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Abstract 

Mobile Crowdsensing (MCS) enables collective data harvesting actions by 

coordinating citizens willing to contribute data collected via their sensor-rich 

smartphones that so represent sources of valuable sensing information in urban 

environments nowadays. One of the biggest challenges in a real long-running 

MCS system lies in the capacity not only to attract new volunteers, but also and 

most importantly, to leverage existing social ties between volunteers to keep 

them involved so to build long-lasting MCS communities. In addition, the 

advent of highly-performing devices and ad-hoc communication technologies 

can help to further amplify the effect of sensing actions in proximity of the 

volunteer devices. The paper originally describes how to exploit these socio-

technical networking aspects to increase the performance of MCS campaigns in 

the ParticipAct living lab, an ongoing MCS real-world experiment that 

involved about 170 students of the University of Bologna for more than two 

years. The paper also reports some significant experimental results to quantify 

the effectiveness of the proposed techniques. 

 

1. Introduction 

Mobile Crowdsensing (MCS) is a recent sensing paradigm that leverages on the worldwide 

availability of smartphones. By installing a crowdsensing application, any smartphone can become 

part of a (large-scale) mobile sensor network, partially operated by the owners of the phones 

themselves. A crowdsensing application transforms the smartphone in a data sensing, collection, 

and sharing terminal to exploit the embedded sensors (like cameras, microphones, accelerometers, 

barometers, etc.) and the mobility of the user carrying the phone to gather information about some 

events of common interest for the users. Considering the widespread diffusion of smartphones and 

their density (typically in urban areas), the information from which a crowdsensing application 

draws can be rather dense and fine-grained [1]. This fact, along with the limited investments 



required to develop and maintain crowdsensing platforms and applications, made this paradigm 

particularly attractive to smart cities managers to improve the quality of their cities and citizens. 

Despite its potential, MCS still faces some barriers to user acceptance [2]. Some of them are 

technological and they will likely fade away with the progress of the smartphones and crowdsensing 

technologies and standards: an example is the heterogeneity of hardware/software platforms that 

raises the costs for development and maintenance. Other barriers are more related to user 

acceptance, such as the concern of the users for privacy, battery consumption, and communication 

costs. However, other obstacles will not disappear so easily: persistent examples are the difficulty of 

involving users and the high rate of drop-offs due to users that lost interest in contributing to the 

MCS campaigns. With an increasing expansion of MCS, these last two obstacles are quite critical 

since an insufficient number of involved people can compromise the effectiveness of an MCS 

campaign. In fact, realistic scenarios may involve only a small fraction of the whole citizenship in 

MCS campaigns, while most citizenship does not take part to it. 

To overcome these limitations, we propose novel technical solutions to empower and enrich the 

whole MCS cycle by exploiting both user sociality and physical proximity to emphasize the effect 

of MCS campaigns. First, we gain higher user participation by leveraging communities of users, 

namely groups of users with a high mutual attendance [3]. We introduce a new type of cooperative 

task, namely, community-based task, with multiple stages and we ask people in the same 

community to participate to its completion. Second, we explore the possibility of increasing the 

number of data gathered during an MCS campaign by exploiting other users, not part of the MCS 

loop. This capability, that we define sensing amplification factor [4], enables the smartphones of an 

MCS user to cooperate with other devices detected in proximity (owned by users not already 

involved), as it happens already in Mobile Social Networks (MSN) [5, 6]. Finally, we report a 

selection of interesting experimental results that assess the proposed facilities in the ParticipAct 

MCS living lab1, by discussing and evaluating their strength and weaknesses. 

 

2. Mobility and Sociality in MCS  

MCS services typically cross-cut and work at the overlapping of various different research areas that 

span from management of large socio-technical smart city systems for optimizing the MCS process 

to crowdsourcing techniques that enlarge the number of people involved and aim at granting higher 

participation. Without claiming completeness, this section first proposes a general model for MCS, 

then it briefly overviews the current state-of-the-art in these very active research fields. 

                                                           
1  Additional information, tools, experimental results, and the ParticipAct MCS platform prototype code are available at: 

 http://participact.unibo.it 



While there are already some good surveys about MCS systems (e.g., [7]), this article proposes a 

simplified MCS reference architecture by identifying its basic components: we claim that any MCS 

architecture must consist of the following building blocks. First of all, the MCS crowd is a set of M 

people, representing a fraction of the whole population and we refer to them as volunteers (drawn as 

light orange full points in Fig. 1), that deliberately express their availability to be involved in the 

crowdsensing campaigns over the smart city.  

