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Abstract

In this paper, a multi-dimensional model is proposed to study the propagation of random
fronts in media in which anomalous diffusion takes place. The front position is obtained
as the weighted mean of fronts calculated by means of the level set method, using as
weight-function the probability density function which characterizes the anomalous dif-
fusion process. Since anomalous diffusion is assumed to be governed by a time-fractional
diffusion equation, its fundamental solution is the required probability density function.
It is shown that this fundamental solution can be expressed in the multi–dimensional
case in terms of the well-knownM-Wright/Mainardi function, as in the one–dimensional
case. Making use of this representation for the practical purpose of numerical evaluation,
the propagation of random fronts in two–dimensional subdiffusive media is discussed and
investigated.

Keywords: random front propagation, Level Set Method, multidimensional
time-fractional diffusion, M-Wright/Mainardi function
2010 MSC: 60G22, 60K37, 35F21, 65M08

1. Introduction

Front propagation is of interest in several fields of applied science. In many cases,
the propagating front is embedded in a medium characterized by a random motion and
then by a diffusion process. In typical diffusion processes the mean square displacement
of particles is a linear function of time. Nevertheless in some complex media diffusion5

processes show a non-linear relationship to time, as for example in biological systems
[1, 2, 3], in fluids and plasmas [4] and in other systems [5]. In the latter case, the
diffusion process is known as anomalous diffusion [6, 2, 1, 7].
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The aim of the present paper is to extend to the multi–dimensional case a recently
developed one–dimensional model useful for the study of the propagation of fronts in10

media in which anomalous diffusion takes place [8].

The main items of the proposed approach are:

• the average front position is modelled by means of the level set method (LSM) [9];

• the spreading of interface particles around the average front is described by the
probability density function (PDF) that characterizes the diffusive process;15

• the effective front is obtained as the weighted mean of average fronts, by using as
weight-function the PDF of particle spreading.

This approach to the study of random fronts was first proposed – in a context in which
anomalous diffusion was not involved – to investigate the evolution of the burnt mass
fraction in turbulent premixed combustion [10], and has recently been applied to wildland20

fire propagation [11, 12, 13, 14, 15]. In these studies, the chosen PDF was the Gaussian
density function [10, 11, 12, 13, 14, 15], or a convolution of the Gaussian with an other
PDF [13, 14, 15]. In the present study, since anomalous diffusion is assumed to be
modelled by the time-fractional diffusion equation, i.e. a diffusion-like equation in which
the first order derivative in time is replaced by a derivative operator of fractional order,25

the required PDF to be used as weight-function is the fundamental solution, or Green’s
function, of this family of fractional partial differential equations.

It is well known that in the one–dimensional case that Green’s function is related to
theM-Wright/Mainardi function [16, 17, 18], which tends to the Gaussian function as the
fractional order of the time derivative tends to one. The M-Wright/Mainardi function30

is a well known function for the evaluation of which robust numerical algorithms exist
[19]. However, the fundamental solution of the multidimensional time-fractional diffusion
equation has a cumbersome representation [20] so that it is rather complicated to deal
with for any practical purpose. Due to this difficulty, the extension discussed in this
paper of the one–dimensional case investigated in [8] to the multi–dimensional cases is35

one of the highlights of the paper.
In the following it is shown that, by using an integral representation formula of

the M-Wright/Mainardi function [21], which is based on the one–dimensional Gaussian
PDF, Green’s function for multi-dimensional cases (including the most interesting two–
and three–dimensional cases) can be represented by the same integral formula involving40

the corresponding multi-dimensional Gaussian PDF. This formula strongly simplifies the
representation of Green’s function provided in [20].

As previously mentioned, this PDF is integrated in the proposed approach that is
based on the well-established LSM.

The LSM [22, 9] is one of the most widely used and successful tools for computing and45

analyzing the motion of a front and it has been adopted in many different problems, in-
cluding turbulent premixed combustion [23], wildland fire propagation [24], groundwater
infiltration [25], biology [26] and material science [27].

In the framework of the LSM, the location of the propagating front is obtained as a
level set (for example the zero level set) of an auxiliary function solution of a Hamilton–50

Jacobi equation known as level set equation.
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In this setting, sharp gradients and cusps can be easily accounted for and the effects
of curvature may be easily incorporated. Then the LSM is particularly useful to handle
problems in which the speed of the evolving interface is dependent on the interface
properties, such as curvature and normal direction, as well as on the boundary conditions55

at the interface location. Hence, it is suitable for problems in which the topology of the
evolving interface changes in time, like when topological merging and splitting occur.

In addition to these advantages, one key-feature of the level set method framework
is that it allows to easily improve the physical model by progressively including more
detailed interface effects that might influence the front propagation, as the dispersion60

effects of interface particles due to diffusive phenomena considered in this study.

