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ABSTRACT

Aims. We present a comprehensive analysis of the performance of noise-reduction (denoising) algorithms to determine whether they
provide advantages in source detection, mitigating noise on extragalactic survey images.
Methods. The methods we analyze here are representative of different algorithmic families: Perona-Malik filtering, bilateral filter, total
variation denoising, structure-texture image decomposition, non-local means, wavelets, and block-matching We tested the algorithms
on simulated images of extragalactic fields with resolution and depth typical of the Hubble, Spitzer, and Euclid Space Telescopes, and
of ground-based instruments. After choosing their best internal parameters configuration, we assessed their performance as a function
of resolution, background level, and image type, in addition to testing their ability to preserve the objects fluxes and shapes. Finally,
we analyze, in terms of completeness and purity, the catalogs that were extracted after applying denoising algorithms on a simulated
Euclid Wide Survey VIS image and on real H160 and K-band (HAWK-I) observations of the CANDELS GOODS-South field.
Results. Denoising algorithms often outperform the standard approach of filtering with the point spread function (PSF) of the image.
Applying structure-texture image decomposition, Perona-Malik filtering, the total variation method by Chambolle, and bilateral fil-
tering on the Euclid-VIS image, we obtain catalogs that are both more pure and complete by 0.2 magnitude than those based on the
standard approach. The same result is achieved with the structure-texture image decomposition algorithm applied on the H160 image.
The relative advantage of denoising techniques with respect to PSF filtering rises with increasing depth. Moreover, these techniques
better preserve the shape of the detected objects with respect to PSF smoothing.
Conclusions. Denoising algorithms provide significant improvements in the detection of faint objects and enhance the scientific return
of current and future extragalactic surveys. We identify the most promising denoising algorithms among the 20 techniques considered
in this study.

Key words. techniques: image processing – methods: numerical – methods: data analysis – surveys

1. Introduction

Measuring the amount of photons that we receive from astro-
nomical sources over a given range of wavelengths is the pri-
mary way to gather information about the Universe. From the
advent of digital photography in the 1980s, charge-coupled
device (CCD) imaging is one of the primary ways by which we
do so. Currently, CCD devices can reach 100 million pixels, with
read noise as low as one electron, almost 100% quantum effi-
ciency, and sensitivity from the X-rays to the near-infrared (see,
e.g., Lesser 2015, for a review).

Before being ready for the extraction of meaningful scien-
tific content, astronomical images must be processed in order to,
for instance, combine different observations into a single mosaic,
correct for flat-field, transients, artifacts, and defects, subtract a
global or local background, etc. Once these preparatory steps are
completed, the quality of the image mainly depends on its resolu-
tion capability (which is proportional to λ/D, the ratio between
the observed wavelength and the diameter of the telescope in
the case of diffraction-limited instruments, for example, space
observatories; or from the atmospheric seeing for ground-based
facilities), and on its depth (i.e., the magnitude at a given refer-
ence signal-to-noise ratio (S/N), which mainly depends on the
duration of the observations (exposure time). Since increasing

the latter is often unfeasible or too demanding, searching for
alternative methods to increase the S/N is important. A possi-
ble solution can be the application of noise reduction (denoising)
techniques.

Wavelet transforms are a standard and popular tool used for
denoising and detecting sources on astronomical images. The
technique is extremely versatile, as it can be applied across a
wide range of scientific cases (e.g., X-ray images: XMM-LSS
survey (Pierre et al. 2004) and Fermi catalog (Ackermann et al.
2013; Principe et al. 2018), cosmic microwave background maps
(Starck et al. 2004), N-body simulations (Romeo et al. 2003),
etc.). Other interesting applications are summarized in Starck
et al. (2006). Among the different possible implementations, the
widely used is the so-called “à trous” algorithm (Shensa 1992).
This algorithm is an undecimated wavelet transform (UWT),
which is also isotropic, which makes it very efficient for the
detection of isotropic objects, and makes it a popular choice in
astronomical image processing, where many objects are nearly
isotropic e.g., stars, galaxies, galaxy clusters (Starck et al. 2014).

With regard to extragalactic optical/near-infrared imaging,
images are typically convolved with a PSF-shaped kernel to
enhance source detection (see an application of the lemma in
Neyman & Pearson 1933); this is the most standard exam-
ple of a denoising algorithm since filtering reduces the noise
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variance, allowing real sources to rise above the background.
In many familiar cases, the typical PSFs of telescopes are quite
similar to 2D Gaussians, making the PSF filtering basically
indistinguishable from a Gaussian filtering. However, in several
non-astronomical applications of image analysis, this approach
is often outclassed by other, more refined methods that are
designed to be more efficient and to better preserve the borders
and edges of the sources.

A special mention is reserved for machine learning and
deep learning techniques, which have lately gained in popularity
within the field of image processing and astronomy. An inter-
esting application was proposed by Beckouche et al. (2013),
where a sparse dictionary-learning algorithm was tested on mul-
tiple astronomical images. On the other hand, autoencoder neu-
ral networks for image denoising appear to be very promising
(Vincent et al. 2008, 2010; Xie et al. 2012). Some applications
of autoencoders in different areas of astronomy can be found in
the literature, even if they are primarily used for other purposes
(e.g., spectral energy distribution recovery Frontera-Pons et al.
2017, denoising of gravitational waves Shen et al. 2017, or stel-
lar cluster detection Karmakar et al. 2018). Although these tech-
niques are, certainly, highly appealing, the aim of this work is
to perform a comprehensive comparison of “traditional” denois-
ing algorithms based on non-linear partial differential equations
(PDEs) and variational methods. The comparison with other
approaches based on machine learning will be developed in
future works.

We compared several classes of denoising techniques to
determine which ones yield the best improvements in source
detection. To this aim, we performed an extended set of tests. We
considered many different noise reduction algorithms, roughly
belonging to the following families: Perona-Malik (PM) filter-
ing, bilateral filter, total variation (TV) denoising, structure-
texture image decomposition, block-matching, non-local means,
and wavelets. The numerical methods employed range from vari-
ational methods to PDE-based techniques, in addition to some
statistical methods.

We tested these methods using two different datasets. First,
we focused on simulated images, created by state-of-the-art
codes and prescriptions to mimic different realistic cases. This
simplified environment has the advantage of allowing a detailed
analysis of the results since the “reality” is perfectly known.
For real images, we applied the algorithms that give the best
results obtained on the simulated dataset to check if the improve-
ment is confirmed. To our knowledge, this is the first attempt
to extensively compare a large number of denoising algorithms
in an astrophysical context. In general, the performance of any
of these methods depends on the kind of noise that affects the
image. Here, we are mainly interested in extragalactic imag-
ing and, in particular, we focus on the next generation of opti-
cal and near-infrared instruments and surveys such as Euclid
(Laureijs et al. 2011), The Large Synoptic Survey Telescope
(LSST Science Collaboration et al. 2009), Dark Energy Survey
(DES, Dark Energy Survey Collaboration et al. 2016), and Wide
Field Infrared Survey Telescope (WFIRST, Spergel et al. 2015).
The paper is organized as follows: in Sect. 2, we list and briefly
describe all the denoising methods used in our tests, providing
mathematical formulations and code information. In Sect. 3, we
present our datasets. In Sect. 4, we describe and discuss all the
tests we carried out, presenting our results in Sect. 5. In Sect. 6,
we apply the methods on real images from space and ground-
based instruments. Finally, Sect. 7 summarizes the main results,
along with a discussion of possible future applications. Through-
out this paper, we adopt the AB magnitude system (Oke &

Gunn 1983) and a ΛCDM cosmology, with Ωm = 0.3, ΩΛ = 0.7,
H0 = 70 km s−1 Mpc−1.

2. Denoising techniques

The focus of this paper is a comparison of different denoising
techniques that have been proposed in the literature and applied
to astronomical images. As we state in the introduction, these
images have specific features. So an efficient denoising method
is crucial for extracting the information contained in the image
and could serve as a preliminary step for other image processing
steps, such as image segmentation or deblurring.

To select the most efficient denoising approach for extragalac-
tic survey images, we analyzed different method classes cov-
ering the main families of noise reduction techniques, namely,
non-linear filtering (Sect. 2.2), bilateral filter (Sect. 2.3), TV
denoising (Sect. 2.4), image decomposition (Sect. 2.5), wavelets
(Sect. 2.6) and non-local means (Sect. 2.7). In the following, we
briefly summarize the mathematical formulations of these tech-
niques and provide information on the codes for reproducibility.

2.1. Gaussian smoothing

Here, we consider the intensity function I(x, y) of a noisy image,
with (x, y) ∈ Ω, where Ω ⊂ R2 is the reconstruction domain. We
let Iclean be the desired clean image. An image with a Gaussian
noise component is

I(x, y) = Iclean(x, y) + η, (1)

where η ∼ N(µ, σ) is the additive noise component.
Of course, we want to reconstruct Iclean from I. This fil-

ter uses a Gaussian function for calculating the transformation
to apply to each pixel in the image. Mathematically, applying
a Gaussian filter to an image corresponds to convolving the
image with a Gaussian function. Since the Fourier transform of a
Gaussian is another Gaussian, applying a Gaussian smoothing
has the effect of reducing the image’s high-frequency compo-
nents; a Gaussian filter is, thus, a low-pass filter. In two dimen-
sions, it is the product of two Gaussian functions, one in each
dimension, so that the low-pass Gaussian filter is

Gσ(x, y) :=
1

2πσ2
exp

− x2+y2

2σ2 , (2)

where x is the distance from the origin in the horizontal axis, y
is the distance from the origin in the vertical axis, and σ is the
standard deviation of the Gaussian distribution.

Filtering the image I : Ω ⊂ R2 → R with a “low-pass”
Gaussian filter corresponds to processing it with the heat equa-
tion (Gabor 1965; Lindenbaum et al. 1994) that solves the fol-
lowing linear PDE:



∂I

∂t
(x, y, t) = ∇I(x, y, t) ∀(x, y, t) ∈ Ω × (0,TC],

∂I

∂η
(x, y, t) = 0, ∀(x, y, t) ∈ ∂Ω × (0,TC],

I(x, y, 0) = I0(x, y), ∀(x, y) ∈ Ω,

(3)

which has a diffusive effect on the initial datum I0, for a small
fixed time TC > 0. The relation between the Gaussian filter (2)
and the problem (3) is that the solution of the heat equation is a
convolution with the Gaussian filter, that is,

I(x, y, t) = (Gσ(x, y) ∗ I0)(x, y), (4)
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with σ =
√

2t. It is well-known that applying this filter does
not preserve the edges. This edge blurring is due to the isotropic
diffusion.

We can get an improvement in three different ways: by mod-
ifying the heat equation (see Sect. 2.2); by making convolution
“nonlinear” (see Sect. 2.3); by defining an optimization problem
(see Sect. 2.4).

Code information. In this paper, we use a simple Gaussian
smoothing using a kernel that approximates a PSF of known full
width at half maximum (FWHM; Winkler 2011), referring to
it as the “PSF”, whereas with the term “Gaussian” we refer to
the Gaussian filter with internal parameter, σ. We made use of
the “gaussian_filter” routine implemented in the Python package

Scipy1 (Jones et al. 2001), with σ ≈ FWHMpixel

2.355
, which is easily

obtained defining the Gaussian kernel radius r = x2 + y2, where

the kernel maximum is at r = 0 then FWHM = 2
√

2 ln 2σ2.