 

 
Figure 1. Reference architecture showing communities and devices in proximity.  

 

Volunteers move within the smart city and establish meaningful social interactions (in the real 

world) that typically present two properties, their mobility and interaction patterns. In addition, 

volunteers are expected to carry their smartphones provisioned with the MCS app, namely, MCS 

client, in charge of receiving MCS requests, also referred to as tasks. A task represents a data 

collection activity to be accepted and completed by volunteers involved in an MCS campaign. Each 

task may include multiple data gathering actions to complete, typically in a given time span and 

within an area of interest; these actions can occur either automatically by the MCS app without any 

other human interaction (apart the initial acceptance), or may require some active participation of 



volunteers that should, for instance, provide their feedbacks about a focused night event. Finally, 

the MCS server is the central backend in charge of storing gathered data creating new MCS 

campaigns and sending tasks to MCS clients and it is composed of a dashboard for configuring 

tasks and of a database for the storage of sensed data.  

In addition to the above basic MCS issues, we argue that the spatial and social dimensions of 

tasks can greatly enhance the effectiveness of MCS campaigns, and that potentially powerful aspect 

is often underutilized. Along that line, we claim the need of two extensions to the MCS reference 

architecture, in two directions:  i) enhancing the involvement of volunteers and supporting more 

complex task via the introduction of the concept of communities of volunteers; ii) increasing the 

number of data gathered with MCS campaigns by exploiting devices of other users that lie in 

proximity of volunteers and that can offer their data in a crowdsensing task. On the one hand, the 

extended architecture includes the discovering of communities of volunteers with a meaningful and 

durable social interaction among themselves (in Fig. 1 these social ties among volunteers are 

depicted as solid lines) and the introduction of the new concept of community-based task. Those 

tasks require that volunteers  interact closely to one another toward the entire completion, by 

contributing some of different subtasks in their turn; the smaller task are called community-based 

task stages or simply stages and volunteers can offer their work for specific stages, depending on 

their capacities and availability.  On the other hand, we add discovery of devices close to volunteer 

devices (referred as discovery of co-located device) where the connection between devices in 

proximity typically rely on ad-hoc communication protocols (devices in proximity are shown in 

Fig. 1 as pink blank spots, with the wireless transmission range corolla that overlaps with that of 

volunteer device). 

Focusing now on literature, the availability of rich smartphone sensing platforms have enabled 

the creation of several MCS vertical services and apps for different domains including environment 

monitoring, intelligent transportation, urban dynamics sensing, healthcare, and so forth [7]. Some 

MCS systems, such as Vita and Medusa [8, 9], make a step further by introducing support functions 

to ease definition and automatic assignment of tasks to volunteers, by also including complex 

(monetary and non-monetary) incentive mechanisms, that are out of the scope of this paper and 

complementary, to increase participation [10]. 

More recently, various authors have agreed that one of the key open challenges in MCS is the 

possibility of exploiting socio-technical network effects to consolidate and extend the crowd by 

leveraging communities of volunteers [7, 11].  Accordingly, new research trends at the crossroads 

of MCS, MSN, and ad-hoc sensor networks share with our proposal the goal of facilitating 

community identification and formation, to enable informed scheduling of MCS tasks not only to 



single volunteers, but also to communities of volunteers (see [12]). Moreover, some proposals 

explore the use of opportunistic interactions with nearby devices to further boost the performances 

of MCS data harvesting [4, 13]. 

What makes our research efforts unique is the fact that the ParticipAct living lab, with long 

duration (more than 2 years) and geographical wideness (the whole Emilia Romagna region in 

Italy), mimics closely a very realistic MCS scenario where users can freely decide whether they 

accept a task or refuse it, whilst in several other similar large scale MCS experiments, such as the 

Nokia Mobile Data Challenge (MDC), data collection is compulsory for all participants [14]. In 

addition, focusing on number of involved users, ParticipAct with its 178 users is one of the largest 

datasets with respect to other ones available in the literature, such as Cambridge (around 35 users), 

MIT Reality (around 100 users), and MDC mentioned above (around 190 users). 

