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Density functional investigation of the thermo-physical and thermo-chemical properties of 
2M1 muscovite

Gianfranco Ulian1 and Giovanni valdrè1,*

1Centro di Ricerca Interdisciplinare di Biomineralogia, Cristallografia e Biomateriali, Dipartimento di Scienze Biologiche, Geologiche e  
Ambientali, Università degli Studi di Bologna, Piazza di Porta San Donato 1, 40126 Bologna, Italy

abstract

In the present study, we computed the thermo-chemical and thermo-physical properties of the 2M1 
polytype of muscovite in the 0–10 GPa and 0–900 K ranges, using the hybrid DFT/B3LYP-D* density 
functional, corrected to take into account dispersive forces, and by using the quasi-harmonic approxima-
tion. The bulk modulus KT0 of muscovite, its first derivative K′, and the unit-cell volume at zero pressure 
V0 at 298.15 K, calculated using a third-order Birch-Murnaghan equation of state, were KT0 = 59.93 GPa, 
K′ = 7.84, and V0 = 940.6 Å3. Our theoretical data are in good agreement with previous experimental 
results obtained by X-ray diffraction. Thermal bulk moduli, KT, thermal expansion coefficients, aT, and 
heat capacity at different P-T conditions are given, which could be useful in both geophysical and tech-
nological applications. The results of this kind of analysis can be used in the study of the thermodynamic 
properties of solid phases at physical conditions that are difficult to obtain during experimental procedures, 
especially under controlled high pressures and temperatures.

Keywords: DFT, quasi-harmonic approximation, muscovite, phonons, thermal equation of state, 
thermochemistry

introdUction

White dioctahedral micas (2:1 phyllosilicates) play a crucial 
role in most petrogenetic processes, in both magmatic and low- 
and medium-pressure metamorphic environments. For example, 
muscovite commonly occurs in metamorphic rocks and has been 
used as marker to estimate the P-T conditions of crystallization. 
Among the physical properties of interest, one of the most impor-
tant parameters is the equation of state, which is the pressure- and 
temperature-dependence of the mineral unit-cell volume. Such 
equation is necessary for calculating the P-T conditions of mineral 
reactions. Understanding the mineral thermoelastic behavior is 
important to provide a reliable basis for interpretation and pre-
diction of phase equilibria, as they are used as geothermometers 
and geobarometers (Guidotti and Sassi 1976, 2002; Putnis 1992; 
Guidotti et al. 1994). To a first approximation, the rock-forming 
white micas can be described as crystalline solutions among the 
three end-members: muscovite (Ms), paragonite (Pg), and mar-
garite (Mg). In the past, researchers attempted to use the partition-
ing of Na and K between coexisting muscovite and paragonite as a 
geothermometer (Guidotti and Sassi 1976). However, difficulties 
arose from using solvus curves not accurate enough to model the 
thermodynamic properties of these two micas. In fact, the exact 
shape of the solvus, and how it changes as a function of pressure 
and temperature are still not well known.

Many experimental studies contributed to the knowledge of the 
molar volumes of muscovite-2M1 polytype and of their variation 
with P (Comodi and Zanazzi 1995, 1997) and T (Symmes 1986; 
Guggenheim et al. 1987; Catti et al. 1989; Comodi et al. 2002). 

These data allowed a definition of an approximate P-V-T equation 
of state for K- and Na-dioctahedral micas. However, these are only 
an indication of volumetric behavior at the boundaries of the P-T 
conditions achieved in rocks in the Earth’s crust. To determine 
more accurately the behavior of muscovite–paragonite micas it 
is essential to verify if there are any ‘‘non-linear effects” when 
both P and T are high. If the effects of P and T on the volumetric 
properties of muscovite–paragonite micas were precisely known 
for the full range of P-T conditions of geologic interest, it would 
be possible to accurately calculate effects on the muscovite–para-
gonite solvus. Relatively small changes in excess molar volume 
could have significant effect on solvus limb positions, particularly 
in the 600 to 700 °C range.

However, it is often difficult to obtain the equation of state, 
especially in natural mineral samples, because they present a series 
of both physical and chemical internal heterogeneities (cation 
order/disorder, morphological, crystal-chemical, and crystal-
physical variations) that hinder a well-constrained evaluation 
of the physical properties (Mondol et al. 2008). Furthermore, 
obtaining experimentally the simultaneous pressure and thermal 
(P-T) behavior of a mineral is still a difficult task, which requires 
complex and expensive apparatuses.

In recent years, the adoption of accurate quantum mechanical 
approaches increased the knowledge on minerals. Such computa-
tional methods can provide reliable crystal structures, subsequently 
used to yield both the elastic and thermal properties by varying 
the mineral unit cell and using the quasi-harmonic approxima-
tion, respectively (Militzer et al. 2011; Ortega-Castro et al. 2010; 
Ottonello et al. 2010, 2009b; Prencipe et al. 2011; Stixrude 
2002). These methods provide results that can help to explain the 
thermo-chemical and thermo-physical behavior of minerals and * E-mail: giovanni.valdre@unibo.it

 



aid interpretations of the seismologic data.
Muscovite presents an interesting challenge to computational 

mineralogists, because its structure is composed by tetrahedral-
octahedral-tetrahedral (T-O-T) layers with potassium in the 
interlayer (see the structure of muscovite reported in Fig. 1). The 
simulation parameters should be chosen carefully when dealing 
with micas, because two directions of the mineral are dominated by 
covalent bonds (within the TOT layers), while the third direction 
exhibits an interplay of both van der Waals forces (between the 
layers) and strong ionic interactions due to the interlayer cations.