2.2. Filters of Perona-Malik type

An improvement on the simple Gaussian filter is obtained by
modifying the heat equation. Following the PM model (Perona
& Malik 1990), we chose large values of |∇I| as an indicator of
the edge points of the image in order to stop the diffusion at these
points. In this way, we move from an isotropic to anisotropic
diffusion as follows:

∂I

∂t
= div(∇I)⇒ ∂I

∂t
= div(g(|∇I|)∇I). (5)

Equation (5) must be complemented with suitable boundary con-
ditions (e.g., homogeneous Neumann boundary conditions) and
an initial condition. Perona and Malik pioneered the idea of
anisotropic diffusion and proposed two functions for the diffu-
sion coefficient (also called edge-stopping functions):

g1(|∇I|) :=
1

1 +
( |∇I|

K

)2
, (6)

g2(|∇I|) := exp
(
−

( |∇I|
K

)2)
, (7)

where K is the gradient magnitude threshold parameter that
decides the amount of diffusion to take place. We also consider
other three edge-stopping functions that have been proposed sub-
sequently to the original work by Perona and Malik:
Black et al. (1998) proposed an edge stopping function called
Tukey’s biweight function defined as:

g3(|∇I|) :=


1
2

[
1 −

( |∇I|
K
√

2

)2]2
if |∇I| ≤ K

√
2

0 otherwise.
(8)

Guo et al. (2012) proposed the following function:

g4(|∇I|) :=
1

1 +
( |∇I|

K

)α(|∇I|) , (9)

where

α(|∇I|) := 2 − 2

1 +
( |∇I|

K

)2
. (10)

1 https://docs.scipy.org/doc/scipy/reference/

generated/scipy.ndimage.gaussian_filter.html
2 See also https://brainder.org/2011/08/20/gaussian-
kernels-convert-fwhm-to-sigma/ for further details.

Weickert (1998) proposed:

g5(|∇I|) :=

{
1 − exp(−3.31488 ∗ K8/(|∇I|)8) if |∇I| , 0
1 otherwise.

(11)

Code information. This method has been implemented by us
in C++ and it is available online3.

2.3. Bilateral filter

The bilateral filter is an edge-preserving denoising algorithm that
was first introduced by Tomasi & Manduchi (1998). It is defined
as (see also Banterle et al. 2012):

I(x) =
1

w

∑

xi∈Ω
I0(xi) fr(‖I0(xi) − I0(x)‖)gs(‖xi − x‖), (12)

where

w :=
∑

xi∈Ω
fr(‖I0(xi) − I0(x)‖)gs(‖xi − x‖) (13)

where I is the filtered image, I0 is the original input image to be
filtered, x are the coordinates of the current pixel to be filtered,
Ω is the window centered in x, so xi ∈ Ω is another pixel, fr
is the range kernel for smoothing differences in intensities (this
function can be a Gaussian function), and gs is the spatial (or
domain) kernel for smoothing differences in coordinates (this
function can be a Gaussian function).

It averages pixels based on their spatial closeness and
on their radiometric similarity. Spatial closeness is measured
by the Gaussian function of the Euclidean distance between
two pixels and a certain standard deviation (sigma_spatial).
Radiometric similarity is measured by the Gaussian function of
the Euclidean distance between two color values and a certain
standard deviation (sigma_color).

Code information. We used the Python routine “denoise_
bilateral” available in the Python package scikit-image2. We
noticed that in using our dataset, variations of the sigma_spatial
were less effective than variations of sigma_color. We decided
to set sigma_spatial = 3 since it provides the best results.

2.4. Total variation denoising

Total variation denoising (also known as total variation regular-
ization) is based on the principle that images with excessive and
possibly spurious detail have high TV, defined as

TV(u,Ω) :=

∫

Ω

|∇u(x)|dx (14)

for a function u ∈ C1(Ω) (we note that a similar definition can
be given also for L1 functions Kolmogorov & Fomin 1957).
According to this principle, TV denoising tries to find an image
with less TV under the constraint of being similar to the input
image, which is controlled by the regularization parameter, that
is, it aims to minimize TV(I,Ω). This minimization problem
leads to the Euler-Lagrangian equation, which can be solved via
the following evolutive problem:

3 https://github.com/valerioroscani/perona-malik.git
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ut =
∂

∂x


ux√

u2
x + u2

y


+
∂

∂y


uy√

u2
x + u2

y


− λ(u − u0), (15)

for t > 0 and x, y ∈ Ω, with homogeneous Neumann bound-
ary conditions and a given initial condition. Generally, TV
denoising tends to produce “cartoon-like” images, that is,
piecewise-constant images. The concept was pioneered by
Rudin, Osher, and Fatemi in Rudin et al. (1992) and today it is
known as the ROF model. In addition, it is remarkably effective
at simultaneously preserving edges while smoothing away noise
in flat regions, even at low S/N.

Code information. We test the ROF method that was pro-
posed by Chambolle in Chambolle (2004) and the TV denois-
ing using split-Bregman optimization (Goldstein & Osher 2009;
Getreuer 2012; Bush 2011). For the implementation of the
two aforementioned methods, we used the Python routines,
“denoise_tv_chambolle” and “denoise_tv_bregman” belonging
to the Python package scikit-image4 (van der Walt et al. 2014).

2.5. Structure-texture image decomposition

A general approach to the denoising problem is based on the
assumption that an image I can be regarded as composed of a
structural part, u (i.e., the objects in the image), and a textural
part, v, which corresponds to finest details plus the noise. Fol-
lowing the approach described in Aujol et al. (2006), this image
decomposition technique is based on the minimization of a func-
tional with two terms: one based on the total variation and a sec-
ond on a different norm adapted to the texture component. Given
an image I defined in a set Ω, with BV(Ω) as the space of func-
tions with limited total variation in Ω, we can decompose I into
its two components by minimizing:

inf

(∫

Ω

|∇u(x)| + λ ||v(x)||p
X

dx

)
, (16)

where || · ||p
X

denotes the norm of a given space X and the mini-
mum is found among all functions (u, v) ∈ BV(Ω) × X such that
u + v = I. The parameter p is a natural exponent and λ is the so-
called splitting parameter which modifies the relative weights.
The best decomposition is found at the λ for which the correla-
tion between u and v reaches a minimum.

Code information. In Castellano et al. (2015), the authors
proposed a C++ code named Astro-Total Variation Denoiser
(ATVD), which implements three versions of the technique,
based, respectively, on the TV-L2 (X = L2(Ω)), TV-L1 (X =
L1(Ω)), and TVG (X being a Banach space as defined in Aujol
et al. 2006) norms. Two thresholds are defined and used in the
stopping criteria of the algorithms, called ǫcorr and ǫsol. The ǫcorr

defines the correlation algorithm precision, whereas ǫsol defines
the method precision (e.g., TVL2, TVG, TVL1). For all our tests,
we use ǫcorr = 10−4 and ǫsol = 10−3.

We note that the definition of the functional to be minimized
can also take an additional term to account for some properties of
the unknown image, f , corresponding to the available image, g.
This is a typical situation in which the physical image is modeled
as linear operator A acting from a Hilbert space, X, to a Hilbert
space, Y . In this approach, X contains all the functions character-
izing unknown objects and Y contains the functions describing

4 https://scikit-image.org/docs/dev/api/skimage.

restoration.html

the corresponding measurable images, such that

g = A f . (17)

A typical choice is to take X = Y = L2(Ω) and the inverse prob-
lem then calls for us to minimize the functional,
∫

Ω

‖A f − g‖22dx (18)

over f ∈ X. This problem is often ill-posed, so a popular
Tikhonov regularization is obtained by adding another term R( f )
to the functional to get
∫

Ω

‖A f − g‖22dx + µR( f ), (19)

where µ is a positive parameter to be tuned carefully. The term
R( f ) can also be used to introduce a prior, for example, the
regularity of f (based on Schwartz theorem) or the sparsity
of f (choosing R( f ) = ‖ f ‖1). Imposing a morphological prior
on the shapes, such has penalizing shapes that are different
from ellipses, would require an enormous number of param-
eters in the case of astronomical images that usually include
several sky objects and, thus, it is a very challenging prob-
lem which goes beyond the scope of this paper. For the use of
priors in other areas (e.g., in biomedical imaging), we refer inter-
ested readers to Bertero & Piana (2006) and for a general intro-
duction to inverse problems in imaging, we refer to the book by
Bertero & Boccacci (1998).

2.6. Wavelets

The wavelets transform is the counterpart for images of the
Fourier transform and the wavelets domain, which is a sparse
representation of the image that can be thought of similarly to
the frequency domain of the Fourier transform (Valens 1999). A
sparse representation indicates that most values are zero or near-
zero and truly random noise is represented by many small values
in the wavelet domain. Setting all values below some threshold
to 0 reduces the noise in the image, but at larger thresholds, this
also decreases the detail in the image. Here, we recall the relation
introduced in Sect. 2.1:

I = Iclean + η, (20)

where η is the noise and Iclean is the clean image (signal). The
components of η are independent and identically distributed (iid)
as N(0, σ2) and independent of Iclean. The goal is, again, to

remove the noise to obtain an approximation, Î of Iclean, mini-
mizing the mean square error (MSE):

MSE(Î) :=
1

N

N∑

j=1

(Î j − I j)
2, (21)

where N is the number of pixels. We can denote the matrix

of wavelet coefficients of the image I as by Y = WI, where
W is the orthogonal wavelet transform operator, similarly, F =
WIclean and E = Wη (see Vetterli & Kovačevic 1995; Mallat

2001 for more details onW) The wavelet transform is based on
the subbands (called details) at different scales, usually indexed
by k ∈ K ,K ⊂ N. The wavelet-thresholding method filters each
coefficient, Y j, from the detail subbands, k ∈ K , with a threshold

function to obtain X̂. The denoised approximation is Î =W−1X̂,
whereW−1 is the inverse wavelet transform. Two thresholding
techniques are frequently used. The “soft-threshold” function,
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ϕT (x) := sgn(x) max(|x| − T, 0), (22)

which shrinks the argument, x, to 0 by the threshold, T . The
“hard-threshold” function,

ψT (x) := x 1{|x|>T } (23)

sets the input to 0 if is below (or equal) the threshold T . We note
that the threshold procedure removes noise by thresholding only
the wavelet coefficients of the corresponding subbands, keeping
the low-resolution coefficients unaltered.

Code information. We consider the two thresholding methods
defined in the Python routine “denoise_wavelet”2 (Chang et al.
2000; Donoho & Johnstone 1994). The first one applies Bayes-
Shrink, which is an adaptive thresholding method that computes
separate thresholds for each wavelet subband as described in
Chang et al. (2000). The second is “VisuShrink”, in which a sin-
gle “universal threshold” is applied to all wavelet detail coeffi-
cients as described in Donoho & Johnstone (1994). This thresh-
old is designed to remove all Gaussian noise at a given σ with
high probability, but tends to produce images that appear overly
smooth.

In this work we decided to test several methods based on
wavelet transforms. We selected the Meyer wavelet described in
Meyer (1990) with VisuShrink thresholding method since, upon
analyzing the application on our dataset, we found that it pro-
vides the best performance based on the analysis described in
Sect. 4. The list we took the Meyer wavelet from can be found
in Lee et al. (2019). We refer to this method as “orthogonal
wavelets”.

We also consider other methods, based on multiscale
wavelets decomposition (implemented in the C++ library called
sparse2D, available at CosmoStat web page5). The first is an
isotropic UWT, based on the à trous algorithm, better known as
the “starlet transform”, where five wavelets scales and an itera-
tive hard thresholding technique are set. We refer to this method
as “starlet”. The other two both use a biorthogonal UWT using a
set of filters (introduced for the JPEG 2000 compression stan-
dard Starck et al. 2010) called “7/9 filters” and five wavelet
scales. For the first method, a 3σ threshold is set, whereas
for the second one, we perform a multi-resolution Wiener fil-
ter. We refer to these two methods as “b-UWT(7/9)” and “b-
UWT(7/9)+Wiener”, respectively. The optimal configurations
for the methods implemented in sparse2D have been suggested
by the authors. We used the mr_filter program with the fol-
lowing options:
– Starlet: t= default, f= 3, n= 5
– b-UWT(7/9): t= 24, f= default, n= 5
– b-UWT(7/9)+Wiener: t= 24, f= 6, n= 5
Here, t is the type of multi-resolution transform, f is the type of
filtering, and n is the number of scales. For further details about
these three methods and the UWTs in general, see Starck et al.
(2010).

