ oligoclase+hornblende2þ H2O:
(1)

The abundant epidote inclusions in Pl1 and its scarcity
and corroded aspect in the matrix of the sample would sup-
port this hypothesis. Pl2 likely crystallized at >600°C in
the (high‐T) epidote amphibolite facies field (Apted &
Liou, 1983; Liou, Kuniyoshi, & Ito, 1974; Miyashiro,
1968; Winkler, 1980), and Pl3 at lower temperatures, as
the associated Amp2 and Chl1 limit the maximum tempera-
ture to 550 600°C (Figures 5 and 6a). A final retrograde
stage is recorded by the Chl2 compositions suggesting a
range of 350 200°C (using the Chlorite+Quartz+H2O ther-
mometry, Figure 6b), and by the overprinted Chl1 values
yielding the low‐T peak of Figure 6a. Indeed, Chl2 appears
to be associated with the development of C′ shear bands
overprinting the mylonitic foliation.

5.2 | The origin of luminescence in
plagioclase

Backscattered electron and CL images provide important
insight into feldspar textures (e.g., Lee, Parsons, Edwards,
& Martin, 2007; Parsons & Lee, 2009; Parsons, Steele,
Lee, & Magee, 2008). Plagioclase luminescence has been
related to many causes (summarized in Götze, 2012): the

Mn2+, Ti, Fe3+ content (Götze, Habermann, Kempe, Neu-
ser, & Richter, 1999; Mariano & King, 1975), trace and
REE elements (Götze, Habermann, Neuser, & Richter,
1999; Mariano & King, 1975), lattice defects (e.g., Al O
Al bridge; Finch & Klein, 1999), and/or mineral inclusions
(Smith & Stenstrom, 1965). The CL signal is most com-
monly linked to Ti concentrations (Lee et al., 2007; Par-
sons et al., 2008), with a contribution from Fe (Lee et al.,
2007). Furthermore, Parsons et al. (2008) has noted that
CL emissions appear to be linked to Ca zoning, but they
did not find a direct link between Ca concentration (or
other trace element concentrations) and CL intensity.

In our samples, TiO2 appears uniform across all Pl gen-
erations (at 0.01 wt%; Table 2). This is also the case for
the MnO, with a scatter between 0.002 and 0.006 wt%.
The FeO (Fe total) in Pl1 and Pl2 is the same (0.03 wt%;
Table 2), but increases in Pl3 (0.06 wt%; Table 2). The CL
signal in our samples appears to be related to the Ca\Na
ratio (with maybe some contribution from Fe): the higher
the ratio, the brighter the growth zone, as visible from the
perfect match between the SEM‐CL and EPMA composi-
tional maps (Figures 3 and 7), even though we cannot rule
out a contribution from trace and REE elements or lattice
defects. Luminescence induced by calcite inclusions in Pl2
and Pl3 can be excluded, as the calcite veins in the sample
do not luminesce.

5.3 | Replacement reactions by coupled
dissolution–precipitation and deformation by
dissolution–precipitation creep in plagioclase
and amphibole

Our analysis highlights a strong correlation between CL
images and both BSE images and EPMA compositional
maps of plagioclase. Textural and chemical features similar
to those reported in this study are recognized in several
amphibolites present over >500 m of the COSC‐1 core
(from ~1,600 to ~2,300 m depth), implying that the defor-
mation mechanisms and the mineral replacement reactions
discussed below are important for the development of the
middle to lower crustal thrusts and associated tectonic
transport during Caledonian nappe stacking.

The plagioclase porphyrocrysts deformation history is
summarized in Figure 12a. During the first stage Pl1 grew
including a foliation defined by quartz, epidote, ilmenite,
and rutile. Subsequently, fractures developed along the
(001) cleavage planes (Ague, 1988; Brander et al., 2012;
Brown & Macaudiére, 1984; McLaren & Pryer, 2001)
enhanced fluid infiltration that triggered replacement reac-
tions occurring via coupled dissolution of Pl1 and precipi-
tation of Pl2 (Brander et al., 2012; Marti, Stünitz,
Heilbronner, Plümper, & Drury, 2017) in equilibrium with
the changed P T conditions of 0.9 GPa and 615°C. These





replacement processes continued precipitating Pl3, which
rimmed Pl1 and Pl2 and sealed the fractures in Pl1. The
slightly different chemistry of Pl3 compared to Pl2 and the
microstructural observation that Pl3 overgrows Pl2 suggest
that these two growth zones were closely related in time or
crystallization reaction (Section 4.2).