To the authors’ knowledge, there is only one quantum me-
chanical simulation of the muscovite equation of state reported 
in literature by Ortega-Castro et al. (2010). That study was per-
formed in athermal conditions, and the authors employed a density 
functional theory (DFT) approach using the generalized gradient 
approximation (GGA) PBE functional, numeric atomic orbitals 
and norm conserving pseudopotentials. Very recently, Hernandez-
Haro et al. (2013) presented a DFT investigation on the elastic 
constants of the muscovite-paragonite mineral series, employing 
the same computational methods adopted by Ortega-Castro et al. 
(2010). The authors studied the effect of the K and Na content in 

the crystal lattice on the second-order elastic constant tensor. Mil-
itzer et al. (2011) also calculated the isothermal elastic constants 
at 0 K of muscovite using DFT and looked at the effect of Al-Si 
cation disorder in the crystal structure. However, in both works 
the authors did not consider the contribution of the dispersive 
forces acting between the TOT layers, and the thermal effects on 
the mineral elastic properties.

The aim of our work is a further step in the knowledge of 
muscovite equation of state. We present a detailed theoretical 
simulation of the muscovite-2M1 polytype of ideal chemical 
formula KAl2(AlSi3)O10(OH)2 to provide the thermal equation of 
state, the thermo-physical and thermo-chemical properties of the 
mineral, taking into account the dispersive force contribution. We 
employed the DFT/B3LYP-D* functional (dispersive forces cor-
rected) and an all-electron localized Gaussian-type orbital basis 
set. This approach is known to provide very accurate structural 
and energy results of phyllosilicates, data required for a correct 
calculation of mineral physical-chemical properties (Ulian et al. 
2013). First, we geometrically optimized the muscovite unit-cell 
and then compared the result to experimental and theoretical data 
available in literature. Second, the muscovite athermal equation of 
state is obtained by varying the unit-cell volume and finally, using 
the quasi-harmonic approximation described by Anderson (1995), 
we calculated the thermo-mechanical and thermo-chemical proper-
ties of muscovite, as done in a previous work on talc (Ulian et al. 
2014; Ulian and Valdrè 2015). Thermal bulk moduli, KT, thermal 
expansion coefficients, aT, and heat capacity (isochoric, CV, and 
isobaric, CP) at different P-T conditions are provided, which could 
be useful in both geophysical and technological applications. For 
example, muscovite is currently used in resistors (Haynes 2014) 
and in other electronic devices (Jin 2011; Saito and Yamaguchi 
2009), in paints (Kalendova et al. 2010), and as additive in ceram-
ics tailored for fuel cells (Liaw et al. 2011). Previous studied of 
Hsieh and co-workers (2009) showed that the thermal conductivity 
of muscovite can be tuned by pressure. Heat capacity at constant 
pressure is finally compared to available experimental data of 
differential scanning calorimetry obtained by Robie et al. (1976).

compUtational details

Generality
We adopted the Becke three-parameter hybrid exchange func-

tional (Becke 1993) in combination with the gradient-corrected 
correlation functional of Lee et al. (1988) for all calculations 
(B3LYP). The exchange-correlation contribution is the result of a 
numerical integration of the electron density and its gradient, and 
we calculated it over a pruned grid of 75 points and 974 angular 
points obtained from the Gauss-Legendre quadrature and Lebedev 
schemes (Prencipe et al. 2004). This represents a good compromise 
between accuracy and cost of calculation for geometry optimiza-
tion and vibrational frequencies. The values of the tolerances that 
control the Coulomb and exchange series are the default provided 
by CRYSTAL09 (Dovesi et al. 2009), but we increased the pseudo-
overlap parameter to stabilize the self-consistent bahavior during 
unit-cell deformations. The Hamiltonian matrix has been diagonal-
ized (Monkhorst and Pack 1976) using a 4 × 4 × 4 k-mesh, which 
leads to 36 reciprocal lattice points. We chose this sampling grid 
to perform a better sampling along the c-axis direction, due to the 
mixed ionic/dispersive forces acting in that direction.

fiGUre 1. Schematic structure of ideal muscovite, viewed (a) from 
[100] and (b) from [001] directions: embedding of one interlayer I in
between two TOT layers, each one of which consists of one octahedral 
sheet O sandwiched by two tetrahedral sheets T. (c) The local structure
of the interlayer potassium ions, where 12 oxygen atoms in the first shell 
are interlayer atom, while Si and Al atoms are located in the centers of
O tetrahedrons. (Color online.)



Within the CRYSTAL code, multi-electron wave functions 
are described by linear combination of crystalline orbitals (CO), 
expanded in terms of Gaussian-type orbital (GTO) basis sets. For 
all the calculations, oxygen has been described by a 8-411d11G 
basis sets, silicon by a 88-31G* (Nada et al. 1996) and hydrogen 
by a 3-1p1G basis set (Gatti et al. 1994). We had employed them 
with good results in our previous investigations of the structure and 
mechanical behavior of talc (Ulian et al. 2013, 2014). Aluminum 
and potassium atoms are described by a 8-511d1G (Catti et al. 
1994b) and a 86-511G (Dovesi et al. 1991) basis sets, respectively. 
The chosen basis sets are well balanced and, in particular the one of 
the hydrogen atom, allows accurate calculations in both molecular 
and crystal structures with sustainable computational costs.

We optimized lattice constants and internal coordinates within 
the same run using the analytical gradient method for the atomic 
positions and a numerical gradient for the unit-cell parameters. The 
Hessian matrix is upgraded with the Broyden-Fletcher-Goldfarb-
Shanno algorithm (Broyden 1970a, 1970b; Fletcher 1970; Gold-
farb 1970; Shanno 1970). The tolerances for the maximum allowed 
gradient and the maximum atomic displacement for considering 
the geometry as converged have been set to 6×10–5 hartree bohr–1 
and 6×10–5 Å, respectively.

