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ABSTRACT

The Ka–Ku Dual-Frequency Precipitation Radar (DPR) and the Microwave Imager on board the Global

Precipitation Measurement (GPM) mission core satellite have been collecting data for more than 3 years,

providing precipitation products over the globe, including oceans and remote areas where ground-based

precipitation measurements are not available. The main objective of this work is to validate the GPM-DPR

products over a key climatic region with complex orography such as the Italian territory. The performances of

theDPRprecipitation rate products are evaluated over an 18-month period (July 2015–December 2016) using

both radar and rain gauge data. The ground reference network is composed of 22 weather radars and more

than 3000 rain gauges. DPR dual-frequency products generally show better performance with respect to the

single-frequency (i.e., Ka- or Ku-band only) products, especially when ground radar data are taken as ref-

erence. A sensitivity analysis with respect to season and rainfall intensity is also carried out. It was found that

the normal scan (NS) product outperforms the high-sensitivity scan (HS) and matched scan (MS) during the

summer season. A deeper analysis is carried out to investigate the larger discrepancies between the DPR-NS

product and ground reference data. The most relevant improvement of the DPR products’ performance was

found by limiting the comparison to the upscaled radar data with a higher quality index. The resulting scores

in comparison with ground radars are mean error (ME) 5 20.44mmh21, RMSE 5 3.57mmh21, and frac-

tional standard error (FSE) 5 142%, with the POD 5 65% and FAR 5 1% for rainfall above 0.5mmh21.

1. Introduction

The Global Precipitation Measurement (GPM) Core

Observatory has been collecting data by both the passive

GPM Microwave Imager (GMI; Draper et al. 2015) and

theDual-FrequencyPrecipitationRadar (DPR; Furukawa

et al. 2015) for more than 3 years (Neeck et al. 2014). The

DPRconsists of aKu-band (13.6GHz) precipitation radar,

similar to the Precipitation Radar (PR) on board the

Tropical Rainfall Measuring Mission (TRMM) satellite

(Kummerow et al. 1998), and an unprecedented Ka-band

(35GHz) radar.

GPM provides several precipitation products at dif-

ferent scales by using different sensors’ combinations

and synergies. The DPR plays a key role in the GPM

precipitation estimation scheme, being the main cali-

bration instrument, serving as space reference for

radiometer-derived global precipitation algorithms

(Neeck et al. 2014), and providing basic information on the

vertical cloud structure (Grecu et al. 2016). Three algo-

rithms (KuPR algorithm, KaPR algorithm, and dual-

frequency algorithm) are derived by DPR estimating up

to three different precipitation rates for a footprint of

GPM DPR. Though Level-2 DPR products do not

provide a frequent snapshot coverage of the same area of

the globe, they have an important role for the generation

of the Level-3 products. Moreover, they are particularly

useful in the regions where ground-based measurements

are sparse or not available, and where information on

vertical structure, not provided by radiometers, is required.

As such, it is important to provide as much reliable

verification as possible in different orographic and cli-

matological conditions (Speirs et al. 2017; Iguchi et al.

2016). A physical validation of DPR observations

would require dedicated observation tools, that is,

ground-based radar, operating purposely to assess theCorresponding author: Leo Pio D’Adderio, dadderio@fe.infn.it
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reflectivity measurements of DPR radars. Two post-

launch ground validation field campaigns in complex

terrain were performed: the Integrated Precipitation

and Hydrology Experiment (IPHEx; Barros et al. 2014)

and theNationalAeronautics and SpaceAdministration

(NASA) Olympic Mountains Ground Validation Ex-

periment (OLYMPEX; Houze et al. 2015, 2017) in-

volving different instruments such asMicro RainRadars

(MRRs), disdrometer and rain gauge networks, aircraft-

based radiometer, and X-, Ku-, Ka-, and W-band radar

measurements.

However, it is also worth directly validating the rain

rate at the ground, as extracted with different approaches

and algorithms (Chandrasekar et al. 2008). For this reason,

NASA and the Japan Aerospace Exploration Agency

(JAXA) carried out an extensive ground validation

program in North America (mainly the United States)

and Europe (Schwaller and Morris 2011), as well as

partnering with various other groups elsewhere in the

world. As an example, a scientific collaboration between

the EUMETSAT Satellite Application Facility on

Support to Operational Hydrology and Water Man-

agement (H SAF) and GPM called ‘‘H SAF and GPM:

Precipitation algorithm development and validation

activity’’ was established in 2014.

TheHSAF started in 2005 as part of theEUMETSAT

SAF Network (Mugnai et al. 2013). In March 2017, the

program entered its Third Continuous Development

and Operation Phase, which will last until February

2022. The H SAF is a consortium with the aim of re-

trieving satellite observations to estimate hydrological

parameters such as precipitation, soil moisture, and

snow cover to provide products and services in support

of operational meteorology, hydrology, oceanography,

and climate and risk management. In particular, the

consortium produces estimations of precipitation prod-

ucts from passive microwaves (PMWs) (Sanò et al. 2015,
2016; Panegrossi et al. 2014, 2016; Casella et al. 2015a,b;

Marra et al. 2015) and PMW and infrared (IR) data

(Feidas et al. 2018) over the Meteosat Second Genera-

tion (MSG) full disk. Inside the H SAF community, a

program to evaluate the accuracy of precipitation

maps retrieved from satellite data has been defined

(Puca et al. 2014). The H SAF Precipitation Product

Validation Group validates every year over Europe

PMW-only products and IR–PMW products, taking

into account the different sensor features and the

satellite native grid. This service provides information

useful to ingest the observations in a numerical model

or in a decisional cycle.

In theH SAF context, instantaneous and accumulated

precipitation products are usually validated with respect

to ground radar and rain gauge data on European areas

(Belgium, Bulgaria, Germany, Hungary, Italy, Poland,

Slovakia, and Turkey), and the same procedures can be

applied to validate other satellite products, as the GPM

ones. In particular, DPR products are of deep interest

for H SAF, allowing extensive validation of H SAF in-

stantaneous precipitation products over the MSG full

disk in regions not covered by ground-based measure-

ments, such as oceans and a large part of Africa. The

DPR has the great advantage of providing global and

consistent observations over the globe, including oceans

and mountainous areas, and remote areas where ground-

based precipitation measurements are scarce or not

available, as in African areas.

However, DPR measurements are affected by some

limitations, such as attenuation, ground clutter, non-

uniform beam filling (NUBF), and multiple scattering.

These effects are taken into account in the NASA/

JAXA algorithms used to retrieve DPR precipitation

products (Iguchi et al. 2017), but the surface precipita-

tion estimates are affected by errors that need to be

quantified.

The work presented here is focused on performance

of the DPR precipitation rate products in complex ter-

rain such as Italy, over an 18-month time frame. This

paper reviews the performance of precipitation re-

trieval algorithms evaluating the rainfall rates estimated

with the KuPR algorithm, KaPR algorithm, and dual-

frequency algorithm by comparing with both ground

radars and rain gauges. The results are analyzed in

order to define potentialities and limitations in the use

of GPM-DPR products as reference for the validation

of the H SAF precipitation products over the MSG

full disk.

Italy is an ideal test bed for complex terrain in a

Mediterranean climatic regime, as it consists of a mix-

ture of mountainous terrain (Alps, Apennines) and

flatter/coastal areas. The country is well instrumented

by a network of 22 weather radars (Vulpiani et al. 2014;

Rinollo et al. 2013), as well as a network of around 3000

rain gauges.

The aim of this paper is to assess the overall per-

formances of the DPR-derived products and to focus

on the sensitivity of the validation results to the re-

trieval settings.