The growth zones of Pl2 and Pl3 inherit the crystallo-
graphic orientation of the Pl1 cores, with maximum misori-
entation of 5° (Figure 7c,d). Thus, the precipitation of Pl2
and Pl3 on Pl1 is an example of pseudomorphic and topotax-
ial growth, as often observed during coupled dissolution
precipitation processes (Engvik et al., 2008; Hövelmann,
Putnis, Geisler, Schmidt, & Golla‐Schindler, 2010; Plümper
et al., 2017; Putnis & Putnis, 2007; Spruzeniece, Piazolo, &

Maynard‐Casely, 2017). The small (generally <2°) and only
local difference in crystallographic orientation between Pl1
and Pl2‐Pl3 presumably results from the slightly different
unit cell parameters between albite and oligoclase. The few
low‐angle boundaries associated with Pl2‐Pl3 growth zones
are typically found along intracrystalline fractures (Fig-
ure 7d), and we interpret them as evidence of slightly rotated
fractured fragments of Pl1 that re‐equilibrated to Pl2‐Pl3
compositions via coupled dissolution precipitation pro-
cesses. Pore trails occur in the plagioclase porphyrocrysts
parallel to the two fracture systems, together with several
micrometric mineral inclusions resulting in a turbid aspect of
the plagioclase (Figures 3a,b and 4). Those trails probably
represented the main pathways of fluid circulation during

FIGURE 12 Idealized sketch of the deformation history of Pl and Amp, colour coding as in the compositional maps. (a) 1: Pl1
porphyrocrysts grew including a foliation marked by Ep, Qz, and Ilm. 2: Fracturing of the Pl1 porphyrocrysts, mostly imposed along the (001)
plane. 3: Fluid infiltration triggered mineral replacement by coupled dissolution precipitation with topotaxial and pseudomorphic growth of Pl2
and, successively, Pl3 on Pl1. Replacement occurred mostly along and in proximity of the fractures as well as at the edges of the crystals. Pl3
nucleated also as newly grown grains in the matrix. (b) 1: Amp1 grew with a CPO. 2: Replacement of Amp1 by Amp2 by coupled dissolution
precipitation; topotaxial growth is suggested by the same CPO shared by the two generations. 3: Development of misorientation due to
displacement along the fractures and along the cleavage planes

FIGURE 11 Pole figures of the crystallographic orientation data of Pl (colour coding as in the grain size maps) and Amp; same site as maps
shown in Figure 7. (a) The Pl displays a CPO with the (100) and (001) at low to medium angles to X. Note how the maximum of the values coincides
with the porphyroclast values, in red. 357353 Pl data points. (b) Subset of the Pl porphyroclast and adjacent grains; some of the latter display a
similar crystallographic orientation as the porphyroclast. 238333 Pl data points (c) Pole figures of Amp displaying a strong CPO with the (100) and
[001] perpendicular and parallel to X, respectively. 140 Amp data points (one point per grain). n = number of grains. Half width 10° and cluster size
5°, maximum value is given. Contouring is 2. (d) Histogram of distribution of misorientation angles and misorientation axes of amphibole plotted in
crystal coordinates. 3295 Amp data points. Dashed line: forbidden zone limit



coupled Pl1 dissolution and Pl2 and Pl3 precipitation. These
mineral inclusions may represent the signature of transient
porosity during plagioclase replacement reactions (e.g.,
Plümper & Putnis, 2009; Plümper et al., 2017; Putnis, 2015;
Walker, Lee, & Parsons, 1995).