 

3. Amplifying and Maintaining users in MCS Platforms 

This section details the solutions used to enhance the MCS process by leveraging existing 

communities of volunteers and by enabling opportunistic communication with devices in proximity. 

 

3.1. Amplifying MCS through Community-based Tasks 

The social interactions among humans are often referred to as social ties to imply the involved 

relationship among people. Moreover, as a matter of fact, people tend to move according to 

objectives and activities stemming from their social interactions and deriving from specific 

opportunities and events [15]. Focusing on individual social relationships, they can have different 

strength: they can be tight ones, as they are among friends, or weaker ones, as it occurs among 

strangers. The strength of social ties depends also on the time spent together by involved people: 

typically, friends are people that share usually lots of interests and tend to meet often and to spend 

much time together; differently, strangers tend to have fewer overlapping interests and to stay in 

touch only for short and sporadic periods. According to all-human tendency of spending time with 

people with similar interests, the MSN literature has classified the MSN topology to characterize 

how people move together in a smart city. In particular, it has defined four main categories of 

relationships to distinguish communities of people presenting different levels of sociality among 

themselves, namely, from the most to the least social ones: friends, community members, familiar 

strangers, and strangers. Community detection algorithms aim to identify and extract from 

(volunteers’) mobility traces the communities (namely, the pinpointing of all communities per 

category and the people in anyone of them) belonging to each of those relationship categories. 



In particular, the literature proposes many community detection algorithms motivated by 

different possible expected outcome [5, 6]. Among all the available ones, we decided to use k-

CLIQUE [3] to evaluate the social relationship between individuals. We choose the k-CLIQUE for 

some main reasons: i) as recognized in literature, it is a general-purpose algorithm so easy to be 

applied to a wide range of application scenarios; ii) it does not require any previous profiling 

knowledge of volunteer mobility metrics; iii) it has a relatively low computation complexity, 

namely O(n
2
) in the size of the explored network and hence it is suitable for a periodical re-

computation. 

Going deep in the technical aspects, k-CLIQUE is a distributed spatio-temporal detection 

algorithm coming in many versions; the basic version of k-CLIQUE requires two parameters to 

whether to add a device to the community (called Familiar Set): the parameters are the cumulative 

contact duration (DURATION in Fig. 2) and the number of contacts (#CONTACTS in Fig. 2) [3]. 

In this paper, we use k-CLIQUE to identify the four categories of relationship (friends, community 

members, familiar strangers, and strangers), typically used to quantify the strength of human 

relationship that can be measured by the time spent together and the frequency of encounters. Along 

that line, we determine different mean values of DURATION and #CONTACTS (MDVALUE and 

#CMVALUE respectively) to identify and distinguish these four social categories. Indeed, the 

configuration of MDVALUE and #CMVALUE is an important decision, because it affects the 

cardinality of node communities and has to be tuned for the specific MCS datasets and mobility 

traces. 

 

 

Figure 2. Definition of communities according to k-CLIQUE and assignment of community-

based tasks. 

 

Finally, we use communities detected via k-CLIQUE to schedule tasks to communities; as 

already stated, we introduced community-based tasks because they favor a wider participation and 

social involvement of volunteers, but let us also stress the importance of distinguishing different 

relationship categories. Once collected statistics on past community-based task completion rates, it 



is possible, given a target community-based task completion ratio, to probabilistically decide the 

best relationship category to be involved. In other words, although “friends” communities will 

typically perform better (as demonstrated also by experimental results collected on-the-field in our 

living lab), a fair task management strategy suggests avoiding of involving always the same 

category of community. Hence, a manager can more freely decide the community to be involved, 

depending also on the importance of the task itself. Along the same direction, to decrease the MCS 

burden on single users: a volunteer who belongs to multiple communities is asked only for one 

community. We schedule the community-based task starting with the community with stronger 

relationship, namely, friends first, then community members, and so forth, and we avoid sending 

the task multiple times, excluding all other communities of the same volunteer. To make a step 

further, it would be possible to profile single users, and eventually entire communities, according to 

their interests and use these profiles to drive and further refine community-based task scheduling 

decisions. While that is part of our ongoing efforts on further evolving community-based task 

scheduling, we had already explored those advanced scheduling strategies applied to single user 

tasks and considering both spatial and interest dimensions; for more details, we refer interested 

readers to our previous works [1, 4]. 