The paper is structured as follows. The description of

the ground data and of the DPR products is presented in

section 2. In section 3, the overall results are reported by

comparing satellite with both ground datasets, while

section 4 is focused on the sensitivity of the results to

seasonal cycle and rainfall rate. A detailed study of

possible error sources is reported in section 5, while the

results related to this analysis are drawn in section 6. A

summary of conclusions is reported in section 7.
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2. Data and algorithms description

Aperiod of 18months from 1 July 2015 to 31December

2016 over the Italian Peninsula has been analyzed. The

GPM Level-2A precipitation products have been eval-

uated by comparing them with the ground estimates

from a radar network and rain gauges network, both

delivered by the Italian Department of Civil Protection

(DPC). Only instantaneous field of view (IFOV) with

liquid precipitation (excluding solid and mixed-phase

precipitation) over land have been considered, apply-

ing the flag on the GPM precipitation phase product as

well as on the GPM surface type product, respectively.

A total of 902 overpasses and more than 2.5 million

pieces of satellite data [for the DPR normal scan (NS)

acquisition mode over Italian land areas] were ana-

lyzed: of these, 621 (585) events with 103 304 (73 207)

IFOVs have a rainfall rate estimated at the surface

above 0.0 (0.5) mmh21. Focusing on the liquid-only

precipitation phase, the dataset decreases to 460

overpasses with 47 459 IFOVs with rain-rate intensity

(RR) $ 0.5mmh21.

a. DPR products

While the DPR can help validate GMI, its primary

role is to construct three-dimensional precipitation and

drop size distribution (DSD) maps by using its Ka- and

Ku-band radar measurements. The GPM Core Obser-

vatory flies in a non-sun-synchronous orbit at 658 in-

clination to cover a larger latitudinal extension with

respect to the TRMM orbit, which extended from 358N
to 358S (Hou et al. 2014).

The high-sensitivity scan (HS) Ka-band radar foot-

prints are interlaced with Ku-band footprints (NS, 49

footprints) and have 24 angle bins with the range bin size

of 250m. The Ka- and Ku-band radar-matched scan

(MS) footprints, across the central beams of Ku foot-

prints, have 25 angle bins with 125-m bin size range. The

swath widths of Ka- and Ku-band radars are 120 and

245 km, respectively, while both Ka- and Ku-band

footprints are of 5.2-km diameter. The minimum de-

tectable signal is around 13dBZ for Ku band, while it is

17 dBZ for Ka and dual-frequency band. This corre-

sponds to a minimum rainfall rate of 0.2mmh21 for Ka

band and DPR and 0.5mmh21 for Ku band (Iguchi

et al. 2017).

The version V04A of both theDPRLevel-2A product

(2A-DPR) and the Ka/Ku (Ka single orbit, Ku single

orbit) Level-2A product (2A-Ka/Ku) have been used in

this study. While the 2A-DPR products are based on the

dual-frequency information, both the 2A-Ka/Ku prod-

ucts are derived separately from the single-frequency

signal (Iguchi et al. 2017). Please note that products are

not fully independent: in particular, the inner swath

(footprints 13–37) of 2A-DPR-NS is the same as 2A-

DPR-MS, while the outer swath (footprints 1–12 and

38–49) of 2A-DPR-NS is the same as the outer swath of

2A-Ku NS. The 2A-DPR and 2A-Ka/Ku products

present many output variables (NASA/JAXA 2016). In

this work, we considered the precipRateNearSurface

(prNs) and precipRateESurface (prEs) products. While

the former refers to the rain estimation at the first DPR

bin free from ground clutter, the latter estimates the

precipitation rate at the surface.

b. Rain gauge data and processing

The Italian rain gauge network comprises over 3000

tipping-bucket type sensors (Fig. 1) with variable tem-

poral sampling (1–60min), different spatial density (a

mean of 1 sensor every 100 km2) over the country, and

a common minimum detectable rain amount of 0.2 mm.

In this study, we consider half-hour accumulated data.

This rain gauge accumulation interval provides better

accuracy in comparison with instantaneous satellite

estimates with respect to shorter and longer sampling

rates (Porcù et al. 2014). Moreover, 30min is a trade-

off between the need to monitor short-lived heavy

showers and long-lasting weak precipitation (Chen and

Chandrasekar 2015).

To homogenize the two ground datasets, rain gauge

data, preprocessed according to range, persistence, step,

and spatial consistency (Shafer et al. 2000) to screen out

suspect values, have been interpolated over a regular

grid (1 km 3 1km) through the Random Generator of

FIG. 1. Spatial distribution of the Italian operational rain gauge

network.
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Spatial Interpolation from uncertain Observations

(GRISO). The GRISO (Pignone et al. 2010; Feidas

et al. 2018) is an improved kriging-based technique

implemented by the International Centre on Environ-

mental Monitoring (CIMA Research Foundation). This

technique preserves the values observed at the rain

gauge location, allowing for a dynamical definition of

the covariance structure associated with each rain gauge

by the interpolation procedure. Each correlation struc-

ture depends both on the rain gauge location and on the

accumulation time considered. GRISO is adopted by all

European participating countries in the H SAF valida-

tion procedure (Puca et al. 2014).

c. Radar data and processing

The Italian radar network is currently composed by

20 C-band and 2 X-band systems, managed by 11 ad-

ministrations. The product generation at national level is

carried out by the DPC that currently manages 7 C-band

and 2X-band systems, all with dual-polarization capability.

The spatial distribution of single- and dual-polarization

systems is depicted on Fig. 2.

The processing architecture is partially distributed, as

the observations are first processed locally by a unique

software system, then the single-radar products are

centralized to generate the national level-products. In

this work, radar products with a time resolution of

10min mapped over a 1-km equispaced grid have

been used.

The operational radar processing chain aims at identi-

fying most of the uncertainty sources affecting the rainfall

estimation process (Friedrich et al. 2006). Among them,

the following error sources are primarily considered: con-

tamination by nonweather returns (clutter), partial beam

blocking (PBB), beam broadening at increasing distances,

vertical variability of precipitation (Joss and Lee 1995;

Germann and Joss 2002; Marzano et al. 2004), and rain

path attenuation (Carey et al. 2000; Testud et al. 2000;

Bringi and Chandrasekar 2001; Vulpiani et al. 2008).

Because of the characteristics of the Italian territory,

most of the uncertainty has to be ascribed to the oro-

graphic complexity, especially in southern Italy where

the radar coverage overlapping is poor, whenever

available (Vulpiani et al. 2012, 2014).

Every error source is quantified through specific tests

ending with the estimation of a specific (partial) data

quality index (QI) and its compensation, whenever

possible. The overall data QI is then obtained as a

combination of the partial quality matrices. The quality

scheme, described in Rinollo et al. (2013), is embedded

within the overall processing chain.

The radar observations are processed according to the

following steps (Vulpiani et al. 2014):

1) Nonweather returns are identified by means of the

combination of a static clutter map, texture analysis

on reflectivity Z, and differential reflectivity ZDR,

whenever available.

2) The PBB is quantified through the combination of

empirical derived and digital terrain model-derived

visibility maps (Bech et al. 2003). The resulting

partial data QI is derived as in Rinollo et al. (2013).

3) The differential phase FDP is filtered and the

specific differential phase KDP is computed through

the iterative finite-difference scheme proposed in

Vulpiani et al. (2012), tested in different environ-

mental conditions (Crisologo et al. 2014), and in-

tegrated in open-source libraries (Heistermann

et al. 2013).

4) Attenuation correction (for dual-polarization sys-

tems) is based on filteredFDP measurements accord-

ing to the ZPHI methodology (Testud et al. 2000). In

the case of single-polarization radars, attenuation is

only evaluated with the aim to determine the corre-

sponding QI as in Rinollo et al. (2013).

