
23 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Compliance in Business Processes with Incomplete Information and Time Constraints: a General
Framework based on Abductive Reasoning / Chesani, Federico; Mello, Paola; De Masellis, Riccardo; Di
Francescomarino, Chiara; Ghidini, Chiara; Montali, Marco; Tessaris, Sergio. - In: FUNDAMENTA
INFORMATICAE. - ISSN 0169-2968. - STAMPA. - 161:(2018), pp. 75-111. [10.3233/FI-2018-1696]

Published Version:

Compliance in Business Processes with Incomplete Information and Time Constraints: a General Framework
based on Abductive Reasoning

Published:
DOI: http://doi.org/10.3233/FI-2018-1696

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/636688 since: 2018-07-06

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.3233/FI-2018-1696
https://hdl.handle.net/11585/636688

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Chesani, Federico et al. ‘Compliance in Business Processes with Incomplete
Information and Time Constraints: a General Framework Based on Abductive
Reasoning’. 1 Jan. 2018 : 75 – 111.

The final published version is available online at: http://dx.doi.org/10.3233/FI-2018-
1696

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.3233%2FFI-2018-1696
http://dx.doi.org/10.3233%2FFI-2018-1696

Compliance in Business Processes with Incomplete Information
and Time Constraints: a General Framework based on Abductive
Reasoning*

Federico Chesani, Paola Mello
University of Bologna
viale Risorgimento 2, 40136–Bologna, Italy
{federico.chesani — paola.mello}@unibo.it

Riccardo De Masellis†, Chiara Di
Francescomarino*, Chiara Ghidini*
FBK-IRST
Via Sommarive 18, 38050 Trento, Italy
{r.demasellis — dfmchiara — ghidini}@fbk.euMarco Montali*, Sergio Tessaris

Free University of Bozen–Bolzano
piazza Università, 1, 39100 Bozen-Bolzano, Italy
{montali — tessaris}@inf.unibz.it

Abstract. The capability to store data about Business Process (BP) executions in so-called Event
Logs has brought to the identification of a range of key reasoning services (consistency, compli-
ance, runtime monitoring, prediction) for the analysis of process executions and process models.
Tools for the provision of these services typically focus on one form of reasoning alone. More-
over, they are often very rigid in dealing with forms of incomplete information about the process
execution. While this enables the development of ad hoc solutions, it also poses an obstacle for
the adoption of reasoning-based solutions in the BP community.

In this paper, we introduce the notion of Structured Processes with Observability and Time (SPOT
models), able to support incompleteness (of traces and logs), and temporal constraints on the
activity duration and between activities. Then, we exploit the power of abduction to provide a
flexible, yet computationally effective framework able to reinterpret key reasoning services in
terms of incompleteness and observability in a uniform way.

Keywords: Business Processes, Incomplete traces, Observability, Temporal workflows, Abduc-
tive Logic Programming

Address for correspondence: Federico Chesani, University of Bologna, viale Risorgimento 2, 40136–Bologna, Italy. E-Mail:
federico.chesani@unibo.it
*This work is an extended version of a preliminary, position paper presented at the ECAI2016 conference [1].
†This research has partially been carried out within the Euregio IPN12 KAOS, which is funded by the “European Region
Tyrol-South Tyrol-Trentino” (EGTC) under the first call for basic research projects.

1002 Chesani et al. / Abducing Workflow Traces

1. Introduction

The proliferation of IT systems able to store process executions traces in so-called event logs has
originated, in the Business Process (BP) community, a quest towards tools that offer the possibility of
discovering, checking the conformance and enhancing process models based on actual behaviors [2].
Focusing on conformance, that is, on a scenario where the aim is to assess how a prescriptive (or “de
jure”) process model relates to the execution traces, this general notion can be declined in specific
“use cases”, such as model consistency, trace compliance, runtime monitoring and prediction/recom-
mendation [3]. These reasoning services are often investigated in isolation and tailored to specific
workflow languages. Thus [4] assesses runtime monitoring over processes with business constraints,
while [5] assesses model consistency with business contracts.

While the construction of tools that offer specific reasoning services over specific workflow lan-
guages enables the development of ad hoc effective solutions, it also poses an obstacle for the adoption
of reasoning-based solutions in the BP community. In fact, these tools often cover only few of the “use
cases” and do not easily adapt to different workflow languages or to event logs containing execution
traces with different characteristics. This poses a problem, given the current trends of (i) enriching
business process modelling languages with new constructs complementing the control flow knowl-
edge, and (ii) extending the notion of conformance to more and more realistic event logs.

Two important examples of extension of the modelling language and of extension of the event
log nature, relevant for the BPM community, are temporal workflows and partial event logs. Tempo-
ral workflows, i.e., workflows enriched with constructs for temporal constraints, are investigated in
a stream of recent work. [6, 7, 8], for instance, address modelling and conformance-related aspects
of business process models enriched with temporal constraints, providing “ex-novo” investigations
of reasoning services such as model consistency and runtime monitoring/prediction. An analogous
stream of recent papers is devoted to the problem of dealing with partial event logs, where the execu-
tion traces may bring incomplete information about the process execution. Examples are [9, 10, 11].
All these works address the problem of “repairing” (i.e., completing) incomplete execution traces, ex-
ploiting different “ad-hoc” techniques based on different approaches such as replay-based techniques,
automated planning, and the integration of trace information with data coming from further sources,
respectively.

Artificial Intelligence has a long tradition providing frameworks able to integrate diverse reasoning
tasks in the presence of incomplete information. A paradigmatic setting is Abductive Logic Program-
ming (ALP) [12], where the integration of constraint solving features (ACLP) [13] has enhanced its
practical utility by allowing expressive and flexible representations of the problem domain, and by
making the abductive computation more efficient and powerful. Abduction fits in a natural manner
with the scenario of execution traces: facts are observed in the execution traces, and need to be ex-
plained/diagnosed with respect to what is envisaged by the process model. This is indeed strictly
related with the definition of abductive reasoning.

In this work we exploit the paradigm of ACLP [13], and the SCIFF abductive framework [14] to
provide a general purpose environment able to support conformance in its different “use cases” in the
presence of two important variants of workflow models and event logs, namely temporal constraints on
activity durations and between different activities, and incomplete event data. The novel contribution

Chesani et al. / Abducing Workflow Traces 1003

Proximal femur
female event

A1: patient
admission

[5,10]

A2: Anamnesis
& Exam

[5,10]

A3: Symptom
& Diagnosis

[30,40]

A4: Therapy A

[150,200]

A5: CT
scan

[20,40]

A6: Eval
report

[5,10]

Suspicion of
proximal
femoral

fracture?

No

Yes

X1

A7: Therapy B

[200,225]

No

Indication of
proximal

femoral fracture
and operation?

A8: schedule
surgery

[10,20]

Yes A9: Surgical
planning

[30,40]

A10: Pain
medication

[80,80]
A11:

Surgery

[100,120]
A12:

Recovery

[200,400]
X2 X3

X4

P1 P2

A13:
Documentation

[15,20]

A14: Discharge

[5,10]

End

[100,140]

 30

 250
� 20

Trace Reasoning service

? Model
Consistency

Strong
compliance

Conditional
compliance

Runtime
monitoring

Prediction /
Recommendation

Start End

Start End? ?

Start ?

Model

Start ?

Figure 1. A process for femoral fracture treatment taken from [7], and reasoning services and incomplete
execution traces.

of the paper is as follows. First, we provide a formal definition of the scenario at hand, by introducing
the notion of Structured Processes with Observablity and Time (SPOT models), and by reformulating
business process reasoning services in terms of incompleteness (Sec. 2). This produces a refinement
of the classical notion of compliance into strong, and conditional compliance to take into account
different sources of incomplete knowledge in the analysed traces. Second, an encoding of SPOT
models and event logs in SCIFF is provided. To show the flexibility of our approach to capture
different workflow languages in a modular manner, we address structured process models enriched
with temporal aspects (Sec. 3.1). The SCIFF proof procedure is then exploited and evaluated in
Sec. 3.2, 3.3, and 4.

2. Process Models, Reasoning Services and Incompleteness

Given the prescriptive knowledge contained in a well-structured process model1 enriched with tem-
poral constraints, we aim at understanding how to re-interpret typical reasoning services as reasoning
on incomplete traces.

2.1. Process Models and Incomplete Traces

We illustrate our investigation with an example of temporal workflow taken from [7], and reproduced
in the left hand side of Figure 1.2 This workflow contains: 14 activities (A1, . . .A14), 2 pairs of
exclusive gateways (⟨X1,X4⟩, ⟨X2,X3⟩), and 1 pair of parallel gateways (⟨P1,P2⟩). In addition, the
language contains constructs to denote temporal information: activities are labelled with expressions
of the form [dmin, dmax] indicating the duration range of the activity3, and dashed arrows between

1We focus on structured process models in the spirit of [15]. Broadly speaking, this restricts to the class of models recursively
composed of single-entry-single-exit blocks, where every split has a corresponding join, matching its type. This assumption
rules out pathological patterns that are notoriously hard to characterise (e.g. involving nested OR joins), still providing
coverage for a wide range of interesting use cases.
2Workflow models are rendered using the widely adopted BPMN graphical notation (see www.bpmn.org).
3In the remainder of this paper we will assume that the time domain relies on natural numbers. Alternative temporal domains
can be seamlessly studied.

http://www.bpmn.org/

1004 Chesani et al. / Abducing Workflow Traces

activities expresses inter-task constraints involving the start or end of the activities; depending on the
position of the arrow w.r.t. the box representing the activity. As an example, the dashed arrow between
A1 and A2 indicates that a constraint of at most 30 time units exists between the start of A1 and the
end of A2.

We assume that each execution of this process, hereafter called the Femur-Fracture (FF) process,
is logged by an information system. We also assume that activities have a time span e.g., event
(A, [Ts, Te]) indicates that activity A has been executed from Ts to Te. A sample trace that logs the
execution of a FF instance is:

{(A1, [2, 7]),(A2, [10, 15]), (A3, [16, 46]), (A4, [50, 200]), (A13, [300, 317]), (A14, [320, 330])} (1)

A multiset of traces of the same process forms an event log.
In the aforementioned trace, all information have been explicitly logged. To incorporate incom-

pleteness into the picture, the process models we consider are also equipped with observability infor-
mation. This information provides a fine-grained characterization of different levels of incompleteness
in the activities present in the process model, when it comes to “logging” the execution of such activ-
ities when running the process. In particular, three observability categories are considered:
• An observable activity is an activity that is explicitly logged. Here incompleteness may arise be-

cause some information (i.e., the activity name, the starting time, the ending time, or a combination
thereof) may be missing.

• A non-observable activity is an activity that is never logged. Here incompleteness arises because
such activity could have been actually executed, even though this is not traced in the log.

• A partially observable activity is an activity that may or may not be logged, depending on the
context. In other words, some traces may contain an explicitly logged entry witnessing the execution
of such an activity, while in others this could be missing.

Formally, we extend the approach in [7] with observability information, obtaining the following
model. First we introduce the notion of Process block to describe structured processes.

Definition 2.1. (Process Block)
A process block is inductively defined as follows:
(base case) a ∈ A is a process block, called task block;
(inductive case) ⟨type, B1, B2⟩ is a process block, where type ∈ {seq, xor, and, or} indicates the

block type (where seq stands for sequence, xor for exclusive choice, and for parallel split, and
or for inclusive split), while B1 and B2 are process blocks.

The definition of blocks may be directly extended to the case of n sub-blocks instead of just 2. In
particular, in the following we make use of a ternary sequence block ⟨seq, B1, B2, B3⟩.

We say that block B1 is in block B2 if B1 belongs to a sub-tree of such tree that is rooted in B1.
Furthermore, it is well-known that an inclusive split block can be reformulated in terms of a choice

considering the execution of the first inner-block only, the execution of the second inner-block only,
or the parallel execution of both inner-blocks. Hence, from now on we will omit the case of inclusive
blocks.

Definition 2.2. (Structured Process with Observability and Time)
A structured process with observability and time (SPOT) is a tuple ⟨A, obs, P, dur , tcon⟩, where:

Chesani et al. / Abducing Workflow Traces 1005

• A is a finite set of activity (names);
• obs : A → {o, n, p} is a total observability function, indicating for each activity in A whether it is

observable (o), non-observable (n), or partially observable (p).
• P is the top process block
• dur : A → N+ × N+ ∪ {∞} is a total duration function, assigning a duration interval to each

activity in A, where dur(a) = ⟨m,n⟩ means that the duration of a is between m and n time units.
We assume that for each activity t ∈ A with dur(t) = ⟨m,n⟩, n is either ∞ or a number ≥ m. We
use ∞ as a special symbol to indicate that the maximum duration is unconstrained.4

• tcon : A × {s, e} × A × {s, e} → N+ × N+ ∪ {∞} is a partial inter-task constraint function,
indicating the expected duration interval that can intervene between the start/end of an activity and
the start/end of another activity, where the start is marked with symbol s, and the end is marked
with symbol e. E.g., tcon(a1, e, a2, s) = ⟨m,n⟩ if the time duration intervening between the end of
a1 and the start of a2 belongs to the time interval [m,n].

We assume that P is well-defined, in the sense that each activity a ∈ A appears in exactly one
block. This is a standard assumption guaranteeing that no process block can directly or indirectly refer
to itself, and also that each task is unambiguously located within the process. It also implies that the
sub-block relation induces a tree rooted in P and whose leaves are activities from A.

Example 2.3. Consider the fragment of temporal workflow constituted by the first two tasks in
Figure 1, so that the first task is observable, whereas the second is not. It corresponds to SPOT
⟨A, obs, P, dur , tcon⟩, where: (i) A = {A1,A2}, (ii) obs is such that obs(A1) = o and obs(A2) = n,
(iii) P = ⟨seq,A1,A2⟩, (iv) dur is such that dur(A1) = dur(A2) = ⟨5, 10⟩, (v) tcon is such that
tcon(A1, s,A2, e) = ⟨0, 30⟩.