Crystallographic continuity indicative of epitaxial over-
growth is also observed between plagioclase porphyro-
crysts and Pl2 and Pl3 grains around them, but to different
extents (compare Figure 10a with Figure 11b). Thus, the
crystallographic orientation of new Pl2 and Pl3 grains may
be inherited from the Pl1 parent grain due to epitaxy, as
described for several minerals deforming by dissolution
precipitation creep at different crustal levels (Engvik et al.,
2008; Imon et al., 2002, 2004; Jiang, Prior, & Wheeler,
2000; Mukai et al., 2014; Spruzeniece et al., 2017; Wass-
mann & Stöckhert, 2012; Wassmann et al., 2011). The
crystallographic continuity seems to decrease away from
the plagioclase porphyrocrysts (Figures 10b and 11a), pre-
sumably reflecting the heterogeneous nucleation of Pl2 and
Pl3 neoblasts in the surrounding matrix together with
Amp2 and Chl1. Additionally, these neoblasts may have
also undergone grain‐boundary sliding during deformation,
given their fine grain size, which can further disperse their
inherited crystallographic orientation (Okudaira et al.,
2017).

Thus, we conclude that metamorphism of plagioclase at
~600°C and 0.75 0.9 GPa occurred by coupled dissolu-
tion precipitation processes with pseudomorphic and
topotaxial replacement of Pl1 by Pl2 and Pl3, and deforma-
tion was accommodated by dissolution precipitation creep
with nucleation of Pl2‐Pl3 grains around the plagioclase
porphyrocrysts (epitaxial) and in the surrounding matrix. It
is worth noting that the replacement of Pl1 porphyroclasts
by coupled dissolution precipitation processes generally
occurred concentrically (Figure 7). Consequently, at least
part of this replacement process outlasted the deformation.
The similar chemistry of Pl3 replacing Pl1 and the Pl3 neo-
blasts in the surrounding matrix suggest that there was no
major change in metamorphic conditions throughout the
timing of growth of Pl3.

No significant contribution of crystal plasticity was
observed, although deformation occurred at P T conditions
at which crystal plasticity in plagioclase is expected to
occur (e.g., Gerald & Stünitz, 1993; Pearce, Wheeler, &
Prior, 2011). The porosity necessary to maintain fluid trans-
port during coupled dissolution precipitation was generated
mostly by fracturing, as shown by the common occurrence
of Pl2‐Pl3 growth zones along fractures parallel to the (001)
perfect cleavage planes. Finally, the sharp chemical transi-
tion (across ~1 5 μm) between all the plagioclase genera-
tions, visible from the EPMA and CL maps (Figures 3 and
7), suggest that chemical equilibration did not occur by
solid‐state diffusion (e.g., Hövelmann et al., 2010).

The textural features of amphibole suggest a similar
deformation history to plagioclase (Figure 12b). Amp1
(high Mg#) grains are preserved mostly as relict cores and
display embayments, lobate edges, and truncated chemical
zoning patterns (Figures 3f and 9c; Bukovská, Wirth, &
Morales, 2015; Gratier et al., 2013; Hyppolito, García‐
Casco, Juliani, Meira, & Hall, 2014; Passchier & Trouw,
1996; Rutter, 1983; Stokes et al., 2012; Wassmann &
Stöckhert, 2013; Wintsch & Yi, 2002). These textural fea-
tures suggest that Amp1 underwent coupled dissolution and
Amp2 precipitated on Amp1. As for plagioclase, the
growth of Amp2 on Amp1 was pseudomorphic and
topotaxial (Figure 9d f). Amp2 grew also as smaller neo-
blasts (maximum few hundreds of μm in size), elongated
parallel to the mylonitic foliation, and preferentially elon-
gated parallel to their c‐axis, due to dissolution precipita-
tion creep. These crystals do not display Amp1 cores in the
compositional maps (Figures 3f and 5b).