2.7. Non-local means

The non-local means algorithm averages the value of a given
pixel with values of other pixels in a limited proximity, under
the condition that the patches centered on the other pixels are
similar enough to the patch centered on the pixel of interest. This
algorithm is defined by the formula (Buades et al. 2005):

NL[I0](x) =
1

C(x)

∫

Ω

exp (−gh
σ(x)) I0(y) dy, (24)

5 http://www.cosmostat.org/software/isap

where

gh
σ(x) :=

Gσ ∗ |I0(x + .) − I0(y + .)|2)(0)

h2
, (25)

I0 is the original image, x ∈ Ω, C(x) is a normalizing constant,
Gσ is a Gaussian kernel with σ denoting the standard deviation,
and h acts as a filtering parameter. The algorithm has been found
to give excellent performance when used to denoise images with
specific textures6.

We define, using sizeI , the image size in pixels; by sizep, the
size of the patch in pixels; by dp, the maximal distance in pix-
els for search patches; by n, the image number of dimensions
(n = 2, 3 depends if we consider 2D or 3D images). In its orig-
inal version, the computational complexity of the algorithm is
proportional to: sizeI ∗ (sizep ∗ dp)n (Buades et al. 2005). A new
“fast” version is now preferentially used since its actual com-
plexity is proportional to: sizeI ∗ dn

p (Darbon et al. 2008).
Compared to the classic algorithm, in the fast mode, the dis-

tances are computed in a coarser way, indeed all the pixels of a
patch contribute to the distance to another patch with the same
weight, no matter their distance to the center of the patch. This
approach can result in a slightly poorer denoising performance.

When the standard deviation σ is given, the method gives
a more robust computation of patch weights. A moderate
improvement to denoising performance can be obtained by
subtracting the known noise variance from the computed patch
distances, which improves the estimates of patch similarity
(Buades et al. 2011).

Code information. In this study, both the fast and slow ver-
sion of the algorithm were tested. After an initial selection of
patch sizes and distances, through the analysis described in
Sect. 4, we decided to set sizep = 5 and dp = 6. For our numeri-

cal tests, we used the routine “denoise_nl_means4” that is imple-
mented in the Python package Scikit-image.

2.8. Block-matching and 3D filtering

Block-matching and 3D filtering (BM3D) is a three-dimensional
block-matching algorithm which “groups” similar 2D fragments
with a matching method in the image. The matching method
finds similar fragments to the reference method, grouping frag-
ments closer than a defined threshold. The matched fragments
are then stored in 3D arrays called “groups”. A “collaborative
filtering” is performed in each group, which consists of a 3D
linear transform, a shrink to reduce noise and an invert linear
transform which produces 2D estimates of all the fragments.
Once the estimates are obtained, they are aggregated to form an
estimate of the whole image. For further details see Dabov et al.
(2007).

Code information. In this study, we tested a C++ code of
BM3D available online7. For performance improvements and
issues related to memory, the input images are cut into smaller
overlapping tiles, re-aggregated in a single output image at the
end of the process, as suggested by the authors.

3. Test dataset

We first test the denoising algorithms on five different simu-
lated images (Table 1), chosen with the aim of reproducing the

6 https://scikit-image.org/docs/dev/api/skimage.

restoration.html#skimage.restoration.denoise_nl_means
7 https://github.com/gfacciol/bm3d
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Table 1. Test images.

Filter PSF-FWHM Pixel scale Mag Lim (a)

(arcsec) (arcsec)

VIS 0.2 0.1 25.25

NIR H 0.3 0.3 24.01

EXT G 0.8 0.2 25.93

H160 0.15 0.06 27.23

IRAC 1.6 0.6 25.40

HUDF (H160) 0.15 0.06 28.16/29.74 (b)

Ks (HAWK-I) 0.4 0.1 24.45/26.3 (c)

Notes. (a)S/N = 5; (b)limiting magnitude at the CANDELS and at the
full HUDF depth, respectively; (c)images from Castellano et al. (2010),
and from the HUGS survey (Fontana et al. 2014), respectively.

properties of a wide range of typical cases in terms of resolution,
depth, pixel scale, and wavelength:

– VIS: Euclid satellite visual band (wavelength: 550–900 nm)

– NIR H: Euclid satellite near-infrared H band (wavelength:
1372–2000 nm)

– EXT G: ground-based optical filter

– H160: Hubble Space Telescope (HST) near-infrared F160W
band (e.g., CANDELS-wide Guo et al. 2013)

– IRAC: Irac-Spitzer 3.6 µm channel.

Here, we refer to the simulated images, provided as input to
the algorithms, as “original”, whereas we refer to the simu-
lated images representing the true sky, without noise included,
as “noiseless”.

The VIS and NIR H reproduce the expected features of the
visual and near-infrared bands in the forthcoming ESA satel-
lite, Euclid (Laureijs et al. 2011), and EXT G simulates a typ-

ical ground-based complementary optical observation for the
Euclid Wide Survey. H160 is modeled after the detection band
in recent deep surveys such as CANDELS (Grogin et al. 2011;

Koekemoer et al. 2011) and 3D-HST (Skelton et al. 2014),
whereas IRAC simulates the features of the Spitzer Channel 1
band in the CANDELS GOODS-South field (Guo et al. 2013).

The images were simulated with SkyMaker (Bertin 2009) on
the basis of source catalogs generated by the Empirical Galaxy
Generator (EGG; Schreiber et al. 2017) and they have been per-
turbed by Gaussian noise in order to reach the limiting magni-

tudes reported in Table 1. All the PSFs are Gaussian, except for
the IRAC case where a real IRAC 3.6 µm channel PSF was used.

The H160 and HAWK-I images are real observations whose tests
are described in Sects. 6.1–6.2.

We can sort the simulated images in several different ways:
– Depth, from the deepest to the shallowest: H160 > EXT G >

IRAC > VIS > NIR H

– PSF, from the sharpest to the coarsest: H160 > VIS >
NIR H > EXT G > IRAC

– Pixscale, from the smallest to the largest: H160 > VIS >
EXT G > NIR H > IRAC.

For each simulated image, we cut three independent areas of
the sky, which are the same for every band but differ in dimen-
sions due to the different pixel scale. The regions are: BG –
centered on a big elliptical galaxy (see Fig. 1); CL – centered
on a cluster of galaxies (see Fig. 2); CM – an average por-
tion of the sky (see Fig. 3). The three regions have a dimen-
sion of: VIS – 1000× 1000 pixels; NIR_H – 333× 333 pixels;

EXT_G – 500× 500 pixels; H160 – 1666× 1666 pixels; IRAC1
– 166× 166 pixels.

Following the analysis described in Sect. 4, which offers a
commentary on the results given in Sect. 5, additional tests on

real images (see Table 1 for details) from ground-based instru-

ments (HAWK-I) and from space (HST) are reported and ana-
lyzed in Sect. 6.

4. Quality tests

The idea at the core of the analysis is to first evaluate the algo-
rithms through different tests in order to apply only the most

promising ones (with their best configurations) on real images.
We set our analysis on the five simulated images in differ-
ent levels of testing. A brief description of each step is given

below:
As a first step, we compare the performance of all the algo-

rithms we chose based on three metrics: mean square error

(MSE), structural similarity (SSIM; Wang et al. 2004) and CPU
time. The MSE is defined as:

MSE =

∑N
i=1

(
xi − x̂i

)2

N
, (26)

where xi is the ith pixel in the denoised image and x̂i is the ith
pixel in the original image (without noise). The SSIM is defined
as:

SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ

2
y + c1)(σ2

x + σ
2
y + c2)

, (27)

where µx is the average of x, µy is the average of y, σ2
x is the vari-

ance of x, σ2
y is the variance of y, σxy is the covariance of x and y,

c1, and c2 are constants that are proportional to the dynamic
range of the pixel values. The CPU time is the computational

time required by the algorithms to filter the image.

Through these tests, we identify the main internal param-
eters of each algorithm and their ideal values. Next, we test
the stability of the algorithms selected in the previous step

when faced with non-stationary Gaussian noise. Furthermore,
we test their performance as a function of the FWHM of the

PSF and as a function of the background noise level. Then we
test the stability of the algorithms selected in the previous steps

against variations of the main internal parameter value (identi-
fied in Step 1), measuring how the MSE varies as a function

of the parameter values. Next, we test how the shapes of the
objects are affected by the selected denoising algorithms, check-

ing whether they preserve the FWHM of point-like objects, the
ellipticity, and the FWHM of the galaxies profiles. Then we test

the selected algorithms, studying two diagnostics: completeness
and purity, which provide a quality estimate of the catalog pro-

duced after an ideal source detection, exploring a combination of
SExtractor (Bertin & Arnouts 1996) detection parameters. As the

last step, we test whether the denoised images can be used also
for photometry measurements, analyzing if the object fluxes are

preserved after denoising. Finally, we apply the best performing
algorithms of our selection on real images acquired from space

and ground-based telescopes, as described in Sect. 6.

Implementation details. We compare the different images,
following always the same procedure here described: The
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Fig. 1. From left to right: crops of the BG (Big Galaxy) image central area for VIS, H160, NIR H, EXT G, and IRAC.

Fig. 2. From left to right: crops of the CL (Cluster) image central area for VIS, H160, NIR H, EXT G, and IRAC.

Fig. 3. From left to right: crops of the CM (Average field) image central area for VIS, H160, NIR H, EXT G, and IRAC.

original image is scaled to the range [0, 1]8, then filtered by the
denoising algorithm providing the denoised image. At the end,
denoised image is scaled back to [originalmin, originalmax], where
originalmin and originalmax are the minimum and maximum val-

8 The scaling is required only by PM methods which need values
between 0 and 1 to work, and bilateral, which needs only non-negative
values for its use. The scaling step has been introduced for the two meth-
ods mentioned above and applied to all the methods only for compari-
son reasons. We verified that for the other algorithms the results do not
significantly change if the scaling is not applied.

ues in the original image, using the following equation:

xi
original = (originalmax − originalmin) ∗ xi

[0,1] + originalmin. (28)

where xi
original

is the ith pixel in the original image and xi
[0,1]

is the

ith pixel in the denoised image scaled to [0,1]; MSE and SSIM
are computed by comparing the denoised image to the noise-
less one. In order to choose the best internal parameter for each
denoising algorithm (a list of these parameters is in Sect. 3), we
used different stopping criteria:
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ATVD. In this method, the internal parameters are automati-
cally optimized by the algorithm and a stopping rule is already
implemented through a minimization problem, as described in
Sect. 2.5.

Perona-Malik. In the PM code, we have a stopping rule com-
posed by three conditions: in the first one we compare at each
time step MSEn with MSEn−1, where MSEn is the MSE at the
current time step, whereas MSEn−1 is the MSE at the previous
time step. The code continues running as MSEn−1 −MSEn > 0.
The second condition concerns the number of iterations n: the
code continues running until the number of iterations does not
exceeds the maximum number of iterations NMAX, which is set
to NMAX=500. The third condition is | MSEn−1−MSEn

MSEn−1
| ≤ ǫ, with

ǫ = 10−10.

sparse2D. Starlet and the two b-UWTs automatically esti-
mate the noise background. For the optimal configurations of
these three methods, we used the setting provided by the authors
and reported at the end of Sect. 2.6. Further information can be
found in the documentation file available with the code on the
CosmoStat webpage9.

Other denoising algorithms. For all the other denoising
algorithms, we get the optimal values of the main parameter(s)
by minimizing the MSE with an iterative process. The stopping
rule is reached when |MSEn−1 −MSEn | ≤ ǫ, setting ǫ = 10−10,
and the number of iterations is lower than the maximum number
of iterations NMAX, which is, in this case, set to NMAX=100.

5. Results

In this section, we analyze and comment the results related to
the quality tests in a separate and sequential way, following the
same order of the steps given in Sect. 4.