The omission of loop blocks in Definition 2.1 is due to the the unclear semantics of the interplay
between loops and inter-task constraints. In fact, loops are excluded from temporal workflows intro-
duced in the literature (e.g. [7, 16]). In Section 5 we discuss in more details these semantic ambiguities
and we show how loops can be incorporated in our framework.

From now on, we assume that the SPOT of interest is structured in the following normal form.

Definition 2.4. (Normal SPOT)
A SPOT ⟨A, obs, P, dur , tcon⟩ with A = Aa ⊎ Ab is in normal form (hence, a normal SPOT) if:
• Task blocks in P use only activities from Aa.
• Set Ab is the smallest set satisfying the following condition: for each block B in P , Ab contains

two special, atomic activities inB and outB .
• For every activity b ∈ Ab, we have that obs(b) = n, and dur(b) = ⟨0, 0⟩.
• P has the form ⟨seq, inP , P ′, outP ⟩, and every inductive block of the form ⟨type,B1, B2⟩ in P ′ is

such that Bi has the form ⟨seq, inBi , B
′
i, outBi⟩ for i ∈ {1, 2}.

• Function tcon only mentions activities in Aa.

Intuitively, in a normal SPOT each block is associated to two special activities that mark the entry
and exit points into/outside the block. Such activities are atomic and nonobservable, and are used to
4Thus, if activity a has unconstrained duration, we have dur(a) = ⟨0,∞⟩.

1006 Chesani et al. / Abducing Workflow Traces

“interleave” the nesting of blocks. An arbitrary SPOT P can be straightforwardly converted in normal
form, by introducing dedicated special activities capturing entrance/exit into/from its blocks, and then
recursively “normalizing” its top block by replacing each block with its normalized version.

We next define the notion of trace, taking into account the presence of missing information units,
denoted with the special symbol “ ”.

Definition 2.5. ((SPOT) trace)
A (SPOT) trace over a set A of activities is a finite set of event triples ⟨a, s, e⟩, where a ∈ A ⊎ { }
is an activity, and s, e ∈ N ⊎ { } are the start and end timestamps of the event. A trace is partially
specified if some of its event triples contain the special symbol “ ”, fully specified otherwise.

As in our running example, we represent event triples using notation (a, [s, e]). When a is atomic,
i.e., s = e, we simply write (a, s). We say that activity a occurs in trace T if there exist s, e ∈ N⊎{ }
such that (a, [s, e]) ∈ T . Notice that, independently of whether a trace is fully or partially specified,
there is another dimension of incompleteness, which accounts for the distinction between real and
logged traces. In a logged trace, additional event triples may be implicitly present even if not explicitly
listed in the trace. This is the case when the process model of interest contains activities that are not
always observable. In this light, a real trace fully details a process execution, while a partial trace its
observable counterpart. Furthermore, different real traces correspond to different completions of the
same logged trace.

Definition 2.6. (Logged trace)
A logged trace of SPOT ⟨A, obs, P, dur , tcon⟩ is a trace over {a | a ∈ A and obs(a) ∈ {o, p}}.

Definition 2.7. (Possible completion)
Let P = ⟨A, obs, P, dur , tcon⟩ be a SPOT, and T be a logged trace of P . Trace T is a possible
completion of T for P over tasks Ac ⊆ A if T is a fully specified trace over Ac, and T = Tattr⊎Text,
where:

1. Trace Tattr, called possible attribute completion of T for P over tasks Ac, is the smallest fully
specified trace satisfying the following condition: for every event (X, [T1, T2]) ∈ T , there exist
an activity a ∈ Ac and two timestamps s, e ∈ N such that: (i) (a, [s, e]) ∈ T , (ii) if X ∈ A,
then X = a, (iii) if T1 ∈ N, then T1 = s, (iv) if T2 ∈ N, then T2 = e.5

2. Trace Text, called possible extension of T for P over tasks Ac, contains additional events that
only refer to unobservable or partially-observable activities from Ac.

Intuitively, the separation between attribute completion and extension is useful to isolate the portion
of a completion that mirrors the original trace, grounding its unspecified elements, from the portion
that genuinely extends it with further events. Notice that in every completion of a fully specified trace,
the attribute completion always coincides with the trace itself.

The fact that a completion may be defined over just a subset of all the available activities in a
SPOT is useful to distinguish between unobservable domain tasks and unobservable artificial tasks
(such as those introduced in normal SPOTs to mark the boundaries of blocks).

5Recall that a and/or s and/or e may be filled with “ ”.

Chesani et al. / Abducing Workflow Traces 1007

2.2. Compliance

Several fundamental reasoning services can be studied over SPOTs (cf. the right-hand side of Fig-
ure 1). We start by defining a basic notion of trace compliance, which mirrors the intended execution
semantics of SPOTs. Recall that we are employing the normal form for SPOTs.

Definition 2.8. (Block compliance)
Let A be a set of activities. A fully specified trace T over A complies with a block B =
⟨seq, ⟨inB, B′, outB⟩⟩ if either both activities inB and outB occur in T or none does, and one of
the following conditions hold:

1. (i) B′ = a with a ∈ A, (ii) inB occurs in T if and only if a occurs in T , (iii) if there exist
ti, ts, te, to ∈ N such that {(inB, ti), (a, [ts, te]), (outB, to)} ⊆ T , then ti ≤ ts < te = to.

2. (i) B′ = ⟨seq, B1, B2⟩, (ii) B1 and B2 are compliant with T , (iii) inB occurs in T if and only
if inB1 occurs in T if and only if inB2 occurs in T , (iv) if there exist ti, ti1, to1, ti2, to2, to ∈
N such that {(inB, ti), (inB1 , ti1), (outB1 , to1), (inB2 , ti2), (outB2 , to2), (outB, to)} ⊆ T , then
ti = ti1 ≤ to1 = ti2 ≤ to2 = to.

3. (i) B′ = ⟨and, B1, B2⟩, (ii) B1 and B2 are compliant with T , (iii) inB occurs in T if and only
if inB1 occurs in T if and only if inB2 occurs in T , (iv) if there exist ti, ti1, to1, ti2, to2, to ∈
N such that {(inB, ti), (inB1 , ti1), (outB1 , to1), (inB2 , ti2), (outB2 , to2), (outB, to)} ⊆ T , then
ti = ti1 = ti2 ≤ to1, ti ≤ to2, and to = max(to1, to2).

4. (i) B′ = ⟨xor, B1, B2⟩, (ii) B1 and B2 are compliant with T , (iii) inB occurs in T
if and only if either inB1 or inB2 occur in T , (iv) it is not the case that inB1 and
inB2 both occur in T , (v) if there exist ti, tij , toj , to ∈ N with j ∈ {1, 2}, such that
{(inB, ti), (inBj , tij), (outBj , tj), (outB, to2)} ⊆ T , then we have ti = tij ≤ toj = to.

Intuitively, Definition 2.8 states that a trace complies with a block if it does not go through the block
at all, or if the trace enters the the block, then it also exits from the block, and suitably traverses it.
Suitably traversing, in turn, depends on the block type. If the block is a task block, then the inner
activity has to be executed after the trace enters into the block, and the block is completed as soon
as the activity is finished. If the block is a sequence block, then the trace has to go through the inner
blocks sequentially, and must comply with both. If the block is a parallel block, then the trace has to
go through the inner blocks in whatever sequence, and must comply with both; in addition, the trace
must exit from the block at the exact time when the latest of the two inner blocks is completed. Finally,
if the block is a choice block, the execution has to go through exactly one of the inner blocks, avoiding
the other one; in addition, the trace has to comply with the inner blocks (this is vacuously true for the
block that is not chosen, since such block is not even entered).

Definition 2.9. (Duration compliance)
Let A be a set of activities, and dur a duration function over A. A fully specified trace T over A
complies with dur if, for each activity a ∈ A with dur(a) = ⟨m,n⟩, whenever there exist s, e ∈ N
s.t. (a, [s, e]) ∈ T , we have m ≤ e− s ≤ n.

Definition 2.10. (Inter-task constraint compliance)
Let A be a set of activities, and tcon an inter-task constraint function. A fully specified trace T

1008 Chesani et al. / Abducing Workflow Traces

over A complies with tcon if, for every pair of activities a, b ∈ A and sa, ea, sb, eb ∈ N such that
{(a, [sa, ea]), (b, [sb, eb])} ∈ T , the following conditions hold:
• if tcon(a, s, b, s) = ⟨m1, n1⟩, then m1 ≤ sb − sa ≤ n1;
• if tcon(a, s, b, e) = ⟨m2, n2⟩, then m2 ≤ eb − sa ≤ n2;
• if tcon(a, e, b, s) = ⟨m3, n3⟩, then m3 ≤ sb − ea ≤ n3;
• if tcon(a, e, b, e) = ⟨m4, n4⟩, then m4 ≤ eb − ea ≤ n4.

When a trace does not comply with a block or duration/inter-task constraint, we say that the trace
violates such a block/constraint. Definitions 2.9 and 2.10 impose that the trace respects the modeled
temporal constraints, respectively ensuring that the duration of each activity execution agrees with the
specified duration, and that whenever the trace contains two activities that are subject to an inter-task
constraint, the time distance between their execution must agree with the specified constraint.

We put together the three definitions above, defining a general notion of strong compliance.

Definition 2.11. (Strong compliance)
Let P = ⟨A, obs, P, dur , tcon⟩ be a normal SPOT, with A = Aa ⊎Ab. A logged trace T over Aa is
strongly compliant with P if: (i) T is fully specified; (ii) T is compliant with dur and tcon; (iii) there
exists a completion T of T for P over Ab such that inP occurs in T , and T is compliant with P . In
this case, we say that T is a strong compliance witness for T w.r.t. P .

We stress two aspects of this definition. First, since the logged trace T is fully specified, every com-
pletion T can only extend T with further events. Second, since T extends T only over Ab, such an
extension can only consists of artificial events referring to entering into/exiting from blocks.

This notion of compliance is used to characterise the degree to which a given trace conforms/is
aligned to the model. In fact, it reflects the usual notion of compliance for business processes, where
compliance is typically defined under the assumption that the trace represents a complete end-to-end
execution that can be fully replayed on the process model. This is why we call it “strong” compli-
ance. More specifically, the first condition in Definition 2.11 imposes that the trace of interest only
contains executions that may be observed. Hence, processes that prescribe the unavoidable execution
of unobservable tasks do not admit logged traces that are strongly compliant. The second condition
imposes that the execution times of the activity executions present in the trace respect the durations
and inter-task constraints of the model. The last condition indicates that the trace complies with the
considered process. This amounts to block compliance, once the input trace is suitably augmented
with additional events that refer to the (unobservable) special activities used to mark the boundaries of
blocks. Among those events, we also require to enter the top block, i.e., to start the overall process.x

An example of strong compliant trace is the one in (1). Replacing (A2, [10, 15]) with (A2, [50, 60])
in (1) makes it become not compliant. In fact, going from the start of A1 to the end of A2 would require
58 time units thus violating the inter-task constraint between these two activities.

2.3. The Additional Reasoning Services

Starting from the notion of (strong) compliance, we define the remaining reasoning tasks of Figure 1
(right hand side), covering the classical notion of consistency, as well as different notions of compli-
ance that take into account the sources of incompleteness that may be present in the trace.

Chesani et al. / Abducing Workflow Traces 1009

Conditional compliance handles the case where the trace under analysis is indeed partial and/or
partially specified. This source of incompleteness in a trace hinders the possibility of replaying it
on the process model. However, strong compliance might be regained once the trace is augmented
additional information on missing or partially specified events that refer to tasks that are or may be
unobserved.

Definition 2.12. (Conditional compliance)
Let P = ⟨A, obs, P, dur , tcon⟩ be a normal SPOT, with A = Aa ⊎ Ab. A logged trace T over Aa

is conditionally compliant with P if there exists a completion T of T for P over Aa that is strongly
compliant with P . In this case, we say that T is a conditional compliance witness for T w.r.t. P .

It is worth noting that, in the definition of conditional compliance, the completion of the given trace
is defined only over the genuine tasks of the input SPOT, not the artificial ones marking the boundaries
of process blocks. If the given logged trace is fully specified, then the only completion of this form
is the trace itself, and consequently conditional compliance coincides with strong compliance. If
instead the given logged trace is partially specified, then multiple (even infinitely many) completions
witnessing conditional compliance may exist.

A sample partial trace over the FF model is:

{(A1, [2, 7]), (A2,), (A4, [50,]), (A13, [300, 317]), (A14, [320, 330])} (2)

Notice that “ ” may refer to a missing event name (, [1, 3]), missing event time (A2,) or missing
event time detail (A4, [50,]). It is easy to see that (2) is compliant with FF, if

A2 was executed in an interval [T2s, T2e] s.t. 7 < T2s;

T2e < 50; 5 ≤ T2e − T2s ≤ 10 and T2e − 2 ≤ 30
(3)

an execution of A3 was performed in an interval [T3s, T3e]

s.t. T2e < T3s;T3e < 50; and 30 ≤ T3e − T3s ≤ 40
(4)

A4 was executed with end time T4e s.t. T4e < 300

and 150 ≤ T4e − 50 ≤ 200
(5)

Summing up, a trace T̂ as defined in Definition 2.12, that would make the trace T in 2 conditionally
complaint would be:

{(A1, [2, 7]), (A2, [10, 17]), (A3, [18, 48]), (A4, [50, 220]), (A13, [300, 317]), (A14, [320, 330])} (6)

Note that the set of assumptions needed to reconstruct full conformance is not necessarily unique.
This because alternative strongly compliant real process executions might have led to the recorded
partial trace. On the other hand, there are situations in which it is impossible to recover compliance
formulating additional assumptions. In this case, the partial trace is considered non-compliant. E.g.,

{(A1, [T1s, T1e]), (A3,)(A9, [, T9e])} (7)

does not comply with FF since A3 and A9 belong to mutually exclusive branches in the model.
With strong and conditional compliance at hand, we can define the general notion of compliance.