5) The detrimental effects related to distance (broad-

ening and height of observations with respect to the

zero-thermal height), eventually enhanced by orog-

raphy, are evaluated through the data quality model

proposed by Rinollo et al. (2013).

FIG. 2. Map showing the distribution of single- and dual-polarization

operational radar systems over the Italian territory.
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6) The overall data quality is computed as geometric

mean of the partial quality matrices.

7) The retrieved mean vertical profile of reflectivity

(VPR) is applied to the entire volumetric scan with

the aim of using all the observations along the

vertical to retrieve the surface rainfall rate.

8) The single-radar rainfall intensity map is computed

by combining parametric algorithms based on the

use of reflectivity and specific differential phase

(Vulpiani et al. 2015).

9) The national-level rainfall product is built by com-

bining the single-radar rainfall maps through a quality-

based combination criterion.

Moreover, a filtering process over the full radar

dataset considered was carried out. The goal is to elim-

inate radar data not congruent with respect to the plu-

viometric ones, the latter being considered as reference.

These radar data are mainly due to spurious signals

caused by radar failure, such as an antenna malfunction

detecting system, or ground clutter due to an antenna

pointing system failure. A rainy pixel is considered af-

fected by the radar anomaly and thus is discarded if the

hourly cumulated ratio between the rain gauge and

ground radars is less than a factor of 0.1. This value was

chosen because it is much smaller than the average value

that the ratio assumes close to the location of a cali-

brated polarimetric weather radar (Sebastianelli et al.

2013) and for this reason is attributable to a radar fail-

ure. The adopted methodology allows us to reduce cases

of partial or total beam blocking, which would invalidate

locally the radar error trend with range estimation

(Sebastianelli et al. 2013). Despite this, with current

technologies, there is a lack of knowledge about the true

measurements of such ground truth, which, actually, is

unknown (Kirstetter et al. 2012; Habib et al. 2004).

Moreover, a sensitivity analysis with respect to the

radar QI values (Vulpiani et al. 2012; Rinollo et al. 2013)

was conducted to exclude events with path attenuation

due to heavy rainfalls as well as the sampling above

precipitation areas. The mean absolute error (MAE)

and the mean squared error (MSE) are computed for

comparison between hourly rain gauge and radar data

for increasing QI values. These statistical scores, as well

as the remaining data for different QI thresholds, are

shown in Table 1. The error decreases as QI increases

and reaches aminimum value (MAE5 1.35mmh21 and

MSE 5 6.41mm2h22), corresponding to a QI threshold

equal to 0.60, whereas beyond this QI value the error

begins to increase due to the residual presence of out-

liers caused by radar failure (as explained above), which

condition the error estimate in the face of a strong re-

duction of the sample size. By observing Table 1, it can

be noted that MAE is stable for QI ranging from 0.40

and 0.60 while the MSE index shows greater variability,

as well as the Nash–Sutcliffe model efficiency coefficient

(EC; Nash and Sutcliff 1970), not shown in Table 1. The

EC measures the reliability of a model in predicting

the observations (in our case, radar estimates and rain

gauges measurements, respectively). It ranges from 2‘
to 1. When the index is equal to 1 the maximum effi-

ciency of the model occurs. We found that a better

model performance corresponds to a QI of 0.6 instead

of a QI of 0.5, with EC in these cases equal to 0.30 and

0.28, respectively. For this reason, only radar data with

QI values greater than 0.60 are used for comparison with

satellite data.

d. Performance indicators

The performance of satellite products is evaluated

by considering continuous and multicategorical statisti-

cal scores.

The continuous statistical scores considered are mean

error (ME), root-mean-square error (RMSE) as defined

in Nurmi (2003), fractional standard error (FSE) defined

as the ratio between the RMSE and the average of the

observations at the ground, and the Pearson correlation

coefficient (CC).

The multicategorical statistical scores evaluated (de-

rived by the contingency table) are probability of de-

tection (POD) and false alarm rate (FAR) as defined in

Nurmi (2003). Moreover, we considered the volumetric

TABLE 1. Statistical scores obtained for comparison between

hourly rain gauge data and relative radar estimation by varying the

radar QI threshold. Bold numbers indicate the best score for each

indicator.

QI threshold

Remaining

data (%)

MAE

(mmh21)

MSE

(mm2 h22)

0.05 687 115 (100.0%) 1.36 6.70

0.10 686 920 (100.0%) 1.36 6.69

0.15 686 531 (99.9%) 1.36 6.69

0.20 686 166 (99.9%) 1.36 6.69

0.25 685 632 (99.8%) 1.36 6.68

0.30 684 442 (99.6%) 1.36 6.63

0.35 680 369 (99.0%) 1.36 6.57

0.40 673 648 (98.0%) 1.35 6.51

0.45 662 314 (96.4%) 1.35 6.46

0.50 646 027 (94.0%) 1.35 6.43

0.55 625 180 (91.0%) 1.35 6.43

0.60 591 741 (86.1%) 1.35 6.41
0.65 533 306 (77.6%) 1.36 6.55

0.70 459 443 (66.9%) 1.39 6.79

0.75 368 081 (53.6%) 1.42 7.00

0.80 261 593 (38.1%) 1.47 7.27

0.85 139 792 (20.3%) 1.64 8.39

0.90 59 970 (8.7%) 1.78 9.37

0.95 18 611 (2.7%) 2.05 11.58
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indices of the precipitation correctly or incorrectly de-

tected, as proposed byAghaKouchak andMehran (2013):

volumetric hit index (VHI) and volumetric false alarm

ratio (VFAR).

3. Bulk comparisons

To have an overall indication of the performances of

DPR products, we computed basic indicators over the

whole dataset. The aim of this section is to assess which

of the DPR products available to users and described

in section 2a shows better performance as compared to

a ground reference and also to highlight differences

between radar and rain gauge validation.

The reason to consider two reference datasets is that

radar and rain gauge networks measure precipitation

rates looking at different characteristics of the rain

structure, so the two measures do not necessarily co-

incide at all scales (Harrison et al. 2000). Moreover,

while a rain gauge provides point-like, time-cumulated

quantities, a radar computes instantaneous, volume-

integrated values. Although this latter feature makes

for a more prompt comparison of satellite products with

radar, the validation of satellite products with rain

gauges is still a widespread practice, especially in a re-

gion where the radar coverage is poor or limited by

orography. To mitigate the limitations of the point na-

ture of rain gauge measurements, these data are in-

terpolated to obtain a spatially continuous precipitation

field over an equispaced grid, as indicated in section 2a.

The DPR and ground reference data have been tem-

porally and spatially matched to perform the comparison.

The temporal matching pairs the DPR observation with

the radar and the accumulated rain gauge field closest in

time. The spatial matching upscales the 1km 3 1km ref-

erence data to theDPRgrid through aGaussian-weighted

(G) average. For each satellite IFOV, a 2D Gaussian

function is computed with the maximum value in the

IFOV center and the full width at half maximum cor-

responding to the IFOV’s diameter, and its value is

used to weight the contribution of 1 km 3 1 km grid

points within the IFOV. Only ground data with QI

above the threshold (0.6) and a corresponding G value

greater than half of the maximum height are consid-

ered. Then, the upscaled ground data are obtained as a

weighted average over the distance from the IFOV

(Puca et al. 2014).