In periodic systems and within the harmonic approximation, 
the phonon frequencies at G-point are evaluated diagonalising the 
central zone (k = 0) mass-weighted Hessian matrix

Wij k = 0( )=
Hij
0G

MiM jG
∑ (1)

Hij
0G represents the second derivative of the electronic and nuclear 

repulsion energy E evaluated at equilibrium u = 0 with respect 
to the displacement of atom A in cell 0 (ui = xi – xi

*) and displace-
ment of atom B in neighboring cells G (uj = xj – xj

*) from their 
equilibrium position x*

i, x*
j:

Hij
0G

G
∑ =

∂2E
∂ui

0∂uj
G

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥0

i=1,...,3N ; j=1,...,3N
G
∑ (2)

Mi and Mj are the mass of the atoms associated to the i-th and j-th 
coordinates, respectively.

The calculation of the Hessian at equilibrium is made by the 
analytical evaluation of the energy first derivatives, Fj of E with 
respect to the atomic displacements

Φ j = ν j
G =

∂E
∂uj

G j=1,...,3N
G
∑

G
∑   (3)

while second derivatives at u = 0 (where all first derivatives are 
zero) are calculated numerically using a “two-point” formula:

∂Φ j

∂ui
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥0
≈
Φ j 0,...,ui

0 ,...,0( )−Φ j 0,...,ui
0 ,...,0( )

ui
0

i=1,...,3N ; j=1,...,3N

(4)

More details on the vibrational calculation made by CRYSTAL is 
beyond the scope of the present paper and can be found in specific 
literature (Pascale et al. 2004; Tosoni et al. 2005). The Hessian 
matrix eigenvalues provide the normal harmonic frequencies wh 
and it is obtained with 3N+1 self-consistent field and gradient 

calculations. This method can be quite demanding for large unit 
cells, but point symmetry facilitates a remarkable time saving, 
because only the lines of the Hessian matrix referring to irreduc-
ible atoms need to be generated. The tolerances were increased 
to obtain better results, TOLDEE = 10.

Density functional theory functionals, both generalized gra-
dient approximation ones and their hybrid forms, often fails to 
adequately describe long-range dispersive interactions (Ulian et 
al. 2013). To overcome this problem, dispersive forces have been 
evaluated according to the semiempirical approach (DFT+D) sug-
gested by Grimme (2006), which adds the following contribution 
to the calculated DFT energy

EDISP =−s6 fdump Rij ,g
6( )C6

iC6
j

Rij ,g
6

i≠ j
∑

g
∑ (5)

fdump =
1

1+ e−d Rij ,g Rvdw−1( )

The summation over all atom pairs ij and g lattice vectors excludes 
the self-interaction contribution (i = j) for every g. The parameters 
Ci

6 represent the dispersion coefficient for the atom I; Rij g is the 
interatomic distance between atom i in the reference cell and atom 
j in the neighboring cells at distance |g| and s6 is a functional-
dependent scaling factor. We employed the Ci

6 parameters reported 
in the work of Grimme (2006), which were obtained from atomic 
ionization potentials (Ip) and static dipole polarizabilities (a) ac-
cording to the formula Ci

6 = 0.05NIi
pai, where N depends on atom 

row in the periodic table. The function fdump is used to dump the 
energy correction to avoid double counting of short-range con-
tributions and depends on the sum of atomic van der Waals radii 
(Rvdw) and on a steepness parameter (d = 20). According to results 
previously reported in literature (Civalleri et al. 2008), which show 
that the EDISP correction tends to overestimate cohesive energy in 
solid crystals, the original B3LYP+D parameters were modified. 
We set s6 to 1, the hydrogen atom van der Waals radius Rvdw(H) to 
1.30 and the heavier atoms van der Waals radii were scaled by a 
factor 1.05, correction called B3LYP-D*, named by Civalleri et 
al. (2008). The same approach was adopted with good results in 
a previous work on talc (Ulian et al. 2013).

Thermomechanical and thermochemical properties
We calculated the total pressures, bulk moduli, thermal 

expansion coefficients, and heat capacity in the limit of the 
quasi-harmonic approximation described by (Anderson 1995). 
The approach is based on the Grüneisen’s mode-g parameters, 
namely the evaluation of unit-cell volume dependence of the vi-
brational normal mode frequencies, calculated at G point. Due to 
the limited computational resources, we did not take into account 
dispersion effects in the muscovite phonon spectra at different 
pressures. However, the number of atoms in the unit cell, and the 
corresponding number of vibrational frequencies at G point, are 
sufficiently large and the corresponding Grüneisen’s parameters 
can be considered representative of the whole set of parameters. 
In previous works (Ottonello et al. 2009a, 2009b, 2010; Prencipe 
et al. 2011; Ulian and Valdrè 2015) the dispersion effects were 
neglected, but the thermomechanical and thermochemical proper-
ties were correctly estimated for minerals with unit cell smaller 
than that of muscovite. Indeed, thermodynamic properties, which 



are obtained as averages over the relevant quantities at the atomic 
level, can reliably be derived even without a detailed knowledge 
of the phonon density of state (Kieffer 1979a).

The pressure, at each unit-cell volume and temperature, is 
related to the Helmholtz free energy F of a solid insulator (An-
derson 1995)

F = EST V( )+ FVIB V ,T( ) (6)

where EST is the potential of a static lattice at absolute zero (ather-
mal limit) and FVIB is the vibrational energy related to the thermal 
motion of the atoms.