5.1. Ranking with MSE and SSIM

In this test, we use three metrics to constrain the performance
of denoising methods: MSE, SSIM, and CPU time (Sect. 4).
We give priority to those algorithms that are able to minimize
as much as possible the MSE, preferring the fastest method (in
terms of CPU time) and the highest SSIM in the case of a compa-
rable MSE. Following this criterion, in this step, we identify the
best configuration and the main parameters for every algorithm.
These results are taken into account separately for all the simu-
lated images presented in Sect. 3. The main internal parameters
identified for the different algorithms are:

– Orthogonal Wavelets: sigma – The noise standard devia-
tion used for compute threshold(s);

– NL-means: h – Cut-off distance in grey levels;
– TV Bregman: weight – Denoising weight, efficiency of

denoising;
– TV Chambolle: weight – Denoising weight, efficiency of

denoising;
– Gaussian: sigma – Standard deviation for Gaussian kernel;
– Bilateral: sigma_color – Standard deviation for gray

value distance;
– Perona-Malik: T – Number of iterations of the anisotropic

diffusion;

9 http://www.cosmostat.org/wp-content/uploads/2014/

12/doc_iSAP.pdf

– ATVD (TVL1,TVL2,TVG): λ – Structural-Texture split-
ting parameter;

– BM3D: sigma – Noise standard deviation.
Further details for the algorithms implemented in Python and
the measurement of MSE and SSIM can be found in the
scikit-image documentation2. The method used to identify
the best internal parameter for each algorithm is described in
Sect. 4. In Appendix A, we show the best MSE and CPU time
values for every algorithm for the different crops. The tables are
organized to record the best MSE and CPU time values obtained
with the algorithms. The columns represent the different image
simulated filters and the value indicated in bold is the lowest
of the column. Tables A.1–A.3 contain the MSE values for the
crops BG, CM, and CL, respectively. Table A.4 contains the
CPU time values for the crop CM after fixing the optimal internal
parameters. We note that in the following, PSF filtering amounts
to filtering with a Gaussian whose FWHM is the same as the
PSF-FWHM, whereas in the case of the Gaussian filtering, the
σ (and thus the FWHM) is a free internal parameter.

Here, we briefly summarize the main results: The TVL2,
BM3D, starlet, the two b-UWTs, PM, NL-means slow, TV
Chambolle always yield good performance, typically providing
the lowest values for the MSE, and always perform better than
Gaussian filtering, with the only exception of the IRAC image
(we discuss the IRAC situation below in Sect. 5.2).

The MSE of all the methods is proportional to the pixel scale
of the image, so that low sampling implies worse results.

In most cases (with the exception of IRAC, which we discuss
below), the PSF filtering provides a larger (i.e., worse) value for
the MSE compared to the one provided by Gaussian filtering.

In some cases, the MSE of the denoised image is larger (i.e.,
worse) than the one measured without denoising the image at
all. Indeed, some algorithms in the situations listed below tend
to over-smooth the image, providing a worse MSE. This event
occurs:
(a) in VIS (CM) image, in the case of the PSF filtering;
(b) in all the H160 images for both the PSF filtering and TV

Bregman;
(c) 2–4 times in NIR H images, for methods NLmeans fast,

Orthogonal Wavelets, TV Bregman and PSF filtering, and
only once for BM3D;

(d) only once in EXT G (CM), for the PSF filtering;
(e) 4–5 times in IRAC images, for NLmeans slow, NLmeans

fast, TV Bregman, Orthogonal Wavelets, and PSF filtering.
The SSIM ranking typically reflects the MSE ranking, point-

ing out the same group of the best algorithms found in the MSE
ranking; even if some positions are swapped in few cases, the
SSIM values provided by the best algorithms are comparable
(∆SSIM < 10−4).

The table related to the CPU time (Table A.4) shows that
the Gaussian is the fastest algorithm among the ones we tested,
followed by the PSF and TV Bregman. The CPU time for the
other algorithms differ from one to four orders of magnitude
with respect to the Gaussian algorithm. However, the compu-
tational times are always manageable, at least for the cases of
optimal performance. If we focus on the algorithms belonging
to the same classes of methods, we can note that:

All the PM methods yield a similar level of performance,
(see Fig. A.1), and therefore we chose to only keep g = g1 with
the parameter k set to k = 10−3 in the following steps.

TVL2 performs clearly better than TVG and TVL1. In fact,
for example, in BG, 1 − mse

mseoriginal
value is always within 5%

from the value provided by the original image (no noise), with
the exception of IRAC, where it drops to 0.2, which is still
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greater than the values provided by TVG and TVL1, as shown in
Fig. A.2.

NLmeans slow performs slightly better than NL-means fast
for H160, VIS, and EXT G, (1 − mse

mseoriginal
differences are within

5% in favor of NL-means slow) and much better for NIR H and
IRAC (where NL-means fast performs worse than the original).
See Fig. A.3.

TV Chambolle performs better than TV Bregman in H160,
NIR H, and IRAC. TV Bregman performs worse than the origi-
nal, whereas for VIS and EXT G it performs 14% and 3% worse
than TV Chambolle, respectively (see Fig. A.3).

Bilateral is always within the best performing techniques
(see Fig. A.3).

BM3D, the two b-UWTs and starlet are always among the
most efficient algorithms (see Fig. A.4 and Tables A.1–A.3).

Nevertheless, we keep Gaussian and PSF filtering for refer-
ence since they are widely used. Hence, at the end of this first
step we are left with 11 methods: PM with edge-stopping func-
tion g1 and k = 10−3, TVL2, BM3D, starlet, b-UWT(7/9), b-
UWT(7/9)+Wiener, Gaussian, PSF, NL-means slow, bilateral,
and TV Chambolle. Following our experiment analysis, we
decided to discard 9 algorithms: 4 PM methods, TVG and TVL1,
NL-means fast, TV Bregman, and orthogonal wavelets.

5.2. The IRAC results

We note that the IRAC images do not follow the same trends
as in the other bands. In fact, whereas for all the other images
there is always a small group of algorithms which perform
better than all the others, for IRAC nearly all the denoising
algorithms tend to exhibit similar performance. We investi-
gated the possibility that the number of pixels were not enough
(166× 166 pixels) to extract significant conclusions from these
images and we tested the algorithms on an IRAC (CM) sim-
ulation with pixel scale 0.06 arcsec and size of 1000× 1000
pixels. We noticed that, TV Chambolle, NL-means slow, and
Gaussian provide the best performance (MSE∝ 10−9), followed
by BM3D, b-UWT(7/9), TV Bregman, TVL2, PM (g = g1
k= 0.01) (MSE∝ 10−8), PSF (MSE∝ 10−8), and then bilateral,
PM (g = g1 k= 0.001), b-UWT(7/9)+Wiener, starlet, and
orthogonal wavelets (MSE> 10−8). After this small test, we
point out that again the IRAC band does not follow the trend
defined in the other bands (even if the MSE decreases for all the
methods and the original image), but with the increased number
of pixels TV Chambolle, NL-means slow, and Gaussian are the
algorithms which provide the best performance. The low resolu-
tion of IRAC here plays a fundamental role, impacting on most
of the algorithms’ performance. This aspect is described later in
this paper, in Sect. 5.4.

5.3. Stability against non-stationary Gaussian noise

In this section, we discuss the results of tests on images with
varying depths, that is, those obtained by combining regions
observed with different exposure times. To build the dataset,
we used a noiseless simulated image I2exp, which we mirrored
along the x-axis to obtain a new image with two identical ver-
tical halves; then, we added Gaussian noise with σ = σVIS on
the lower half Hl and with σ = 2σVIS on the upper half Hu.
In this way, the two halves of the image contain the very same
objects with a different amount of observational noise, as if they
had been observed with different exposure times. We applied
the algorithms in their optimal configuration (see Sect. 5.1) on

the mirrored version of the crops VIS (CM) and VIS (CL), and
we calculated MSE and SSIM in Hl and Hu for both. We then
compared these results with the ones obtained by the application
of the algorithms on the mirrored image with stationary Gaus-
sian noise, with σVIS and 2σVIS, we refer to these images as Iσ
and I2σ, respectively. From the results reported in Tables B.1
and B.2, obtained on both VIS (CM) and VIS (CL), respectively,
we notice that:

All the algorithms applied on Hl produce MSE values of the
same order of magnitude of the ones obtained with Iσ.

Nearly all of them applied on Hu produce MSE values of the
same order of magnitude of the ones obtained with Iσ, with the
exception of starlet and the two b-UWTs, for which the applica-
tion on Hu produces a MSE which is around 1 order of magni-
tude larger than the respective MSE obtained with I2σ.

MSE relative variation for BM3D, PSF, Gaussian, PM and
TVL2 is ∝10−3.

For bilateral, NL-means, and TV Chambolle the MSE rela-
tive variation is ∝10−2.

For starlet, and the two b-UWTs methods, the MSE relative
variation is ∝10−1.

For all the algorithms, SSIM relative variation is <10−2.
We want to point out that MSE achieved by methods like

starlet and the two b-UWTs on Hl is ∝10−6−10−7, meaning that
the MSE relative variation (∼10−1) still implies small absolute
variations (∝10−6−10−7). Finally, we can conclude that the algo-
rithms tested are not influenced (or negligibly influenced in few
cases) by images with non-stationary Gaussian noise.

5.4. Stability against FWHM and depth variations

In the second part of this test, we compare the performance of
the 11 algorithms with respect to the variation of the FWHM
and depth of the images. We consider two cases:

In the first, we use a 1000× 1000-pixel crop of the simu-
lated VIS image convolved with different kernels to degrade the
resolution increasing the FWHM without changing the depth of
the image (we considered the cases of FWHM = 0.5, 1, 1.5 and
2.0′′, with the original FWHM being 0.2′′).

In the second we decreased the depth of a 1000× 1000 pixels
crop of the simulated H160 image without changing the FWHM
by adding Gaussian noise with increasing standard deviation σ
(×1, 10, 20, 30, and 40 times the original one) to the noiseless
image.

The plots summarizing the results are shown in
Figs. C.1–C.6. We note that:

The MSE calculated on the original image alone decreases
at increasing FWHM due to the loss of information (i.e., small
objects and details). All the algorithms follow this trend while
lowering the MSE even more due to the effect of filtering (see
Fig. C.1).

The ratio between the MSE obtained by each algorithm and
the MSE computed on the original image ( mse

mseoriginal
) increases

with an increasing FWHM, with the only exception being
Gaussian filtering, which follows the opposite trend (see
Fig. C.2).

The ratio mse
msePSF

is weakly affected by variations of the

FWHM for most of the denoising methods, with the exception
of Gaussian (see Fig. C.3).

As expected, the MSE increases at increasing background
level (due to the increasing of σ for the Gaussian noise) both in
the original image and in the output denoised images for all the
algorithms (see Fig. C.4).
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Then, mse
msePSF

increases at increasing background level for all

the methods (see Fig. C.5).
Also, mse

mseoriginal
decreases at increasing background level for

all the methods (see Fig. C.6).
In summary, we conclude that the best performance by any

denoising algorithm is obtained based on images with low S/N
and high resolution (narrow FWHM). The best performance with
respect to the PSF method is obtained by applying the denoising
methods on an image with a high S/N, regardless of the PSF-
FWHM. These results can be used to estimate the efficiency of
the denoising algorithms in different situations, pointing out that
when they are applied to high-resolution images, they provide
the best improvements, whereas if they are applied to low S/N
images (where there is a peak of performance), the improve-
ments compared to the PSF are slightly less significant. Based on
these results, it would be very interesting to apply these methods
as an alternative to the PSF filtering on images with high resolu-
tion and high S/N.

5.5. Stability against variations of the parameters

In this test, we analyze the selected methods by varying the val-
ues of those internal parameters that had been kept fixed to the
optimal ones in the previous tests. The goal is to understand
whether the performance is stable against sub-optimal param-
eter settings. We exclude from this analysis the three denoising
methods belonging to the sparse2D package, for which we sim-
ply used the configuration provided by the authors, reported at
the end of Sect. 2.6, along with the PSF filtering since it is just a
particular case of the Gaussian filtering method.

