
19 September 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Lazzaro D.,  Loli Piccolomini E.,  Zama F. (2019). A fast splitting method for efficient Split Bregman
iterations. APPLIED MATHEMATICS AND COMPUTATION, 357, 139-146 [10.1016/j.amc.2019.03.065].

Published Version:

A fast splitting method for efficient Split Bregman iterations

Published:
DOI: http://doi.org/10.1016/j.amc.2019.03.065

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/691304 since: 2019-07-09

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.amc.2019.03.065
https://hdl.handle.net/11585/691304


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Lazzaro, D., E. Loli Piccolomini, and F. Zama. "A Fast Splitting Method for Efficient 
Split Bregman Iterations." Applied Mathematics and Computation, vol. 357, 2019, 
pp. 139-146.  

The final published version is available online at : 
http://dx.doi.org/10.1016/j.amc.2019.03.065 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the 
publishing policy. For all terms of use and more information see the publisher's website.   

 

https://cris.unibo.it/
http://dx.doi.org/10.1016%2Fj.amc.2019.03.065


A Fast Splitting Method for efficient Split Bregman
Iterations I
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40126, Bologna (ITALY)
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Abstract

In this paper we propose a new fast splitting algorithm to solve the Weighted

Split Bregman minimization problem in the backward step of an accelerated

Forward-Backward algorithm. Beside proving the convergence of the method,

numerical tests, carried out on different imaging applications, prove the accuracy

and computational efficiency of the proposed algorithm.

Keywords: Weighted Total Variation, accelerated Forward Backward, FISTA,

weighted Split Bregman.

1. Introduction

A large number of important image processing applications require the solu-

tion of a regularized optimization problem. In order to cope with the instrinsic

ill-conditioning of the model and its sensitivity to noise, a data fit term is bal-

anced by a weighted regularization term. Among the different regularization

functions, the Total Variation (TV) and the Weighted Total Variation (WTV)

have recently gained increasing attention because of their edge preserving prop-

erties [1, 2]. Therefore we focus on the numerical solution of the regularized

IMethod for CTAN.
∗Corresponding author
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minimization problem:

min
u
{f(u) + λ WTV (u)} (1)

where f(u) is the least squares fit term, WTV (u) is the Weighted Total Varia-

tion regularization term and λ > 0 is the regularization parameter. The choice

of the weighting function in WTV is crucial to filter out noise while preserv-

ing the image edges. In this paper we apply the non-convex log-exp function,5

proposed in [3]. The solution of problem (1) is tackled by an Accelerated For-

ward Backward algorithm where a modified FISTA acceleration strategy [4] is

applied to the Backward step. The Weighted Split Bregman (WSB) method,

used to compute the Backward step, generates a sequence of inner linear sys-

tems which constitute the computational core of the whole algorithm. In this10

work we propose an iterative solver (FWSB) based on a new matrix splitting

which uses the matrices structure to achieve accurate and efficient solutions.

Besides proving the convergence of our iterative method, we compare it to the

Gauss Seidel solver on different imaging problems. The tests confirm its better

performances in terms of accuracy and computational times.15

The present paper is organized as follows: in section 2 we present the accel-

erated Forward-Backward algorithm. In section 3 the details of the Backward

steps are examined and in section 4 the new splitting algorithm is introduced

and its convergence proven. Finally the numerical results and conclusions are

reported in sections 5, 6 respectively.20

2. The Accelerated Forward Backward Algorithm

In this section we introduce the WTV function as the anisotropic discretiza-

tion of the L1 norm of the weighted gradient (∇wx ,∇wy )T of the image u ∈ RN×N

along the coordinate directions:

WTV (u) = ‖∇wx u‖1 + ‖∇wy u‖1
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where:

‖∇wx u‖1 =

N∑
i,j=1

(wxi,j)|ux|i,j , ‖∇wy u‖1 =

N∑
i,j=1

(wyi,j)|uy|i,j (2)

and wxi,j > 0 and wyi,j > 0 are constants that weight the first order differences

ux and uy, along the vertical and horizontal directions respectively. The choice

of the weights wx and wy is crucial when using (1) in imaging applications. In

order to preserve the image edges, the weight for a pixel ui,j can be chosen to

be inversely proportional to the local value of the gradient. Therefore the values

of the weights should be small near the edges, where the gradient of the image

is large, so that those components in (1) are not much penalized. Conversely,

when the gradient of the image is small, like in smooth areas, the values of the

weights should be large, in order to reduce variations mainly due to the presence

of noise. We define the weights of the WTV, at each pixel, as the derivative of a

strongly non-convex function of the gradient of the noisy image u in that pixel.