1010 Chesani et al. / Abducing Workflow Traces

Definition 2.13. Let P = ⟨A, obs, P, dur , tcon⟩ be a normal SPOT, with A = Aa ⊎ Ab. A logged
trace T over Aa is compliant with P if there exists a completion T of T for P over the entire set A of
activities that satisfies the following conditions: (i) T is compliant with dur and tcon; (ii) inP occurs
in T ; (iii) T is compliant with P . In this case, we say that T is a compliance witness for T w.r.t. P .

Model Consistency checks if a SPOT enables acceptable executions from start to end. This case bears
no (that is, fully incomplete) information on the execution traces, and reasons on the model alone to
determine whether it has acceptable executions.

Definition 2.14. (Consistency)
A SPOT P is consistent if the empty trace is conditionally compliant with P .

Figure 1 shows a consistent model. Modifying the inter-task constraint between the start of A1 to the
end of A2 replacing ≤ 30 with ≤ 5 makes the model inconsistent. In fact executing A1 and A2 in
sequence requires at least 10 units of time.

While compliance refers to terminated traces, runtime monitoring aims at dealing with ongoing ex-
ecutions in order to detect early violations of compliance / ensure the existence of a positive outcome.
Here the incompleteness concerns future steps of an ongoing process execution as in the following
trace whose last activity executed is A9:

{(A1, [2, 7]),(A2, [10, 15]), (A5, [16, 46]), (A6, [50, 60]), (A8, [200, 210]), (A9, [350, 380])} (8)

This trace already violates the inter-task constraint between A8 and A11 (even if A11 has not been
executed yet). In fact 170 units of time have already passed between the start of T8 and the end of
T9 while an inter-task constraint requires that A11 starts at most 140 units of time after the start of
A8. In the case of an evolving trace, conditional compliance can be directly defined by extending
Def. 2.12 so that also events referring to observable activities in T̂ can be added providing that these
are hypothesized to occur at times that go beyond the current time (i.e., no observable event can be
hypothesized in the past).

Similarly to runtime monitoring, prediction/recommendation deals with ongoing executions with
the aim of providing a completion that satisfies certain conditions. For example, consider a process
execution composed of the first 5 events of (8) (that is, surgery has been scheduled). One could ask a
recommender system to provide the sequence of actions that minimize the time needed to discharge
the patient and terminate the process, obtaining the following answer:

{(A1, [2, 7]), (A2, [10, 15]), (A5, [16, 46]), (A6, [50, 60]),
(A8, [200, 210]), (A9, [211, 241]), (A10, [211, 291]), (A11, [311, 411]),

(A12, [412, 612]), (A13, [613, 628]), (A14, [629, 634])}
(9)

3. Abduction and Incomplete Processes

Abduction is a non-monotonic reasoning process where hypotheses are made to explain observed facts
[17]. While deductive reasoning focuses on deciding if a formula ϕ logically follows from a set Γ of

Chesani et al. / Abducing Workflow Traces 1011

logical assertions known to hold, in abductive reasoning it is assumed that ϕ holds (as it corresponds
to a set of observed facts) but it cannot be directly inferred by Γ. To make ϕ a consequence of Γ,
abduction looks for a further set ∆ of hypothesis, taken from a given set of abducible A, which
complements Γ in such a way that ϕ can be inferred (in symbols Γ ∪ ∆ |= ϕ). The set ∆ is called
abductive explanation (of ϕ). In addition, ∆ must usually satisfy a set of (domain-dependent) integrity
constraints IC (in symbols, Γ ∪ ∆ |= IC). A typical integrity constraint (IC) is a denial, which
expresses that two explanations are mutually exclusive.

Abduction has been introduced in the framework of Logic Programming in [12]. There, an Ab-
ductive Logic Program (ALP) is defined as a triple ⟨Γ,A, IC⟩, where: (i) Γ is a logic program, (ii) A
is a set of abducible predicates, and (iii) IC a set of ICs. Given a goal ϕ, abductive reasoning looks
for a set of literals ∆ ⊆ A such that they entail ϕ ∪ IC. The integration of constraint solving in
abductive logic programming (ACLP) [12, 13] enhances the practical utility of ALP by enriching the
representation of the problem domain and by improving the computation of abductive explanations.

In this paper we leverage on ACLP and on the SCIFF abductive logic programming frame-
work [14]. The latter is an extension of the IFF abductive proof procedure [18] which, beside the
general notion of abducible, natively supports the key notions of happened event, expectation, and
compliance of an observed execution with a set of expectations. This makes SCIFF a suitable frame-
work for dealing with event log incompleteness. Let a be an event corresponding to the execution
of process activities, and T (possibly with subscripts) its execution time. Abducibles are used in this
work to make hypothesis on events that are not recorded in the examined trace. They are denoted
using ABD(a, T). Happened events are non-abducible, and account for events that have been logged
in the trace. They are denoted using H(a, T). Expectations E(a, T), instead, model events that should
occur (and therefore should be present in a trace). Compliance is described in Section 3.2.

ICs in SCIFF are used to relate happened events / abduced predicates with expectations / pred-
icates to be abduced. Specifically, an IC is a rule of the form body → head, where body contains
a conjunction of happened events, general abducibles, and defined predicates, while head contains a
disjunction of conjunctions of expectations, general abducibles, and defined predicates.

Example 3.1. The fact that whenever an order is paid, then a receipt has to be emitted within 24 time
units at the latest, can be encoded in SCIFF as the following IC:

H(pay-order, Tp) → E(emit-receipt, Te) ∧ Te > Tp ∧ Te < Tp + 24

3.1. Encoding SPOTs in SCIFF

We show how SPOTs and their traces can be encoded in SCIFF. We start by considering traces. Since
SCIFF natively provides the notion of happened event, it also comes with a notion of trace.

Definition 3.2. (SCIFF trace)
A (SCIFF) trace is a set of terms of type H(e, t), where e is a ground term describing the happened
event, and t ∈ N is the time instant at which the event occur.

Differently from SPOT traces, SCIFF traces contain punctual and fully specified events only.

1012 Chesani et al. / Abducing Workflow Traces

Since well-formedness of SPOTs forbids the repetition of activities, compliant traces cannot con-
tain multiple event occurrences referring to the same activity. Thanks to this property, we can directly
encode a fully specified SPOT T into a corresponding SCIFF trace σH(T), by representing each en-
try (a, [ts, te]) ∈ T using two distinct happened events, one for the event start, and one for the event
completion. Specifically, the translation satisfies the following key property: (a, [ts, te]) ∈ T if and
only if {H(start(a), ts), H(end(a), te)} ⊆ σH(T). Punctual events denoting the execution of atomic
activities are instead directly mapped to a single happened event.

Example 3.3. Trace (1) is represented in SCIFF as:

{H(start(a1), 2), H(end(a1), 7), H(start(a2), 10), H(end(a2), 15), . . .}

The encoding of a SPOT model P = ⟨A, obs, P, dur , tcon⟩ in SCIFF consists of a set ICP of
integrity constraints that account for: (i) the semantics of activity execution, considering every activity
in A together with its observability (as defined by obs) and duration (as defined by dur); (ii) the
semantics of the process over A, as defined by P and its inner blocks; (iii) the temporal constraints
introduced by tcon . We review each such contribution next.
Semantics of activity execution. The semantics of activity execution relates the start event of each
activity a in A with the corresponding end event. The nature of such relationship depends on the
observability of a, as well as its duration. On the one hand, the observability determines whether
the start/end events for a have to be found explicitly in the trace, or are instead hypothesized. In the
first case, the abstractions of happened/expected event provided by SCIFF are employed; in the latter
case, instead, a generic abducible ABD is used. On the other hand, the duration induces temporal
constraints binding the timestamps of the start and end event.

Specifically, let dur(a) = ⟨m,n⟩. If a is observable, the set ICP contains the following rules:

H(start(a), T) ∧ H(start(a), T2) ∧ T2 ̸= T → ⊥ (10)

H(end(a), T) ∧ H(end(a), T2) ∧ T2 ̸= T → ⊥ (11)

H(start(a), Ts) → E(end(a), Te) ∧ Te − Ts ≥ m ∧ Te − Ts ≤ n (12)

H(end(a), Te) → E(start(a), Te) ∧ Te − Ts ≥ m ∧ Te − Ts ≤ n(13)

where, in the case where n = ∞, constraint Te ≤ Ts + n simply reduces to true.
Rules (10) and (11) express that every activity can be repeated at most once, in agreement with

the notion of SPOT trace. Rules (12) and (13), relate the start and completion of each activity, stating
that whenever the activity is started, it is expected to be completed at a time that is compatible with
the duration of the activity, and vice-versa.

If a is unobservable, that is, obs(a) = n, the set ICP contains a variant of the three integrity
constraints above, where the generic abducible ABD substitutes H and E:

ABD(start(a), T) ∧ ABD(start(a), T2) ∧ T2 ̸= T → ⊥ (14)

ABD(end(a), T) ∧ ABD(end(a), T2) ∧ T2 ̸= T → ⊥ (15)
ABD(start(a), Ts) → ABD(end(a), Te) ∧ Te − Ts ≥ m ∧ Te − Ts ≤ n (16)

ABD(end(a), Te) → ABD(start(a), Ts) ∧ Te − Ts ≥ m ∧ Te − Ts ≤ n (17)

Chesani et al. / Abducing Workflow Traces 1013

where, in the case where n = ∞, constraint Te ≤ Ts + n simply reduces to true.
Finally, if a is partially observable, that is, obs(a) = p, the formalization of the execution of a

has to simultaneously account for the case where the execution of a is observed, as well that where
the execution of a is not observed, and may consequently be hypothesized. This is done by imposing
all integrity constraints (10)-(16), together with the following ones, expressing that the execution of a
may be either observed or hypothesized, but not both:

H(start(a), Ts) ∧ ABD(start(a), Ts) → ⊥ (18)

H(end(a), Ts) ∧ ABD(end(a), Ts) → ⊥ (19)

Encoding of the process. The process is encoded in SCIFF starting from the top block P , formalizing
its execution semantics according to the definition of compliance (Definition 2.8), then proceeding
recursively over its inner blocks. As for the encoding, we assume that P and all its inner blocks are
in normal form, and given a block B, we denote by in-B and out-B the events corresponding to the
unobservable atomic tasks marking that the execution is respectively entering into and exiting from B.
Technically, the set ICP of integrity constraints contains all constraints produced by the translation
function τ applied to P , where τ is defined as follows. Notice that such constraints mirror in SCIFF
the different aspects of Definition 2.11. In particular, each constraint is paired with one or (in the case
of constraints with disjunctive heads) two corresponding constraints inverting the head and the body,
thus realizing the if and only if semantics of Definition 2.8. As two generic rules that apply to each
bock, we need to impose that the block is entered and exited only once. That is, for every block B that
is part of the SPOT of interest, we have:

ABD(in-B, T) ∧ ABD(in-B, T2) ∧ T2 ̸= T → ⊥ (20)

ABD(out-B, T) ∧ ABD(out-B, T2) ∧ T2 ̸= T → ⊥ (21)

(Top block) Assuming P = ⟨seq, ⟨inP , P ′, outP ⟩⟩, we have that τ(P) = {(22)} ∪ τ(P ′), where:

true → ABD(in-P, T) (22)

models that the process has to start, mirroring point (i) of Definition 2.11.

(Task block - base case) Consider a block B = ⟨seq, ⟨inB, a, outB⟩⟩, where a ∈ A. Intuitively, the
execution semantics of such a block states that whenever the block is entered, then a is expected to be
started in the future, and that as soon as a is completed, the execution exits from the corresponding
block. To formalize this intuition, we again have to proceed by cases, depending on the observability
of a. If a is observable, τ(B) consists of:

ABD(in-B, Tin) → E(start(a), Ts) ∧ Ts ≥ Tin (23)

H(start(a), Ts) → ABD(in-B, Tin) ∧ Ts ≥ Tin (24)

H(end(a), Te) → ABD(out-B, Te) (25)

ABD(out-B, Te) → E(end(a), Te) (26)

1014 Chesani et al. / Abducing Workflow Traces

Together with constraints (10)-(13), constraints (23)-(26) mirror point 1 in Definition 2.8, as well as
Definition 2.9. If a is unobservable, then its start/end are hypothesized, hence τ(B) becomes:

ABD(in-B, Tin) → ABD(start(a), Ts) ∧ Ts ≥ Tin (27)

ABD(start(a), Ts) → ABD(in-B, Tin) ∧ Ts ≥ Tin (28)

ABD(end(a), Te) → ABD(out-B, Te) (29)

ABD(out-B, Te) → ABD(end(a), Te) (30)

Finally, if a is partially observable, the effect of entering into the block may be either that of expecting
the start of a to occur in the trace, or to hypothesize it (cf. constraint (31) and its two “only if”
constraints (32) and (33)). Specularly, the block is exited if and only if the completion of a is either
observed or hypothesized, at the same time (cf. constraints (34)-(36)). Mutual exclusion between the
case where the start (respectively, completion) of a is observed, and that where it is hypothesized, is
guaranteed by the integrity constraint (18) (respectively, (19)). In formulae, τ(B) consists of:

ABD(in-B, Tin) → E(start(a), Ts) ∧ Ts ≥ Tin ∨ ABD(start(a), Ts) ∧ Ts ≥ Tin (31)

H(start(a), Ts) → ABD(in-B, Tin) ∧ Ts ≥ Tin (32)

ABD(start(a), Ts) → ABD(in-B, Tin) ∧ Ts ≥ Tin (33)

H(end(a), Te) → ABD(out-B, Te) (34)

ABD(end(a), Te) → ABD(out-B, Te) (35)

ABD(out-B, Te) → E(end(a), Te) ∨ ABD(end(a), Te) (36)

(Inductive case - Sequence) Consider block B of the form ⟨seq, ⟨inB, ⟨seq, B1, B2⟩, outB⟩⟩. The
encoding τ(B) of B consists of a series of integrity constraints that chain the start/completion of the
inner blocks. Specifically, τ(B) = {(37) − (42)} ∪ τ(B1) ∪ τ(B2), where:

ABD(in-B, Tin) → ABD(in-B1, Tin) (37)

ABD(in-B1, Tin) → ABD(in-B, Tin) (38)

ABD(out-B1, T1) → ABD(in-B2, T1) (39)

ABD(in-B2, T1) → ABD(out-B1, T1) (40)

ABD(out-B2, Tout) → ABD(out-B, Tout) (41)

ABD(out-B, Tout) → ABD(out-B2, Tout) (42)

Constraints (37) and (38) model that as soon as block B is entered, its first inner block in the sequence
is entered, and vice-versa. Constraints (39) and (40) model that the execution exits from the first block
of the sequence if and only if it enters into the consequent one. Finally, constraints (41) and (42)
model that as soon as the execution exits from the second block of the sequence, it exits from the
overall sequence block B, and vice-versa.