We perform the test on the VIS (CM) image and we
change the main parameter value of each technique by
±10%,±25%,±50% and ±75% with respect to the value used
for the MSE analysis (see Sect. 5.1). The results are shown in
Fig. 4. We notice that most of the techniques tend to exhibit
similar performance when over-estimating the parameters,
remaining relatively stable; on the contrary, under-estimating it
significantly worsens the performance. However, all the algo-
rithms (with the exception of BM3D) have a lower dispersion in
MSE compared to the Gaussian filtering (this is not evident in
the plot because of the logarithmic y-axis scale, but we verified
it numerically and we give the σ values in the upper panel of
the plot), meaning that they are generally more stable against the
variation of the parameters. In addition, they yield a mean that
is ∼1 order of magnitude lower when the parameters are below
the optimal value, and by ∼2 order of magnitudes when they
are above it. The BM3D, as with the other algorithms, under-
performs when its main parameter is underestimated, produc-
ing, in this case, a large dispersion of the order reached by the
Gaussian.

5.6. Conservation of the FWHM and ellipticity

The optimal denoising approach should not significantly alter
size and shape of the detected sources so as to enable a mean-
ingful scientific analysis. We thus tested the selected methods by
measuring the FWHM of the detected sources with SExtractor
and comparing the measured values to the ones obtained on the
original, unfiltered images. We performed this test on the simu-
lated VIS image described before, which is mainly populated by
galaxies, and on a specific rendition of the simulated VIS image
populated by stars distributed on a grid. The results are shown
in Figs. 5 and 6. Whereas for the stars in Fig. 5, the PSF filter-

Fig. 4. Step 3: Stability against variations of the parameters. Each curve
corresponds to a denoising algorithm. We plot the MSE against the rel-
ative variation of the parameters,

parmin−par

parmin
. Obviously the absolute min-

imum of the curves is reached in 0 on the x-axis, corresponding to the
ideal value of the parameter. In the upper panel we report the standard
deviations σ of the msemean −mse distribution for each method.

Fig. 5. Step 4: FWHM conservation test on stars. On the x-axis
we plot the FWHMdenoised/FWHMnoiseless, where FWHMnoiseless is the
FHWM of the objects measured on the Noiseless image. µ and
σ are the mean and the standard deviation of the distribution of
FWHMdenoised/FWHMnoiseless.

ing tends to smooth all the detected object as much as of ∼50%
of the FWHM, the other algorithms have a much lower impact
(the FWHM is degraded by less than 20% of the original value),
even though BM3D has a significant dispersion. Similarly, for
the galaxies in Fig. 6, the PSF filtering causes again a small off-
set, whereas most of the other methods tend to better preserve
the FWHM.

For a comprehensive comparison, another quantity has been
taken into consideration. The ellipticity of the galaxies has
been measured before and after the application of the denois-
ing algorithms, using the parameter ELLIPTICITY from SEx-
tractor. Looking at Fig. 7, it is possible to notice that most of
the algorithms do not modify the ellipticity at any alarming level
(even if, in some cases, the dispersion is far from being optimal,
e.g., for bilateral and TV Chambolle). Nevertheless, the PSF is
one of the most performing method for this test. From these
tests, we can conclude that most of the tested algorithms pre-
serve the shape of the sources similarly (in the case of the ellip-
ticity) or even better (in the case of the FWHM) than the PSF
filtering.
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Fig. 6. Step 4: FWHM conservation test on galaxies. On the x-axis we plot the FWHM of the objects measured on Noiseless image FWHMnoiseless,
whereas on the y-axis we plot the FWHM measured on the original image after the application of the denoising algorithms FWHMdenoised. µ and
σ are the mean and the standard deviation of the distribution of FWHMdenoised − FWHMnoiseless.

Fig. 7. Step 4: Ellipticity conservation test on galaxies. On the x-axis we plot the ellipticity e of the objects measured on Noiseless image enoiseless,
whereas on the y-axis we plot the e measured on the original image after the application of the denoising algorithms edenoised. µ and σ are the mean
and the standard deviation of the distribution of edenoised − enoiseless.

5.7. Completeness and purity

In this test – perhaps the most crucial one – we checked the

quality of the catalogs of sources extracted from the denoised
images. We analyze two diagnostics, both relevant to assess the

performance of the detection process: namely, the completeness
and the purity as defined below. We extract the catalogs running
SExtractor in the dual image mode using a denoised image as

detection band and the original image as measurement band to
perform a cross-correlation between the extracted and the true
catalogs of sources both in terms of position and flux.

We used the simulated VIS 5000× 5000-pixel image, search-
ing for the best SExtractor parameters configuration for every
denoised image. We tested, thus, a large number of possible
combinations of the two parameters which control the detec-
tion, that is, DETECT_THRESH (from a minimum value of 0.2 to a
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Fig. 8. Step 5: Completeness and purity test. We extracted catalogs on the VIS simulated image processed with the denoising algorithms, using
different configurations of SExtractor. We plot the magnitude at which the completeness drops below 50% against the magnitude at which the
purity drops below 90%. Each symbol corresponds to a different denoising method, which can be present multiple times in the plot due to different
combinations of detection parameters. The positions of the symbols are slightly randomized to improve readability.

maximum of 6.0, with steps of 0.1) and DETECT_MINAREA (with
values: 3, 6, 9, 12, 15, 30), considering only the combinations for

which the quantity DETECT_THRESH ∗
√
DETECT_MINAREA > 1,

which provides a selection of objects with a global significance
of at least 1-σ. The number of detection parameters combina-
tions which fulfill this requirement is ∼350. We point out that
the best algorithms configurations, used for this test and obtained
by MSE minimization, do not differ significantly from the best
configurations found in the VIS (CM) image (Sect. 4).

We introduce some notations: (a) ndetected is the total num-
ber of detected objects, which includes both real and spurious
detections indiscriminately; (b) nsimulated is the number of simu-
lated objects in the image; (c) nspurious is the number of spurious
detections, as identified by the “spurious sources identification
approach” described in the following.

The spurious sources identification approach that we define
for this work is related to the SExtractor cross-correlation when
an association catalog is provided: we denote by CRassoc

the
circle centered on the simulated object original position with
radius Rassoc, which is the maximal distance allowed for the
association made by SExtractor. We set it to 6 pixels (i.e.,
3×FWHM). Then we tag an object as spurious if one of the fol-
lowing two conditions holds: is outside CRassoc

; (is inside CRassoc
)

AND (|magmeasured − magsimulated| > 1.0) AND (magaperture −
magsimulated| > 1.0) where magmeasured is SExtractor MAG_AUTO
(an estimation of the total magnitude of the source), magsimulated

is the true magnitude of the simulated object, and magaperture is
SExtractor MAG_APER corresponding to the magnitude within a
circular aperture with diameter of 6 pixels.

Finally, we can now define the two diagnostics:

completeness :=
ndetected − nspurious

nsimulated

, (29)

purity := 1 −
nspurious

nsimulated

, (30)

where purity= purityassoc, determined by the association app-
roach defined above. We measure completeness and purity in
0.2 magnitudes bins. In Fig. 8, we plot the magnitudes at which
the completeness drops below 50% against the one at which the
purity drops below 90%. Each symbol corresponds to a different
denoising technique, and repetitions of the same symbols corre-
spond to different combinations of the detection parameters for
the same algorithm. For readability, a maximum of five combi-
nations per algorithm (corresponding to the best ones) are shown
in the figure.

We note that all the methods improve the detection. The
BM3D performs like the PSF, whereas methods like starlet and
b-UWT(7/9)+Wiener produce remarkable results, with a 0.2
increment in completeness with respect to the PSF, but the best
performance is reached by TVL2, Perona-Malik, TV Chambolle,
and bilateral. Indeed, these four methods reach the completeness
threshold 0.6 mag deeper, and the purity threshold 0.8 magnitude
deeper, than in the non-denoised run. Moreover, they improve
the detection compared to the PSF smoothing, reaching 0.2 mag-
nitudes deeper in terms of both completeness and purity.

It is tempting to consider the MSE and SSIM measured on
the VIS images used for the completeness and purity analysis,
searching for a possible correlation between the metrics and the
diagnostics. In Fig. 9 the plots are produced using the results
shown in Fig. 8. We find no or weak correlation between MSE
(SSIM) and purity, whereas a stronger correlation exists between
MSE (SSIM) and completeness.

We show snapshots of a sample of objects detected by
the different methods in the VIS image in Appendix D.
These snapshots give a visual match of objects detected in
the denoised images. We only show the best-performing algo-
rithms results compared to the original, PSF-filtered, and the
noiseless images. For VIS, the algorithms are: PM, TVL2,
bilateral, and TV Chambolle, followed by BM3D, starlet,
b-UWT(7/9), and b-UWT(7/9)+Wiener.
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Fig. 9. Step 5: Correlation between MSE or SSIM and purity or completeness. On the x-axis, we plot the magnitudes at which completeness
(purity) reaches 50% (90%), whereas on the y-axis, we plot the metrics, MSE or SSIM. Dashed lines are the linear best-fitting ones.

5.8. Conservation of the flux

In this final test, we compare the total fluxes (by using SExtractor
MAG_AUTO) measured on the simulated denoised images with the
true input fluxes for objects with magnitudes between 19 and 23.
Here, we do not consider the Gaussian filtering but only the PSF
filtering since the latter is the reference method for this analy-
sis. The results are shown in Figs. 10–11. The standard devi-
ation of the difference between measured and true magnitudes
is ∼0.16 for PSF-filtered images. All denoising methods exhibit
similar levels of performance, with the exception of b-UWT(7/9)
(σmag = 0.36) and b-UWT(7/9)+Wiener (σmag = 0.30). We con-
clude that denoising algorithms preserve the overall calibration
of the input images and they enable a photometric accuracy com-
parable to the one usually achieved on images filtered with the
PSF.

6. Testing on real images

Following the analysis of the performance of denoising tech-
niques on a series of simulated images and testing their per-
formance with stationary and non-stationary Gaussian noise, we
tested the algorithms on real images, using the HST H160 obser-
vations of the GOODS-South Field and a crop of the HAWK-I
survey. Notably, basing the analysis on real observations pro-
vides us with a straightforward test of more realistic situations,
in particular concerning the presence of non-Gaussian noise or
correlated noise.

6.1. Space telescope images

We use two images of the area of the Hubble Ultra Deep
Field: one at the full depth released with the official CAN-
DELS mosaics that includes all WFC3 observations of that
region (HUDF09, reaching H160= 29.74 at S/N = 5), the sec-
ond, shallower one at the depth obtained with WFC3 obser-
vations of the CANDELS Treasury Program alone (GSDEEP,

H160= 28.16 at S/N = 5) (Koekemoer et al. 2011; Grogin et al.
2011). We will use the former image, that is, the deeper image,
as the “true sky” against which we compare the performance of
denoising techniques on the shallower image. Using an analy-
sis similar to that in Sect. 5.7, we take as the reference catalog,
the one obtained running SExtractor on HUDF09 with conserva-
tive detection parameters. The goal is, once again, to check the
completeness and purity. We use an association radius, Rassoc of
3 × FWHM, which now corresponds to 7.5 pixels. We identify
an object as spurious using the same criteria used in Sect. 5.7
with a magaperture within a circular aperture with diameter of
7.5 pixels. The resulting plot, visible in Fig. 12, is similar to
the one obtained on the simulated image (Fig. 8). Clearly, TVL2
outperforms all the other algorithms, in particular the PSF by
0.2 mag in completeness and purity (or alternatively 0.4 mag-
nitudes more complete and 0.2 magnitudes less pure). Bilateral
performs better than the PSF filtering, by a total of 0.2 magni-
tudes in completeness. Perona-Malik provides a 0.2 mag more
complete and 0.2 less pure catalog, being in this way an alter-
native of the PSF filtering. Starlet and b-UWT(7/9) perform
slightly worse than the PSF.

As in Sect. 5.7, we show the snapshots of a sample of
objects detected by the different methods in the GSDEEP
image in Appendix E. The algorithms reported are: PM,
TVL2, bilateral, NL-means, BM3D, starlet, b-UWT(7/9), and b-
UWT(7/9)+Wiener.