 

3.2. Amplifying Sensing through Opportunistic Communications 

Our amplification factor aims at exploiting the sensing services that other (non-MCS) devices 

may offer to enlarge the number of sensed data. In particular, when an MCS client detects the 

presence of another device that can offer and publish data of interest for its present task, it can 

opportunistically pick up the foreign data to shorten is completion time. 

This amplification approach requires cooperation among devices that is enabled by two current 

technologies available in the wearable device market: short-range radio interfaces and applications 

for content sharing. Short-range interfaces are Bluetooth or WiFi, for instance, now available on 

most of the smartphones, tablets, wristbands, and smart watches; they allow to detect nearby devices 

(i.e. 0  to 10 meters) and to interact with them without any broadband connections. Along the other 

line, the diffusion of applications for sharing contents pushed a deeply novel way of device (and 

hence people) collaboration. Currently, all the most popular application markets offer apps for novel 

resource sharing techniques, for either sharing internet connection (tethering), or sharing an instant 

messaging service or for sharing sensors access. 

The amplification factor f quantifies the benefit of exploiting the opportunistic communications 

with other devices in an MCS campaign. Given a task of an MCS campaign, let β be the amount of 

data that can be gathered by only considering devices of those volunteers that decided to accept the 



task, say 𝑉 ⊂ 𝑀 (M is the total number of volunteers). We define f as the ratio between the amount 

of data  that the task can gather by opportunistically exploiting other devices and β: 

f =/ β 

Thus β is the lower bound of the number of retrievable data, while   represents the upper bound 

of it. Moreover, let us observe that data collected by different devices in the same place at the same 

time might overlap (unless some measurement error occurs); in that case they would account only for 

one data chunk. Hence, assuming that the sensor readings are requested at discrete time slots, we can 

provide an estimation of by defining the amplification set 𝐺𝑖
𝑡 of device iV at time slot t as the 

subset of the neighbor set 𝑁𝑖
𝑡 of i that provide to i an additional data useful for the task. Letting q be 

the probability that a neighbor of i provides information useful for the task, we have 𝐺𝑖
𝑡 = 𝑞|𝑁𝑖

𝑡|. 

Hence,  can be written as: 

 𝜂 = ∑ |⋃ 𝑝 ∗ 𝐺𝑖
𝑡

𝑖∈𝑉 |𝑡  

Formula (2) provides an estimation (shown in Fig. 3) of the contribution given by one device in V to 

, by varying the number of devices in V and the probability p that, in a time slot t, a device belongs 

to any pair of 𝐺𝑖
𝑡 and 𝐺𝑗

𝑡, for some i,jV. In particular, we observe that the value of decreases for 

higher values of the cardinality of V. This because, with a larger number of devices that receive the 

task, it is also higher the chance that any two subsets 𝐺𝑖
𝑡 and 𝐺𝑗

𝑡 have a larger intersection. The same 

effect is also due by high values of p, which also result in small values of. Therefore, in order to 

improve the amplification factor it is not sufficient to send the task to additional devices, but it is 

also important to choose the additional devices in such a way that their amplification sets do not 

overlap much with that of the other devices running the task, so that to ensure that p is kept low, 

such as by selecting users belonging to different communities such as strangers or familiar strangers 

(see Section 3.1).  



Figure 3. Contribution of η varying |V| and p. 

|V|



4. Experimental Campaign 

The experimental assessment of a large-scale crowdsensing system in a realistic scenario poses 

complex problems and opens up social, technical, and logistic challenges. The reported results have 

been collected within the long-running and still active ParticipAct living lab that we maintain at 

University of Bologna since January 2014. ParticipAct is a large crowdsensing deployment that 

now involves 178 volunteers, all of them are students of our university from different courses, 

years, and campuses, namely, Bologna campus (123 students) and Cesena campus (50 students). 