In particular we choose the derivative of the non-convex log-exp function φµ(t)

as proposed in [3],

φµ(|t|) =
1

log 2
log

(
2

1 + e−
|t|
µ

)
, µ > 0, (3)

whose derivative is given by

φ′µ(|t|) =
1

µ · log(2)

1

1 + e
|t|
µ

(4)

and satisfies: 
φ′µ(|t|)→ 0 for |t| > µ

µ > 0

φ′µ(|t|) large for |t| < µ.

(5)

The function φ′µ(| · |) approaches zero near the edges, where the gradient gets

large, while it is large in smooth areas where the gradient becomes small. In

fact, besides separating edges from smooth areas, φ′µ(|·|) also identifies the small

differences in intensity variations within such areas.25
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Since we adopt anisotropic TV discretization, our weights wxi,j and wyi,j are

different along the x and y directions and are given by:

wxi,j = φ′µ(|ux|i,j) =
1

µ · log(2)

1

1 + e
|ux|i,j
µ

, (6)

wyi,j = φ′µ(|uy|i,j) =
1

µ · log(2)

1

1 + e
|uy|i,j
µ

. (7)

By setting the data fit function f as the least squares distance from the data

z, we have

f(u) =
1

2
‖Φu− z‖22 (8)

where Φ is an m×n linear operator used to model different applications. It can

be a convolution operator in the deblurring problem or a subsampling measure-

ment operator in the compressive sensing problem, etc.

Finally we define our problem as follows:

find u∗, s.t. u∗ = arg min
u

{
1

2
‖Φu− z‖22 + λ

(
‖∇wx u‖1 + ‖∇wy u‖1

)}
. (9)

Problem (9) is convex and non differentiable and it has a unique solution

under the trivial hypotheses of Φ 6= 0 and u not constant.

Different methods can be used for its solution such as Chambolle Pock [5],

Split-Bregman [6], Alternating Minimization [7] or the Augmented Lagrangian

method ??. All the methods should converge to the same point, with different

rate. In this paper we use the Forward-Backward (FB) algorithm for the solution

of the convex minimization problem (9), since it requires the tuning of very few

parameters which is a great advantage in real applications.

We solve (9) by a converging sequence of Accelerated Forward-Backward steps

(v(n), u(n)), n = 1, 2, . . . where a modified FISTA acceleration strategy [4] is

applied to the backward step. Given u(0), we compute for n = 1, 2 . . .:

v(n) = u(n−1) + βΦT
(
z − Φu(n−1)

)
(10)

ũ(n) = arg min
u

{
λ
(
‖∇wx u‖1 + ‖∇wy u‖1

)
+

1

2β
‖u− v(n)‖22

}
(11)

u(n) = ũ(n−1) + α(ũ(n) − ũ(n−1)), (12)
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and α is chosen as follows:

α =
tn−1 − 1

tn
, tn =

n+ a+ 1

a
. (13)

In our experiments, we set a = 2. In order to ensure the convergence of the

sequence (v(n), u(n)) to the solution of (9), the following condition on β must

hold [4]:

0 < β <
1

λmax(ΦTΦ)

where λmax is the maximum eigenvalue in modulus. The Forward-Backward

iterations are stopped with the following stopping condition:

‖u(n) − u(n−1)‖2
‖u(n)‖2

< ε where ε > 0. (14)

We observe that while v(n) and u(n) are computed by explicit formulae, for

the computation of ũ(n) in (11), we introduce a Split-Bregman strategy (section30

3) and we propose a modified matrix splitting in the solution of the arising

linear system.

The steps of the Accelerated Forward-Backward algorithm (AFB) are re-

ported in algorithm 2.1.

We point out that the minimization problem (11) can be efficiently solved35

by means of different methods existing in literature. We cite, among others, [6]

and [7]. In this paper, we use a variable splitting strategy, proposed in [2].

3. The Weighted Split Bregman Method

In this section we recall the Split Bregman method for Weighted Total Vari-

ation for the solution of (11).

Introducing two auxiliary vectors Dx, Dy ∈ RN2

we rewrite (11) as a constrained

minimization problem as follows:

min
u

{
1

2β
‖u− v(n)‖22 + λ (‖Dx‖1 + ‖Dy‖1)

}
, s.t. Dx = ∇wx u, Dy = ∇wy u,

(15)
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Algorithm 2.1 ( Algorithm AFB).