Before evaluating the performances of the GPM

products with respect to the ground reference, a com-

parison between the precipitation rates as estimated by

prEs and prNs products has been carried out. The dif-

ferences between the prEs and prNs values are minimal

for all the scan types and for DPR and Ka-/Ku-only

products, with prEs reporting lower rain rates with re-

spect to prNs according to the DPR retrieval algorithm

settings (Iguchi et al. 2017). The mean difference ranges

from 0.01mmh21 for lower rainfall rates to 0.8mmh21

for higher rainfall rates for all products except the

DPR-HS, where it reaches 1.4mmh21. Given the negli-

gible difference between prEs and prNs, we decided to

carry on the analysis on the prEs values for all scan types

and instrument combinations. This reflects in six products

considered in the following analysis, three from DPR and

three from the Ka-/Ku-only retrieval algorithm.

One of the first steps in comparing rainfall rates mea-

sured with different instruments is to define a threshold to

discriminate between wet and dry samples. This is a very

important point because, given the power-law distribution

of rain-rate values, the number of samples with a very low

rain rate is relatively large and able to dominate any sta-

tistics. Moreover, most of the measuring precipitation in-

struments are less accurate at the lowest rain rates, for

various reasons. In particular, Italian rain gauges are of

the tipping-bucket type, with well-known problems for

very low rates (Tokay et al. 2003), with a tip size of 0.2mm,

resulting in an hourly minimum detectable rate of

0.4mmh21 when the 30-min accumulation is considered.

As for the DPR, the Ka radar has a minimummeasurable

rain rate of 0.2mmh21, while for the Ku radar it is

0.5mmh21 (NASA/JAXA 2016). Given these short-

comings, that makes both estimate and reference fields

particularly unreliable, andwe decided to exclude from all

validation calculation those samples with at least one of

the two elements (estimates or reference) reporting rain

rates between 0.0 and 0.5mmh21 (both extremes kept in

the calculations). To support this choice, we performed a

separate validation on only these samples, finding values

of CC very close to zero (0.02–0.04), which indicate a very

weak relationship between estimated and reference

values when one of the two quantities is below the sensi-

tivity of the instrument.

The first analysis is carried out on the whole database

for the six prEs products. The scatterplots between

prEs and ground reference datasets for all available

scan types are shown in Figs. 3a–f (rain gauges) and

Figs. 3g–l (radar). For each of the two blocks, the top

line refers to the Ku-/Ka-only products, while the

bottom line refers to the DPR products. At a first

glance, the two series look similar, indicating that the

two ground-based observations show overall agree-

ment in describing the distribution of rain rates during

the analyzed months.

Focusing on the differences between products, the

Ku-NS plots (Figs. 3a,g) indicate a satellite general

overestimation for all rain-rate ranges, with the large

majority of the points laying around the 1:1 line. This is
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more evident when the satellite products are compared

with the radar. The Ka-MS product (Figs. 3b,h) shows a

prevailing underestimation for moderate and higher

rain rates. The Ka-HS products (Figs. 3c,i) show a general

underestimation with even lower agreement at higher

rain rates.

DPR-NS (Figs. 3d,j), DPR-MS (Figs. 3e,k), and

DPR-HS (Figs. 3f,l) do not show any particular difference

FIG. 3. Density scatterplots for the satellite prEs product vs ground reference data. The top two rows refer to the comparison with rain

gauges: (a)–(c) to the Ka-/Ku-only products and (d)–(f) to the DPR (combined) products. The bottom two rows refer to the comparison

with ground radars: (g)–(i) to the Ka-/Ku-only products and (j)–(l) to the DPR (combined) products. Three different scans are shown:

(left) NS, (center) MS, (right) HS.
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with respect to the correspondingKu-/Ka-only products.

Nevertheless, the points are slightly more concentrated

along the 1:1 line, with a greater concentration at higher

values for DPR-MS, indicating more skill in correctly

estimating heavy rain.

Further quantitative analysis can be done based on the

computation of the indicators introduced in section 2b,

which are reported in Table 2 after comparison between

the six prEs products and rain gauge and radar reference

fields for all rain–no rain events (with rain event defined

as RR $ 0.5mmh21). Each cell of Table 2 reports two

rows, the top referring to the comparison between GPM

and radar products and the bottom referring to the

comparison with respect to rain gauges. We also bolded

the best score for each indicator.

The sample size of NS is almost twice the sample size

of MS and HS, given the different scan structure. Sta-

tistical scores for radar and rain gauges are comparable

in terms of continuous indicators, while the categorical

and volumetric indicators are generally better for com-

parison with radar.

DPR products generally show better performance

with respect to Ka-/Ku-only products, mainly for con-

tinuous scores, indicating that the synergy between the

two frequencies increases the quality of the estimate. In

particular, DPR-NS and MS obtain lower ME and

RMSE and higher CC with respect to the DPR-HS

product, while FSE values are comparable. Categorical

indicators show acceptable quality detection values,

better for volumetric scores and for comparison with

radar, and low false alarm values (except for rain gauges

matching) with limited variability among the different

products. The POD indicators are rather high, even if the

VHI is significantly greater, highlighting the difficulty of

satellites in detecting mainly the light precipitation.

A last look into the general behavior of the GPM

products is made by considering the distribution of the

error of the single measure.We analyzed the percentage

error (PE) defined as

PE
i
5 1003 (SAT

i
2OBS

i
)/OBS

i

for each ith couple of satellite (SAT) and ground (OBS)

precipitation values where both estimates are above

0.5mmh21.

In Fig. 4, the frequency of samples with PE below a

given threshold for both radar (Fig. 4a) and rain gauge

(Fig. 4b) validation is shown. All distributions of PE are

peaked around250% (for less than 10% of the dataset),

then the frequency decreases rapidly and its lower end is

bounded at the value of PE 5 2100%, while all the

samples with PE higher than 400% are stored at 400%

value. The above-described properties of the error dis-

tribution hold for both DPR and Ku-/Ka-only products

as well as for the comparison with radar and rain gauges.

4. Sensitivity to rain intensity, seasonal cycle, and
altitude

The physiography and geographical setting of the

Italian Peninsula makes it a key region to represent the

Mediterranean climate, with dry summers and wet

TABLE 2. Statistical indicators, as defined in section 2, for the whole dataset. For each cell, the top and bottom values are evaluated with

respect to radar and rain gauge, respectively. Bold numbers indicate the best score for each indicator.

Product and scan

Ku NS Ka MS Ka HS DPR-NS DPR-MS DPR-HS

No. of points 27 120 17 774 13 092 28 450 14 692 12 870

39 747 23 413 18 104 41 249 20 558 17 910

ME (mmh21) 0.40 20.73 20.68 20.17 20.21 20.84

20.37 21.14 21.14 20.70 20.73 21.24

RMSE (mmh21) 5.52 4.54 4.67 3.86 4.25 4.35

5.02 3.89 3.74 3.36 3.60 3.61

CC 0.38 0.27 0.27 0.44 0.42 0.31

0.47 0.41 0.47 0.55 0.57 0.47

FSE (%) 232 192 179 165 171 172

223 165 151 151 150 149
POD (%) 66 58 72 64 70 66

44 42 48 43 49 44

VHI (%) 87 75 85 83 86 81

71 59 66 66 71 61

FAR (%) 6 8 4 6 6 3

16 15 11 15 15 11

VFAR (%) 3 5 3 3 4 3
9 7 5 7 7 5
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winters. Cold months are dominated by cyclonic devel-

opment and frontal structures, while in summer, which is

generally dry, the occurrence of isolated and mesoscale

organized convection is possible. Mesoscale convection

is particularly severe during late summer and early au-

tumn (September–November) when such intense sys-

tems hit Italy, causing flooding, landslides, and other

damage (Panegrossi et al. 2016; Marra et al. 2017;

Silvestro et al. 2016).