The formalism of the proposed approach can be related to the Smoothed Particle
Hydrodynamics (SPH) [28]. This framework is characterized by the robustness of its
numerical implementation and it is well suited for many practical problems as fluid-
structure interactions. However, the typical problems of SPH, namely the choice of65

the kernel function and of the smoothing length, are here avoided because they are
straightforwardly determined by the particle PDF. This can be considered a positive
feature of the present approach.

The presented approach can be related also to approaches used in turbulent premixed
combustion, namely the LSM/G-equation [23] or the so-called turbulent flame closure70

model first proposed by Zimont [29, 30]. A discussion about how these frameworks are
related to the one presented here might be found in [10].

Furthermore, the present approach is also connected to the so-called Stochastic Level
Set Method (SLSM), developed and adopted in computer vision. Typical problems in
this research area consist in recovering a certain surface or region through a shape op-75

timization framework. However, classical methods suffer from being sometimes stuck in
local minima. To overcome this difficulty, the SLSM has been developed. This method
combines stochastic motion and the classical LSM [31, 32, 33] and adopts a decision
mechanism. The SLSM is quite close to the approach here proposed, as in both models
the interface location is obtained by solving the level set equation with a suitably ran-80

domized front speed. However, the final aims of the two methods are different, and so
is the mathematical construction. In fact, in typical computer vision problems the final
aim is not to compute the average shape after a large number of independent realiza-
tions, but to recover a certain shape with the frontline upon the derivation of a proper
stochastic differential equation. In the present study, the interest is indeed focused on85

the average properties of the processes for applications in physics and engineering. Even
if it could be possible to have average properties of the process obtained with the SLSM
by performing the ensemble average of many independent realizations, the approach here
proposed uses physical arguments to derive the PDF of the interface particle displace-
ment instead of focusing on the selection of the correct stochastic differential equation,90

so it can be regarded as the averaged counterpart of the method adopted in computer
vision. Despite this difference in the two models, the large available literature regarding
SLSM is an important guideline for future derivation of stochastic models within the
approach proposed here.

In analogy with studies on diffusion processes that describe the properties of the95

underlying stochastic processes by the particle PDF and averaged quantities, here the
motion of random fronts is described is well in terms of an ensemble average resulting in
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the mentioned effective front.

The paper is organized as follows. Section 2 contains the description of the LSM-based
model used to study the propagation of a front embedded in a diffusive environment. In100

Section 3, it is recalled the time-fractional diffusion equation governing the dispersion of
the interface particles and its solutions in the one–, two– and three–dimensional cases
are discussed. In particular, it is shown a new representation of the Green’s functions
of the time-fractional diffusion equation, based on the Gaussian PDF, which can con-
veniently be used for computational purposes. Section 4 contains a discussion of the105

numerical methodology adopted for the calculation of Green’s functions as well as the
techniques adopted for the computation of the effective average front. Numerical results
are also presented, including plots of the M-Wright/Mainardi function for the one–,
two– and three–dimensional cases as well as a selection of numerical results concerning
two–dimensional front propagation in media in which anomalous diffusion takes place,110

restricting the attention to the case of subdiffusive processes, i.e. those processes whose
particle displacement variance grows less than linearly in time. Finally, in Section 5,
conclusions are drawn and some future developments are proposed.

2. Modelling approach

Let us consider a propagating interface composed of a sufficiently large number of115

particles with random motion. Let x0 be a point of the interface at the initial in-
stant t = 0, and let Xω(t,x0) be the ω-realization of the trajectory of a particle P0

located in x0 at t = 0, such that Xω(0,x0) = x0. By using statistical mechanics formal-
ism [34], the trajectory of particle P0 is described by the one-particle density function
pωd (x; t) = δ (x−Xω (t,x0)), where δ (x) is the Dirac δ-function and d represents the120

spatial dimension.
Let Nω be the number of the independent realizations indexed by ω, denoting by 〈·〉

the ensemble average, then the PDF of the displacement of the interface particle P0 is
written as

pd (x; t |x0) =
1

Nω

Nω∑
ω=1

δ (x−Xω (t,x0)) = 〈δ (x−Xω (t,x0))〉 ,

that can be understood as the PDF counterpart of the empirical distribution function
[35]. If the density of particles embodying the interface is assumed to be constant during
the interface evolution, then an incompressibility-like condition can be stated from the
Jacobian J of the transformation x ≡ x(t,x0): J = dx0/dx = 1. Finally, in terms of the
average position x of particle P0, it holds

pd (x; t |x) = 〈δ (x−Xω (t,x))〉.

Let Γ be a simple closed surface, or an ensemble of simple non-intersecting closed
surfaces, that represents the propagating interface under consideration and let Ω be the
region bounded by Γ. In the case of an interface Γ made of more than one closed surface,
the domain Ω is not simply connected, resulting in more than one bounded regions125

independently evolving. Moreover, let γ : S × [0,+∞[→ IR be a function defined on
4



the domain of interest S ⊆ IRd such that the level set γ (x, t) = γ∗ coincides with the
evolving front, i.e. Γ(t) = {x ∈ S | γ(x, t) = γ∗}. In the case of Γ being an ensemble of
n surfaces, the ensemble of the n interfaces is considered as interface.