(Inductive case - Parallel split) Consider block B of the form ⟨and, ⟨inB, ⟨seq, B1, B2⟩, outB⟩⟩. The
encoding τ(B) of B captures the parallel execution of the two inner blocks, synchronizing upon their

Chesani et al. / Abducing Workflow Traces 1015

completion. Specifically, τ(B) = {(43) − (48)} ∪ τ(B1) ∪ τ(B2), where:

ABD(in-B, Tin) → ABD(in-B1, Tin) ∧ ABD(in-B2, Tin)(43)

ABD(in-B1, Tin) → ABD(in-B, Tin) (44)

ABD(in-B2, Tin) → ABD(in-B, Tin) (45)

ABD(out-B1, To1) ∧ ABD(out-B2, To2) ∧ To1 ≥ To2 → ABD(out-B, To1) (46)

ABD(out-B1, To1) ∧ ABD(out-B2, To2) ∧ To1 < To2 → ABD(out-B, To2) (47)

ABD(out-B, To) → ABD(out-B1, To) ∧ ABD(out-B2, To2) ∧ To ≥ To2 (48)

∨ ABD(out-B1, To1) ∧ ABD(out-B2, To) ∧ To ≥ To1

Rules (43)-(45) model that the execution enters B if and only if it enters B1 if and only if it enters
B2. Rules (46) and (47) model synchronization upon the completion of such sub-blocks, dictating that
the execution exits from B as soon as both B1 and B2 are completed, respectively handling the case
where B1 completes simultaneously/after or before B2. Their converse constraint is captured by (48),
stating that whenever B completes, then its latest sub-block must complete at the same time.

(Inductive case - Exclusive choice) Consider block B of the form ⟨xor, ⟨inB, ⟨seq, B1, B2⟩, outB⟩⟩.
The encoding τ(B) of B captures the alternative execution of one of the two inner blocks. Specifically,
τ(B) = {(49) − (55)} ∪ τ(B1) ∪ τ(B2), where:

ABD(in-B, Tin) → ABD(in-B1, Tin) ∨ ABD(in-B2, Tin) (49)

ABD(in-B1, Tin) → ABD(in-B, Tin) (50)

ABD(in-B2, Tin) → ABD(in-B, Tin) (51)

ABD(in-B1, Tin) ∧ ABD(in-B2, Tin) → ⊥ (52)

ABD(out-B1, Tout) → ABD(out-B, Tout) (53)

ABD(out-B2, Tout) → ABD(out-B, Tout) (54)

ABD(out-B, Tout) → ABD(out-B1, Tout) ∨ ABD(out-B2, Tout) (55)

Constraints (49)-(52) model that as soon as the execution enters into B, it enters into exactly one block
between B1 and B2, and vice-versa. Specularly, constraints (53) and (54) model that as soon as the
execution exits from one of blocks B1 or B2, it simultaneously exists from the overall block B as
well. Conversely, constraint (55) captures if block B completes, then one of its inner sub-blocks have
to complete at the same time.

Encoding of inter-task constraints. Each inter-task constraint is directly encoded in SCIFF using
a dedicated integrity constraints imposing that whenever the two events mentioned in the inter-task
constraint occur, their corresponding execution time shall respect the imposed duration interval. Tech-
nically, let ev : A × {s, e} → S be a total function that, given an activity and a start/end inscription,
produces a string representing the corresponding event: for every a ∈ A, we have ev(a, s) = start(a),
and ev(a, e) = end(a).

For every pair of activities a1, a2 ∈ A, and every pair of inscriptions i1, i2 ∈ {s, e} such that
tcon(a1, i1, a2, i2) is defined and gives ⟨m,n⟩, set ICP contains a dedicated integrity constraint,

1016 Chesani et al. / Abducing Workflow Traces

whose exact shape depends on the observability of a1 and a2. If a1 and a2 are observable, we get:

H(ev(a1, i1), T1) ∧ H(ev(a2, i2), T2) → T2 − T1 ≥ m ∧ T2 − T1 ≤ n (56)

If a1/a2 is unobservable, the corresponding happened event is replaced by the generic abducible
ABD(ev(a1, i1), T1)/H(ev(a2, i2), T2). Finally, in the case of partial observability, both possibili-
ties have to be considered, thus obtaining 2 to 4 distinct integrity constraints.

Example 3.4. The inter-task constraint between A8 and A11 in Figure 1 indicares that the elapsed
time between the start of the scheduling of a surgery (A8), and the end of the surgery itself (A11),
should be between 100 and 140 time units. Assuming that A8 is observable while A11 is partially
observable, such inter-task constraint would be encoded in SCIFF using the following two rules:

H(start(a8), T8) ∧ H(end(a11), T11) → T11 − T8 ≥ 100 ∧ T11 − T8 ≤ 140.

H(start(a8), T8) ∧ ABD(end(a11), T11) → T11 − T8 ≥ 100 ∧ T11 − T8 ≤ 140.

3.2. Compliance in SCIFF: Declarative Semantics

Besides the ability to capture different workflow constructs in a modular manner, the second impor-
tant characteristic of our framework concerns the ability to represent the different forms of reasoning
introduced in Section 2 in a uniform manner in terms of (strong or conditional) compliance.

Let tc be the current time of an ongoing execution trace T . Depending on the choice of tc, com-
pliance of the trace T w.r.t, a process model M can be used to simulate different types of reasoning as
follows:
(1) if tc = 0, i.e. the observed trace is empty, then conditional compliance is used to hypothesise at

least one possible execution. Thus, we obtain model consistency;
(2) if tc = tfinal , i.e., the execution has reached a final state, then we are in the case of a-posteriori

compliance checking (declined in strong and conditional depending on whether the trace is com-
plete or not);

(3) if 0 < tc < tfinal , we obtain run-time monitoring. In fact SCIFF can be used to check the (condi-
tional) compliance of the executed part of the trace and make hypothesis on its future evolution.
Adding further constraints (e.g., the minimization of overall execution time) enables SCIFF to
provide also prediction/recommendation.

Hence, by providing a formal notion of strong and conditional compliance, we accomodate the reason-
ing tasks of Section 2 in the SCIFF setting. To make this approach operational for SPOTs, we simply
take a normal SPOT P and translate it into the corresponding SP = ⟨∅,A, ICP⟩, where: (i) the logic
program of SP is empty, (ii) the set of abducible predicates is defined as A = {ABD/2, E/2}, where
E/2 predicates represent expectations, and ABD/2 are predicates that can be abduced/hypothesized;
(iii) ICP is the set of integrity constraints obtained by the translation function defined in Section 3.1.

To recall the formal notion of compliance in SCIFF, we first need to introduce what an abductive
explanation is6.

6We do not consider the abductive goal, as it is not needed for our treatment.

Chesani et al. / Abducing Workflow Traces 1017

Definition 3.5. (Abductive explanation ∆)
Given a SCIFF specification S = ⟨KB,A, IC⟩ and a SCIFF trace T , a set ∆ ⊆ A is an abductive
explanation for ⟨S, T ⟩ if and only if

Comp (KB ∪ T ∪∆) ∪ CET∪TN |= IC

where Comp is the (two-valued) completion of a theory [19], CET stands for Clark Equational Theory
[20] and TN is the CLP constraint theory [21] for integers.

The following definition fixes the semantics for observable events, and provides the basis for under-
standing the alignment of a trace with a process model.

Definition 3.6. (T -Fulfilment w.r.t. timestamp tc)
Given a trace T , an abducible set ∆ is trace-fulfilled w.r.t. tc if for every event e ∈ {∆ ∪ T } and for
each time t ≤ tc, E(e, t) ∈ ∆ if and only if H(e, t) ∈ T .

The “only if” direction defines the semantics of expectation, indicating that an expectation is fulfilled
when it finds the corresponding happening event in the trace. The “if” direction captures the prescrip-
tive nature of process models, whose closed nature require that only expected events may happen.
Notice that fulfilment is restricted to time instants prior to tc, thus capturing the fact that the past
(events before tc) is somehow “closed”, while the future is intrinsically open.

Given an abductive explanation ∆, fulfilment acts as a compliance classifier, which separates the
legal/correct execution traces with respect to ∆ from the wrong ones.

Definition 3.7. (Compliance)
A trace T is compliant with a SCIFF specification S w.r.t. a time instant tc if there exists an abducible
set ∆ such that: (i) ∆ is an abductive explanation for ⟨S, T ⟩, and (ii) ∆ is T -fulfilled w.r.t. tc. We say
that T is compliant with S if T is compliant with S w.r.t. the maximum time instant mentioned in T .
In this case, we say that ∆ is a compliance witness of T w.r.t. S .

If no abductive explanation that is also T -fulfilled can be found, then T is not compliant with the
specification of interest. Contrariwise, the abductive explanation witnesses compliance.

In the case of SCIFF specifications encoding SPOTs, the presence or absence of ABD predicates
in an abductive explanation intuitively discriminates between conditional and strong compliance. For
convenience, given an abducible set ∆ over E and ABD predicates, we denote by ∆E and ∆ABD
the two parts of ∆ respectively constituted by all E and ABD facts contained in ∆. In addition, we
assume, without loss of generality, that abducible facts only refer to activities and blocks present in
the original SPOT of interest.

We now formally relate the notion of compliance for SPOTs, and the corresponding notion of
compliance in SCIFF, consequently establishing that the encoding of SPOTs in SCIFF described in
the previous section is actually correct, in the intuitive sense that it “preserves compliance”.

For technical reasons, we need an encoding of a fully specified SPOT trace T that does not
produce a corresponding SCIFF trace, but instead a set of ABD/E facts respectively denoting the
hypothetical and expected execution of its contained events. We respectively denote by σABD(T)
and σE(T) the encodings of T mirroring that of σH(T), but using ABD/E predicates instead of H

1018 Chesani et al. / Abducing Workflow Traces

ones. We also consider the corresponding inverse encodings, mapping H/ABD/E facts back into
corresponding events of a SPOT trace.

The following theorem establishes a close correspondence between the two notions of SPOT and
SCIFF compliance, by considering fully specified traces. This is without loss of generality: partially
specified traces are tackled by checking whether they admit at least one compliant attribute completion,
for which then the theorem applies.7

Theorem 3.8. A fully specified logged trace T of a normal SPOT P is compliant with P if and only
if σH(T) is compliant with SP .

We prove a stronger version of Theorem 3.8, captured by the following lemma.

Lemma 3.9. Let P = ⟨A, obs, P, dur , tcon⟩ be a normal SPOT, and let T be a fully specified logged
trace of P . The following two properties hold:
• (Completeness of the encoding) For every possible completion T = T ⊎ Text of T for P over A,

if T is a compliance witness for T w.r.t. P , then σE(T) ⊎ σABD(Text) is a compliance witness of
σH(T) w.r.t. SP .

• (Soundness of the encoding) For every abducible set ∆ over E and ABD predicates, if ∆ is a
compliance witness of σH(T) w.r.t. SP , then T ∪ σ−

ABD(∆ABD) is a compliance witness of T
w.r.t. P .

Proof:
For the sake of clarity, throughout the proof we use notation T to denote a SPOT trace, and notation
T to denote a SCIFF trace. In addition, with a slight abuse of terminology, we say that an abducible
set ∆ witnesses compliance of a SCIFF trace T w.r.t. a set of integrity constraints IC, if it witnesses
compliance with SP by considering only IC as integrity constraints. In addition, when assessing
compliance of a SPOT trace (resp., SCIFF trace) with a block (resp., the SCIFF integrity constraints
encoding a block), it is enough to consider the portion of the trace that explicitly mentions events that
are relevant for the block, where relevance is inductively defined as follows:

• an event is relevant for a task block if it refers to the activity of that task block;
• an event is relevant for a block if it denotes the entry/exit point of that block, or is relevant for

one of its sub-blocks.
This can be easily shown by considering the definition of block compliance, and by considering the
translation of blocks into SCIFF. Such a modularity is useful because it allows us to prove the claims
of the theorem by induction on the structure of the process blocks, moving bottom-up from activities
to the top block.

Let P = ⟨A, obs, P, dur , tcon⟩, and SP = ⟨∅,A, ICP⟩. First of all, we observe that, by con-
struction, for T to be compliant with SP , the following property holds: for every task a ∈ A,
H(start(a), ts) ∈ σH(T) if and only if H(end(a), te) ∈ σH(T) for some ts, te ∈ N. This is guar-
anteed by integrity constraints (10)–(13) for the case of observable tasks; unobservable and partially
observable tasks enjoy the same property, as witnessed by integrity constraints (14)–(19).

7In Section 3.3 we discuss that partially specified traces are natively handled by the operational counterpart of SCIFF,
without requiring an a-priori grounding.