The complex orography that characterizes the Italian

Peninsula adds local forcing to the precipitation for-

mation and enhancement processes from one side, and

from the other side makes it difficult to measure pre-

cipitation from ground-based instruments. Moreover,

even the remote sensing from satellite-borne sensors

may suffer from shortcomings at all wavelengths be-

cause of the small-scale variation of terrain elevation.

For these reasons, the performances of satellite

products are expected to be dependent on the season

and rain-rate intensity because of the strict relationship

with the microphysical structure of the precipitating

cloud and its interaction with local to mesoscale forcing.

We investigated the impact of seasonal cycle and RR

considering 3-month seasons (DJF,MAM, JJA, SON) and

four precipitation classes: ‘‘all’’ class (RR $ 0.5mmh21),

‘‘light’’ class (0.5mmh21#RR, 1.0mmh21), ‘‘moderate’’

class (1.0mmh21# RR, 10.0mmh21), and ‘‘heavy’’ class

(RR $ 10.0mmh21). The analysis is focused on the best

GPM radar products, as derived in section 3, that is, the

DPR-NS, DPR-MS, and DPR-HS. All indicators are com-

puted with respect to both rain gauges and radar ground

reference, but only the latter are reported here, with the rain

gauge indicators being very similar to the radar ones even if,

in general, they are slightly worse.

a. Sensitivity to rain-rate intensity

Table 3 reports the values obtained for the whole

period, dividing the dataset according to the rainfall

intensity classes defined above. In each cell, we reported

three lines referring from top to bottom to the per-

formance of DPR-NS, DPR-MS, and DPR-HS, respec-

tively. We also bolded the best score for each indicator.

For light precipitation, the DPR-HS product markedly

outperforms the NS and MS products in terms of

ME, RMSE, and FSE. For the moderate class, DPR-HS

and DPR-MS underestimate the precipitation, while

DPR-NS slightly overestimates it. The CC is generally

low and better for the DPR-NS products for moderate

and heavy precipitation regimes. For the heavy rain

class, the rank is reversed, with the DPR-NS out-

performing the other products for all the statistical in-

dicators. In this class, the precipitation is markedly

FIG. 4. Distribution of the PE for satellite prEs products in comparison with (a) ground radar

and (b) rain gauge data.
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underestimated by the DPR, while the best value for

FSE is reached. DPR-HS for this class has the worst

values, indicating that the high-sensitivity scan, more

sensitive to lower rain rates, is less reliable in estimating

higher rain rates.

Categorical and volumetric indicators show that most

of the heavy precipitation is missed by DPR, while the

detection skill increases for the other two DPR prod-

ucts. Volumetric indicators also show that DPR-NS/-MS

products assign most of the light and moderate rainfall

to the right class, whileDPR-HS has lower performance.

FAR (and VFAR) increases for higher rainfall rate

classes.

b. Sensitivity to seasonal cycle

In Table 4 (which follows the same structure as

Table 3), the impact of the seasonal cycle is addressed by

computing the statistical indicators for the different

seasons for rain rates higher than 0.5mmh21. SON has a

larger number of samples, since the study covered the

period from July 2015 to December 2016; thus, the be-

havior of this season could have a relative impact on the

overall data presented in Table 3. This feature is not

evidenced by JJA, it being the driest season in Italy. A

large part of the seasonal signal can be attributed to the

higher occurrence of heavy precipitation in warm

months with respect to light/moderate rain rates. The

DPR overestimates the precipitation only during SON

(except for DPR-HS) and underestimates it during all

other seasons. DPR-NS and DPR-MS show better in-

dicators for DJF, MAM, and JJA. RMSE is better in

MAM for all products, and this is also true for FSE

(except DPR-HS for heavy rain, which has the best

value in SON), while higher CC is found for DPR-NS

and DPR-MS for JJA.

The categorical and volumetric indicators show a

slightly worse capability of all DPR products to detect

the precipitation during MAM and DJF with respect to

the other seasons, while FAR and VFAR present better

scores during DJF for all the DPR products. Generally,

DPRproducts highlight a tendency to underestimate the

precipitation for both intensity and areal coverage.

Deeper insights in the relationship between seasons and

rainfall intensity can be reached with Tables 5–7 (light,

moderate, and heavy precipitation classes, respectively),

TABLE 3. Statistical indicators, as defined in section 2, for the

three classes of rainfall intensity (light, moderate, and heavy)

computed with respect to the ground radar dataset. Bold numbers

indicate the best value for each cell.

Rain-rate class

Light Moderate Heavy

No. of points DPR-NS 10 717 16 978 755

DPR-MS 5157 9133 402

DPR-HS 4443 8061 366

ME (mmh21) DPR-NS 0.12 0.01 28.14
DPR-MS 0.26 20.07 29.22

DPR-HS 20.06 20.68 213.84

RMSE (mmh21) DPR-NS 1.77 3.57 15.19

DPR-MS 1.90 3.62 17.77

DPR-HS 1.46 3.22 20.28

CC DPR-NS 0.09 0.38 0.19

DPR-MS 0.10 0.36 0.16

DPR-HS 0.10 0.31 0.10

FSE (%) DPR-NS 244 133 87

DPR-MS 262 132 92

DPR-HS 202 116 106

POD (%) DPR-NS 64 64 30

DPR-MS 70 66 30

DPR-HS 66 60 8

VHI (%) DPR-NS 83 80 33
DPR-MS 86 81 33

DPR-HS 81 72 6

FAR (%) DPR-NS 6 22 78

DPR-MS 6 22 75
DPR-HS 3 18 85

VFAR (%) DPR-NS 3 15 74

DPR-MS 4 16 70
DPR-HS 3 13 88

TABLE 4. Statistical indicators, as defined in section 2, for the

four seasons computedwith respect to ground radar dataset for RR

$ 0.5mmh21. Bold numbers indicate the best value for each cell.

Season

DJF MAM JJA SON

No. of points DPR-NS 6070 5707 4504 12 169

DPR-MS 2990 2855 2425 6422

DPR-HS 2509 2485 2117 5759

ME (mmh21) DPR-NS 20.40 20.64 20.51 0.30

DPR-MS 20.08 20.54 20.98 0.17
DPR-HS 20.40 21.01 22.02 20.52

RMSE (mmh21) DPR-NS 2.71 2.47 5.98 3.89

DPR-MS 3.46 2.43 7.09 3.76

DPR-HS 3.92 2.74 7.91 3.07
CC DPR-NS 0.46 0.46 0.47 0.43

DPR-MS 0.40 0.45 0.48 0.41

DPR-HS 0.30 0.29 0.38 0.39

FSE (%) DPR-NS 159 135 166 161

DPR-MS 182 131 173 155

DPR-HS 208 144 189 123

POD (%) DPR-NS 42 43 83 77

DPR-MS 53 50 86 80

DPR-HS 45 46 82 79

VHI (%) DPR-NS 66 62 93 91

DPR-MS 76 69 95 91
DPR-HS 70 58 90 88

FAR (%) DPR-NS 4 7 6 6

DPR-MS 4 7 7 6

DPR-HS 2 3 3 4
VFAR (%) DPR-NS 1 3 2 4

DPR-MS 1 3 2 6

DPR-HS 0 1 1 4
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where the indicators for each class and season are re-

ported. As a general comment, DPR-HS is better for the

light classes in all seasons, DPR-NS prevails often in heavy

classes, even if its performance does not differ significantly

from theDPR-MSones, while for themoderate class there

is no clearly prevailing product.

The highest CCs are reached for moderate rain rates

by DPR-MS in JJA and by DPR-NS in DJF. The FSE

has its lowest values in the heavy rainfall class (DPR-MS

in DJF), while it increases in the moderate class and

often exceeds 200% in the case of light precipitation for

all seasons and DPR products. The RMSE presents

strong differences between light/moderate and heavy

precipitation, especially in JJA, while the differences

decrease in the other seasons to reach the minimum in

DJF. We remark here that for DJF/MAM the heavy

class is probably undersampled.