In a deterministic setting, the level set function γ(x, t) may be written as

γ (x, t) =

∫
S
γ (x, t) δ (x− x) dx,

and the subsets of the domain S corresponding to the interface Γ and to the region Ω
enclosed by Γ (which represent, respectively, the interface and the domain bounded by it)
may be conveniently described by two indicator functions IΓ, IΩ : S × [0,+∞[→ {0, 1}
defined as follows:

IΓ(x, t) =

{
1, if γ (x, t) = γ∗

0, elsewhere,

and

IΩ(x, t) =

{
1, if γ (x, t) 6 γ∗

0, elsewhere.
(1)

The indicator functions at time t = 0, i.e. IΓ(x, t = 0) and IΩ(x, t = 0), are denoted in130

the following as IΓ0
(x) and IΩ0

(x), respectively.

In a random setting, the level set function corresponding to the ω-realization γω(x, t),
which embeds the random front Γω, for each realization is written as

γω(x, t) =

∫
S
γ(x, t) δ(x−Xω(t,x)) dx

and, accordingly, IΓ and IΩ are replaced by random indicator functions IΓω , IΩω : S ×
[0,+∞[→ {0, 1} defined as follows:

IΓω (x, t) =

∫
S
IΓ0(x0) δ(x−Xω(t,x0)) dx0

=

∫
Γ0

δ(x−Xω(t,x0)) dx0

=

∫
Γ(t)

δ(x−Xω(t,x)) dx,

and

IΩω (x, t) =

∫
S
IΩ0(x0) δ(x−Xω(t,x0)) dx0

=

∫
Ω0

δ(x−Xω(t,x0)) dx0

=

∫
Ω(t)

δ(x−Xω(t,x)) dx.

In the case of a non-deterministic interface, an effective indicator of the region surrounded
by a random front, ϕe(x, t) : S × [0,+∞[→ [0, 1], was defined in [10] (in the context of
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modelling of the burnt mass fraction in turbulent premixed combustion) as follows:

ϕe(x, t) = 〈IΩω (x, t)〉 = 〈
∫

Ω(t)

δ(x−Xω(t,x)) dx〉

=

∫
Ω(t)

〈δ(x−Xω(t,x))〉 dx

=

∫
Ω(t)

pd(x; t |x) dx.

(2)

It should be noted that the effective indicator ϕe(x, t) is not an indicator function in
the classical sense. Actually, by using terminology from fuzzy logic, it is a membership
function, its range being the compact interval [0, 1] rather than the discrete set {0, 1}.
Despite this, the concept of probability which led to Eq. (2) should not be confused135

with the concept of degree of truth (typical of fuzzy logic), then ϕe(x, t) is classified as
an indicator function. Since the range of the effective indicator ϕe(x, t) is the compact
interval [0, 1], a criterion to mark the effective surrounded region Ωe has to be stated.
The region Ωe is here defined as the region over which the effective indicator exceeds a
threshold value arbitrarily fixed ϕthe , i.e. Ωe(t) = {x ∈ S | ϕe(x, t) > ϕthe }.140

Making use of the indicator function IΩ defined in Eq. (1), Eq. (2) can be rewritten
as:

ϕe(x, t) =

∫
S
IΩ(x, t) pd(x; t |x) dx. (3)

In the deterministic case, i.e. Xω(t,x) = x(t) for all realizations, it turns out that
pd(x; t |x) = δ(x − x(t)), and from Eq. (3) it is obtained ϕe(x, t) = IΩ(x, t). Eq. (3) is
similar to the basic equation of SPH method [28], however, as stated in the Introduction,
the choices of the kernel function and of the smoothing length are avoided because they
are straightforwardly determined by the particle PDF pd(x; t |x).145

In conclusion, the indicator function IΩ(x, t) marks the region Ω(t) that is bounded
by an interface propagating according to the average trajectory x(t). Recalling the
definition of IΩ(x, t) in Eq. (1), the evolution of the level set function γ(x, t) is governed
by the following Hamilton–Jacobi equation

∂γ

∂t
= V(x, t) ‖∇γ‖, (4)

where γ0 is the initial field embedding the interface Γ at t = 0, Γ0 ≡ Γ(t = 0).

It is worth mentioning here that an alternative representation of the dynamics of the
propagating front is possible whenever velocity V (x, t) is constant in time and strictly
positive (or strictly negative). In this case, let τ (x) be the arrival time function that
represents the temporal instant at which the front reaches the point x, then ‖∇τ‖ is the
rate of change of the arrival time with respect to the change in the front distance, i.e.