Chesani et al. / Abducing Workflow Traces 1019

We separately consider block compliance, duration compliance, and inter-task compliance.

As for block compliance, we proceed bottom-up by induction on the structure of the blocks in P ,
recalling that, by hypothesis, P is normal. Consider a generic block B = ⟨seq, ⟨inB, B′, outB⟩⟩ in P .

Task block. The base case is the one where B′ = a with a ∈ A. We consider the case where a is
non-atomic. The atomic case can be proven analogously.

First of all, we observe that, since activities do not repeat, the SCIFF integrity constraints deter-
mining compliance in this case are all groundings of rules (10)–(19) and rules (23)–(36), such that
the activity is a and the block identifier is B. We denote by ICB

task the so-obtained set of integrity
constraints.

Let us first consider the completeness of the encoding. By reformulating Definition 2.12 (item 1),
we have that T complies with B if one of the two conditions holds:

1. The portion of T relevant to B is ∅, i.e., T does not contain occurrences of a, and Text does not
contain occurrences of inB nor outB . This is preserved by the encoding, as ∅ is a compliance
witness of the empty trace (and, in turn, the whole σH(T)) w.r.t. ICB

task in the case where no
occurrence of a appear in σH(T). This can be easily seen by inspecting constraints ICB

task: a
way to comply with those constraints is to vacuously satisfy them (i.e., avoid matching with
their antecedents).

2. The portion of T relevant to B has the form T a = {(a, [ts, te]), (inB, ti), (outB, to) |
ti, ts, te, to ∈ N s.t. ti ≤ ts < te = to}, i.e., there exists exactly a single occurrence of a in
T of the form (a, [ts, te]), and exactly one occurrence of inB and one of outB in Text, respec-
tively of the form (inB, ti) and (outB, to), so that ti ≤ ts < te = to. To show that compliance
preserved by the encoding, we have to distinguish between the case where a actually occurs in
T , which in turn reflects that a is either observable or it is partially observable and its execution
has been logged, from the case where a does not occur in T (and, consequently, occurs in Text),
which in turn reflects that a is either unobservable or it is partially observable and its execution
has not been logged.
In the first case, by considering the relevant portion of σH(T) for ICB

task, we obtain the
corresponding SCIFF trace Ta = σH(T a ∩ T) = {H(start(a), ts), H(end(a), te) | ts <
te}. and the corresponding abducible set ∆a = σE(T a ∩ T) ∪ σABD(T a ∩ Text) =
{ABD(inB, ti), E(start(a), ts), E(end(a), te), ABD(outB, to) | ti ≤ ts < te = to}. It is
then easy to show that ∆a is a compliance witness of Ta w.r.t. ICB

task. Specifically:
• Rules (10) and (11) are satisfied (only one occurrence of a appears in Ta and, in turn, in the

whole σH(T)).
• Rules (12), (13) are satisfied thanks to the ordered presence of the start and completion of a in

Ta; notice that the more specific temporal constraints related to a’s duration will be discussed
later on in the proof.

• Rules (14) – (17), as well as (27) – (30), are not part of ICB
task in this case, since, by hypoth-

esis, a is not unobservable.
• Rules (18) and (19) are satisfied, since the start and completion of a appear in Ta, but their

hypothetical execution does not appear in ∆a.
• If a is observable, rules (23) – (26) are satisfied, as it can be straightforwardly seen by the

shape of Ta and that of ∆a. If a is instead partially observable, rules (31) – (36) behave

1020 Chesani et al. / Abducing Workflow Traces

exactly as (23) – (26) (in particular, rules (31) and (36) are satisfied by Ta ∪∆a, considering
their first disjunct in the rule heads).

In the second case, since a is not present in T , we simply get that the relevant portion of σH(T)
for ICB

task is the empty trace, while the corresponding abducible set becomes then ∆a =
σABD(T a ∩ Text) = {ABD(inB, ti), ABD(start(a), ts), ABD(end(a), te), ABD(outB, to), |
ti ≤ ts < te = to}. It is then easy to show that ∆a is a compliance witness of Ta w.r.t. ICB

task.
Specifically:
• Rules (10) – (13) are all vacuously satisfied, since no occurrence of a is contained in σH(T).
• Rules (14) – (17) are satisfied, since only one hypothetical occurrence of start(a) and of
end(a) is contained in ∆a, with the right timestamp ordering.

• Rules (18) and (19) are satisfied, since the start and completion of a does not appear in σH(T).
• Rules (23)–(26) are not part of ICB

task since, by hypothesis, a is not fully observable.
• If a is unobservable, rules (27) – (30) are satisfied, as it can be straightforwardly seen by the

shape of ∆a. If a is instead partially observable, rules (31) – (36) behave exactly as (27) –
(30) (in particular, rules (31) and (36) are satisfied by ∆a, considering their second disjunct
in the rule heads).

Let us now consider the soundness of the encoding. Two cases may arise: a occurs in T , or it does
not. If (a, [ts, te]) ∈ T , which is only possible if a is either observable or partially observable and it
has been actually logged, then the only abducible set witnessing compliance of σH(T) w.r.t. ICB

task

has the form ∆a
exec = ∆rest

exec ⊎ {ABD(inB, ti), E(start(a), ts), E(end(a), te), ABD(outB, to) | ti ≤
ts < te = to}, where ∆rest

exec does not refer to activity a nor block B. To prove soundness, we can then
abstract away from ∆rest

exec, and have to show that SPOT trace T a = {(a, [ts, te])} ∪ σ−
ABD(∆

a
exec) =

{(inB, ti), (a, [ts, te]), (outB, to) | ti ≤ ts < te = to} is a compliance witness for {(a, [ts, te])}
w.r.t. B. This directly follows from Definition 2.8 (item 1).

If instead a does not occur in T , two possible abducible sets witnessing compliance of ∅
w.r.t. ICB

task do exist, considering that they cannot contain any expectation regarding a, as it would be
violated by σH(T). In particular, the two possible compliance witnesses are

1. The empty abducible set (obtained by vacuous satisfaction of all the involved integrity con-
straints). This transfers back to SPOT as well, as argued above for the completeness proof.

2. Abducible set ∆a
hyp = ∆rest

hyp ⊎ {ABD(inB, ti), ABD(start(a), ts), ABD(end(a), te),

ABD(outB, to) | ti ≤ ts < te = to}, where ∆rest
hyp does not refer to activity a nor block

B. This is obtained in the case where a is not observable (and, hence, rules (27) – (30) are
in place), or in the case where a is partially observable and not logged (and, hence, rules (31)
– (36), considering the second disjunct in rules (31) and (36)). To prove soundness, we can
then abstract away from ∆hyp

exec, and have to show that the SPOT trace ∅ ∪ σ−
ABD(∆

a
hyp) =

{(inB, ti), (a, [ts, te]), (outB, to) | ti ≤ ts < te = to} is a compliance witness for {(a, [ts, te])}
w.r.t. B. This has been already proved above.

Sequence block. Let B′ = ⟨seq, B1, B2⟩. By induction hypothesis, we assume that T is a compli-
ance witness for B1 and B2. We denote by T B1 and T B2 the two (disjoint) portions of T that are
respectively relevant for B1 and B2, and by T B the portion of T that is relevant for B. Notice that, by
definition or relevance, T B1 ⊎ T B2 ⊆ T B . In addition, we denote by ICB

seq = ICB1 ⊎ ICB2 ⊎ ICB

the integrity constraints obtained from the encoding of B1 and B2, and the integrity constraints ICB

Chesani et al. / Abducing Workflow Traces 1021

relevant for B, which correspond all groundings of rules (37)–(42), considering B, B1, and B2 as
block identifiers.

Let us first consider the completeness of the encoding. By reformulating Definition 2.12 (item 2),
we have that T complies with B if one of the two conditions holds:

1. The portion of T relevant to B coincides with T B1 ⊎ T B2 = ∅. This means that the tace does
not enter the block at all, nor its sub-blocks B1 and B2. This, in turn, means that that also
the portions of T relevant to B1 and B2 actually coincide with the empty trace. A property
of all the integrity constraints encoding non-top blocks, is that the empty abducible set is a
compliance witness for the empty trace w.r.t. such constraints. This clearly applies to B1 and
B2 (which cannot be the top block), and immediately implies the claim to be proved, namely
that the empty abducible set is an compliance witness for the empty trace w.r.t. ICB

seq.
2. The portion of T relevant to B has the form T seq = T B1 ⊎ T B2 ⊎ T B with T B =

{(inB, ti), (outB, to)}, and satisfying the following conditions: (i) there exists exactly one oc-
currence of inB1 and of outB1 in T B1 , respectively of the form (inB1 , ti1) and (outB1 , to1);
(ii) there exists exactly one occurrence of inB2 and of outB2 in T B2 , respectively of the form
(inB2 , ti2) and (outB2 , to2); (iii) the timestamps are so that ti = ti1 ≤ to1 = ti2 ≤ to2 = to.
Let Tseq = σH(T seq ∩ T) be the relevant portion of σH(T) for ICB

seq, and let ∆seq =

σE(T seq ∩ T) ∪ σABD(T seq ∩ Text) be the abducible set obtained from T seq. In addition,
for i ∈ {1, 2}, let ∆Bi = σE(T Bi ∩T)∪σABD(T Bi ∩Text). By induction hypothesis, we have
that ∆Bi is a compliance witness for T Bi w.r.t. ICBi . Note that, by construction, ∆Bi ⊆ ∆seq,
and due to non-repetition of blocks and activities, ∆seq \∆Bi does not refer to blocks and activ-
ities contained in Bi. For this reason, we can generalize the induction hypothesis and say that
∆seq is a compliance witness for T seq w.r.t. ICBi . It then remains to only show that ∆seq is a
compliance witness for T seq w.r.t. ICB .
To this end, we first notice that the portion of T seq that interacts with ICB has the form
{(inB, ti), (inB1 , ti1), (outB1 , to1), (inB2 , ti2), (outB2 , to2), (outB, to) | ti = ti1 ≤ to1 =
ti2 ≤ to2 = to}, which results in an empty SCIFF trace, and in the following abducible set
∆rel = {ABD(inB, ti), ABD(inB1 , ti1), ABD(outB1 , to1), ABD(inB2 , ti2), ABD(outB2 , to2),
ABD(outB, to) | ti = ti1 ≤ to1 = ti2 ≤ to2 = to}. It is then straightforward to see that ∆rel is
a compliance witness of ∅ w.r.t. ICB . By observing that:

• rules in ICB do not mention any happened event, and
• due to non-repetition of blocks and activities, ∆B \ ∆rel does not interact with the rules

in ICB ,
we consequently obtain that ∆seq is a compliance witness of Tseq w.r.t. ICB .

We now turn to soundness of the encoding of a sequence block. By induction hypothesis, we have
that σH(T) is compliant with ICB1 ⊎ ICB2 . Specifically, for i ∈ {1, 2}, there is an aducible set ∆B1

that is a compliance witness of σH(TBi) w.r.t. ICBi , where TBi is the portion of T that is relevant to
block Bi. By considering the rules in ICblock, for an abductive explanation ∆B

seq to be a compliant
witness of σH(T) w.r.t. ICblock, two situations may arise:

1. ∆B
seq does not contain events referring to blocks B, B1, B2, and σH(T) does not contain events

referring to activities that are (indirectly) contained in B, i.e., σH(TB1) = σH(TB2) = ∅. The
claim then amounts to prove that the empty SPOT trace is compliant with a sequence block,

1022 Chesani et al. / Abducing Workflow Traces

which is clearly the case by considering Definition 2.12 (item 2).
2. ∆B

seq = ∆rest ⊎∆B1 ⊎∆B2 ⊎∆B , where:
• ∆rest does not contain any abducible fact referring to blocks and activities that are (indi-

rectly) contained in B.
• For i ∈ {1, 2}, ∆B1 is a compliance witness of σH(T) w.r.t. ICBi , and contains
{ABD(inBi , tii, ABD(outBi , toi | toi ≥ tii}. The fact that toi ≥ tii derives from the
fact that every block (indirectly) contains one or more activities, which in turn require the
exit from the block to appear after entering into the block.

• ∆B = {ABD(inB, ti, ABD(outB, to | to ≥ ti}.
• The timestamps of such abducible facts are so that ti = ti1 (cf. rules (37) and (38)),
to1 = ti2 (cf. rules (39) and (40)), and to2 = to (cf. rules (41) and (42)).

Thus, we can abstract away from ∆rest, and we have to show that the SPOT trace TB1 ⊎ TB2 ⊎
σ−

ABD(∆B1 ⊎∆B2 ⊎∆B) is a compliance witness for TB1 ⊎ TB2 w.r.t. block B. After having
applied the induction hypothesis, we have then to show that σ−

ABD(∆B1 ⊎ ∆B2∆B) satisfies
point 2.iv of Definition 2.12. This is straightforward by comparing the conditions imposed in
such a point, and the construction of ∆B1 ⊎∆B2∆B detailed above.

Parallel split block. The proof is analogous to that of sequence, with the only difference in the
temporal conditions attached to the block-related events. Such conditions, formalized in item 3 of
Definition 2.12, are perfectly mirrored by integrity constraints (43)–(48).
Exclusive choice block. The preservation of temporal conditions proceeds analogoulsy to the other
cases. The only interesting part is about mutual exclusion, that is, guaranteeing that it is not possible
to produce a compliant witness in the case where both sub-blocks are executed. In the SPOT case, this
is captured explicitly in point 4.iv of Definition 2.12. In the SCIFF case, this is captured by integrity
constraint (52).
Top block. The only peculiar aspect of the top block is that it must be entered. Every completion
of T that witnesses compliance of T w.r.t. P contains an event of the form (inP , t) for some t ∈ N,
as dictated by Definition 2.13, item (iii). This is perfectly mirrored by the SCIFF encoding: every
abducible set witnessing compliance of σH(T) w.r.t. SP must contain a fact of the form ABD(inP , t),
as imposed by the integrity constraint (22).