Input: λ, z, β, wx, wy Output: u∗

u(0) = φT z

ũ(0) = u(0);

n = 0

repeat

v(n+1) = u(n) + βΦT (z − Φu(n)) (Forward Step)

Compute ũ(n+1) by solving (11) with function FWSB in Table 4.1

compute α as in (13)

u(n+1) = ũ(n+1) + α(ũ(n+1) − ũ(n))

n = n+ 1

until stopping condition as in (14)

u∗ = u(n)

Table 1: Accelerated Forward Backward Algorithm

where ‖Dx‖1 and ‖Dy‖1 are defined as in (2). Hence (15) can be stated in its

quadratic penalized form as:

min
u,Dx,Dy

{
1

2β
‖u− v(n)‖22 + λ (‖Dx‖1 + ‖Dy‖1) +

θ

2

(
‖Dx −∇wx u‖22 + ‖Dy −∇wy u‖22

)}
(16)

where θ > 0 represents the penalty parameter. In order to simplify the nota-

tion, exploiting the symmetry in the x and y variables, we use the subscript q40

indicating either x or y.

By applying the Split Bregman iterations, given an initial iterate U (0), we

compute a sequence U (1), U (2), . . . , U (j+1) by splitting (16) into three minimiza-

tion problems as follows.

Given e
(0)
x = e

(0)
x = 0, D

(0)
x = D

(0)
y = 0 and U (0) = v(n), compute:

U (j+1) = arg min
u

{
1

2β
‖u− v(n)‖22 +

θ

2
‖D(j)

x −∇wx u− e(j)
x ‖22+

θ

2
‖D(j)

y −∇wy u− e(j)
y ‖22

}
(17)

6



D(j+1)
x = arg min

Dx

{
λ‖Dx‖1 +

θ

2
‖Dx −∇wxU (j+1) − e(j)

x ‖22
}

= SoftΛ(∇wxU (j+1) + e(j)
x ), (18)

D(j+1)
y = arg min

Dy

{
λ‖Dy‖1 +

θ

2
‖Dy −∇wy U (j+1) − e(j)

y ‖22
}

= SoftΛ(∇wy U (j+1) + e(j)
y ), (19)

where

Λ =
λ

θ
(20)

and ejq is updated according to the following equation:

e(j+1)
x = e(j)

x +∇wxU (j+1) −D(j+1)
x = e(j)

x +∇wxU (j+1)−

SoftΛ(∇wxU (j+1) + e(j)
x ) = CutΛ(∇wxU (j+1) + e(j)

x ), (21)

e(j+1)
y = e(j)

y +∇wy U (j+1) −D(j+1)
y = e(j)

y +∇wy U (j+1)−

SoftΛ(∇wy U (j+1) + e(j)
y ) = CutΛ(∇wy U (j+1) + e(j)

y ), (22)

We remind that the Soft and the Cut operators apply point-wise respectively

as:

SoftΛ(z) = sign (z) max {|z| − Λ, 0} (23)

CutΛ(z) = z − SoftΛ(z) =


Λ z > Λ

z −Λ ≤ z ≤ Λ

−Λ z < −Λ.

(24)

By imposing first order optimality conditions in (17),we compute the mini-

mum U (j+1) by solving the following linear system:

(
1

β
I − θ∆w)U (j+1) =

1

β
v(n) + θ(∇wx )T (D(j)

x − e(j)
x )+

θ(∇wy )T (D(j)
y − e(j)

y ) (25)

where

∆w = −
(
(∇wx )T∇wx + (∇wy )T∇wy

)
. (26)

7



Defining:

A = (I − βθ∆w) (27)

and

b(j) = v(n) + βθ(∇wx )T (D(j)
x − e(j)

x ) + βθ(∇wy )T (D(j)
y − e(j)

y ) (28)

the linear system (25) can be written as:

AU (j+1) = b(j). (29)

We observe that the solution of systems (29) is a crucial point because it oc-45

curs in the inner loop of the backward step, therefore it is important to employ

accurate and fast methods. Since the matrix A is sparse, strictly diagonally

dominant and positive definite, one of the natural choices is to use the Gauss-

Seidel method.

In the next paragraph we explain the details of our proposed method named50

Fast Weighted Split-Bregman (FWSB) to efficiently solve (29).