The CPO and shape‐preferred orientation of the amphi-
bole can be acquired via different mechanisms: dissolu-
tion precipitation creep (Bons & den Brok, 2000; Imon
et al., 2004; Pearce et al., 2011), oriented grain growth and
passive rotation after growth (Berger & Stünitz, 1996;
Kanagawa, Shimano, & Hiroi, 2008), and/or diffusion
creep (Getsinger & Hirth, 2014). In the studied sample, the
CPO displayed by Amp2 is mostly inherited due to the
pseudomorphic and topotaxial growth on Amp1. The small
misorientations (<3°) evident in the EBSD map (Figure 9f)
are attributed to fractures that developed perpendicular to
the crystal elongation (Figure 9a). Some amphibole crystals
display more complex zoning (e.g., central crystal in Fig-
ure 9c), probably due to a preferential replacement of the
central part of the crystal (e.g., Hyppolito et al., 2014). The
CPO of Amp1 grains was presumably formed via oriented
grain growth during an earlier deformation event. More-
over, as presented in Section 4.6, the misorientation axes
of amphibole show maxima around the c‐axis, which is ori-
ented subparallel to the stretching lineation of the mylonite
(Figure 11d). This geometry is not consistent with disloca-
tion creep on the prism <c> slips system of amphibole, as
the misorientation axis cannot coincide with the Burgers
vector (e.g., Kruse, Stünitz, & Kunze, 2001; Lloyd,
Farmer, & Mainprice, 1997). Instead, we interpret the clus-
ter of misorientation axes around <c> as evidence of
topotaxial growth of elongated amphibole grains that pref-
erentially share their c‐axis. As the data come from all the
grains included in the map (and not only from the rims of
Amp2), we think that oriented growth was the dominant
deformation mechanisms of amphibole throughout the
deformation history.

In the studied sample, amphibole, like plagioclase,
shows no evidence of deformation via crystal plasticity,
such as high intracrystalline misorientations, misorientation



bands, subgrains. Instead, it appears to have deformed by
fracturing and coupled dissolution precipitation, as also
suggested in other studies (Berger & Stünitz, 1996; Brodie
& Rutter, 1985; Lafrance & Vernon, 1993; Nyman, Law,
& Smelik, 1992; Pearce et al., 2011). Crystal plasticity is
potentially a more effective deformation mechanism at
higher temperatures (e.g., Skrotzki, 1992).

It is worth noting that the synkinematic reaction that
produced Pl2‐Pl3 and Amp2 (reaction 1) could have been a
dehydration reaction. If this was the case, the aqueous fluid
necessary to sustain coupled dissolution precipitation pro-
cesses did not necessarily infiltrate from an external source,
but may have been released internally. The role of dehydra-
tion reactions in the rheological evolution of crustal rocks
has received little attention so far, as reaction weakening is
commonly associated with hydration reactions during retro-
gression (e.g., Gueydan, Leroy, Jolivet, & Agard, 2003).
However, dehydration reactions that release fluids at grain
boundaries can also potentially result in weakening and
strain localization during burial and nappe stacking if the
released fluids facilitate the activation of coupled dissolu-
tion precipitation creep and of diffusion creep.

6 | CONCLUSIONS

Middle to lower crustal mylonites from the COSC‐1 drill
core (Lower Seve Nappe) were investigated with EPMA
compositional maps, CL images, and EBSD maps to con-
strain the mechanism(s) responsible for their formation.
The data suggest that fracturing, coupled dissolution pre-
cipitation, and dissolution precipitation creep were respon-
sible for the development of the mylonitic fabric in
amphibolites at conditions of ~600°C, 0.75 0.97 GPa, in
the epidote amphibolite facies, over a thickness >500 m.
No evidence of deformation via crystal plasticity is present
in either plagioclase or amphibole in the analysed sample,
even though deformation occurred at P T conditions at
which plagioclase is expected to deform by dislocation
creep. The presence of H2O‐rich fluid at the grain bound-
aries appears to have enhanced replacement reactions and
facilitated dissolution and precipitation processes, which in
turn considerably decreased the strength of this middle to
lower crustal shear zone. Importantly, replacement reactions
of plagioclase only occurred by coupled dissolution precip-
itation at grain boundaries and along fractures and were
otherwise sluggish.

Our study shows that crystallographic preferred orienta-
tion in plagioclase and amphibole can be inherited from
parental grains due to pseudomorphic and topotaxial
growth during coupled dissolution precipitation during
deformation. Thus, care must be taken when considering

CPOs in deformed rocks as evidence of deformation by 
dislocation creep.

The development of a mylonitic fabric by coupled dis-
solution precipitation and dissolution precipitation creep in

amphibolites over a thickness >500 in the Lower Seve 
Nappe suggests that the strength of amphibolites can be
significantly low in the presence of grain‐boundary aqueous 
fluid during nappe thrusting in the middle to lower crust.
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