We now tackle duration and inter-task compliance. Here, the proof is directly obtained by respec-
tively comparing:

• Definition 2.9 with integrity constraints (12), (13), (16), (17);
• Definition 2.10 with integrity constraint (56).

Since the imposed temporal conditions coincide, every compliant SPOT trace completion imposes
temporal conditions that are compatible with what the integrity constraints dictate. On the other hand,
every SCIFF abductive explanation witnessing compliance must obey to the temporal conditions im-
posed by rules (12), (13), (16), (17), (56), which in fact unconditionally apply to every activity-related
event, and such conditions mimic what is expected by Definition 2.9 and efinition 2.10. This concludes
the proof. ⊓⊔

We conclude this section by recalling that the SCIFF proof procedure, which can be actually
employed as a reasoning machinery on top of SCIFF specifications, has been proven sound and com-

Chesani et al. / Abducing Workflow Traces 1023

plete w.r.t. the SCIFF declarative semantics [14]. Our declarative semantics restricts the notions of
fulfilment and compliance to a specific current time tc, i.e., to open traces: hence soundness and com-
pleteness still hold [22], and can be directly applied to the case of monitoring as well. Furthermore,
when reasoning over SCIFF specifications encoding SPOTs, it is guaranteed that the size of actu-
al/hypothesized traces is bounded by the number of blocks and activities present in the SPOT under
study. This, in turn, implies termination. In summary, we obtain that the SCIFF proof procedure can
be effectively employed to reason on conditional/strong compliance of SPOTs either at run-time or a
posteriori, obtaining correct answers in a finite amount of time. This is the subject of the next section.

3.3. SCIFF at work

The SCIFF proof procedure can be queried by specifying a goal. While the query is goal driven
and supports a backward reasoning style, the use of integrity constraints allows to support a forward
reasoning style at the same time. In the following, we use in-B0 and out-B0 to refer to the start and
completion of the top block of the (normal) SPOT of interest.

In our approach the goal is always to prove ABD(in-B0, 0). The goal itself can be satisfied imme-
diately, since start can be abduced (and added to the answer ∆). However, abducing start will trigger
an integrity constraint. For example, consider the normalized version of the FF process fragment in
Example 2.3. In this case, in-B0 is related to the sequence between the two task blocks for A1 and
A2, encoded through the instantiation of integrity constraints (37)-(42) to the actual block names of
the sequence. Since ABD(in-B0, 0) appears in the body of (the instantiation of) constraint (37), the
constraint triggers, generating the hypothesis that the first, inner task block is entered. This triggers
the instantiation of constraint 23, generating an expectation about the future start of A1. From that,
SCIFF either matches the expectation with the happening of A1, or hypothesises it (depending on the
observability of A1). In turn, this triggers other integrity constraints.

The proof procedure stops when no more integrity constraints can be triggered, and our encoding
ensures that this happens only when the final activity out-B0 is reached. The outcome is the set ∆ of
hypotheses under which the goal is true, and all the ICs are satisfied. This, in the context of SPOT,
corresponds to the compliance witness.

Notice that, operationally, the abductive answer ∆ might contain abducibles with variables repre-
senting time instants, and this needs to be taken care of. In fact, we exploit ACLP to support temporal
constraints among activity executions: a network of CLP constraints is used to restrict variables rep-
resenting happening times to specific domains. SCIFF authors report that their proof procedure is
complete, provided the underlying CLP solver is complete as well. In our case the CLP solver is not
complete, unless an explicit assignment of a value to all the variables is requested through a so-called
labelling (grounding) step [14]. As a consequence we may have an ALP solution ∆, that would be
made infeasible by the temporal constraints. To rule out this case, we explicitly require labelling,
when needed.

In a similar way, the SCIFF proof procedure also supports natively the notion of partially specified
trace, that is, happened events that contain variables, in turn explicitly accounting for incompleteness,
as in a partially specified SPOT trace. This means that, when reasoning on partially specified SPOT
traces, it is not required to ground them a-priori, but it is instead possible of encoding them into

1024 Chesani et al. / Abducing Workflow Traces

corresponding partially specified SCIFF traces. The proof procedure takes then care of attaching
constraints and/or labeling, the variables contained therein.

Given a trace, and a workflow encoded as described in Section 3.1, the SCIFF proof procedure can
be used to provide the different reasoning services introduced in Section 2. A first general observa-
tion is that all reasoning tasks may require labelling of temporal-related variables. Model consistency
is directly supported by the SCIFF when the execution trace is empty. However, all the activities in
the workflow must be partially observable or non-observable, so that the proof procedure can make
hypotheses. This proviso also holds for runtime monitoring. Strong compliance corresponds to the
original reasoning task of the SCIFF, and it is still supported in our context. Conditional compliance
is supported thanks to our proposed mapping, where hypotheses about non-observed events are di-
rectly supported by the integrity constraints. Note that, depending on the completeness of the CLP
solver used by SCIFF, non compliances due to temporal constraints might be detected as soon as a
constraint becomes infeasible, i.e., before producing an entire abductive answer. Obtaining predic-
tion/recommendation is slightly more complex. Consider, e.g., the request of an abductive answer that
minimizes the overall execution time. A naive solution would compute all possible abductive answers,
then choosing the one with minimum completion time. A branch-and-bound optimisation is obtained
by adding the following rules, imposing that any observed/hypothesised event must always happen
before the final event:

H(, T1) ∧ H(out-B0, Te) → T1 < Te. (57)
ABD(, T1) ∧ H(out-B0, Te) → T1 < Te. (58)

Intuitively, as long as no solution is found, out-B0 is not hypothesised. As soon as a possible answer
is found, it is. After that, all hypotheses are bound to happen before the best final time.

A prototype implementation of the framework is currently available for download at http://ai.
unibo.it/AlpBPM.

4. Evaluation

In this section we investigate the performance of each reasoning task separately by changing the
input parameters of interest. The focus of our evaluation is to analyse the scalability of the proposed
approach. The experiments have been carried out on a Windows 7 pc with 8GB RAM and a 2.4 GhZ
Intel-core i7. The encoding presented in Section 3.1 has been adopted, but few optimizations have
been applied to exploit some peculiar features of the SCIFF proof procedure implementation.

We encoded 5 process models (M1, . . . ,M5) with different characteristics. M1 is the model taken
from [7] reported in Figure 1, while M2 . . .M5 are synthetic models built from two or more replicas
of M1. For notation simplicity we denote with K the core part of M1, i.e., M1 excluded the start and
the end events, and we will enumerate the replicas of K in M2 . . .M5 with progressive numbers. In
detail, M2 concatenates two replicas of K, identified as K0 and K1 (see Figure 2(b)), M3 composes
two replicas K0 and K1 of K in parallel (see Figure 2(c)), M4 concatenates three copies of K
namely, K0, K1 and K2, in sequence (see Figure 2(d)) and, finally, M5 consists of an exclusive
choice between two copies K0 and K1 of K in sequence and a copy K2 of K (see Figure 2(e)).8

8The expanded version of all the five models is available, together with their SCIFF encoding, at the link http://ai.

http://ai.unibo.it/AlpBPM
http://ai.unibo.it/AlpBPM
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation

Chesani et al. / Abducing Workflow Traces 1025

(a) M1 (b) M2 (c) M3

(d) M4 (e) M5

Figure 2. Models M1, . . . ,M5 used in the evaluation

Model Size Paral. % Min/Max # TCs Incons. Source Out. Time(s)
c 0.16

M1 20 0.14 6/11 4
tcon(A1, s,A2, e) = ⟨0, 5⟩ i 0.17

c 0.52
M2 40 0.14 12/22 8

tcon(A1K1, s,A2K1, e) = ⟨0, 5⟩ i 0.83

c 2.01
M3 42 1 12/22 8

tcon(A1K1, s,A2K1, e) = ⟨0, 5⟩ i 0.66

c 1.6
M4 60 0.14 18/33 12

tcon(A1K2, s,A2K2, e) = ⟨0, 5⟩ i 2.51

c 0.78
tcon(A1K1, s,A2K1, e) = ⟨0, 5⟩M5 62 0.14 6/22 12

tcon(A1K2, s,A2K2, e) = ⟨0, 5⟩
i 1.09

Table 1. Model Consistency.

To disambiguate between
the replicas of activities in
the different models we will
rename them specifying, for
each original activity Ai be-
longing to the model in Fig-
ure 1, also the the Kj name
of the replica of K the ac-
tivity belongs to. For in-
stance, the first activity of
M4, which is also the first
activity of K0, will be denoted as A1K0; the first activity in K1 will be indicated as A1K1, while the
first activity in K2 will be named A1K2. We encoded all tasks as partially observable, which is the
worst case performance-wise, as we discuss later in the section.

Model consistency. Table 1 reports the characteristics of the models: size (column “Size”), i.e.,
the number of activities and gateways in BPMN, parallelism degree (column “Paral. %”), i.e., the
percentage of activities that can be executed in parallel, min/max path length in the model (column
“Min/Max”) and number of temporal constraints (column “# TCs”). For each of these (consistent)
models, an inconsistent variant is built by modifying one of the constraints. For each of the mod-
els, we modified the constraint between the first two activities of one of the replicas of K (i.e.,
tcon(A1K0, s,A2K0, e) = ⟨0, 30⟩ for K0), by imposing that the time between the first and the sec-
ond activity is instead between 0 and 5 time units (i.e., tcon(A1K0, s,A2K0, e) = ⟨0, 5⟩ for K0),
which generates an inconsistent model given the duration range of the first two activities. In detail, as
reported in the column “Incons. Source” of Table 1 for M2 and M3 we changed the constraint related
to K1, for M4 we changed the constraint in K2 and for M5 we changed the constraints both in K1
and in K2. In this way, we are able to test model inconsistencies occurring in different points of the

unibo.it/AlpBPM/validation

http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation
http://ai.unibo.it/AlpBPM/validation

1026 Chesani et al. / Abducing Workflow Traces

model. Table 1 reports the outcome of the consistency check (column “Out”) denoted with c, in case
of consistency and i in case of inconsistency, as well as the time (column “Time(s)”) required by the
abductive framework for assessing, respectively, the consistency or the inconsistency of M1 . . .M5.

As expected, the results reported in the table show that the size and the structure of the model
influence the time required for checking the (in)consistency. For instance, detecting the consistency
of M3, where a higher number of parallel gateways occurs, is more expensive than computing the
consistency for models of larger size. Also, inconsistency detection requires overall more time than
the consistency detection, as when no consistent path is found, all the paths of the model have to be
explored. The only exception to this pattern occurs for the model with the parallel construct M3. In
this case, indeed, evaluating the interleavings while searching for a compliant solution could result
being more expensive than identifying the inconsistency.
Strong compliance. For each model in M1 . . .M5 we con-
sider 2 compliant and 2 non compliant traces of different length.

Model Trace Length NC Source Out Time(s)
t1 1 6 c 0.48
t1 2 6 (A4, [1, 2]) nc 0.01
t1 3 11 c 12.49

M1

t1 4 11 (A6, [1, 2]) nc 0.01

t2 1 12 c 357.08
t2 2 12 (A4K1, [1, 2]) nc 0.02
t2 3 22 c > 1h

M2

t2 4 22 (A13K0, [1, 2]) nc 0.032

t3 1 12 c 35.64
t3 2 12 (A4K1, [1, 2]) nc 0.05
t3 3 22 c > 1h

(A11K0, [159, 250])

M3

t3 4 22
(A11K1, [160, 251])

nc 0.09

t4 1 18 c 2090.36
t4 2 18 (A4K2, [1, 2]) nc 0.02
t4 3 33 c > 1h

M4

t4 4 33 (A5K2, [1, 2]) nc 0.06

t5 1 6 c 0.76
t5 2 6 (A13K2, [3, 4]) nc 0.38
t5 3 11 c 50.8

M5

t5 4 11 (A10K2, [1, 2]) nc 0.06

Table 2. Strong Compliance.

Table 2 reports, for each model (column “Model”),
the 4 traces (column “Trace”), their length (column
“Length”) and the source of non-compliance (col-
umn “NC Source”) for the non compliant traces,
the outcome of the strong compliance procedure
(column “Out.”), i.e., c for compliant or nc for
non-compliant, as well as the time required by the
SCIFF procedure to compute the result (column
“Time”). We notice that the time required for the
strong compliance ranges between less than one
second to less than one minute (about 50 sec.) for
short/medium traces (e.g., up to 12 events), and in-
creases up to more than one hour as the trace be-
comes longer. By looking at the results related to
models with similar characteristics and increasing
size, such as M1, M2 and M4, we notice an expo-
nential trend in computational time (see traces t1 1,
t2 1 and t4 1). This is due to the fact that all tasks
in the models are partially observable, which requires “reasoning by cases” for each task in the model.
Indeed, as explained in Section 3, since each event expectation can be matched with an abducible or
with an actual observation in the trace, both options have to be considered when the event is partially
observable. This cost can be avoided if the activity is marked as observable/unobservable.

Conditional compliance and runtime monitoring/prediction. We tested out, both conditional
compliance and runtime monitoring with two levels of event incompleteness (50% and 80%) on
the 4 traces and the 5 models used for evaluating the strong compliance, for a total of 80 tests.