6.2. Ground-based images

We repeated the same tests described above on two Ks-band

observations of the Goods-South field acquired with the HAWK-
I imager at the VLT: a shallower observation of the field pre-
sented in Castellano et al. (2010) and the ∼2 magnitude deeper
observation released by the HUGS Survey (Fontana et al. 2014,
see Table 1). As done before, we use the deepest image as the
“true sky” and we apply the algorithms to reduce the noise on
the shallow image. We use again the association radius Rassoc
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Fig. 10. Step 6: Flux conservation distribution for objects with magnitude within 19 and 23. On the x-axis the real objects magnitude magreal. On
the y-axis, the difference between the magnitude measured MAG_AUTO and magreal. Only the detected objects within the purity and completeness
thresholds (Sect. 5.7) are considered. µ and σ are the distribution mean and the standard deviation values, respectively.

Fig. 11. Step 6: Flux conservation distribution for objects with mag-
nitude within 19 and 23. On the x-axis, the difference between the
magnitude measured MAG_AUTO and the real objects magnitude from
the catalog (magreal). On the y-axis the MAG_AUTO – magreal probability
distribution function. Only the detected objects within the purity and
completeness thresholds (Sect. 5.7) are considered. µ and σ are the dis-
tribution mean and the standard deviation values.

of 3 × FWHM corresponding to 11.25 pixels, with the rela-
tive magaperture (11.25 pixels diameter), identifying an object as
spurious again using the same criteria as applied in Sects. 5.7
and 6.1. The resulting plot (see Fig. 13) shows that these algo-
rithms improve the image detection compared to when there is
no denoising at all (same result obtained in Sects. 5.7 and 6.1),
whereas they do not provide significant improvements com-
pared to the PSF. Indeed, only the PM creates a catalog of 0.2
magnitudes more pure at the same completeness. These results
are in agreement with those presented in Sect. 5.4, where we

Fig. 12. Space telescope – real images for completeness & purity
(GSDEEP and HUDF09). On the x-axis, the magnitude at which the
purity drops below 90%, on the y-axis the magnitude at which the
completeness drops below 50%. Each symbol is referred to a dif-
ferent denoising method, which can be present multiple times in the
plot due to different combinations of detection parameters, see text for
details. The positions of the symbols are slightly randomized to improve
readability.

noticed that all these methods give the best performance with
high-resolution images (see Fig. C.2), such as VIS and H160.
Indeed, the lower resolution of the ground-based images impacts
the algorithms performance. In the same way, the methods, and
mainly the PSF, perform better for images with lower S/N (e.g.,
HAWK-I compared to VIS and H160), as shown in Figs. C.5
and C.6, resulting in less significant improvements from the
methods compared to the PSF.
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Fig. 13. Ground-based real images – completeness & purity (HAWK-I
and HAWK-I UDS). On the x-axis the magnitude at which the purity
drops below 90%, on the y-axis, the magnitude at which the complete-
ness drops below 50%. Each symbol is referred to a different denoising
method, which can be present multiple times in the plot due to different
combinations of detection parameters, see text for details. The positions
of the symbols are slightly randomized to improve readability.

6.3. Artifacts and visual inspection

The analysis made in Sect. 5.7 only considers the object’s S/N
and magnitude to classify the detections as correct or as spurious.
The algorithms perform the denoising step according to differ-
ent strategies and artifacts related to the family of these methods
may be created. Several crops denoised by different tested meth-
ods are reported in Appendix D–E. By visually inspecting such
snapshots, we can get an idea of the features and the artifacts pro-
duced. As a general comment, in looking at the figures reported
in Appendix D, TVL2 seems to be the best method, closer to the
noiseless image reported in the last column of all the figures, fol-
lowed by starlet, b-UWT(7/9), and b-UWT(7/9)+Wiener, which
also produce good results. The PM, TV Chambolle, and BM3D
are often very similar from a qualitative point of view. Most of
the time, the flux of the objects detected by TVL2 is highly con-
centrated (see, e.g., Figs. D.2 and D.5), but in some cases the
objects flux is distributed on a larger area, as visible for exam-
ple, in Fig. D.6. Starlet produces, in some cases, bright isotropic
objects, which could lead to misleading results in terms of their
morphological information (see, e.g., Figs. D.14 and D.16). In
looking at Fig. D.10, PSF seems to wrongly detect two objects,
when other denoising methods detect them correctly. This qual-
itative analysis is confirmed by the corresponding quantitative
analysis made, as visible in Fig. 8.

When more than one object is present in the figures, some-
times the different schemes are not capable of recognizing all the
objects (see, e.g., Figs. D.3, D.6, D.9, D.11 and D.13). Moreover,
fluctuations of the background around the objects are not com-
pletely removed and the smoothing can create artifacts (see, e.g.,
Fig. D.13, where an elliptical galaxy seems to appear as a spiral
galaxy after denoising). b-UWT(7/9), and b-UWT(7/9)+Wiener
are susceptible to background fluctuations and end up creating
visual artifacts (see Figs. D.17 and D.18).

When inspecting the snapshots from real images, a qualita-
tive analysis is inconclusive, so we have to stick to the quanti-
tative analysis in Fig. 12. In fact, looking at the crops reported
in Appendix E, the PM and bilateral are often so similar that

it is difficult to distinguish them, although, based on Fig. 12,
the differences between them are clear (the PM performs worse
than the bilateral). An analogous remark can be made for BM3D,
which produces images similar to the PM and bilateral, as vis-
ible, for example, in Fig. E.12. Here, the TVL2 is, again, the
most promising method, which is visually close to the HUDF09
also thanks to the automatic optimization of its internal param-
eters, and this is confirmed by the results reported in Fig. 12.
Images from starlet, b-UWT(7/9), and b-UWT(7/9)+Wiener are
quite similar to each other, even though those from starlet present
fewer visual artifacts (see Figs. E.10, E.12–E.14). Differently
from the other methods, NL-means produces nearly squared
patches of uniform flux, which effectively reduce noise fluctu-
ations (see Figs. E.8 and E.9), but also could lead to artifacts
(see, e.g., Fig. E.5, where the galaxy in the bottom-right corner
assumes a nearly boxy-shape).

Even if artifacts are generated and the morphology of the
objects detected could be altered, we tested the efficiency of
the algorithms in preserving the FWHM and the ellipticity of the
objects in Sect. 5.6, proving that on the average the shapes are
preserved. A more detailed assessment of the effect on galaxy
morphology is beyond the scope of the present work. However,
we note that a promising improvement in this direction can be
obtained by classifying objects using a convolutional neural net-
work (e.g., one of the classifiers proposed in Tuccillo et al. 2017;
Khalifa et al. 2017; Barchi et al. 2020), in order to assess whether
their morphological class is preserved after denoising.

7. Summary and conclusions

The goal of this work is to make an extensive comparison
between a number of denoising algorithms. It is aimed at iden-
tifying the best choice of method for improving the detection
of faint objects in astronomical extragalactic images (e.g., con-
sidering the typical cases of HST and Euclid). To this purpose,
we performed a large set of tests on simulated images. We also
tested the methods on real images: from space and ground-based
instruments, collecting, in the process, some very interesting
hints for many situations.

We chose to test a significant number of denoising algo-
rithms based on traditional techniques (mainly, PDEs and varia-
tional methods), leaving a more complete comparison, including
machine learning techniques, for future works. In particular, we
point out that ATVD-TVL2, bilateral, Perona-Malik, TV Cham-
bolle, starlet, and b-UWT(7/9)+Wiener are the most interesting
to use among all the methods discussed here since they provide a
good level of performance in the different tests proposed. These
are closely followed by BM3D. Even if most of these methods
are quite unusual for the astronomical community, they are very
well-known in many other fields. They are also known to out-
perform a straightforward PSF/Gaussian filtering, which is the
standard choice in astronomy. We therefore considered these
techniques as the reference methods, against which we tested
all the other methods.

As a first test, we considered the two metrics MSE and
SSIM (defined in Sect. 4) and checked which methods yield
the best performance with respect to them. We compared their
performance again through MSE and SSIM in relation to depth,
resolution and type of image. We tested the algorithms ability
to preserve the FWHM to understand if they can preserve the
shape of the objects, which is useful in case photometric mea-
surements on the denoised image are needed. We tested their
stability using the MSE, varying the ideal parameter of a fixed
percentage, with the goal of having a hint on their reliability, in

A43, page 15 of 29

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936278&pdf_id=13


A&A 643, A43 (2020)

case the best parameter is chosen wrongly. We also tested possi-
ble detection improvements through two diagnostics, complete-
ness and purity, which are used to measure the fraction of real
detections on the total number of objects in the image. Finally,
we applied these methods on real images (CANDELS-GS-deep
and a crop of HAWK-I). We summarize below the key points of
the analysis performed in this paper:

– From MSE and SSIM we noticed that 11 algorithms are
always at the top of the rankings, especially for VIS and H160
images, which are of primary interest for detection in future
surveys. These algorithms are: PM with edge-stopping func-
tion g1 and k = 10−3, TVL2, BM3D, starlet, b-UWT(7/9), b-
UWT(7/9)+Wiener, Gaussian, PSF, NL-means slow, bilateral,
and TV Chambolle

– From the stability test discussed in Sect. 5.3, the algorithms
tested are not influenced (or negligibly influenced in few cases)
by images with non-stationary Gaussian noise

– From the PSF and Depth variation test, we noticed that
most of the methods show better performance with narrower
FWHM. Whereas all the methods perform better with the noise
level increasing (in terms of Gaussian noise standard deviation),
their improvements are more significant compared to the PSF,
with images with higher S/N.

– From the FWHM conservation test, we noticed that most of
the algorithms tend to not smooth the image, in terms of FWHM
increments. On the contrary, the PSF smoothing provides an off-
set in the FWHM measurement, for both stars-only images and
galaxy images. On the other hand, the ellipticity is well pre-
served by the PSF and most of the algorithms.

– From the completeness and purity test, we found a small
number of algorithms which provide 0.2 magnitudes more pure
and complete catalogs than the PSF filtering, these are TVL2,
Perona-Malik, TV Chambolle and bilateral (whereas starlet and
b-UWT(7/9)+Wiener provide a 0.2 increment only for complete-
ness).

– From the Flux conservation test, we found that most of
the algorithms exhibit similar performance to the PSF filtering,
preserving the overall calibration of the input images.

– From the real image test (H160), we found that TVL2 out-
performs all the other algorithms, and it is the only one that per-
forms better than the PSF of 0.2 magnitudes in completeness
and purity, whereas the bilateral produces only a 0.2 more pure
catalog.

– From the real image test (HAWK-I) we found that only
Perona-Malik outperforms the PSF filtering, by 0.2 magnitudes
in purity. The other methods perform worse or similarly to the
PSF.

– From the visual inspection performed in Sect. 6.3 on sim-
ulated and real images, the best methods seem to be TVL2, PM,
bilateral, and starlet, although they also generate artifacts, as
with the other methods tested. The visual inspection confirms
the results presented in Figs. 8 and 12.

The results we obtained demonstrate that denoising algo-
rithms should be considered valuable tools in the presence of
Gaussian noise, which is a good approximation of the noise in
optical and near-infrared extragalactic surveys, as they clearly
improve the detection of faint objects. The methods of structure-
texture image decomposition, total variation denoising, Perona-
Malik, bilateral filtering, and undecimated wavelets transform
are of particular interest. While further specific tests are needed
to define for each survey the optimal approach along these meth-
ods, along with each parameter set, our investigation on a small
but reasonable reference set of simulated and real extragalac-
tic images shows that the scientific return of ongoing and future

surveys can be significantly enhanced by the adoption of these
denoising methods in place of standard filtering approaches.
Moreover, we find the use of the increasingly popular machine-
learning techniques, possibly combined with the best methods
resulting from our analysis, has the potential to further improve
the performance of “traditional” denoising techniques described
here. In additional, learning approaches for adding morphologi-
cal priors (see, e.g., Peyré et al. 2010) could be useful and are an
interesting subject for future works.
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Appendix A: MSE comparison tables and plots

Fig. A.1. Step 1: MSE comparison between
Perona-Malik functions on CM. On the x-axis,
all the simulated CM crops in the different
bands, whereas on the y-axis 1 − mse

mseoriginal
.

Fig. A.2. Step 1: MSE comparison between
ATVD algorithms on BG. On the x-axis, all
the simulated BG crops in the different bands,
whereas on the y-axis 1 − mse

mseoriginal
.