4. The proposed Matrix Splitting

Exploiting the structure of the matrix A we obtain a matrix splitting of the

form E − F where E is the Identity matrix and F is βθ∆w. We can prove that

the iterative method, based on such a splitting, is convergent if

0 < θ <
1

β‖∆w‖∞.
(30)

Theorem 4.1. Let E and F define a splitting of the matrix A = E−F in (29)

as:

E = I, F = βθ∆w. (31)

By choosing θ as in (30) we can prove that the spectral radius ρ(E−1F ) < 1

and, for each right-hand side B, the following iterative method

X(m+1) = FX(m) +B, m = 0, 1, . . . (32)

converges to the solution of the linear system AX = B.

8



In order to prove theorem 4.1 we first prove the following lemma.

Lemma 4.1. Let M = E + F where E is the Identity matrix and F = βθ∆w
55

with θ, β > 0. If 0 < θ < 1
β‖∆w‖∞ then M is a symmetric positive definite

matrix.

Proof. By definition of ∆w in (26), it easily follows that M = (I + βθ∆w) is a

real symmetric matrix. If we reorder lexicographically the matrix u ∈ RN×N

in a column vector of size N2 and we use forward finite differences with zero

boundary conditions, in the finite discrete setting the k-th component of the

product ∆ωu is:

(∆ωu)k = −(α2
k + α2

k+1 + η2
k + η2

k+N )uk + α2
k+1uk+1+

α2
kuk−1 + η2

k+Nuk+N + η2
kuk−N (33)

where, from equations (6) and (7) it follows:

αk = φ′µ(|ux|i,j) ηk = φ′µ(|uy|i,j), k = (i− 1)N + j (34)

Hence on each row there are at most five non zero elements given by:

Mk,k= 1−βθ(α2
k + α2

k+1 + η2
k + η2

k+N ),

Mk,k−1= βθα2
k,

Mk,k+1= βθα2
k+1,

Mk,k−N= βθη2
k,

Mk,k+N= βθη2
k+N

(35)

In order to guarantee that the matrix M is positive definite, it is sufficient to

determine θ such that M is strictly diagonally dominant, namely

∣∣1− βθ(α2
k + α2

k+1 + η2
k + η2

k+N )
∣∣ > βθ(α2

k + α2
k+1 + η2

k + η2
k+N )

∀ k = 1, ..., N2.

Hence:
1

βθ
> 2(α2

k + α2
k+1 + η2

k + η2
k+N ) ∀ k = 1, ..., N2

9



It easily follows that this relation is satisfied for

βθ < max
k=1,..N2

(
2(α2

k + α2
k+1 + η2

k + η2
k+N )

)
namely,

0 < θ <
1

β‖∆w‖∞
(36)

Proof of theorem 4.1

Proof. Using the Householder-Johns theorem [9, 10] ρ(E−1F ) < 1 iff A = E−F60

is symmetric positive definite (SPD) and E∗ + F is symmetric and positive

definite, where E∗ is the conjugate transpose of E. The matrix A is SPD

since it is symmetric and strictly diagonal dominant. From Lemma 4.1, we

have E∗ + F = M and therefore the condition on θ guarantees that E∗ + F is

symmetric and positive definite.65

Hence we compute the Weighted Split Bregman solution U (j+1), j = 0, 1, . . .

by means of the iterative method defined in (32) with B = b(j) as in (28).

Substituting (26) in (32) we have:

X(m+1) = −βθ
(
(∇wx )T∇wx + (∇wy )T∇wy

)
X(m) + b(j). (37)

By substituting (28) in (37) and collecting ∇wx , ∇wy we obtain :

X(m+1) = v(n) + βθ
[
(∇wx )T (−∇wxX(m) +D(j)

x − e(j)
x )+

+(∇wy )T (−∇wyX(m) +D(j)
y − e(j)

y )
]
. (38)

In Table 4.1 we report the function Fast Weighted Split Bregman (FWSB)

for the solution of problem (11). The output variable U (j) is the computed

solution and m̄ is the number of total iterations.70

The stopping condition of both the loops (with indices j and m) is defined

on the basis of the relative tolerance parameter τ as follows:

‖w(k+1) − w(k)‖ ≤ τ‖w(k))‖ (39)

10



Algorithm 4.1.

[U (j), m̄]=FWSB(λ, θ, β, v(n), wx, wy)

Λ = λ
θ , m̄ = 0,

U (0) = v(n), e
(0)
x = e

(0)
y = 0;

j = 1

repeat

Ux = ∇wxU (j−1); Uy = ∇wy U (j−1);

e
(j)
x = CutΛ(zx); e

(j)
y = CutΛ(zy);

m = 0

repeat

X(m+1) computed as in (38)

m = m+ 1

until stopping condition (39)

U (j+1) = X(m);

m̄ = m̄+m; j = j + 1

until stopping condition (39)

Table 2: FWSB Algorithm for the solution of problem (11)

11



where w(k) ≡ U (j) in the outer loop (k ≡ j) and w(k) ≡ X(m) in the inner loop

(k ≡ m).