Although, as in any similar experiments, it is an open question whether obtained results and 

implications could be extended to a more general scenario, the ParticipAct dataset is large enough 

(both in time, almost two years, and space, with different cities involved) to draw some first 

important observations, rather realistic for urban setting scenarios. As another observation, our 

university campuses are not self-contained, but spread over some metropolitan areas, and the same 

is for most universities in Italy. For this reason, volunteer paths and behaviors are not limited to a 

specific area, but relate to the whole urban territory that coincides with the same area of all citizens 

living in the same smart city. In the following, we present a selection of experimental results aimed 

to quantitatively assess the functions originally presented in this paper. 

Our first experimental result shows the effectiveness of the newly introduced community-based 

task. In particular, we have compared volunteer involvement before and after the introduction of this 

feature to evaluate the impact of the employed technique in consolidating participation of volunteers 

for community-based tasks of different complexities. The analysis focused on periods of one month: 

ParticipAct mobility traces for one month all involved volunteers and it typically contain about 7 

million data location points that made possible to extract an average of 41570 contacts per month 

between our volunteers. First of all, we run some preliminary configuration tests to tune k, 

MDVALUE and #CMVALUE parameters; the goal was to find the best values to distinguish 

different relationship categories and to balance the number of communities identified for each 

category. After some empirical tuning, we found that putting k=4, MDVALUE=144 hours (namely, 

20% of the total number of hours in one month of 30 days), and #CMVALUE=5 contacts-per-day, it 

is possible to well-distinguish an average number of 35 communities for each month with the 

distribution shown in Fig. 4-a. In particular, communities are divided as follows: 52% friends, 35% 

community members, and the reminder distributed among 4% familiar strangers and 9% strangers. 

Let us stress that volunteers in strangers communities present a very low sociality. For the reason of 

their very low responsiveness, after some first tentative community-task assignments to them, we 

decided not to use communities of this category for scheduling community-based tasks; we have 

decided to simply consider single independent users the volunteers of this category.  



(a)  

 

   (b) 

Figure 4. Evaluation of (a) communities and (b) community-based tasks success rate. 

 

Then, our second experimental result allowed us to automatically identify communities in 

September 2015, namely, 37 communities, and to use them in the scheduling of 16 community-based 

tasks in October 2015; these 16 community-based tasks present increasing complexities and a 

number of stages ranging from 1 to 5 (points in Fig. 4-b are average values over all these tasks and 

all presented measurements have exhibited a limited variance, always under 8%). All these tasks are 

very easy and fast to complete, such as ordering the first three soccer team classified in the last world 

cup championship and ordering the first N lyrics of a song. The first important results is that the 

introduction of community-based tasks produced an increase in the acceptance rate of the proposed 



tasks themselves: before the acceptance of a new task requests settled to 38%, the rate of volunteers 

ignoring new tasks settled to 55%, and those explicitly refusing was 7%; after the introduction of 

community-based tasks, instead, acceptance rate improved to 51%, while the number of volunteers 

ignoring and refusing dropped, respectively, to 45% and 4%. For the sake of fair comparison, we 

considered simple routinely tasks that always required very simple action, namely, multiple choice 

questions to answer, and usually taking less than one minute.  

Afterwards, we focused our analysis on community-based task success rate (expressed as 

percentage of success in Fig. 4-b), and also on completion of all stages by involved volunteers; in 

particular, at each stage, we ask all participants in the group to answer a part of a simple question by 

excluding those who have already replied at previous stages. As in Fig. 4-b, there is a rather clear 

distinction between the performances obtainable with the different relationship categories: the higher 

the sociality, the better the completion ratio; that also allows, given a target completion ratio, to 

(statistically) decide the category of communities to involve and to exclude other ones, thus lowering 

the load of requests sent to potential volunteers. Let us also add that an important guideline to follow 

in the design of community-based tasks is to avoid too complex task with too many stages; in fact, 

over 4 stages the completion ratio drops below 20% for any category of community. 

Finally, our third experimental test works on the amplification factor to evaluate the 

improvements in terms of additional data collected. For the sake of simplicity, respecting the general 

theoretical model of Fig. 3, we focused on the amplification factor for one single device receiving a 

task (hence β = 1), and we set probability q=1 to represent the most optimistic case in which all 

encountered neighbors provide information suitable for the task. With such a setting, the presented 

results can be considered as the upper bound of the amplification factor f, as shown in Fig. 5 that 

reports the amplification factor for the whole crowdsensing campaign. On the x axis, we report the 

hours elapsed since the start of the experimentation for a total of 9 months approximately, on the y 

axis we report the amplification factor. The experimentation starts in December right before the 

Christmas holidays during which very few students meet, resulting in very low amplification factor. 