‖∇τ‖ =
1

V
, τ (x) = 0 ∀x ∈ Γ0. (5)

Equation (5) is known as eikonal equation and it is a time-independent version of the
level set equation (4). It has the important advantage of allowing – when applicable – to
greatly reduce the computational effort required for solving the front tracking problem
by solving a time-independent problem instead of a time-dependent one.150
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3. Multidimensional time-fractional diffusion equation

In the model here discussed for front propagation in complex media, the PDF of
the interface particle displacement pd(x; t), which appears in Eq. (3), is assumed to be
governed by the d-dimensional time-fractional diffusion equation. The latter is obtained
from the classical diffusion equation by replacing the first order time derivative with a real155

order derivative operator [36, 37, 38, 39, 20, 40]. This replacement can be done by using
the time fractional derivative operator in the Caputo sense or in the Riemann–Liouville
sense. However, these two formulations are equivalent if standard initial condition is used
[41]. Recently, in place of this operator replacement, the emergence of fractional kinetics
in complex media has been explained within the standard Gaussian diffusion framework160

by the randomization due to the complexity of the environment of certain characteristic
parameters of the medium [7].

Let 0 < β 6 1/2 be a real parameter, then the time-fractional diffusion equation in
the Caputo sense reads

∗D
2β
t pd = ν∇2pd, pd(x; 0) = δ(x), (6)

where the coefficient ν is a positive constant with dimensions [ν] = [L]2[T ]−2β and ∗D
µ
t

is the Caputo fractional derivative that is defined by the Laplace transformation∫ +∞

0

e−st {∗Dµ
t f(t)} dt = sµ f̃(s)−

m−1∑
k=0

sµ−1−k f (k)(0+),

with m − 1 < µ 6 m and m ∈ N, where f(t) is a sufficiently well-behaved function and

f̃(s) its Laplace transform.

The time-fractional diffusion equation in the Riemann–Liouville sense reads

∂pd
∂t

= ν D1−2β
t ∇2pd, pd(x; 0) = δ(x), (7)

where Dµ
t is the Riemann–Liouville fractional derivative defined as∫ +∞

0

e−st {Dµ
t f(t)} dt = sµ f̃(s),

provided that all the limiting values f (k)(0+) are finite with k ∈ N such that 0 6 k 6 m−1165

where m ∈ N and m− 1 < µ 6 m.

When β = 1/2, both equations (6) and (7) reduce to the classical diffusion equation

∂pd
∂t

= ν∇2pd, pd(x; 0) = δ(x).

Applying Laplace and Fourier transformations to Eq. (6) as well as to Eq. (7), the
fundamental solution pd(x; t) for an arbitrary spatial dimension d results to be:

pd(x; t) =
1

(2π)d+1 i

∫ +i∞

−i∞

{∫
Rd

s2β−1

s2β + ν |k|2
eik·x dk

}
est ds, (8)
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which can be written as [20]:

pd(x; t) =
1

(2π
√
ν)d/2+1 i

∫ +i∞

−i∞
sβ(d/2+1)−1 estKd/2−1

(
sβ√
ν
|x|
)
ds, (9)

where Kθ is the Macdonald function, or modified Bessel function of the second kind, of or-
der θ. By setting s = −iξ, ξ ∈ IR, it follows that sβ = e−iπβ sgn ξ/2|ξ|β and pd(x; t) is real
[20]. However, integral (9) is not straightforwardly evaluable and a less computationally
demanding formulation is desirable. It is shown in the following that such an alternative170

exists, since pd(x; t) can be written in terms of the d-dimensional M-Wright/Mainardi
function of order β here denoted by Md

β (x; t).

Let us start by reminding the following integral representation of the one–dimensional
M-Wright/Mainardi function [21]:

M1
η/2 (x; t) =

1

tη/2
Mη/2

( x

tη/2

)
= 2

∫ ∞
0

e−x
2/(4τ)

√
4πτ

Mη

( τ
tη

) dτ
tη
, 0 < η < 1, x ∈ IR,

(10)
where the M-Wright/Mainardi function Mη (z) is represented by series as (z ∈ C)
[37, 38, 16, 17]

Mη(z) =

∞∑
n=0

(−z)n

n! Γ (−ηn+ (1− ν))
=

1

π

∞∑
n=1

(−z)n−1

(n− 1)!
Γ(ηn) sin (πηn) .

Eq. (10) can be extended to a general spatial dimension d by the extension of the
Gaussian function as follows (0 < η 6 1, x ∈ IRd)

Md
η/2 (x; t) = 2

∫ +∞

0

e−|x|
2/(4τ)

(4πτ)d/2
Mη

( τ
tη

) dτ
tη
, (11)

= 2

∫ +∞

0

d∏
i=1

e−x
2
i /(4τ)

(4πτ)1/2
Mη

( τ
tη

) dτ
tη
.