The pressure can be obtained by the volume first derivative 
of Equation 6

P=− ∂F
∂V
⎛

⎝
⎜⎜⎜
⎞

⎠
⎟⎟⎟⎟
T

=−
∂EST
∂V
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
T=0

+
∂FVIB
∂V
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
T

(7)

Using the energy partition principle, the expression that relates the 
pressure at each volume and temperature is given by

P=−
∂EST
∂V
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
T=0

+
kT
2V

γi Xi
i=1

3n−3

∑ +
kT
V

ni νi ,T( )γi Xi
i=1

3n−3

∑  (8)

where

ni νi ,T( )= 1
eXi −1

(9)

and Xi = hni/kT, h, and k are the Planck’s and Boltzmann constants, 
respectively, ni is the vibrational frequency of the ith normal mode 
and ni is the Bose-Einstein distribution applied to the phonon gas. 
The Grüneisen’s mode-g parameter is defined as

γi =−
∂lnνi
∂lnV

=−
V
νi

∂νi
∂V

(10)

and were estimated by the analytical derivatives with respect to 
V of quadratic polynomials fitting the numerically determined 
gi(V) curves. The total pressure given by Equation 8 is the sum of 
three contributions: the first one is the static pressure Pst(V); the 
second one is the zero point pressure Pzp(V) and the third one is 
the thermal pressure Pth(V,T).

We calculated the static pressure Pst(V) values by interpolation 
of the Est(V) curve by Legendre’s polynomials up the third-order 
and obtaining the static pressures as derivatives of the resulting 
analytical curves. The vibrational pressure, namely Pvib(V,T) = 
Pzp(V) + Pth(V,T), was obtained directly from Equations 8 and 9. 
As observed by Prencipe et al. (2011) this method would implicitly 
assume the constancy of the Grüneisen’s parameters as the cell 
volume is reduced in a finite interval. However we calculated the 
volume dependence of the mode-g parameters.

With the set of P(V,T) data obtained as described above, we 
derived the volume at zero pressure (V0), the bulk modulus (KT) 
and its first derivative with respect to P (K′) using a third-order 
Birch-Murnaghan equation of state (BM3) (Birch 1947)

PBM3=
3
2
KT

V
V0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

−7 3

−
V
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⎛

⎝
⎜⎜⎜⎜

⎞

⎠
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−5 3⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
1− 3
4
4−K '( ) V

V0

⎛

⎝
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⎞

⎠
⎟⎟⎟⎟⎟

−2 3

−1
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

+ P0   (11)

with V0 the volume at reference pressure P0 (P0 = 0.0 GPa). We 
made the root mean square fitting of P as a function of V at each 

temperature with the EOS-FIT5.2 software (Angel 2001).
The thermal expansion coefficient (aT) at any given cell volume 

(pressure), as a function of T, is obtained by direct evaluation of 
the aTKT product (Anderson 1995)

αT KT =
R
ZV

γie
Xi Xi
eXi −1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

i=4

3n

∑ (12)

where KT at each P-T condition is calculated from Equation 11.
The isochoric heat capacity as a function of T of a solid insula-

tor can be expressed by (Anderson 1995)

CV =
R
Z

Xi
2eXi

eXi −1( )
2

i=4

3n

∑ (13)

The specific heat at constant pressure (CP) can be obtained from 
the relationship

CP =CV +TαT
2KT ,PVP,T (14)

where VP,T is the cell volume at pressure P and temperature T, 
respectively. It is worth noting that the isochoric specific heat 
expression in Equation 13 does not include the acoustic mode con-
tribution described by the Kieffer’s sinusoidal dispersion (Kieffer 
1979b). This contribution is calculated from the acoustic (seismic) 
wave velocities within the mineral, which are in turn derived from 
the second-order elastic constants (SOEC). We did not calculate 
the muscovite SOEC, because, as observed in our previous work 
on talc (Ulian and Valdrè 2015), the contribution from the acoustic 
branch is very small at T > 300 K, consequently the description of 
the thermochemical properties is adequately described by the sole 
optical modes, and a saving is made on the computational costs.

resUlts and discUssion
Geometry

The starting muscovite structure was taken from XRD refine-
ment data of Guggenheim et al. (1987), belonging to the C2/c 
space group. However, in our simulations we employed a lower-
symmetry space group, P1, which could break the monoclinic 
symmetry of muscovite. This choice was made for two reasons: 
the first one regards testing the stability of the quantum mechanical 
approach; the second one is letting the mineral crystallographic 
cell freely relax during compression (vide infra). Hydrogen atoms 
location is similar to the one of pyrophyllite structure, with O-H 
bond direction canted by about 30° on the [001] direction. Oxygen 
atoms are subdivided in three groups: apical [Oa or O(a)] shared 
between Si and Al; hydroxyl [Oh or O(h)]; basal [Ob or O(b)] 
shared between silica tetrahedrons. Aluminum atoms substitute 
silicon ones in the tetrahedral layer so as to maintain the unit-cell 
symmetry. Albeit this choice does not consider all possible alu-
minum distribution in the real mineral, it is a good starting model 
to be compared to experimental observations. See the stick and 
ball graphical representation of muscovite reported in Figure 2.

The optimized results of the structure of muscovite obtained 
by GTO/B3LYP-D* approach are described in details in Table 
1, in comparison with a series of X-ray and neutron diffraction 
refinements (Brigatti et al. 1998; Gatta et al. 2011; Guggenheim et 
al. 1987) and very recent theoretical results reported in literature 
(Hernandez-Haro et al. 2013). Our data are in general agreement 
with all those obtained experimentally, reported in Table 1, with 



small deviations due to the temperature analysis and mineral 
compositions. However, in the following we discuss and com-
pare our structural theoretical results, calculated at T = 0 K, with 
neutron diffraction ones (Gatta et al. 2011), obtained at similar 
temperature (T = 20 K).