The analysis of the VHI shows, however, that only a

relatively small fraction of the total amount of heavy

rainfall is correctly classified with better values in JJA and

SON,while for themoderate classVHI increases, reaching

its maximum for the light class in JJA for DPR-MS. The

larger part of the error for the heavy precipitation class in

DJF and SON is due to false alarms, while the opposite is

true in JJA, indicating a likely dependence on cloud sys-

tem types (i.e., small-scale convection in JJA/SON and

embedded convection in DJF). The low performance of

all products and seasons for heavy precipitation could be

related to the sub-IFOV scale of convective rainfall

structures in Italy (low POD/VHI). This will be partially

addressed in section 5, where the sensitivity of DPR

products on rainfall pattern variability is evaluated.

c. Sensitivity to the altitude

This section is dedicated to the analysis of the perfor-

mance ofDPRproducts as a function of the altitudewhen

compared with the rain gauges. For comparison with ra-

dar, as described in section 2c, the QI takes into account

the complex orography, and this will be discussed in

section 5b. Three levels have been identified by analyzing

the distribution of the rain intensity measured by the rain

gauges and are labeled as ‘‘plain’’ (0–400m MSL), ‘‘hill’’

(400–800m MSL), and ‘‘mountain’’ (higher than 800m

MSL) regions. The quantification of the DPR perfor-

mances is reported in Table 8. The samples decrease

moving from plain to hill/mountain regions, which show

comparable sample sizes. The indicators show an overall

TABLE 5. Statistical indicators, as defined in section 2, for the

light rainfall intensity and for the four seasons, computed with

respect to ground radar dataset. Bold numbers indicate the best

value for each cell.

Season

DJF MAM JJA SON

No. of points DPR-NS 2690 2536 1337 4154

DPR-MS 1221 1202 681 2053

DPR-HS 1072 1047 549 1775

ME (mmh21) DPR-NS 20.30 20.27 0.42 0.52

DPR-MS 20.05 20.15 0.37 0.65

DPR-HS 20.28 20.37 0.00 0.24

RMSE (mmh21) DPR-NS 1.41 1.28 1.92 2.15

DPR-MS 1.91 1.37 1.57 2.24

DPR-HS 2.03 0.97 1.09 1.39

CC DPR-NS 0.06 0.11 0.10 0.12

DPR-MS 0.06 0.11 0.15 0.12

DPR-HS 0.07 0.08 0.17 0.12

FSE (%) DPR-NS 192 178 266 297

DPR-MS 257 190 219 309

DPR-HS 276 137 152 191
POD (%) DPR-NS 42 43 83 77

DPR-MS 53 50 86 80

DPR-HS 45 46 82 79

VHI (%) DPR-NS 66 62 93 91

DPR-MS 76 69 95 91

DPR-HS 70 58 90 88

FAR (%) DPR-NS 4 7 6 6

DPR-MS 4 7 7 6

DPR-HS 2 3 3 4

VFAR (%) DPR-NS 1 3 2 4

DPR-MS 1 3 2 6

DPR-HS 0 1 1 4

TABLE 6. As in Table 5, but for the moderate rainfall intensity.

Season

DJF MAM JJA SON

No. of points DPR-NS 3338 3113 2869 7658

DPR-MS 1741 1631 1553 4208

DPR-HS 1408 1411 1397 3845

ME (mmh21) DPR-NS 20.40 20.81 0.16 0.47

DPR-MS 0.00 20.72 20.14 0.17

DPR-HS 20.30 21.26 20.78 20.57

RMSE (mmh21) DPR-NS 3.29 2.73 3.29 4.06

DPR-MS 4.11 2.72 2.90 3.93

DPR-HS 4.68 2.69 2.77 2.89

CC DPR-NS 0.43 0.36 0.40 0.35

DPR-MS 0.37 0.33 0.43 0.34

DPR-HS 0.29 0.26 0.40 0.34

FSE (%) DPR-NS 140 110 108 147

DPR-MS 163 109 96 140

DPR-HS 186 107 90 100

POD (%) DPR-NS 44 44 78 74

DPR-MS 50 50 78 74

DPR-HS 44 42 71 68

VHI (%) DPR-NS 65 60 89 87

DPR-MS 73 65 89 85

DPR-HS 67 50 78 78

FAR (%) DPR-NS 20 22 18 24

DPR-MS 21 22 17 24

DPR-HS 16 17 11 20

VFAR (%) DPR-NS 13 17 10 17

DPR-MS 14 17 9 20

DPR-HS 11 14 7 16
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better performance for DPR-NS and DPR-MS in the hill

region (even ifME and RMSE are better in the plain and

mountain regions, respectively), while they get worse

from flat to mountain regions for DPR-HS. The ME also

shows a general DPR rain-rate underestimation, in-

creasing with the altitude.

5. Outliers

A deeper study of the overall results presented in

previous sections is carried out here to investigate the

main causes of the largest discrepancies between DPR

products and the ground reference. In particular, we fo-

cused on the marked over- and underestimation of the

satellite products. We applied this analysis to the DPR

products, considering the validationwith both rain gauges

and radar data reported in the next two subsections.

Starting from the study reported in section 3, we fo-

cused on the samples with the largest errors [hereafter

called outliers (OUT)], namely, the samples where the

DPR (ground) RR $ 10mmh21 and the ratio between

DPR RR and ground RR is at least 4 (1/4). The outliers

with a DPR overestimate are labeled as DPRout while

those with a DPR underestimate as GAUGEout or

RADARout when compared with rain gauges or radar,

respectively. To evaluate the causes for the large dis-

crepancies we also considered a benchmark set (BS),

composed of the pairs where the estimation is very close

to the reference value and their normalized absolute

difference does not exceed 5%. Figure 5 graphically

shows the samples selected as OUT (close to the axes)

and BS (close to the 1:1 line) for the three different DPR

scans of prEs.

a. Rain gauge outlier analysis

We considered seven attributes of the matched

DPR–reference pair that are expected to have an

impact on the discrepancies. The considered attri-

butes are gridpoint elevation above mean sea level

(GE), average terrain slope around the grid point (GS),

gauges density around the grid point (GD), time of the

DPR observation with respect to the half-hourly gauge

integration (GTD), rainfall pattern variability (GRV),

position of the DPR IFOV within the swath (IP), and

height above sea level of the first DPR bin not affected

by clutter (BH).

The GE attribute is extracted, for each grid point, from

the global 30-arc-s elevation dataset (GTOPO30), a digital

elevation model (DEM) with a horizontal grid spacing of

30 arc s (;1km). From the same database, we also com-

puted the GS, as the standard deviation of the DEM ele-

vation, over each grid point, on a 33 3 neighborhood. GD

is set as the number of working gauges within a circle of

25-km radius, centered on the grid point and correspond-

ing to the radius of influence in the GRISO procedure.

TABLE 7. As in Table 5, but for the heavy rainfall intensity.