When d = 1, Eq. (11) coincides with Eq. (10). Since the following Laplace transform
pair holds [39]: ∫ +∞

0

e−stMη

( τ
tη

) dt
tη

= sη−1e−τs
η

,

after the application of Laplace and Fourier transformations to (11) it follows that

Md
η/2 (x; t) =

2

(2π)d+1 i

∫ +i∞

−i∞

{∫
Rd

[∫ +∞

0

d∏
i=1

e−τk
2
i e−τs

η

dτ

]
eik·x dk

}
sη−1est ds

=
2

(2π)d+1 i

∫ +i∞

−i∞

{∫
Rd

[∫ +∞

0

e−τ(sη+νk2) dτ

]
eik·x dk

}
sη−1est ds

=
2

(2π)d+1 i

∫ +i∞

−i∞

{∫
Rd

sη−1

sη + k2
eik·x dk

}
est ds,

8



The latter, together with (8) and making use of the change of variables k →
√
ν k and

x→ x/
√
ν, allows to conclude that

pd(x; t) =
1

2
√
ν
Md
β

(
x√
ν

; t

)
=

∫ +∞

0

e−|x|
2/(4ντ)

(4πντ)d/2
M2β

( τ

t2β

) dτ
t2β

. (12)

Eq. (12) is both analytically and numerically less cumbersome than (8), thus providing
a computationally attractive alternative to Eq. (9). Comparing p1 and p3 obtained by
means of Eq. (12), it holds

p3(x; t) = − 1

2πr

∂

∂r
p1(r; t) , r = |x| , (13)

which provides a well-known relation between the one–dimensional and three–dimensional175

PDFs p1 and p3 [20].

It is noted that the previously mentioned constraint on parameter β (0 < β 6 1/2)
guarantees to have a proper diffusion process characterized by an unimodal PDF [37, 39].
In fact, when 1/2 < β < 1 function Mβ(z) is bimodal and no diffusion process is
modelled by p3, because the latter assumes also negative values, see (13). The subdiffusive
character of diffusion is highlighted by the particle variance σ2

d which in one–, two– and
three–dimensions (d = 1, 2, 3) is [39, 20]:

σ2
1 =

∫ +∞

−∞
x2 p1(x; t) dx =

2ν t2β

Γ(2β + 1)
, σ2

2 = 2σ2
1 , σ2

3 = 3σ2
1 . (14)

In Figure 1, the fundamental solutions of time-fractional diffusion equation (7) are
presented for the one–, two– and three–dimensional case and for five different values of
parameter β, i.e. β = 0.1, 0.2, 0.3, 0.4 and 0.5, corresponding the latter to the case of
ordinary diffusion and the other values to subdiffusive processes.180

Fundamental solutions have been numerically calculated on the basis of the ana-
lytical representation given in Eq. (12). In particular the numerical evaluation of the
M-Wright/Mainardi function Mη(z) and of the fundamental solutions in d dimensions
pd (x; t) have been performed by means of a python library (pyMlib) based on state-of-
the-art algorithms for the Mittag–Leffler function [42] as well as on standard Laplace185

inversion and standard integration techniques available in the Integrate submodule of
the SciPy scientific library [43].

In this respect, it is here reminded that the Laplace transform of theM-Wright/Mainardi
function is [39, 16, 17]∫ +∞

0

e−stMη(t) dt = Eη(−s), 0 < η < 1, Re(s) > 0,

where Eη(z) is the Mittag–Leffler function defined by [44]

Eρ(z) =

∞∑
n=0

zn

Γ(ρn+ 1)
, ρ > 0, z ∈ C.
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Figure 1: Fundamental solutions of the time-fractional diffusion equation (7) in the (a) one–dimensional,
(b) two–dimensional and (c) three–dimensional cases for five values of the parameter β: β = 0.1, 0.2,
0.3, 0.4 and 0.5.
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4. Numerical results

In this Section the profiles of the effective indicator ϕe(x, t) defined in (3) are shown
and discussed. In particular, to compute (3) the indicator function IΩ(x, t) is obtained190

according to definition (1) by solving the level set equation (4) with constant velocity V,
and the PDF pd(x; t|x) = pd(x − x; t) is the fundamental solution of the d-dimensional
time-fractional diffusion given in (12). The algorithm used to compute (12) is described
in Section 3.

The evolution of random fronts propagating in subdiffusive and diffusive media has195

been numerically investigated by means of a software package developed for this goal. The
code makes use of a general-purpose library (liblsm90) which aims at providing a robust
and efficient tool for studying the evolution of co-dimension one fronts propagating in
one–, two– and three–dimensional system. The library, written in Fortran2008/OpenMP,
is presently still under active development and is intended to be released as open source200

software under the GNU/GPLv3 licence. Along with standard algorithms useful for the
calculation of the front evolution by means of the classical LSM, the library includes Fast
Marching Method (FMM) algorithms, which allow to efficiently solve the eikonal equation
(5) arising from the classical LSM formulation in place of the standard Hamilton–Jacobi
equation whenever it is possible, as in the case here under consideration.205

All the results presented in the following have been obtained making use of the above-
mentioned software and have been post-processed for exposition purposes by means of
open source software such as SciPy [43] and Matplotlib [45] in the IPython framework
[46].