It can be seen that lattice parameters and bond lengths (internal 
geometry) are in good agreement to those of Gatta et al. (2011), 
with only a small over-estimation of the cell volume (+0.6%). In 
particular, the description of the c-axis is accurate, although with 
a small underestimation of about 0.7%. It is worth to note that, 
albeit the adopted space group breaks the monoclinic symmetry 
of muscovite, the deviations from ideal a and g angles (90°) are 
less than 0.3%. The interlayer thickness, I (see Fig. 1), is very 
close to that reported experimentally. This observation suggests 
the Grimme’s semi-empirical correction for dispersive forces 
provides an adequate description of the energy and geometry of 
the muscovite mineral.

A thermal equation of state and internal geometry 
variations

We report in Table 2 the muscovite relaxed lattice parameters 
at the athermal limit. We found that the relationship between the 
muscovite energy Est at different volumes V, i.e., Est(V) curve, 
is well described by a third-order polynomial equation with 
parameters p1 = –3.509×10–8, p2 = 1.052×10–4, p3 = –1.046×10–1, 
and p4 = 3.449×10+1 (R2 = 0.999995). We were able to obtain the 
static pressure related to each volume Pst(V) by derivation of the 
Est(V) curve, according to Equation 7. A graphical representation 
of the Est(V) and Pst(V) trends are shown in Figures 3a and 3b, 
respectively.

Next step is the calculation of muscovite bulk modulus at 0 
K (KT0), its pressure first derivative (K′), and the volume at zero 

pressure (V0) by fitting the volume vs. Pst data using BM3 equa-
tion of state. The refined elastic parameters are V0 = 926.86(38) 
Å3, KT0 = 64.2(1.2) GPa, and K′ = 7.98(33).

In Figures 4a and 4b we report the evolution of volume and 
lattice parameters at different pressure, respectively. Regarding the 
compressive regime (P > 0 GPa), the calculated trend is monotonic 
(Fig. 4a). It is graphically clear that muscovite deformation exhibits 
a strongly anisotropic behavior, with smaller variations for a and 
b cell parameters than for c. It is possible to describe the observed 
anisotropy by calculating the axial bulk moduli with a linear BM3 
fit (Angel 2001) on the lattice parameters at different pressures. 
The obtained refined data, after the BM3 fit, for the a, b, and c axis 
were, respectively: a0 = 5.1975 ± 0.0148 Å, KT0(a) = 136.95 ± 1.12 
GPa, and K′(a) = 5.27 ± 0.25; b0 = 9.0392 ± 0.0935 Å, KT0(b) = 

Table 1.  Calculated and experimental unit-cell and internal geometry of muscovite
Present work DFT/B3LYP-Da Experimental XRDa Experimental XRD data rangesb Neutron diffractionc DFT PBEd

Lattice parameters
a (Å) 5.1974 5.1579 5.174–5.226 5.1999 5.187
b (Å) 9.0389 8.9505 8.976–9.074 9.0198 9.006
c (Å) 19.8444 20.071 19.875–20.097 19.945 20.148
a (°) 90.27 90.00 90.00 90.00 90.00
b (°) 96.23 95.75 95.59–95.84 95.81 95.44
g (°) 89.88 90.00 90.00 90.00 90.00

½csinb 9.366 9.985 9.890–9.996 9.9213 10.029
V (Å3) 926.74 921 926–945.4 930.66 936.999
Mean bond lengths (Å)
O-H 0.961 – 0.95 – 0.974
Si-O 1.634 1.647 1.64 1.642 1.651
Al(T)-O 1.741 – – – 1.757
Al(Oc)-O(a) 1.937 1.921 1.927–1.94 1.939 1.934
Al(Oc)-O(h) 1.919 1.935 1.911 1.939 1.918
K-Oouter 3.380 3.368 3.272–3.373 3.329 3.427
K-Oinner 2.798 2.848 2.832–2.934 2.863 2.759
DK 0.582 0.520 0.426–0.509 0.466 0.6680
TOT structure
Tetrahedral rotation (°) 12.2 11.8 10.3–11.3 10.39 14.6
V (T) Si,Al (Å3) 2.222, 2.697 2.25 – 2.265 2.273, 2.774
V (Oc) (Å3) 9.345 9.15 – 9.518 9.386
T thickness (Å) 2.248 2.234 2.262 2.224 2.277
Oc thickness (Å) 2.086 2.081 2.083 2.102 2.093
I thickness (Å) 3.260 3.436 3.375 3.125 3.361
a Data from Guggenheim et al. (1987) K1.00Na0.03Ca0.01(Al1.93Fe0.01Mn0.01)(Al0.91Si3.09)O10 (OH)1.88F0.12.
b Data collected from different sources. Burnham and Radoslovich (1964): K0.66Na0.34Al2(AlSi3) O10(OH)2; Rothbauer (1971): K0.85Na0.1(Al1.81Fe2+

0.14Mg0.12)(Al0.9Si3.1)O9.8(OH)2; 
Catti et al. (1989): K0.86Na0.11(Al1 93Fe0.07Mg0.02)(Al0.92Si3.08)O10(OH)2; Catti et al. (1994a): K0 90Na0.07 (Al1.63Fe0.23Mg0.16Ti0.03)(Al0.80Si3.20)O10(OH)2; Brigatti et al. (1998): different 
compositions; Mookherjee and Redfern (2002): K0.95Na0.05(Al0.76 Fe0.14Mg0.10)2(Al0.75Si3.25)O10(OH1.96F0.04).
c Data from neutron diffraction experiments at 20 K (Gatta et al. 2011).
d Theoretical data from Hernandez-Haro et al. (2013).

fiGUre 2. Stick and ball representation of the DFT optimized 
muscovite model viewed (a) from [100] and (b) from [001] directions. 
(Color online.)