Season

DJF MAM JJA SON

No. of points DPR-NS 42 58 298 357

DPR-MS 28 22 191 161

DPR-HS 29 27 171 139

ME (mmh21) DPR-NS 26.84 28.13 211.11 25.81

DPR-MS 26.47 28.28 212.58 25.84

DPR-HS 29.88 212.54 218.60 29.06

RMSE (mmh21) DPR-NS 8.48 11.21 20.47 10.44

DPR-MS 8.29 10.76 23.67 9.78

DPR-HS 10.65 16.56 26.62 11.61

CC DPR-NS -0.05 0.41 0.12 0.22

DPR-MS 20.24 0.42 0.06 0.27
DPR-HS 20.21 20.17 0.07 0.03

FSE (%) DPR-NS 65 74 93 71

DPR-MS 62 67 96 69
DPR-HS 78 105 109 82

POD (%) DPR-NS 21 21 36 29

DPR-MS 21 23 38 22

DPR-HS 0 0 13 6

VHI (%) DPR-NS 20 23 35 33

DPR-MS 19 24 37 28

DPR-HS 0 0 8 5

FAR (%) DPR-NS 93 85 60 82
DPR-MS 94 85 42 84

DPR-HS 100 100 54 88

VFAR (%) DPR-NS 95 83 51 80

DPR-MS 96 84 31 82

DPR-HS 100 100 55 91

TABLE 8. Statistical indicators, as defined in section 2, for the

three classes of altitude (plain, hill, and mountain) computed with

respect to rain gauges dataset for DPR-NS, DPR-MS, and

DPR-HS. Bold numbers indicate the best score for each indicator

and for each product.

Altitude

Plain Hill Mountain

No. of points DPR-NS 20 579 10 067 10 603

DPR-MS 10 797 4451 5310

DPR-HS 9462 3960 4488

ME (mmh21) DPR-NS 20.54 20.79 20.94

DPR-MS 20.57 20.77 21.00

DPR-HS 21.21 21.33 21.22

RMSE (mmh21) DPR-NS 3.54 3.20 3.16
DPR-MS 3.92 3.59 2.85

DPR-HS 3.66 3.97 3.14

CC DPR-NS 0.48 0.64 0.56

DPR-MS 0.48 0.71 0.60

DPR-HS 0.46 0.49 0.47

FSE (%) DPR-NS 158 130 161

DPR-MS 150 144 155

DPR-HS 137 158 172
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The GTD is computed as the time difference between the

rain gauge time stamp (end of the 30-min accumulation

time) and the DPR passage within the previous 30min.

The GRV is the standard deviation of all GRISO grid

pointswithin theDPR IFOV. IP is the position of theDPR

IFOV within the swath and ranges between 1 and 49 for

the NS acquisition mode, with the IFOV 1 and 49 at the

edges of the swath. BH is the height above the sea level of

the first DPR bin not affected by clutter.

InTable 9 the number of samples in the three categories

(BS, GAUGEout, and DPRout) are reported for the

three DPR products as well as the percentage of total

OUTwith respect to the total number of samples selected.

ForDPR-HS there is amarked prevalence ofGAUGEout,

indicating an underestimation of this product. This could

be due to the higher attenuation of Ka band at higher

rainfall rates. For DPR-NS and DPR-MS the number of

BS is generally higher than the total OUT, with a prev-

alence of GAUGEout for both of them. Given the re-

sults of the previous sections and this preliminary

analysis, we carried out the analysis on the OUT only

referring to DPR-NS product, and we also investigated

the possible sources of error in the whole DPR swath.

Figure 6 shows the distribution of the three categories,

which are GAUGEout (red bars), DPRout (blue bars),

and BS (green bars), with respect to the more significant

attributes. The percentage of total OUT for each class is

shown by the open bars, and relative values are in-

dicated on the right y axis.

The distribution of OUT and BS according to their

GE, sampled in 250-m-wide classes, is presented in

Fig. 6a. The number of BS for DPR-NS is larger than

the sum of the OUT for the first three GE classes, the

difference decreases when GE increases, and for the

0.75–1.00-km class the number of OUT is more than

the number of BS. Very similar behavior is found also

for the GS attribute (not shown), indicating that the

impact of orography on OUT/BS distribution is ex-

pected at a higher altitude.

Considering the impact of the gauges’ spatial density

on the DPR-NS validation, Fig. 6b shows that, except

for the case of only few gauges (less than five) around

the grid point, the number of BS equals or slightly ex-

ceeds {from [5–10) to $50 GD classes} the total num-

ber of OUT. Among the OUT, DPRout numbers

prevail at lower classes {from [5–10) to [15–20)}, while

for the other classes GAUGEout numbers have a larger

occurrence.

The distributions of BS and OUT according to GTD

(Fig. 6c) show that the the number of BS prevails on

OUT only when theDPR observations occur around the

center of the gauges’ accumulation interval (30min).

When the observation is closer to the beginning of the

interval, the number of OUT slightly prevails on BS.

Almost the totality of the BS andmost of theOUT are

within the low rainfall-rate spatial variability (Fig. 6d).

When the GRV is higher than 1mmh21, the number of

OUT systematically exceeds the BS, indicating the dif-

ficulty of the DPR observation to describe patchy rain

patterns (in these cases the nonuniform beam filling

could markedly affect the DPR observation). The sec-

ond {[1–2) mmh21} and higher GRV classes are filled

almost exclusively by GAUGEout, showing a marked

DPR-NS overestimation. Since the GRISO has an influ-

ence radius of 25km, GRV has low sensitivity, and a

value of 2mmh21 has to be considered as relatively high.

The distribution of OUT and BS according to the IP

(Fig. 6e) shows a very weak signal. BS and OUT are

roughly equally distributed across the swath, with a

slight abundance of BS in the class [10–20). Finally, a

large part of the BS is from the DPR profiles, where the

FIG. 5. Scatterplot of samples labeled as DPRout, GROUNDout

(RADARout or GAUGEout), and BS.

TABLE 9. Number of BS, GAUGEout, and DPRout samples for

the different DPR scans by comparison with rain gauges 1-km grid

equispaced. Percentage of OUT samples for each scan is also

reported.

DPR-NS DPR-MS DPR-HS

BS 983 583 427

GAUGEout 306 187 254

DPRout 302 99 41

OUT (%) 38 33 41
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lowest bin is between 1.0 and 2.5 km above the ground

(Fig. 6f). In case of higher and lower heights, the num-

bers of DPRout and GAUGEout grow equally with

respect to BS.

The analysis shows that there is not any particular

feature that can be related to the samples with large

discrepancies between GPM products and rain gauge

reference. A possible explanation about the presence of

OUT could be due to a combination of the analyzed

parameters that cannot be broken down.

b. Radar outlier analysis

The analysis carried out in section 5a is repeated here

by using the radar data and five features that are ex-

pected to impact the discrepancies have been consid-

ered. These are time difference between the radar and

DPR observations (RTD), rainfall pattern variability of

the radar acquisitions (RRV) within the DPR IFOV, IP,

upscaled radar quality index (UQI), and number of ra-

dar data inside each DPR IFOV (RND).

RTD is computed as the difference between the DPR

acquisition time and the radar nominal time, that is, the

start of the 10-min acquisition time. RRV is the standard

deviation of all radar data within the DPR IFOV. IP is

the same as in section 5a. UQI indicates the QI upscaled

through a Gaussian weight to the satellite grid. ND

represents the number of radar pixels (1-km equispaced

grid) contained in the DPR IFOV.

The numbers of samples in the three categories (BS,

RADARout, and DPRout) for the three DPR products

are reported in Table 10, with the percentage of total

OUT with respect to the total number of samples se-

lected. For all DPR scans the number of BS is almost

twice with respect to the total OUT, indicating a better

agreement between DPR and radar with respect to the

rain gauges’ comparison. Among the OUT, there is a

prevalence ofDPRout forNS andMS, while forDPR-HS

the number of RADARout is higher than DPRout (but

lower than BS), indicating that the signal for this product

(based on Ka radar data) could be attenuated for higher

rain rates, resulting in a marked underestimation. As

observed for rain gauge comparison in section 5a, we

focused on the DPR-NS product.