All the calculations have been performed by means of the computational server avail-210

able at the Basque Center for Applied Mathematics (BCAM) in Bilbao, Basque Country
– Spain.

A selection of the results concerning the propagation of random fronts in media
characterized by anomalous diffusion is presented in this Section. The discussion is
restricted to fronts propagating in two–dimensional space, the one–dimensional case being215

discussed elsewhere [8] and a thorough analysis including three–dimensional cases being
still under development.

Once the main features of one–dimensional propagation of plane fronts have been in-
vestigated [8], the two–dimensional case has the relevant advantage of allowing to inves-
tigate practical situations of effective interest in which multidimensional effects possibly220

come into play, still avoiding the complexity of a three–dimensional analysis.
The analysis proposed in this section concerns the investigation of the propagation

of random fronts in two–dimensional subdiffusive and diffusive media, focusing on the
effects of the diffusion coefficient ν, the parameter β and the level set velocity V.

First the case of an initial front profile with circular shape is discussed, to focus225

on the effects of ν, β and V avoiding the two–dimensional effects connected to a non-
axisymmetric initial front profile. These effects are then discussed in the case of a square-
shaped initial front profile, with the main aim of investigating the effects of the parameter
β on the short–term and long–term evolution of the random front.

In both cases, the computational domain is the rectangular region [−2 m, 2 m] ×230

[−2 m, 2 m]. The circular profile has a radius r = 0.4 m, and the square-shaped profile
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has a side ` such that in both cases the region enclosed by the front when t = 0 s has the
same area (i.e. ` ≈ 0.7 m). The center of both regions is located in (x, y) = (0, 0).

In the scenario involving a circular initial front profile, when the diffusion coefficient
ν is small enough, it is seen that for any value under investigation of the parameter β235

the only outstanding feature of the propagating front is its smoothing with respect to the
sharp front that characterizes the deterministic case, i.e. a non-diffusive system. Profiles
representative of this behaviour are shown in Fig. 2, where the numerical computations
of ϕe(x, t) as defined in (3) are plotted together with the deterministic front (dashed
line) at different time instants for the case ν = 10−3 m2s−2β and two different values of240

the level set velocity (V = 0.1ms−1, 1 ms−1). Moreover, from Figure 2(b,d,f) it is evident
that when V increases, the value of the parameter β becomes less and less relevant for
the propagation of the front profile, thus allowing to conclude that the knowledge of the
exact value of β becomes less and less critical. On contrast, as shown in Figure 2(a,c,e),
for small values of V the front profile is clearly affected, at least qualitatively, by the value245

of the parameter β at any stage of its evolution, the profile being sharper and sharper
as the parameter β becomes smaller and smaller.

In Fig. 3 it is shown that the maximum value of the effective indicator ϕe is initially
slightly affected by the diffusion processes and later grows towards the initial maximum
value.250

From this analysis, it emerges that for sufficiently small values of the diffusion coef-
ficient ν, the random front propagation differs from the deterministic front propagation
mainly for the shape of the front profiles as illustrated in Fig. 2.

When the diffusion coefficient ν is large, the qualitative behaviour of the random
fronts is remarkably different from the behaviour reported in Fig. 2 and Fig. 3. In fact,255

as it is shown in Fig. 4, in this case the smoothing of the front may reach the point as to
affect the existence of the bulk of the region Ωe enclosed by the propagating front, where
the “bulk region” is intended as the region characterized by ϕe close to 1. In this scenario,
the maximum value of the effective indicator ϕe can be substantially reduced from its
maximum unitary value, especially when the region Ωe enclosed by the propagating front260

is small enough. This effect may be referred to as a weakening effect of the diffusion on
the size of region Ωe. The comparison of the results obtained for two different values of
V (V = 0.1 ms−1 and V = 1 ms−1), respectively shown in Fig. 4(a,c,e) and Fig. 4(b,d,f),
clearly put into evidence how the weakening effect described above is less relevant for
the case with larger V.265

This behaviour suggests a balance between the diffusion coefficient ν and the velocity
V from which the timescale τw of this weakening effect can be estimated. In particular,
such timescale emerges to be defined as

τw =

√
ν τ2β

u

V
,

where τu is the unit of measurement for the temporal variable t and then it can be
stated equal to 1. The estimation of the timescale τw for the weakening effect can be
verified from the plots. For the cases showed in Fig. 3(a,b) it holds τw ' 0.3 s and 0.03 s,
respectively. So in Fig. 5(a,b) it holds τw ' 1 s and 0.1 s, and in Fig. 7(a,b) it holds
τw ' 3 s and 0.3 s. Hereinafter, elapsed times are referred to small and large with respect270

to the timescale τw.
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(f) V = 1.0 m/s, t = 1.0 s