118.25 ± 1.01 GPa, and K′(b) = 5.01 ± 0.22; c0 = 19.8495 ± 0.1602 
Å, KT0(c) = 30.27 ± 0.36 GPa, and K′(c) = 6.60 ± 0.12. Note that 
the lattice parameters a0, b0, and c0 are slightly different from those 
reported in Table 1, obtained by structural optimization, because of 
the BM3 fit. The axial compressibilities, described as b = 1⁄3 KT0, 
are accordingly in the ratio b(a):b(b):b(c) = 1.000:1.158:4.525. 
This result suggests that the covalent bonds in the dioctahedral 
TOT layers are less compressible than the interlayer dominated 
by electrostatic and van der Waals forces (c direction).

Regarding the internal geometry of muscovite, the pressure 
affects the size, shape, and orientation of the coordination polyhe-
drons. While the thickness of the TOT layer is almost non-affected 
by pressure (–2.0%), the interlayer thickness I shrinks of about 
15% at 10 GPa (Supplementary Fig. 11), in agreement with the 
axial moduli. The pressure increase produces a volume reduction 
in both SiO4/AlO4 tetrahedra and AlO6 octahedra of about 3–4%. 
The mean Si–O and Al–O bond lengths are contracted by 0.9% 
and 1.3%, respectively, from 0 to 10 GPa. In the case of Si tetra-
hedron, the reduction is higher for the apical oxygen than for the 
basal ones. In both cases, the bond length contraction removes 
some distortion in the tetrahedra and in the octahedra.

Another structural response to the compression is the increase 
of the tetrahedral rotation angle, which is defined as

α=1 2 φi−120°
i=1
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where fi is the angle described by triples of basal oxygen atoms 
(Bailey 1988; Ulian et al. 2014). The calculated value of a 
increases from 13.2° at 0 GPa to 14.6° at 10 GPa (see Supple-
mentary Fig. 21).

We did not observe any significant variation in O-H bond 
lengths in the pressure range investigated (0.962 Å at 0 GPa and 
0.963 Å at 10 GPa), nor in their directions.

Our results are in line to those of Ortega-Castro et al. (2010) 
obtained in athermal conditions with generalized gradient ap-
proximation (GGA) and the Perdew-Burke-Ernzerhof (PBE) 
functional. The BM3 fit on V(P) data in the cited work is very 
similar to ours, albeit with small underestimations (KT0 = 60.1 

GPa and K′ = 7.3). However, it can be observed in Figure 4a 
that our muscovite volumes at different P are smaller than those 
obtained by Ortega-Castro et al. (2010). Hernández-Haro et al. 
(2013) derived with DFT simulations at T = 0 K the bulk modulus 
of end-member muscovite from the elastic constants, obtaining 
KT0 = 68.4 GPa. The small difference between our results and the 
previous ones is imputable to at least two reasons. First, in our 
simulations we adopted an all-electron GTO basis set with hybrid 
B3LYP functional, including a correction for dispersive forces, 
whereas in both previous works (Hernandez-Haro et al. 2013; 
Ortega-Castro et al. 2010) the authors used a GGA functional 
(PBE) with norm-conserving pseudopotentials. The generalized 
gradient approximation tends to soften bonds and consequently 
the bulk modulus, which explains the low KT0 value and the large 
volumes of Ortega-Castro et al. (2010). Second, we observed in 
a previous work on talc (Ulian et al. 2014) that the bulk modulus 
obtained from the elastic stiffness is very sensitive on both the 
way of its calculation (e.g., Reuss bound, Voigt bound, etc.) and 
on the anisotropic behavior of the mineral.

Compared to previous theoretical results on similar and other 
layered hydrous silicates, our muscovite model exhibits a higher 
bulk modulus than both TOT minerals without interlayer cations, 
such as talc (Mainprice et al. 2008), and TO structures, for ex-

Table 2.  Simulated muscovite unit-cell parameters at different 
volumes 

Pst (GPa) PBM-III (GPa) V (Å3) a (Å) b (Å) c (Å) a (°) b (°) g (°)
–1.24 –1.33 948.2 5.2149 9.0745 20.1613 90.24 96.36 89.89
–0.74 –0.75 938.3 5.2072 9.0587 20.0138 90.26 96.30 89.89
–0.14 –0.11 928.5 5.1990 9.0421 19.8699 90.27 96.25 89.88
–0.03 0.01 926.7 5.1974 9.0389 19.8444 90.27 96.23 89.88
0.53 0.58 918.8 5.1903 9.0246 19.7305 90.28 96.20 89.88
1.29 1.34 909.1 5.1811 9.0061 19.5953 90.29 96.15 89.88
2.13 2.16 899.4 5.1713 8.9866 19.4646 90.29 96.10 89.87
3.05 3.06 889.9 5.1610 8.9661 19.3384 90.30 96.05 89.87
4.05 4.03 880.4 5.1502 8.9446 19.2164 90.30 96.01 89.87
5.12 5.08 870.9 5.1389 8.9220 19.0987 90.30 95.96 89.86
6.27 6.22 861.5 5.1270 8.8987 18.9844 90.30 95.92 89.86
7.49 7.45 852.2 5.1148 8.8746 18.8734 90.31 95.87 89.85
8.77 8.77 843.0 5.1023 8.8499 18.7659 90.31 95.83 89.85
10.13 10.20 833.8 5.0893 8.8245 18.6604 90.31 95.78 89.84
Note: Pst values were obtained from third-order polynomial fitting (p-fit) and 
PBM-III data from third-order Birch-Murnaghan fitting (BM3).