C. Compl. Monit.
Model Trace Length Inc. % Out.

Time(s) Time(s)
t1 1a 6 50 c 0.26 0.23
t1 1b 6 80 c 0.22 0.1
t1 2a 6 50 nc 0.01 0.21
t1 2b 6 80 nc 0.01 0.06
t1 3a 11 50 c 1.1 0.93
t1 3b 11 80 c 0.12 0.19
t1 4a 11 50 nc 0.01 0.61

M1

t1 4b 11 80 nc 0.07 0.17

t2 1a 12 50 c 3.7 5.43
t2 1b 12 80 c 0.52 5.21
t2 2a 12 50 nc 0.02 0.01
t2 2b 12 80 nc 0.51 0.01
t2 3a 22 50 c 206.7 104.02
t2 3b 22 80 c 1.4 2.5
t2 4a 22 50 nc 84.65 63.03

M2

t2 4b 22 80 nc 1.12 1.87

t3 1a 12 50 c 534.2 228.57
t3 1b 12 80 c 161.63 62.41
t3 2a 12 50 nc 367.52 0.06
t3 2b 12 80 nc 160.06 0.08
t3 3a 22 50 c 1117.79 > 1h
t3 3b 22 80 c 76.89 30.17
t3 4a 22 50 nc 722.8 1223.13

M3

t3 4b 22 20 nc 26.29 28.8

t4 1a 18 50 c. 157.45 162.43
t4 1b 18 80 c 10.75 25.43
t4 2a 18 50 nc 0.05 0.06
t4 2b 18 80 nc 14.74 0.08
t4 3a 33 50 c > 1h 1722.72
t4 3b 33 80 c 50.03 168.64
t4 4a 33 50 nc 0.06 0.06

M4

t4 4b 33 80 nc 66.49 0.06

t5 1a 6 50 c 0.6 1.92
t5 1b 6 80 c 1.47 1.78
t5 2a 6 50 nc 0.47 0.11
t5 2b 6 80 nc 1.47 1.4
t5 3a 11 50 c 3.96 5.24
t5 3b 11 80 c 1.84 1.95
t5 4a 11 50 nc 0.11 4.06

M5

t5 4b 11 80 nc 1.59 1.25

Table 3. Conditional Compliance, Runtime Monitor-
ing and Prediction.

While in the conditional compliance the miss-
ing events are distributed along the whole exe-
cution trace, in runtime monitoring and predic-
tion incompleteness characterizes the last part of

Chesani et al. / Abducing Workflow Traces 1027

the trace only (see the right-hand part of Fig-
ure 1). Table 3 summarizes the results of the
two reasoning services: for each model and for
each trace, the percentage of incompleteness of
the considered traces is reported (column “Inc.
%”). The incompleteness degree ranges between
50% (half of the events of a complete path from
the source to the target is observed in the trace)
and 80% (about 20% of the events of a path from
the source to the target are observed in the trace).
Notice that the case where all the events are ob-
served (incompleteness degree 0%) is covered by
the strong compliance case. All compliant/non
compliant traces used in this evaluation have in-
deed been obtained by removing activities from
the ones used for the strong compliance check.
Column “Out.” reports the outcome of the service
while columns “C. Compl” and “Monit. Time”
the computation time for each of the two services.
The computation times required for the two ser-
vices are quite similar though with some differ-
ences for large models. Overall, the framework
seems to be more efficient when the source of the
incompleteness is located along the trace rather
than at the end, in case of large models with a
high degree of parallelism (e.g., see traces t3 3a
and t3 4a for M3). Conversely, with large models
characterized by a low parallelism degree, moni-
toring seems to overcome conditional compliance
(e.g., see traces t4 3a and t4 4b for M4). Al-
though computing times are exponential in path length and model size as for the strong compliance, in
this case we notice an improvement in performances compared to the strong compliance ones: the less
events we observe in the trace the lower the computation time is. This happens because expectations
of some events (the ones corresponding to missing events) immediately fail to be matched with hap-
pened events (as traces are incomplete). The procedure is hence forced to match these expectations
with abducibles, ruling out options from reasoning by cases and improving the performances. Note
that the time required for the prediction/recommendation service is the same of runtime monitoring.

Overall Observations. In this experimentation, we focused on the borderline case, in which no
knowledge at all is available about the observability of the events (i.e., all the events are partially
observable). Purpose of the experimentation was understanding the applicability of the approach in
practical scenarios. Overall, in a realistic scenario as the temporal model M1 presented in [7], all
the reasoning services are carried out in less than 15 seconds. When no information is known about

1028 Chesani et al. / Abducing Workflow Traces

Figure 3. Loops and Temporal Constraints.

the observability of the events, the abductive framework is particularly performant in situations in
which the execution trace is heavily incomplete either along or at the end of the trace. When a large
part of the execution trace is unknown (e.g., about 80% of the trace), indeed, even for long paths the
performances of the abductive framework are of the order of minutes.

5. Extending SPOTs with Loops

As pointed out in Section 2.1, well-defined SPOT models (as for Definition 2.2) do not allow the
specification of loops in the workflow. The main reason for focusing on a workflow model preventing
the repetition of tasks is the lack of an established semantics for temporal constraints between two
activities that are part of a loop. For example, the workflow modelling language proposed in [7] (used
in Figure 1) provides a rich formalism for expressing temporal constraints related to the duration of
single activities, as well as inter-task temporal constraints, but no semantics for loops and temporal
constraints is given. Another example is the language used in [16] for medical temporal workflows
where, again, no semantics is proposed for temporal constraints involving activities in loops.

To understand the semantic issues that could arise in the case that a task can be repeated several
times let us consider the workflow excerpt in Figure 3, where an inter-task constraint has been added
between the activity a (not belonging to the loop path) and the activity b (belonging to the loop path).
The semantics of the inter-task constraint is ambiguous, since task b can appear more than once in
a trace. The constraint could refer to the first appearance of b, or to the last. At least three possible
alternatives choices can be considered:

1. the constraint refers to all the occurrences of activity b that happen after the execution of a;
2. the constraint refers to the first occurrence of b;
3. the constraint refers to the last occurrence of b.

Independently that the activities are observable or not, all the alternatives seem plausible: possibly, the
“best choice” could be made only with sufficient insight on the specific application domain. Finally,
more complex cases might arise: inter-task constraints could be about, for example, tasks that are both
involved in two (distinct) loops: in such a case, similar considerations would be extended to both the
activities. Note that the above ambiguity arises also in the case that we prevent constraints to cross the

Chesani et al. / Abducing Workflow Traces 1029

Figure 4. An excerpt of a simple workflow including a loop.

boundaries of a loop block; although it could be argued that in this case applying the constraint to the
closest pair of occurring tasks might be a sensible choice.

The discussion and adoption of a specific semantics for temporal constraints in the presence of
task repetitions is outside the scope of this work; however our approach can be extended in order
to accomodate a looping construct. In the previous work [23] we discussed how to model workflow
loops (translation details can be found in a technical report [24]). Here we briefly outline the main
idea behind the encoding of loops. Let us consider a workflow excerpt shown in Figure 4. Upon the
end of activity b, either c or d is expected to be executed, with the workflow path containing d being
a loop path. Moreover, let us suppose also that all the activities are observable. The exclusive split
block, relating tasks b, c, and d, can be modelled in SCIFF as follows (for the sake of comprehension,
we omit here the rules concerning the in/out of blocks):

H(end(b), Tb) → E(start(c), Tc) ∧ Tc ≥ Tb ∨ E(start(d), Td) ∧ Td ≥ Tb (59)

H(start(c), Tc) ∧ H(start(d), Td) ∧ Td > Tc → ⊥ (60)

The constraint (59) ensures that, upon the termination of task b, one task among c and d is ex-
ecuted. Constraint (60) instead guarantees that once the control flow has exited the loop, it is not
possible to execute d any more. Constraints (10) and (11), introduced in Section 3.1, should be re-
moved: they were introduced to ensure that, for each activity, only one execution is allowed in the
trace. However, as a consequence of loops, certain activities will appear more than once. Moreover,
we need to add two further constraints: for every activity, between two starts of the same activity, we
should observe a completion of the same activity. Hence, given a generic task a, we would write:

H(start(a), T1) ∧ H(start(a), T2) ∧ T2 > T1 → E(end(a), Te) ∧ Te > T1 ∧ Te < T2 (61)

H(end(a), T1) ∧ H(end(a), T2) ∧ T2 > T1 → E(start(a), Ts) ∧ Ts > T1 ∧ Ts < T2 (62)

Notice that in case we would allow the nesting of loop blocks, the formalisation would become more
complex, due to the fact that we could observe multiple executions of the same loop block. For exam-
ple, a unique identifier might be needed to distinguish between multiple block execution instances.

In the case the activities are non-observable, or partially observable, further constraints would be
added in a similar way to constraints (59)-(62). However, termination issues might arise when ab-
ducing events (in the loop path) that have not been observed: to avoid to abduce an infinte number

1030 Chesani et al. / Abducing Workflow Traces

of events, SCIFF has been implemented to explore the non-loop path as a first hypothesis for confor-
mance, and to explore the loop path only when the former is detected to be not compliant. Moreover,
we require that either the maximum length of a trace is given as a input parameter, or that the times-
tamp of the end activity is known: in both cases, SCIFF algorithm will terminate.

6. Related Work

A consistent part of the BPM literature of the last decades has been devoted to provide reasoning
services, such as process model consistency, trace compliance, runtime monitoring as well as schedul-
ing/planning, on top of process models and their executions. Consistency of process models is inves-
tigated in a number of works, and particularly in the case of workflows enriched with different types
of constraints, as for instance business contracts [5] or time [25, 26] constraints. For example, Bettini
et al. [25] suggest an approach based on Simple Temporal Networks (STN), where each node repre-
sents a time point, edges are temporal relationships and each task is represented by a start and an end
node. Planning and critical path methods are exploited instead by Eder and colleagues [26] where the
compliance of workflow models is checked in presence of conditional activities.

The (strong) compliance of traces towards process models (also known as conformance checking)
is another key reasoning service, as suggested by the several approaches proposed for dealing with
the disalignment between models and traces looking at the control flow only [27, 28] or taking into
account also data [29] or time constraints [30]. For example, in [30], compliance to time-constrained
workflows is verified with a two-step procedure: the trace is first aligned to the model and then to
the time constraint rules. A different perspective on the (strong) compliance is offered in [31], where
potential temporal anomalies are detected with respect to a Bayesian model (automatically inferred
from a Petri Net) enriched with temporal annotations extracted from historical execution traces.

Conditional compliance of traces towards process models has been tackled in the broader field
of conformance checking, although in an indirect manner. Indeed, a number of works focus on the
alignment of event logs and procedural/declarative process models: for example, [28, 32] explore
the search space of the set of possible moves to find the best ones for aligning the log to the model.
Conditional compliance is then viewed as a problem of alignment. Rather, the notion of conditional
compliance adopted in this work focuses on prescriptive models and on incomplete logs. Only few
approaches in the BPM literature more closely relate to such a notion, for example by leveraging on
techniques as Satisfiability Modulo Theory [33], or planning techniques [34].

A number of approaches and tools have been proposed for the runtime monitoring, and applied for
checking the compliance of running traces versus (enriched) process models, taking into consideration
control-flow aspects [4], control-flow and data [35], control-flow and time [16]. For example, Combi
and colleagues [16] propose a conceptual model for temporal processes, provide different types of
design-time and runtime compliance, and introduce ad-hoc techniques for checking these different
levels of compliance. Concerning prediction/recommendation services, some effort has been devoted
to recommend how to optimize dimensions such as resources [36] or time [37, 7]. In particular, the
work in [7] (from which the example in Figure 1 is taken) presents an approach based on control-flow
and temporal constraint satisfaction for the runtime monitoring as well as for the identification of the
schedule for a case that better minimizes the time constraint violations.

Chesani et al. / Abducing Workflow Traces 1031

The SCIFF framework, and in particular its support to abduction, have been exploited in the past
to model both procedural [38] and declarative [39] processes, without considering the issue of in-
completeness. In [23] instead we focused on the incompleteness issue only, discussing the different
types of incomplete data that can be observed in real logs. However, in that work we did not discuss
the temporal dimension, that was instead addressed for the first time in a poster presented at ECAI
[1]. Hence, [23, 1] can be considered as initial steps towards the SPOT model introduced here. In-
terestingly, in [40] abduction is exploited to evaluate trace compliance, but checking user permission
compliance only. Moreover, [40] deals with incomplete traces only (with complete events), while our
solution takes a more sophisticated approach to incompleteness and reasoning services. Note also that
the adopted abductive framework, CIFF [41], only supports ground abducibles and denial constraints.

The majority of works on temporal processes assume that the environment is fully observable
and that the duration of each activity (as well as the other temporal constraints) are certain and under
control of the system. Real world situations, however, show that activity durations are not always
controllable, thus motivating the need of dealing with uncertainty in dynamic environments. A lot
of research has been devoted to these issues: for example, in [42] the definition of Simple Temporal
Networks with Uncertainty is given as an extension of Simple Temporal Networks [43], with distinc-
tion and support to controllable and uncontrollable events. Recent works deal with temporal planning
aspects with uncertainty [44], and with the scheduling of multi-task applications [45] with uncertainty
as well. Currently, our approach deals only with the partial observability of the environment, and the
controllability issue is not taken into account.

Within the Artificial Intelligence field a number of alternative approaches to incompleteness exist,
as well as other frameworks that support abductive reasoning (e.g., ASP [46]), which we will consider
in future work. The aim of this contribution is to show that abduction, and in particular Abductive
Logic Programming, is a natural choice for representing the problem of observed, incomplete traces.
In addition, key features of SCIFF, such as native support of notions like expectations and fulfilmen-
t/violation of traces against model’s prescriptions, make the formalism especially appealing to reason
with the problem at hand.

7. Conclusions

We have presented an abductive framework to support business process compliance, by attacking
the different forms of incompleteness that may be present in an execution trace, and by supporting
also the temporal dimension in terms of constraints on the activity durations and between different
activities. To this purpose, we introduced the notion of SPOT model, a coherent encoding into the
SCIFF framework, and showed how different reasoning tasks can be addressed through the SCIFF
proof procedure. A current limit is that SPOT models do not support loops. This is due to the lack of
a clear semantics for temporal constraints between two activities: particularly ambiguous is the case
when such a constraint connects an activity involved in a loop. In previous work [23] we showed how
to deal with loops using an encoding similar to the one presented here: however, [23] ignored the
temporal dimension.