Figure 2: Cross-section at y = 0 of the ϕe fields corresponding to five values of the parameter β (β = 0.1,
0.2, 0.3, 0.4, 0.5) on the two-dimensional domain [−2 m, 2 m] × [−2 m, 2 m] at three values of the time
t (top, middle and bottom row) and for two values of velocity V (left and right column). The initial
profile at t = 0 s is circular, with centre C = (0, 0) and radius r = 0.4 m. The diffusion coefficient is
ν = 0.001 m2s−2β .
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Figure 3: Time evolution of the maximum value of ϕe (ϕmaxe ) corresponding to five values of the
parameter β (β = 0.1, 0.2, 0.3, 0.4, 0.5) for the case discussed in Figure 2.
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(f) V = 1.0 m/s, t = 1.0 s

Figure 4: The same as in Figure 2 but with ν = 0.01 m2s−2β .
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For large times, as the region enclosed by the propagating front increases in size, the
qualitative behaviour previously discussed for the case of a small diffusion parameter ν
can be eventually recovered, as it is seen in Fig. 4(f) for the case with V = 1 ms−1. It
is worth noting that for the case with V = 0.1 ms−1, the same behaviour takes place for275

time larger than that reported in Fig. 4(e), as can be argued from Fig. 5.
Figure 5 also puts into evidence how the weakening effect due to the diffusion process

is largely dependent on the parameter β, as expected, as well as on the velocity V. In fact,
the comparison of Fig. 5(a) and Fig. 5(b) shows how subdiffusive processes with small
values of β may be responsible for smaller weakening effect with respect to subdiffusive280

processes with larger values of β (and also with respect to normal diffusive processes)
when small values of the velocity V are involved. Interestingly, the situation can be
reversed when larger values of V are involved.

The features of the random fronts described so far for the case with ν = 0.01 m2s−2β

remains qualitatively unchanged as the diffusion coefficient ν increases, but an important285

remark is in order. Depending on the physical interpretation of the indicator ϕe, it may
– or may not – be meaningful to introduce the concept of “quencing” of the propagating
front. In fact, assuming that the front is located, say, at the position for which the
effective indicator ϕe reaches the threshold value ϕthe , it might be meaningful to argue
that when the effective indicator ϕe is reduced to the extent as to be less of ϕthe over290

all the domain Ωe, the region Ωe extinguishes and no further front propagation takes
place. Such a circumstance may, for instance, be the case met in turbulent premixed
combustion [10]: if ϕe marks the position of the propagating front, the value of ϕe may
drop below the given threshold value and the flame would be regarded as extinguished
and no further calculation of the front evolution would be meaningful. Accordingly to295

what already noticed, such a circumstance would become more and more likely as the
diffusion coefficient ν increases.

In Fig. 6, it is shown the propagation of the random and deterministic fronts ob-
tained with ν = 0.1 m2s−2β . Assuming, for instance, ϕthe = 0.5, area Ωe associated with
the front would be extinguished shortly after the diffusive process begins, independently300

from the value of the coefficient β (this is clearly seen also in Fig. 7), and any further
calculation concerning the propagation of the connected random front would be mean-
ingless, even if at larger times the effects of the diffusion would be such that the values of
the effective indicator ϕe could reach values larger than the threshold ϕthe , as it actually
happens, as it is shown in Fig. 6(d,e,f) and Fig. 7. However, as already noticed, these305

considerations are problem-dependent and strongly connected with the physical process
under consideration.

In order to investigate the two–dimensional effects connected to a non-axisymmetric
initial front profile for various values of the parameter β, an initial square-shaped profile
has been considered. The numerical results shown in Fig. 8, Fig. 9 and Fig. 10 correspond310

to diffusive processes characterized by β = 0.1, β = 0.3 and β = 0.5, respectively. Figures
point out that at small times when the value of β increases the effects of diffusion on
the initial shape of the profile decreases, the subdiffusive process being in this case
responsible for a stronger diffusive effects leading to a quicker smearing of the initial
profile, because, when t < τw, the smaller the parameter β the larger the particle variance315

(14). Among the three cases shown in Fig. 8, Fig. 9 and Fig. 10, the case characterized by
the ordinary diffusion process is clearly the one in which the initial front profile remain
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Figure 5: Time evolution of the maximum value of ϕe (ϕmaxe ) corresponding to five values of the
parameter β (β = 0.1, 0.2, 0.3, 0.4, 0.5) for the case discussed in Figure 4.
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(f) V = 1.0 m/s, t = 1.0 s

Figure 6: The same as in Figure 2 but with ν = 0.1 m2s−2β .
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Figure 7: Time evolution of the maximum value of ϕe (ϕmaxe ) corresponding to five values of the
parameter β (β = 0.1, 0.2, 0.3, 0.4, 0.5) for the case discussed in Figure 6.
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Figure 8: Distribution of the ϕe field for the case with β = 0.1 on the two–dimensional domain
[−2 m, 2 m] × [−2 m, 2 m] at four instant times. The initial profile at t = 0 s is a square, with center
C = (0, 0) and side ` = 0.7 m. The diffusion coefficient is ν = 0.01 m2s−2β and V = 1 ms−1.

almost unchanged for a longer time, being the profile also sharper. For large times – as
seen in Fig. 8(d), Fig. 9(d) and Fig. 10(d) – the diffusion process leads to similar front
profiles in all the discussed cases, being the effective indicator field ϕe undistinguishable,320

as a matter of fact, in all the three cases.