Fig. A.3. Step 1: MSE comparison between the
other algorithms excluding ATVD and PM on
CL. On the x-axis, all the simulated CL crops
in the different bands, whereas on the y-axis 1−

mse
mseriginal

.
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Fig. A.4. Step 1: MSE comparison between
BM3D, starlet and the two b-UWTs on CM. On
the x-axis, all the simulated CM crops in the dif-
ferent bands, whereas on the y-axis 1 − mse

mseoriginal
.

Table A.1. MSE table of BG crops.

Name MSEH160 MSEVIS MSEEXT G MSENIR H MSEIRAC

TVL2 5.320 × 10−8 7.286 × 10−7 3.672 × 10−7 1.964 × 10−4 7.051 × 10−5

TVL1 7.297 × 10−5 5.155 × 10−5 1.325 × 10−5 4.409 × 10−2 4.429 × 10−2

TVG 3.922 × 10−5 3.576 × 10−5 8.760 × 10−6 3.071 × 10−3 6.370 × 10−3

PM g= 1 k= 1 × 10−3 9.490 × 10−8 1.108 × 10−6 6.776 × 10−7 2.528 × 10−4 5.473 × 10−5

PM g= 2 k= 1 × 10−3 9.790 × 10−8 8.941 × 10−5 8.147 × 10−6 1.926 × 10−3 7.073 × 10−5

PM g= 3 k= 1 × 10−3 9.930 × 10−8 1.122 × 10−4 8.390 × 10−6 3.640 × 10−3 7.855 × 10−5

PM g= 4 k= 1 × 10−4 7.960 × 10−8 8.291 × 10−5 7.641 × 10−6 2.760 × 10−4 6.288 × 10−5

PM g= 5 k= 1 × 10−3 1.077 × 10−7 8.843 × 10−5 8.131 × 10−6 1.775 × 10−3 7.157 × 10−5

PSF 8.557 × 10−6 1.833 × 10−5 1.615 × 10−6 3.492 × 10−3 1.174 × 10−3

Original 1.912 × 10−6 1.154 × 10−4 8.390 × 10−6 4.722 × 10−3 8.811 × 10−5

TV Bregman 3.778 × 10−6 5.908 × 10−6 6.147 × 10−7 1.960 × 10−3 2.620 × 10−4

Gaussian 1.301 × 10−6 1.724 × 10−5 9.434 × 10−7 3.469 × 10−3 6.955 × 10−5

NL-means slow 8.940 × 10−8 1.513 × 10−6 5.992 × 10−7 3.066 × 10−4 6.454 × 10−5

NL-means fast 1.019 × 10−7 1.628 × 10−6 5.750 × 10−7 5.551 × 10−3 1.389 × 10−4

Bilateral 1.109 × 10−7 3.754 × 10−6 7.972 × 10−7 4.612 × 10−4 6.297 × 10−5

TV Chambolle 1.876 × 10−7 2.112 × 10−6 4.914 × 10−7 2.894 × 10−4 5.444 × 10−5

Orthogonal wavelets 5.119 × 10−7 2.962 × 10−5 2.117 × 10−6 4.776 × 10−3 9.583 × 10−5

BM3D 4.830 × 10−8 1.358 × 10−6 2.999 × 10−7 2.974 × 10−4 4.474 × 10−5

Starlet 6.760 × 10−8 2.224 × 10−6 5.061 × 10−7 2.978 × 10−4 5.211 × 10−5

b-UWT(7/9) 4.900 × 10−8 1.116 × 10−6 3.707 × 10−7 2.822 × 10−4 4.771 × 10−5

b-UWT(7/9)+Wiener 6.390 × 10−8 1.645 × 10−6 4.610 × 10−7 3.780 × 10−4 4.907 × 10−5

Notes. The lowest MSE value per band is indicated in bold.
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Table A.2. MSE table of CM crops.

Name MSEH160 MSEVIS MSEEXT G MSENIR H MSEIRAC

TVL2 5.590 × 10−8 8.746 × 10−7 3.268 × 10−7 1.808 × 10−4 5.699 × 10−5

TVL1 5.878 × 10−4 1.075 × 10−3 5.485 × 10−5 2.390 × 10−1 8.910 × 10−2

TVG 2.977 × 10−5 3.147 × 10−5 4.477 × 10−5 3.672 × 10−3 5.752 × 10−3

PM g= 1 k= 1 × 10−3 1.248 × 10−7 2.277 × 10−6 4.646 × 10−7 2.625 × 10−4 3.886 × 10−5

PM g= 2 k= 1 × 10−3 1.257 × 10−7 1.889 × 10−6 4.310 × 10−6 3.503 × 10−4 4.969 × 10−5

PM g= 3 k= 1 × 10−3 1.228 × 10−7 8.549 × 10−6 7.173 × 10−6 1.386 × 10−3 5.755 × 10−5

PM g= 4 k= 1 × 10−4 8.470 × 10−8 1.281 × 10−6 3.914 × 10−6 2.011 × 10−4 4.697 × 10−5

PM g= 5 k= 1 × 10−3 1.468 × 10−7 2.006 × 10−6 8.287 × 10−6 3.186 × 10−4 5.055 × 10−5

PSF 4.853 × 10−5 1.532 × 10−4 9.444 × 10−6 6.024 × 10−3 5.052 × 10−3

Original 1.902 × 10−6 1.116 × 10−4 8.288 × 10−6 4.679 × 10−3 7.319 × 10−5

TV Bregman 2.170 × 10−5 1.084 × 10−4 2.264 × 10−6 1.023 × 10−2 6.225 × 10−4

Gaussian 1.835 × 10−6 6.773 × 10−5 1.913 × 10−6 4.373 × 10−3 7.094 × 10−5

NL-means slow 1.201 × 10−7 1.883 × 10−6 4.885 × 10−7 7.916 × 10−4 1.559 × 10−4

NL-means fast 1.990 × 10−7 5.729 × 10−6 4.655 × 10−7 6.982 × 10−3 1.814 × 10−4

Bilateral 1.104 × 10−7 4.027 × 10−6 7.348 × 10−7 3.630 × 10−4 4.779 × 10−5

TV Chambolle 4.964 × 10−7 1.698 × 10−6 4.723 × 10−7 6.008 × 10−4 5.398 × 10−5

Orthogonal wavelets 5.303 × 10−7 2.999 × 10−5 2.128 × 10−6 4.732 × 10−3 7.795 × 10−5

BM3D 5.880 × 10−8 1.290 × 10−6 2.807 × 10−7 2.941 × 10−4 3.025 × 10−5

Starlet 7.040 × 10−8 2.343 × 10−6 4.380 × 10−7 2.589 × 10−4 3.744 × 10−5

b-UWT(7/9) 5.310 × 10−8 1.319 × 10−6 3.174 × 10−7 2.654 × 10−4 3.334 × 10−5

b-UWT(7/9)+Wiener 6.650 × 10−8 1.837 × 10−6 3.723 × 10−7 3.653 × 10−4 3.435 × 10−5

Notes. The lowest MSE value per band is indicated in bold.

Table A.3. MSE table of CL crops.

Name MSEH160 MSEVIS MSEEXT G MSENIR H MSEIRAC

TVL2 7.070 × 10−8 8.958 × 10−7 3.443 × 10−7 2.451 × 10−4 3.633 × 10−4

TVL1 2.754 × 10−4 1.707 × 10−4 1.471 × 10−5 1.121 × 10−1 5.820 × 10−2

TVG 4.424 × 10−5 3.336 × 10−5 1.387 × 10−5 4.519 × 10−3 1.013 × 10−2

PM g= 1 k= 1 × 10−3 1.463 × 10−7 1.752 × 10−6 5.923 × 10−7 3.433 × 10−4 3.312 × 10−4

PM g= 2 k= 1 × 10−3 1.437 × 10−7 1.865 × 10−5 7.553 × 10−6 4.436 × 10−4 3.433 × 10−4

PM g= 3 k= 1 × 10−3 1.431 × 10−7 6.034 × 10−5 8.342 × 10−6 1.413 × 10−3 3.501 × 10−4

PM g= 4 k= 1 × 10−4 1.029 × 10−7 1.076 × 10−5 6.809 × 10−6 2.893 × 10−4 3.397 × 10−4

PM g= 5 k= 1 × 10−3 1.668 × 10−7 1.432 × 10−5 7.471 × 10−6 4.163 × 10−4 3.439 × 10−4

PSF 2.728 × 10−5 3.421 × 10−5 2.913 × 10−6 4.576 × 10−3 2.952 × 10−3

Original 1.915 × 10−6 1.155 × 10−4 8.342 × 10−6 4.748 × 10−3 3.640 × 10−4

TV Bregman 1.233 × 10−5 1.795 × 10−5 6.815 × 10−7 7.211 × 10−3 6.886 × 10−4

Gaussian 1.699 × 10−6 3.175 × 10−5 1.211 × 10−6 4.074 × 10−3 2.487 × 10−4

NL-means slow 1.664 × 10−7 1.976 × 10−6 5.627 × 10−7 4.264 × 10−4 3.432 × 10−4

NL-means fast 2.470 × 10−7 3.702 × 10−6 5.260 × 10−7 1.975 × 10−2 4.581 × 10−4

Bilateral 1.307 × 10−7 4.055 × 10−6 7.697 × 10−7 4.521 × 10−4 3.413 × 10−4

TV Chambolle 6.098 × 10−7 1.740 × 10−6 4.938 × 10−7 7.015 × 10−4 3.017 × 10−4

Orthogonal wavelets 5.399 × 10−7 2.968 × 10−5 2.149 × 10−6 4.821 × 10−3 4.016 × 10−4

BM3D 6.130 × 10−8 1.103 × 10−6 2.777 × 10−7 1.031 × 10−1 3.199 × 10−4

Starlet 8.400 × 10−8 2.387 × 10−6 4.358 × 10−7 3.596 × 10−4 3.311 × 10−4

b-UWT(7/9) 6.610 × 10−8 1.333 × 10−6 3.284 × 10−7 3.611 × 10−4 3.248 × 10−4

b-UWT(7/9)+Wiener 8.080 × 10−8 1.856 × 10−6 3.831 × 10−7 4.791 × 10−4 3.265 × 10−4

Notes. The lowest MSE value per band is indicated in bold.
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Table A.4. CPU time table of CM crops after fixing the optimal internal parameters for each method.

Name TH160 TVIS TEXT G TNIR H TIRAC

s s s s s

TVL2 9.047 3.588 0.688 0.132 0.0938
TVL1 5.408 0.814 0.339 0.020 0.0031
TVG 8.910 5.177 0.334 0.134 0.0914

PM g= 1 k= 1 × 10−3 6.353 5.283 2.127 0.362 0.063

PM g= 2 k= 1 × 10−3 10.519 22.826 0.248 8.347 0.159

PM g= 3 k= 1 × 10−3 6.847 30.578 12.136 5.544 0.142

PM g= 4 k= 1 × 10−4 88.506 323.720 109-356 50.417 6.512

PM g= 5 k= 1 × 10−3 6.778 16.001 51.941 11.955 0.125
PSF 0.071 0.019 0.008 0.008 0.001
Original n.a. n.a. n.a. n.a. n.a.
TV Bregman 0.222 0.093 0.021 0.025 0.011
Gaussian 0.055 0.017 0.005 0.002 0.001
NL-means slow 75.94 27.75 6.863 3.344 1.058
NL-means fast 7.514 3.104 1.118 0.448 0.208
Bilateral 37.09 13.46 3.602 1.567 0.489
TV Chambolle 10.61 0.7668 0.109 0.587 0.034
Orthogonal wavelets 0.827 0.329 0.091 0.038 0.012
BM3D 25.08 10.499 2.836 1.536 0.655
Starlet 7.671 2.752 0.702 0.314 0.083
b-UWT(7/9) 9.013 3.265 0.812 0.350 0.095
b-UWT(7/9)+Wiener 33.15 12.01 2.983 1.318 0.337

Notes. The lowest time value per band is indicated in bold.