Concerning future development, the SCIFF framework is based on first-order logic, thus paving
the way towards the incorporation of data [35] and the management of more sophisticated forms of

1032 Chesani et al. / Abducing Workflow Traces

incompleteness. A further reasoning service on temporal workflows is the one of controllability. We
believe that an extension of our work to deal with dynamic controllability, for instance integrating
constraint propagation and filtering as in [45], would be an interesting and feasible future work.

Acknowledgments

This research has been partially supported by the Euregio IPN12 “KAOS: Knowledge-Aware Op-
erational Support” project, which is funded by the “European Region Tyrol-South Tyrol-Trentino”
(EGTC) under the first call for basic research projects. Marco Montali has been partially supported by
the UNIBZ project KENDO: Knowledge-driven ENterprise Distributed cOmputing. Sergio Tessaris
has been partially supported by the UNIBZ project PWORM: Planning for Workflow Management.

References

[1] Chesani F, De Masellis R, Francescomarino CD, Ghidini C, Mello P, Montali M, Tessaris S. Ab-
ducing Workflow Traces: A General Framework to Manage Incompleteness in Business Processes.
In: Kaminka GA, Fox M, Bouquet P, Hüllermeier E, Dignum V, Dignum F, van Harmelen F (eds.),
ECAI 2016 - 22nd European Conference on Artificial Intelligence, 29 August-2 September 2016, The
Hague, The Netherlands - Including Prestigious Applications of Artificial Intelligence (PAIS 2016), vol-
ume 285 of Frontiers in Artificial Intelligence and Applications. IOS Press. ISBN 978-1-61499-671-2,
2016 pp. 1734–1735. doi:10.3233/978-1-61499-672-9-1734. URL http://dx.doi.org/10.3233/

978-1-61499-672-9-1734.

[2] van der Aalst WMP, et al. Process Mining Manifesto. In: BPM Workshops. Springer, 2012 .

[3] van der Aalst WMP. Business Process Management: A Comprehensive Survey. ISRN Software
Engineering, 2013. doi:10.1155/2013/507984. Vol. 2013, Article ID 507984, 37 pages, 2013.
doi:10.1155/2013/507984.

[4] Maggi FM, Montali M, van der Aalst WMP. An Operational Decision Support Framework for Monitoring
Business Constraints. In: FASE, volume 7212 of LNCS. Springer, 2012 pp. 146–162.

[5] Governatori G, Milosevic Z, Sadiq S. Compliance Checking Between Business Processes and Business
Contracts. In: Proc. of EDOC. IEEE Computing Society, 2006 pp. 221–232.

[6] Combi C, Oliboni B, Zerbato F. Modeling and handling duration constraints in BPMN 2.0. In: Seffah
A, Penzenstadler B, Alves C, Peng X (eds.), Proceedings of the Symposium on Applied Computing, SAC
2017, Marrakech, Morocco, April 3-7, 2017. ACM. ISBN 978-1-4503-4486-9, 2017 pp. 727–734. doi:
10.1145/3019612.3019618. URL http://doi.acm.org/10.1145/3019612.3019618.

[7] Kumar A, Sabbella SR, Barton RR. Business Process Management: 13th International Conference, BPM
2015, Innsbruck, Austria, August 31 – September 3, 2015, Proceedings, chapter Managing Controlled
Violation of Temporal Process Constraints, pp. 280–296. Springer International Publishing, Cham. ISBN
978-3-319-23063-4, 2015. doi:10.1007/978-3-319-23063-4\ 20. URL http://dx.doi.org/10.1007/

978-3-319-23063-4_20.

[8] Zavatteri M, Combi C, Posenato R, Viganò L. Weak, Strong and Dynamic Controllability of Access-
Controlled Workflows Under Conditional Uncertainty. In: Carmona J, Engels G, Kumar A (eds.), Business
Process Management - 15th International Conference, BPM 2017, Barcelona, Spain, September 10-15,

http://dx.doi.org/10.3233/978-1-61499-672-9-1734
http://dx.doi.org/10.3233/978-1-61499-672-9-1734
http://doi.acm.org/10.1145/3019612.3019618
http://dx.doi.org/10.1007/978-3-319-23063-4_20
http://dx.doi.org/10.1007/978-3-319-23063-4_20

Chesani et al. / Abducing Workflow Traces 1033

2017, Proceedings, volume 10445 of Lecture Notes in Computer Science. Springer. ISBN 978-3-319-
64999-3, 2017 pp. 235–251. doi:10.1007/978-3-319-65000-5 14. URL https://doi.org/10.1007/

978-3-319-65000-5_14.

[9] Rogge-Solti A, Mans R, van der Aalst W, Weske M. Improving Documentation by Repairing Event
Logs. In: The Practice of Enterprise Modeling, volume 165 of LNBIP, pp. 129–144. Springer. ISBN
978-3-642-41640-8, 2013. doi:10.1007/978-3-642-41641-5 10. URL http://dx.doi.org/10.1007/

978-3-642-41641-5_10.

[10] Di Francescomarino C, Ghidini C, Tessaris S, Sandoval IV. Completing Workflow Traces using Action
Languages. In: Proceedings of the 27th International Conference on Advanced Information Systems
Engineering (CAiSE 2015), volume 9097 of Lecture Notes in Computer Science. Springer, 2015 pp. 314–
330.

[11] Mannhardt F, de Leoni M, Reijers HA. Extending Process Logs with Events from Supplementary Sources,
pp. 235–247. Springer International Publishing, Cham. ISBN 978-3-319-15895-2, 2015. doi:10.1007/
978-3-319-15895-2 21. URL https://doi.org/10.1007/978-3-319-15895-2_21.

[12] Kakas AC, Kowalski RA, Toni F. Abductive Logic Programming. J. Log. Comput., 1992. 2(6).

[13] Denecker M, Kakas AC. Abduction in Logic Programming. In: Kakas AC, Sadri F (eds.), Computational
Logic: Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski, Part I, volume 2407
of Lecture Notes in Computer Science. Springer. ISBN 3-540-43959-5, 2002 pp. 402–436. doi:10.1007/
3-540-45628-7\ 16.

[14] Alberti M, Chesani F, Gavanelli M, Lamma E, Mello P, Torroni P. Verifiable agent interaction in abductive
logic programming: The SCIFF framework. ACM Trans. Comput. Log., 2008. 9(4).

[15] Kiepuszewski B, ter Hofstede AHM, Bussler CJ. On Structured Workflow Modelling. In: Seminal Con-
tributions to Information Systems Engineering. Springer, 2013.

[16] Combi C, Gozzi M, Posenato R, Pozzi G. Conceptual modeling of flexible temporal workflows. TAAS,
2012. 7(2):19.

[17] Kakas AC, Mancarella P. Abduction and Abductive Logic Programming. In: Proc. of ICLP. 1994 .

[18] Fung TH, Kowalski RA. The Iff Proof Procedure for Abductive Logic Programming. J. Log. Program.,
1997. 33(2).

[19] Kunen K. Negation in Logic Programming. J. Log. Program., 1987. 4(4).

[20] Clark KL. Negation as Failure. In: Logic and Data Bases. Plenum Press, 1978.

[21] Jaffar J, Maher MJ, Marriott K, Stuckey PJ. The Semantics of Constraint Logic Programs. J. Log. Pro-
gram., 1998. 37(1-3).

[22] Alberti M, Chesani F, Gavanelli M, Lamma E, Mello P, Torroni P. Verifiable Agent Interaction in Abduc-
tive Logic Programming: the SCIFF proof-procedure. Technical Report DEIS-LIA-06-001, University of
Bologna (Italy), 2006. LIA Series no. 75.

[23] Chesani F, De Masellis R, Francescomarino CD, Ghidini C, Mello P, Montali M, Tessaris S. Abducing
Compliance of Incomplete Event Logs. In: Adorni G, Cagnoni S, Gori M, Maratea M (eds.), AI*IA
2016: Advances in Artificial Intelligence - XVth International Conference of the Italian Association for
Artificial Intelligence, Genova, Italy, November 29 - December 1, 2016, Proceedings, volume 10037
of Lecture Notes in Computer Science. Springer. ISBN 978-3-319-49129-5, 2016 pp. 208–222. doi:
10.1007/978-3-319-49130-1 16. URL http://dx.doi.org/10.1007/978-3-319-49130-1_16.

https://doi.org/10.1007/978-3-319-65000-5_14
https://doi.org/10.1007/978-3-319-65000-5_14
http://dx.doi.org/10.1007/978-3-642-41641-5_10
http://dx.doi.org/10.1007/978-3-642-41641-5_10
https://doi.org/10.1007/978-3-319-15895-2_21
http://dx.doi.org/10.1007/978-3-319-49130-1_16

1034 Chesani et al. / Abducing Workflow Traces

[24] Chesani F, De Masellis R, Di Francescomarino C, Ghidini C, Mello P, Montali M, Tessaris S. Abducing
Compliance of Incomplete Event Logs. Technical Report submit/1584687, arXiv, 2016.

[25] Bettini C, Wang XS, Jajodia S. Temporal Reasoning in Workflow Systems. Distributed and Parallel
Databases, 2002. 11(3):269–306.

[26] Eder J, Gruber W, Panagos E. Temporal modeling of workflows with conditional execution paths. In:
Database and Expert Systems Applications. Springer, 2000 pp. 243–253.

[27] Rozinat A, van der Aalst WMP. Conformance Checking of Processes Based on Monitoring Real Behavior.
Inf. Syst., 2008. 33(1):64–95.

[28] Adriansyah A, van Dongen BF, van der Aalst WMP. Conformance Checking Using Cost-Based Fitness
Analysis. In: Proc. of EDOC. IEEE Computer Society, 2011 .

[29] de Leoni M, van der Aalst W, van Dongen BF. Data- and Resource-Aware Conformance Checking of
Business Processes. In: Proc. of BIS. Springer, 2012. doi:10.1007/978-3-642-30359-3\ 5.

[30] Taghiabadi ER, Fahland D, van Dongen BF, van der Aalst WMP. Diagnostic Information for Compliance
Checking of Temporal Compliance Requirements. In: CAiSE, volume 7908 of LNCS. Springer. ISBN
978-3-642-38708-1, 2013 pp. 304–320.

[31] Rogge-Solti A, Kasneci G. Temporal Anomaly Detection in Business Processes. In: Business Process
Management - 12th International Conference, BPM 2014, Haifa, Israel, September 7-11, 2014. Proceed-
ings. 2014 pp. 234–249. doi:10.1007/978-3-319-10172-9\ 15.

[32] De Leoni M, Maggi FM, van der Aalst WMP. Aligning event logs and declarative process models for
conformance checking. In: Proc. of BPM. Springer, 2012 .

[33] Bertoli P, Di Francescomarino C, Dragoni M, Ghidini C. Reasoning-Based Techniques for Dealing with
Incomplete Business Process Execution Traces. In: Proc. of AI*IA. Springer, 2013 .

[34] Di Francescomarino C, Ghidini C, Tessaris S, Sandoval IV. Completing Workflow Traces Using Action
Languages. In: Proc. of CAiSE. Springer, 2015 .

[35] De Masellis R, Maggi FM, Montali M. Monitoring data-aware business constraints with finite state au-
tomata. In: Proc. of ICSSP. ACM Press, 2014 doi:10.1145/2600821.2600835.

[36] Barba I, Weber B, Del Valle C. Supporting the Optimized Execution of Business Processes through
Recommendations. In: Business Process Management Workshops (1), volume 99 of LNBIP. Springer,
2011 pp. 135–140.

[37] van der Aalst WMP, Schonenberg MH, Song M. Time Prediction Based on Process Mining. Inf. Syst.,
2011. 36(2):450–475. doi:10.1016/j.is.2010.09.001.

[38] Chesani F, Mello P, Montali M, Storari S. Testing Careflow Process Execution Conformance by Translat-
ing a Graphical Language to Computational Logic. In: Proc. of AIME. 2007 .

[39] Montali M, Pesic M, van der Aalst WMP, Chesani F, Mello P, Storari S. Declarative specification and
verification of service choreographiess. TWEB, 2010. 4(1).

[40] Mian US, den Hartog J, S Etalle NZ. Auditing with incomplete logs. In: Proc. of HotSpot. 2015 .

[41] Mancarella P, Terreni G, Sadri F, Toni F, Endriss U. The CIFF proof procedure for abductive logic pro-
gramming with constraints: Theory, implementation and experiments. TPLP, 2009. 9(6).

[42] Vidal T, Fargier H. Handling contingency in temporal constraint networks: from consistency to controlla-
bilities. Journal of Experimental and Theoretical Artificial Intelligence, 1999. 11:23–45.

Chesani et al. / Abducing Workflow Traces 1035

[43] Dechter R, Meiri I, Pearl J. Temporal constraint networks. Artificial Intelligence, 1991. 49(1):61–95.

[44] Cimatti A, Micheli A, Roveri M. Strong Temporal Planning with Uncontrollable Durations: A State-Space
Approach. In: Proc.of AAAI. 2015 pp. 3254–3260.

[45] Lombardi M, Milano M, Benini L. Robust Scheduling of Task Graphs under Execution Time Uncertainty.
IEEE Trans. Computers, 2013. 62(1):98–111.

[46] Baral C. Knowledge Representation, Reasoning, and Declarative Problem Solving. Cambridge University
Press, New York, NY, USA, 2003. ISBN 0521818028.

	Copertina_postprint_IRIS_UNIBO
	fi2016
	Introduction
	Process Models, Reasoning Services and Incompleteness
	Process Models and Incomplete Traces
	Compliance
	The Additional Reasoning Services

	Abduction and Incomplete Processes
	Encoding SPOTs in SCIFF
	Compliance in SCIFF: Declarative Semantics
	SCIFF at work

	Evaluation
	Extending SPOTs with Loops
	Related Work
	Conclusions