5. Numerical Experiments

In this section we analyze the results obtained by applying Algorithm 2.1 to

two representative test problems related to different image processing applica-75

tions. The minimization problem (9) is solved applying the accelerated Forward-

Backward method together with the Weighted Split Bregman method. Our aim

is to compare the proposed FWSB method with Gauss-Seidel (WSB GS) ap-

plied to the linear system (27). The experiments are performed on a PC intel

i7 with 32 Gbyte Ram, by using Matlab R2018a.80

In test problem T1, we consider an image deblurring problem where the

matrix Φ in (9) is a Gaussian blur operator obtained by the Matlab function

fspecial, with standard deviation σ = 1.5 and size 9. The algorithms are

tested both on noiseless and noisy data. The results reported here are relative

to the case of Gaussian white noise with variance δ = 0.5 · 10−2.85

Test problem T2 is a compressed sensing application, where z represents

subsampled Magnetic Resonance data in the so called Kspace and the matrix Φ

in (8) is the undersampled Fourier matrix, obtained by the Hadamard product

between the full resolution Fourier matrix F and the mask M, i.e.

Φ =M◦ F. (40)

In the tests reported in the present work we consider M as a radial mask with

sampling percentages Sp = 3.98% and Sp = 4.3% relative to 8 and 10 radial

lines respectively.

The quality of the reconstructed image is evaluated by means of the Peak

Signal to Noise Ratio (PSNR)

PSNR = 20 log10

max(x)

rmse
, where rmse =

√∑
i

∑
j(ui,j − xi,j)2

N2
.

where x is the reference true image and u is the reconstructed image. In the

tests reported in this section x is the Shepp Logan Phantom (256× 256 pixels).90

12



Since our purpose is to evaluate the best possible solution obtained by each

method, in all tests the regularization parameter λ is heuristically set to the

best possible value with respect to PSNR.

Test Noise
FWSB WSB GS

PSNR a it time PSNR a it time

T1
δ = 0 25.5 4 7.20s 25.27 145 50.64s

δ = 5 · 10−3 24.38 5 5.74s 24.29 142 15.17s

T2 (Sp = 4.30)
δ = 0 36.22 15 3.36s 33.32 135 12.64s

δ = 5 · 10−3 35.86 15 4.58s 32.93 135 14.18s

T2 (Sp = 3.98)
δ = 0 28.91 15 5.25s 27.86 138 17.94s

δ = 5 · 10−3 28.66 15 5.12s 27.45 138 18.10s

Table 3: Values of PSNR, avearge iteration number a it and times for the different tests. The

noise variance δ is reported for each test.

In table 3 we report the PSNR (columns 3, 6), the computation times

(columns 5, 8) and the average number of linear solver iterations (columns 4,95

7), obtained by averaging the total number of linear solver iterations over the

number of forward backward steps.

We observe that FWSB is always the most efficient method since it obtaines

in each case the smallest average number of iterations and the shortest com-

putation time. Regarding the accuracy, we can see that FWSB always reaches100

the greatest values of PSNR. In figures 1 and 2 we can appreciate the evolution

of PSNR and computation times after each FB iteration for both FWSB and

WSB GS and we remark the better performance of FWSB in terms of accuracy

and computation times.

6. Conclusions105

In this work we proposed a fast splitting method FWSB for the solution

of the inner step of the Weighted Split Bregman method. We proved its con-

vergence and compared it to the most commonly used iterative methods i.e.

13



(a) (b)

Figure 1: T2 test Sp = 4.30, FWSB, blue dash-dot line; WSB GS, red dashed line. (a) PSNR

vs. FB iterations. (b) Time in seconds(s.) vs FB iterations.

(a) (b)

Figure 2: T2 test Sp = 3.98: FWSB, blue dash-dot line; WSB GS, red dashed line. (a) PSNR

vs. FB iterations. (b) Time in seconds(s.) vs FB iterations.
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Gauss-Seidel. After running a large set of experiments for different problems

and datasets, we reported the most representative results obtained in the case110

of image deblurring and sparse MRI. From the results we can state that FWSB

is a very efficient and accurate method to be used in the solution of Weighted

Split Bregman iterations.
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