Appendix B: Non-stationary Gaussian noise MSE comparison table

Table B.1. MSE values for Hl, Iσ, Hu, I2σ related to the VIS (CM) mirrored crop.

Name MSEHl
MSEIσ MSEHu

MSEI2σ

TVL2 7.622e−07 7.654e−07 2.477e−05 2.500e−05

PM g= 1 k= 1 × 10−3 9.277e−05 9.412e−05 4.352e−04 4.343e−04
PSF 1.398e−05 1.398e−05 5.239e−05 5.242e−05
Original 1.153e−04 1.152e−04 4.604e−04 4.604e−04
Gaussian 4.575e−05 4.574e−05 1.822e−04 1.823e−04
NL-means slow 1.110e−04 1.114e−04 4.603e−04 4.426e−04
Bilateral 1.129e−04 1.130e−04 4.581e−04 4.505e−04
TV Chambolle 6.246e−05 6.387e−05 3.428e−04 3.411e−04
BM3D 1.141e−04 1.141e−04 4.592e−04 4.556e−04
Starlet 5.647e−07 8.924e−07 1.907e−05 2.571e−06
b-UWT(7/9) 8.316e−07 7.797e−07 8.632e−06 2.255e−06
b-UWT(7/9)+Wiener 7.954e−07 1.009e−06 1.957e−05 3.191e−06

Notes. See Sect. 5.3 for further details. The best results are in bold.
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Table B.2. MSE values for Hl, Iσ, Hu, I2σ related to the VIS (CL) mirrored crop.

Name MSEHl
MSEIσ MSEHu

MSEI2σ

TVL2 8.105e−07 7.933e−07 2.463e−05 2.500e−05

PM g= 1 k= 1 × 10−3 9.174e−05 9.331e−05 4.339e−04 4.329e−04
PSF 1.429e−05 1.432e−05 5.246e−05 5.242e−05
Original 1.152e−04 1.151e−04 4.604e−04 4.597e−04
Gaussian 4.578e−05 4.577e−05 1.821e−04 1.818e−04
NL-means slow 1.107e−04 1.111e−04 4.603e−04 4.411e−04
Bilateral 1.126e−04 1.127e−04 4.579e−04 4.495e−04
TV Chambolle 6.136e−05 6.303e−05 3.401e−04 3.388e−04
BM3D 1.140e−04 1.140e−04 4.591e−04 4.548e−04
Starlet 7.482e−07 2.170e−06 4.874e−05 7.682e−06
b-UWT(7/9) 1.048e−06 1.117e−06 1.638e−05 3.472e−06
b-UWT(7/9)+Wiener 1.038e−06 1.588e−06 3.805e−05 5.305e−06

Notes. See Sect. 5.3 for further details. The best results are in bold.

Appendix C: PSF and depth comparison plots

Fig. C.1. VIS FWHM variation comparison plot. On the x-axis the VIS
images with FWHM equal to the original value, 0.5, 1.0, 1.5, and 2.0
arcsecs, whereas on the y-axis mse.

Fig. C.2. VIS FWHM variation comparison plot. On the x-axis the
VIS images with FWHM equal to the original value, 0.5, 1.0, 1.5, and
2.0 arcsecs, whereas on the y-axis mse

mseoriginal
.

Fig. C.3. VIS FWHM variation comparison plot. On the x-axis the VIS
images with FWHM equal to the original value, 0.5, 1.0, 1.5, and 2.0
arcsecs, whereas on the y-axis mse

msePSF
.

Fig. C.4. H160 depth variation comparison plot. On the x-axis the H160
images with Gaussian noise standard deviation equal to 1, 10, 20, 30,
and 40 times the original value, whereas on the y-axis mse.
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Fig. C.5. H160 depth variation comparison plot. On the x-axis the
H160 images with Gaussian noise standard deviation equal to 1, 10,
20, 30, and 40 times the original value, whereas on the y-axis mse

msePSF
.

Fig. C.6. H160 depth variation comparison plot. On the x-axis the
H160 images with Gaussian noise standard deviation equal to 1, 10,
20, 30, and 40 times the original value, whereas on the y-axis mse

mseoriginal
.

Appendix D: VIS crops visual comparison

Fig. D.1. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, bilateral, TV Chambolle, noiseless. The green boxes are the detected
objects regions. The central object has been detected with a S/N of 38.8 with magnitude of 25.79.

Fig. D.2. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, bilateral, TV Chambolle, noiseless. The green boxes are the detected
objects regions. The central object has been detected with a S/N of 48.2 with magnitude of 24.76.

Fig. D.3. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, bilateral, TV Chambolle, noiseless. The green boxes are the detected
objects regions. The central object has been detected with a S/N of 72.9 with magnitude of 23.82.

Fig. D.4. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, bilateral, TV Chambolle, noiseless. The green boxes are the detected
objects regions. The central object has been detected with a S/N of 47.5 with magnitude of 25.01.
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Fig. D.5. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, bilateral, TV Chambolle, noiseless. The green boxes are the detected
objects regions. The central object has been detected with a S/N of 35.44 with magnitude of 25.39.

Fig. D.6. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, bilateral, TV Chambolle, noiseless. The green boxes are the detected
objects regions. The central object has been detected with a S/N of 21.26 with magnitude of 26.48.

Fig. D.7. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, bilateral, TV Chambolle, noiseless. The green boxes are the detected
objects regions. The central object has been detected with a S/N of 27.70 with magnitude of 25.72.

Fig. D.8. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, bilateral, TV Chambolle, noiseless. The green boxes are the detected
objects regions. The central object has been detected with a S/N of 45.57 with magnitude of 24.97.

Fig. D.9. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, bilateral, TV Chambolle, noiseless. The green boxes are the detected
objects regions. The central object has been detected with a S/N of 68.29 with magnitude of 24.14.

Fig. D.10. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, bilateral, TV Chambolle, noiseless. The green boxes are the detected
objects regions. The central object has been detected with a S/N of 26.74 with magnitude of 26.13.

Fig. D.11. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, bilateral, TV Chambolle, noiseless. The green boxes are the detected
objects regions. The central object has been detected with a S/N of 25.44 with magnitude of 26.19.
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Fig. D.12. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, bilateral, TV Chambolle, noiseless. The green boxes are the detected
objects regions. The central object has been detected with a S/N of 36.99 with magnitude of 25.71.

Fig. D.13. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, bilateral, TV Chambolle, noiseless. The green boxes are the detected
objects regions. The central object has been detected with a S/N of 90.35 with magnitude of 23.34.

Fig. D.14. VIS crops visual comparison. On the first row: Original, PSF, Perona-Malik, TVL2, bilateral, TV Chambolle, noiseless; on the second
row: BM3D, starlet, b-UWT(7/9), and b-UWT(7/9)+Wiener. The central object has been detected with a S/N of 7.99 with magnitude of 25.21.

Fig. D.15. VIS crops visual comparison. On the first row: Original, PSF, Perona-Malik, TVL2, bilateral, TV Chambolle, noiseless; on the second
row: BM3D, starlet, b-UWT(7/9), and b-UWT(7/9)+Wiener. The central object has been detected with a S/N of 3.80 with magnitude of 26.01.
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Fig. D.16. VIS crops visual comparison. On the first row: Original, PSF, Perona-Malik, TVL2, bilateral, TV Chambolle, noiseless; on the second
row: BM3D, starlet, b-UWT(7/9), and b-UWT(7/9)+Wiener. The central object has been detected with a S/N of 2.23 with magnitude of 26.59.

Fig. D.17. VIS crops visual comparison. On the first row: Original, PSF, Perona-Malik, TVL2, bilateral, TV Chambolle, noiseless; on the second
row: BM3D, starlet, b-UWT(7/9), and b-UWT(7/9)+Wiener. The central object has been detected with a S/N of 15.73 with magnitude of 24.48.

Fig. D.18. VIS crops visual comparison. On the first row: Original, PSF, Perona-Malik, TVL2, bilateral, TV Chambolle, noiseless; on the second
row: BM3D, starlet, b-UWT(7/9), and b-UWT(7/9)+Wiener. The central object has been detected with a S/N of 56.23 with magnitude of 23.09.
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Appendix E: GSDEEP crops visual comparison

Fig. E.1. GSDEEP crops visual comparison: Original, PSF, Perona-Malik, TVL2, bilateral, NL-means, HUDF09. The green boxes are the detected
objects regions. The central object has been detected with a S/N of 6.71 with magnitude of 27.47.

Fig. E.2. GSDEEP crops visual comparison: Original, PSF, Perona-Malik, TVL2, bilateral, NL-means, HUDF09. The green boxes are the detected
objects regions. The central object has been detected with a S/N of 7.37 with magnitude of 27.20.

Fig. E.3. GSDEEP crops visual comparison: Original, PSF, Perona-Malik, TVL2, bilateral, NL-means, HUDF09. The green boxes are the detected
objects regions. The central object has been detected with a S/N of 8.44 with magnitude of 26.80.

Fig. E.4. GSDEEP crops visual comparison: Original, PSF, Perona-Malik, TVL2, bilateral, NL-means, HUDF09. The green boxes are the detected
objects regions. The central object has been detected with a S/N of 6.88 with magnitude of 27.18.

Fig. E.5. GSDEEP crops visual comparison: Original, PSF, Perona-Malik, TVL2, bilateral, NL-means, HUDF09. The green boxes are the detected
objects regions. The central object has been detected with a S/N of 5.82 with magnitude of 27.48.

Fig. E.6. GSDEEP crops visual comparison: Original, PSF, Perona-Malik, TVL2, bilateral, NL-means, HUDF09. The green boxes are the detected
objects regions. The central object has been detected with a S/N of 5.08 with magnitude of 27.48.

Fig. E.7. GSDEEP crops visual comparison: Original, PSF, Perona-Malik, TVL2, bilateral, NL-means, HUDF09. The green boxes are the detected
objects regions. The central object has been detected with a S/N of 6.51 with magnitude of 27.58.
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Fig. E.8. GSDEEP crops visual comparison: Original, PSF, Perona-Malik, TVL2, bilateral, NL-means, HUDF09. The green boxes are the detected
objects regions. The central object has been detected with a S/N of 12.48 with magnitude of 27.17.

Fig. E.9. GSDEEP crops visual comparison: Original, PSF, Perona-Malik, TVL2, bilateral, NL-means, HUDF09. The green boxes are the detected
objects regions. The central object has been detected with a S/N of 9.77 with magnitude of 27.36.

Fig. E.10. GSDEEP crops visual comparison. In the first row: Original, PSF, Perona-Malik, TVL2, bilateral, NL-means, HUDF09. On the second
row: BM3D, starlet, b-UWT(7/9), and b-UWT(7/9)+Wiener. The central object has been detected with a S/N of 11.98 with magnitude of 28.34.

Fig. E.11. GSDEEP crops visual comparison. On the first row: Original, PSF, Perona-Malik, TVL2, bilateral, NL-means, HUDF09. On the second
row: BM3D, starlet, b-UWT(7/9), and b-UWT(7/9)+Wiener. The central object has been detected with a S/N of 9.85 with magnitude of 28.45.
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Fig. E.12. GSDEEP crops visual comparison. On the first row: Original, PSF, Perona-Malik, TVL2, bilateral, NL-means, HUDF09. On the second
row: BM3D, starlet, b-UWT(7/9), and b-UWT(7/9)+Wiener. The central object has been detected with a S/N of 11.26 with magnitude of 28.37.

Fig. E.13. GSDEEP crops visual comparison. On the first row: Original, PSF, Perona-Malik, TVL2, bilateral, NL-means, HUDF09. On the second
row: BM3D, starlet, b-UWT(7/9), and b-UWT(7/9)+Wiener. The central object has been detected with a S/N of 17.70 with magnitude of 27.86.

Fig. E.14. GSDEEP crops visual comparison. On the first row: Original, PSF, Perona-Malik, TVL2, bilateral, NL-means, HUDF09. On the second
row: BM3D, starlet, b-UWT(7/9), and b-UWT(7/9)+Wiener. The central object has been detected with a S/N of 10.40 with magnitude of 28.48.
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