From January to June, the amplification increases and it stays in the range [0 to 1.2]. The reason for 

such a f trend is the scheduling of many university lectures and examination breaks that attract 

students and force them to stay in touch for longer periods. As a result, the average cardinality of the 

neighborhood also increases. The summer time is also significant as in Fig. 5, when few students 

meet each other resulting in a low amplification factor. In fact, the amplification factor increases 

during the working week (typically Monday to Friday, see weekly pattern in Fig. 5) when people are 

more likely to meet and stay in contact for longer period. Conversely, the amplification factor 

decreases during late weekends giving rise to a weekly pattern of encounters.  



 

Figure 5. Results of the amplification factor with the ParticipAct dataset. 

 

From the previous analysis, we observe that the number of expected results from a task is deeply 

affected by social activities of people. The ParticipAct dataset highlights that routinely cyclic 

aspects, and also other events forcing people to meet and to stay in contact, can increase the average 

neighborhood relationship and hence the amplification factor. Furthermore, the knowledge of 

routinely patterns like weekly patterns can be exploited in order to synchronize the submission of a 

task with the daily rhythm of crowd. 

Let us conclude by summarizing some lessons we have learnt toward new campaigns of the whole 

MCS process. First, even with a small number of volunteers, as is our 170 ParticipAct ones, a simple 

community detection solution is possible for community-based task scheduling. Second, the 

introduction of community-based tasks might be used as an indirect incentive (see [7]) to increase 

volunteers’ sense of belonging, so it induces an increase in acceptance rate. Third, MCS tasks should 

simpler as possible avoiding too many stages. Fourth, our experiments evidence a strong relationship 

between the amplification factor and the routinely behavior of volunteers. Hence, fifth and final, 

MCS systems should exploit that additional awareness to refine and synchronize task scheduling 

strategies with the rhythms of crowd. 

 

5. Conclusions 

Mobile Crowdsensing is a powerful tool for performing sensing campaigns with citizens; 

however, one of the most difficult barriers to the spreading of MCS campaigns is recruiting 

volunteers. To overcome such barrier, the social context of people involved in the MCS can 



effectively increase performances. In particular, we propose two complementary solutions. The first 

one aims at keeping users more involved by leveraging on their existing social ties, that is achieved 

by introducing community-based tasks, which address groups of users sharing social relationships at 

different levels. The second solution aims at increasing the number of data by opportunistically 

collecting relevant information made already available by non-MCS devices located in proximity of 

volunteers.  

These two solutions represent a first attempt to exploit the knowledge of the social context to 

increase the results of an MCS campaign. That suggested three further lines of investigation. The 

first one deals with the detection of communities reflecting more accurately the social events shared 

by volunteers. The solution of this paper exploits only spatial-temporal properties for detecting 

groups of people members of the same community. However, a step further can be done by 

combining together orthogonal sociological markers such as the physical activity of people, the 

speech intensity, and the similarity among visited places. All such markers can be mashed-up 

together in order to identify strong and durable ties among volunteers. The second line of 

investigation relies on a deeper knowledge of volunteer profiles; information such as interests, social 

habits, and preferences may be exploited to decide more accurately the target volunteers for a 

specific task. Finally, along the third direction and complementary to the work presented in this 

paper, we are considering also the possibility to exploit more direct incentive mechanisms to extend 

the core volunteer base. On the one hand, we are considering the possibility of providing different of 

kinds of benefits and monetary micro-payments to motivate new users entering the MCS system; on 

the other hand, we are including in ParticipAct novel gamification and entertainment strategies to 

evolve MCS and sensing tasks into a game that offers virtual rewards to more active users and 

communities. 
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Figure 1. Reference architecture showing communities and devices in proximity.  

  



 

 

 

Figure 2. Definition of communities according to k-CLIQUE and assignment of community-

based tasks. 

 

  



 



Figure 3. Contribution of η varying |V| and p. 
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Figure 4. Evaluation of (a) communities and (b) community-based tasks success rate. 

 

 

 

  



 

 

 

Figure 5. Results of the amplification factor with the ParticipAct dataset. 
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