5. Conclusions

In this paper, a multi–dimensional model to study the evolution of random fronts in
media in which anomalous diffusion takes place has been presented.

In the proposed model, the position of the random front is obtained as the weighted325

mean of fronts calculated by means of the LSM, using as weight-function the relevant
PDF.

Since anomalous diffusion can be modelled by the time-fractional diffusion equation,
the corresponding fundamental solution is the required PDF.

In the one–dimensional case, it is well known that this fundamental solution can be330

conveniently written in terms of the M-Wright/Mainardi function, for the numerical
evolution of which robust numerical methods are available. In the multi–dimensional
case, the only available representation of this fundamental solution – to the best of

20



-2.0 -1.0 0.0 1.0 2.0

x [m]

-2.0

-1.0

0.0

1.0

2.0

y
[m

]

(a) t = 0.05 s

0.0

0.2

0.4

0.6

0.8

1.0
ϕ
e

-2.0 -1.0 0.0 1.0 2.0

x [m]

-2.0

-1.0

0.0

1.0

2.0

y
[m

]

(b) t = 0.1 s

0.0

0.2

0.4

0.6

0.8

1.0

ϕ
e

-2.0 -1.0 0.0 1.0 2.0

x [m]

-2.0

-1.0

0.0

1.0

2.0

y
[m

]

(c) t = 0.3 s

0.0

0.2

0.4

0.6

0.8

1.0

ϕ
e

-2.0 -1.0 0.0 1.0 2.0

x [m]

-2.0

-1.0

0.0

1.0

2.0

y
[m

]

(d) t = 1.0 s

0.0

0.2

0.4

0.6

0.8

1.0

ϕ
e

Figure 9: The same as in Figure 8 but for the case with β = 0.3.
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Figure 10: The same as in Figure 8 but for the case with β = 0.5.
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the authors’ knowledge – was so far the one provided by Haniga [20], which cannot be
straightforwardly used for the practical purpose of numerical calculations. It has been335

shown in this paper that, however, also in the multi–dimensional case the fundamental
solution can be written in terms of the M-Wright/Mainardi function (see Eq. (9)).

Making use of this representation of the PDF for the practical purpose of numerical
evaluation, the propagation of random fronts in two–dimensional media in which anoma-
lous diffusion takes place has been numerically studied, focusing the attention on the340

case of random fronts propagating in two–dimensional subdiffusive media.

The selection of numerical results presented in this paper includes the case of a
circular initial front profile and a case with a square-shaped initial front profile. In
the first case, the investigation is performed as to point out the effects on the random
front propagation of the parameter β (which is half of the order of the time fractional345

derivative), the diffusion coefficient ν and the deterministic front velocity V. In the case
of a square-shaped initial front profile, the primary intent of the investigation is to focus
on the effects of the parameter β on the short-term and long-term evolution of the shape
profile.

The presented numerical results clearly show that when the intensity of the diffusion350

(namely, the diffusion coefficient ν) is small enough, the propagating front is smoothed-
out with respect to the sharp front obtained in the deterministic, i.e. non-diffusive case,
but the overall qualitative behaviour of the front propagation is not affected by the
diffusive phenomena taking place in the medium. On contrast, when the intensity of
the diffusion is large, the qualitative behaviour of the random fronts sensibly changes:355

in this case the smoothing of the front may be so significant as to even compromise the
existence of the region enclosed by the propagating front (and the front itself, in turn).
This effect, which has been referred to as a weakening effect of the diffusion phenomena
on the region bounded by the propagating front can be, as shown, a transient effect
gradually vanishing as the front propagates, or even a phenomenon which drastically360

affects the very existence of the front, depending on the intensity of the diffusion itself.
In both cases, it has been shown how the velocity of propagation of the deterministic front
plays a significant role in the features of the front propagation, as the above-discussed
weakening effect is reduced as such velocity increases.

Moreover, aside from depending on the intensity of the diffusion phenomena through365

the diffusion coefficient ν, the above-mentioned weakening effects has also been shown to
be more pronounced as the subdiffusive nature of the diffusion increases. The timescale
τw of this weakening process has been estimated.

As far as the analysis of the propagation of an initially square-shaped front is con-
cerned, it has been shown that, in the case under investigation and for short elapsed370

times (i.e. t < τw), small values of the parameter β leads to a smearing of the initial
front shape remarkably faster than in the case of ordinary diffusion. This occurs because,
when t < τw, the smaller the coefficient β the larger the particle variance (14).

The LSM library utilized for the purpose of this investigation, featuring optimized
FMM algorithms as well, is intended to be released as open source software under the375

GNU General Public License version 3 (GPLv3).
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