fiGUre 3. (a) Est(V) in Hartree units and (b) P(V) plots of 
muscovite obtained from ab initio calculations. The dashed lines helps 
in distinguishing compression regime (on the left) and expansion (on 
the right).
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ample serpentine (Mookherjee and Stixrude 2009) and antigorite 
(Capitani et al. 2009; Mookherjee and Capitani 2011; Capitani and 
Stixrude 2012). On one hand, in the case of talc the absence of 
interlayer cations favors the compression along the c-axis direc-
tion, resulting in a fairly low bulk modulus (KT0 = 42.1 GPa). On 
the other hand, in TO minerals characterized by half-waves and 
reversals of the T-O sheets (serpentine group) the elastic soften-
ing is related to the adjustment of the relative misfit between 
the tetrahedral and octahedral sheets (Mookherjee and Capitani 
2011). Considering other micas, our muscovite model presents 
a stiffer nature than the phlogopite calculated by Chheda et al. 
(2014) with GGA functional. Phlogopite is the Mg-trioctahedral 
equivalent of muscovite, and the lower bulk modulus may be due 
to the difference in the octahedral sheet composition. Finally, our 
muscovite model presents a KT0 value lower than the one calcu-
lated for chlorite (Mookherjee and Mainprice 2014), because the 
latter presents a brucite-like sheet sandwiched between talc-like 
TOT layers, which is less compressible than the interlayer with 
potassium cations.

Thermomechanical and thermochemical properties
As explained in the computational method section, we calcu-

lated the muscovite thermal properties from the mineral vibrational 

features using the quasi-harmonic approximation.
There are 84 atoms in the muscovite unit cell, which result in 

84 × 3 = 252 normal modes, three of them related to translation of 
the whole unit cell. The remaining 249 optic modes are subdivided 
in the following irreducible representations

Gtot = 126Ag + 123Au

Modes with Ag symmetry are Raman-active, while Au ones are 
IR-active, but both do not exhibit degeneracies. For each optic 
normal mode (3n – 3) we determined the mode-g parameters. 
Between 30 and 1200 cm–1 (see Fig. 5a), all parameters are posi-
tive and, according to Equation 8, they contribute positively to 
the total pressure. In this frequency range, only one vibrational 
mode is associated with a small negative g. Above 1200 cm–1 the 
mode-g are negative (g ≈ –0.1) and give negative contribution to 
the pressure values. The mean Grüneisen’s parameter (g) is equal 
to 0.67. We reported the results and the mode-gammas for each 
frequency at zero pressure in Supplementary Table 11.

Using Equation 11 we calculated the thermal contribution 
to athermal pressure values in the range 10–900 K. To help the 
interested readers in better understanding how the quasi-harmonic 
approximation works, we plotted in Figure 5b the static (Pst), 
zero point (Pzp), and thermal (Pth) pressure contribution to P = 0 
GPa total pressure as a function of temperature. The zero point 
pressure is almost constant, as it is a function of the sole volume. 
The thermal pressure increases, as the Grüneisen’s parameters are 
almost all positive. Since there is an external pressure constrain 
(0 GPa), to maintain the equilibrium the static pressure mirrors 
the thermal pressure behavior, with a shift in pressure due to Pzp.

In Figure 6a we show the V(P) values obtained at 298 K, 
alongside experimental data from powder XRD (Comodi et al. 
2002; Curetti et al. 2006). There is a good agreement with the 
volumetric behavior of muscovite in the range 0–10 GPa. We 
noticed also that the comparison is more favorable with the data 
of Curetti et al. (2006) than with that of Comodi et al. (2002), 
despite the very small overestimation observed with the B3LYP-
D* approach. The slight difference between the two experimental 
results and our set of data resides in the chemical composition 
and the physical preparation of the muscovite sample. While 
both powdered samples exhibit a wide presence of substitutional 
defects, such as Mg and Fe3+ in the octahedral sheet, our model 
represents an “ideally” pure muscovite mineral. Furthermore, the 
nature of the experimentally analyzed samples, namely powdered 
Ms, is formally different from our model, realized with periodic 
boundary conditions (hence, “single-crystal”). In fact, as observed 
in our previous work on talc (Ulian and Valdrè 2015), it is expected 
that the results obtained from the quantum mechanical approach 
fit better with those obtained experimentally on a single-crystal 
specimen. In Figure 6b we reported a three-dimensional plot of 
the V(P,T) data in the range 10–900 K.

With the pressure and temperature data, we fitted the results 
by the third-order Birch-Murnaghan equation of state for each P-T 
condition. The results, KT, K′, and VT obtained in the pressure range 
0–10 GPa and between 10–900 K are reported in Supplementary 
Tables 21, 31, and 41, respectively. At room temperature (T = 298 
K) and 0 GPa the refined equation of state parameters are KT0 =
59.93 GPa, K′ = 7.84, and V0 = 940.6 Å3. These data well match

fiGUre 4. Ab initio pressure effects on muscovite unit-cell volume 
and axis lengths. The theoretical athermal results has been compared to 
those of Ortega-Castro et al. (2010). (Color online.)



those obtained in previous powder XRD experiments at T = 
298 K, KT0 = 57.3 GPa, K′ = 6.97, and V0 = 938.9 Å3 in the work 
of Curetti et al. (2002) and KT0 = 57.0 GPa and V0 = 933.0 Å3 in 
the investigation of Comodi et al. (2002). We also compared our 
theoretical BM3 results at 573, 723, and 873 K with the corre-
sponding experimental values at the same temperatures of the work 
of Comodi et al. (2002) (see Table 3). The theoretical BM3 fitting 
for each isotherm is in reasonable agreement with experimental 
data, with a slight overestimation of both bulk moduli (+3.8%) and 
unit-cell volume at zero pressure (+1.3%). This systematic shift 
suggests that the quasi-harmonic approximation describes well the 
thermomechanical behavior of muscovite at high temperature and 
the deviations could be imputable to the different composition and 
preparation in the experimental sample, as previously explained.

From the calculated bulk modulus at different temperatures, we 
obtained its thermal dependency at 0 GPa, (∂KT/∂T)P = –0.0158 
GPa/K, which is close to the experimental result of Comodi et al. 
(2002) that is (∂KT/∂T)P = –0.0146 GPa/K.

The aTKT product attains the value of 2.39×10–3 GPa/K in the 
100–900 K range and reaches a constant value of 2.48×10–3 GPa/K 
at very high temperatures (see Fig. 7a). A three-dimensional plot of 
the aTKT product in the 0–10 GPa and 10–900 K ranges is reported 
in Supplementary Fig. 3a1.

We calculated the thermal expansion coefficient (aT) from the 

aTKT product by the thermal bulk modulus previously obtained. We 
plotted the a(T)P values at pressures 0, 5, and 10 GPa in Figure 7b. 
It is possible to observe that the thermal expansion coefficient de-
creases with pressure increase. There is a good agreement between 
the theoretical value at standard P and T (aT = 3.34×10–5 K–1) and 
those of different experimental results obtained in the same condi-
tions: aT = 3.57×10–5 K–1 (Comodi et al. 2002) and aT = 3.54×10–5 
K–1 (Guggenheim et al. 1987). A three-dimensional plot in the 0–10 

fiGUre 5. (a) Grüneisen’s parameters (g) at P = 0 GPa as a function 
of frequency (n). The dashed line represents the mean of the mode-g. 
(b) Contributions to the zero total pressure of the static (Pst), zero point
(Pzp), and thermal (Pth) pressures.

fiGUre 6. (a) V(P) plot of muscovite compressional behavior at 
298 K compared to powder XRD data (Comodi et al. 2002; Curetti et 
al. 2006) and (b) V(P,T) three-dimensional plot obtained with DFT/
B3LYP-D*. (Color online.)

Table 3.  Comparison on theoretical and experimental BM3 results
Present work Experimental XRD Theoretical DFT/PBE

0 K 
KT (GPa) 64.2 ± 1.2 – 59.81
KT’ 7.98 ± 0.33 – 6.96
V0 (Å3) 926.86 ± 0.38 – –
573 K 
KT (GPa) 55.52 ± 1.29 55.1 –
KT’ 8.07 ± 0.32 – –
V0 (Å3) 950.2 ± 0.6 938.0 –
723 K 
KT (GPa) 53.08 ± 1.42 51.1 –
KT’ 8.20 ± 0.33 – –
V0 (Å3) 956.1 ± 0.8 944.1 –
873 K 
KT (GPa) 50.62 ± 1.56 48.9 –
KT’ 8.33 ± 0.36 – –
V0 (Å3) 962.4 ± 1.0 952.5 –
Note: Experimental and theoretical values are taken from the works of Comodi 
et al. (2002) and Ortega-Castro et al. (2010), respectively.



GPa and 10–900 K ranges is reported in Supplementary Fig. 3b1.
The isochoric and isobaric heat capacities were calculated with 

Equations 13 and 14, respectively (see Fig. 7c and Supplementary 
Fig. 3c1). It was observed that CV attains the Dulong-Petit limit 
(Ottonello et al. 2009a, 2009b) at high temperatures. For both 
isochoric and isobaric specific heat, it can be observed a decrease 
of their values by increasing pressure. The CP vs. T data are fitted 
in the range 298.15–900 K according to the form of a Haas–Fisher 
polynomial expression (Haas and Fisher 1976), which is

CP = a+b⋅T + c ⋅T
−2+ d ⋅T 2+ e ⋅T−1 2  (15)

The retrieved regression coefficients, a = 8.2044×102, b = 
–3.5759×10–2, c = 0.8976, d = 5.4382×10–5, and e = –8.5978×103,

reproduce computed heat capacities with a mean error of about 
±0.26 J/(mol·K) and the summation of squared residuals over 13 
values is 1.1.

Compared to experimental scanning calorimetric data of Robie 
et al. (1976), the calculated isobaric heat capacity in the range 
10–380 K nicely fit the experimental results, albeit with a small 
deviation above room temperature.

implications

The thermodynamic and thermoelastic properties of muscovite, 
and how they change as a function of pressure and temperature are 
still not well known. These properties are important for a reliable 
basis to the interpretation of phase equilibria. White dioctahedral 
micas play a fundamental role in most petrogenetic processes, 
in both magmatic and low- and medium-pressure metamorphic 
environments. Among the physical properties to estimate the P-T 
conditions of mineral stability, one of the most important function 
is the equation of state, which relates the unit-cell volume to the 
pressure and temperature. We reported in the present paper the 
thermal equation of state of muscovite, calculated by quantum 
mechanics. Furthermore, the proposed theoretical approach, 
based on a DFT/B3LYP-D* quantum mechanics modeling, with 
semi-empirical correction for dispersive force, and using the quasi-
harmonic treatment to include the thermal effects is promising 
for detailed structural, thermo-mechanical and thermo-chemical 
analysis of other phyllosilicates. The results of this kind of analysis 
find usefulness in the study of the thermodynamic properties of 
minerals at physical conditions that are difficult to obtain during 
experimental procedures, especially under controlled high pres-
sures and temperatures.
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