The distributions of theDPRout (blue bars), BS (green

bars), and RADARout (red bars) categories with respect

to the individual features are shown in Fig. 7. The per-

centage of total OUT for each class is shown by the open

bars, and relative values are indicated on the right y axis.

Figure 7a shows the OUT and BS distribution with re-

spect to RTD. It ranges between 0 and 10min because of

the time frequency of the ground radar product. The

number of BS increases slightly for greater time differ-

ences, but the percentage of total OUT is equally distrib-

utedwith values around 37%.We can affirm that theRTD

does not have a significant impact on the large discrep-

ancies between ground radar data and satellite estimation.

FIG. 6. Distribution of DPRout (blue bars), BS (green bars), and GAUGEout (red bars) samples with respect to (a) GE, (b) GD,

(c) GTD, (d) GRV, (e) IP, and (f) BH. The total occurrence of samples for each interval considered is reported on the left y axis, while the

relative percentage of outliers (DPRout and GAUGEout) for each interval (open bars) is reported on the right y axis.
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The distribution of OUT and BS according to UQI is

presented in Fig. 7b. The number of BS increases steadily,

improving UQI values, confirming the goodness of the

applied scheme. Focusing on the outlier’s distribution,

the number of DPRout prevails for UQI less than 0.75,

probably due to the radar underestimation at a greater

distance from the radar site. The trend to underestimate

precipitation at increasing distance is mainly related to

the increasing altitude of observation at increasing dis-

tance from radar due to Earth’s curvature in combination

with the vertical variability of precipitation (Vulpiani

et al. 2012). The number of RADARout has a higher

occurrence for higher UQI values even if they are never

dominant in any of the considered categories. The re-

sulting outliers’ percentage decreases, increasing theUQI

threshold from 40% at UQI greater than 0.8 to only 15%

for UQI greater than 0.95.

As observed for rain gauge comparison, low rainfall

rate spatial variability favors the occurrence of BS

(Fig. 7c). The percentage of OUT increases for higher

RRV, exceeding the 70% when the RRV is above

5mmh21, even if the subset is poor over this threshold.

For RRV $ 5mmh21 the number of RADARout has

higher occurrence than DPRout and BS, indicating the

difficulty of the DPR to describe patchy rain patterns.

Figure 7d shows the BS and OUT distributions with

respect to the number of radars within the DPR IFOV.

The number of BS prevails with respect to total OUTs

independently by RND, even if the percentage of OUT

slightly decreases at higher RND.

Figure 7e shows the BS and OUT distribution with

respect to the IP along the scanline. The number of

RADARout and DPRout is fairly equally distributed

resulting in an absence of a clear signal.

The analysis shows a strong dependence of many

discrepancies by the quality of the radar data upscaled to

the satellite grid.Moreover, even if to a lesser extent, the

different spatial resolution between the two instruments

highlights the difficulties from the satellite point of view

to observe in detail the spatially less homogeneous

precipitation patterns.

c. Outliers conclusion

While the rain gauge outlier analysis did not show any

particular feature able to justify the larger discrepancies

observed between the DPR products and the rain gauge

data, the radar outlier analysis showed a clearer signal.

The UQI shows a good agreement with the benchmark

FIG. 7. As in Fig. 6, but for (a) RTD, (b) UQI, (c) RRV, (d) RND, and (e) IP. Note that for the RRV distribution only, the occurrence axis

ranges up to 800.

TABLE 10. Number of BS, RADARout, and DPRout samples

for the different DPR scans by comparison with radar. Percentage

of OUT samples for each scan is also reported.

DPR-NS DPR-MS DPR-HS

BS 954 521 425

RADARout 165 99 179

DPRout 393 186 99

OUT (%) 37 35 40
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dataset. BS samples increase for greater UQI, while

at lower UQI, values correspond to a higher outliers’

occurrence, mainly belonging to the DPRout category.

A deeper analysis in relation with UQI values was

conducted to better evaluate the performances of the

satellite products.

6. UQI-filtered dataset results

As described in section 2c, the QI depends on differ-

ent factors such as PBB, beam broadening, vertical

variability of precipitation, and rain path attenuation.

For greater distances (i.e., for lower QI values), there

is a higher probability of underestimating the pre-

cipitation. To best evaluate the performance of theDPR

product and, at the same time, maintain a statistically

significant reference dataset, we considered the ground

radar estimates with UQI greater than 0.8, hereafter

referred to as the UQI-filtered dataset.

In this analysis, we recomputed the statistical scores

for the DPR products with respect to the UQI-filtered

dataset. Figure 8a shows the scatterplot between the

DPR prEs NS and the radar estimation (as in Fig. 3j),

while Fig. 8b shows the same scatterplot for UQI-

filtered data. The comparison between the Figs. 8a and

8b shows a significant improvement when the UQI

filter is applied. In the resulting density scatterplot,

samples are more normally distributed around the 1:1

line, and a general reduction of points along the x and

y axes and of samples with greater discrepancies is

evident.

Table 11 reports the number of BS, RADARout,

and DPRout samples before and after the UQI-filter

processing and the relative percentage variation. The

UQI-filter process reduced, as observed in Fig. 7b, mainly

the DPRout category (almost 65%) and over a quarter of

RADARout samples. Only 21% of BS samples were

filtered out. The UQI-filtered dataset shows a compara-

ble number of RADARout and DPRout, indicating a

lower bias with respect to the previous dataset.

The statistical scores discussed in section 3 are computed

for the UQI-filtered dataset and compared with respect to

the DPR-NS ‘‘whole dataset’’ as shown in Table 12. The

best value for each score is bolded. The applied filter re-

duces thewhole dataset by about 30%.All statistical scores

considered (except the ME that decreases and VHI that

remains unchanged) improve. TheRMSE improves by 8%

(from 3.86 to 3.57mmh21), the CC by 17% (from 0.44 to

0.52), and the FSE by 14% (from 165% to 142%). The

most significant improvement is in terms of the false

alarm and volumetric false alarm, which reach the values

FAR 5 1% and VFAR 5 0%, respectively. The ME

moves from 20.17 to 20.44mmh21, indicating a greater

tendency to underestimate the radar estimates.

This slight underestimation is partly attributable to the

lower DPR spatial resolution (5.2km) with respect to

ground radar data (1km). In fact, as shown in Fig. 7c, the

OUT distribution as a function of the RRVhighlights the

minor capability of DPR to adequately detect irregular

FIG. 8. Density scatterplot for theDPRprEsNS product in comparisonwith the ground radar estimates considering

(a) the whole dataset and (b) the dataset with radar UQI $ 0.8.

TABLE 11. BS, RADARout, and DPRout samples obtained (for

radar comparison with the DPR-NS product) before and after the

UQI-filter processing and the relative percentage variation.

DPR-NS UQI-filtered D%

BS 954 751 221.3

RADARout 165 120 227.3

DPRout 393 138 264.9

922 JOURNAL OF HYDROMETEOROLOGY VOLUME 19



rain patterns. At the same time, for homogeneous and

widespread precipitation characterized by lower spatial

rain variability, the number of BS is clearly predominant,

highlighting the DPR’s high performance in detecting

and correctly estimating the rainfall rate.

7. Conclusions

In this work we compared the GPM Level-2A (Ka/Ku

and DPR) estimated surface products with respect to in-

stantaneous radar estimates and 30-min accumulated rain

gauge for an 18-month period (July 2015–December 2016)

over Italian land areas for liquid-phase precipitation with a

total of 460 DPR overpasses. The validation approach is

based on the H SAF methodology that consists of evalu-

ating the satellite product on the grid of the product itself

(pixel-based approach), and only the ground data un-

dergoes the upscaling process to the satellite grid.

As a first comparison, DPR (dual-frequency) products

generally show better performance with respect to the

Ka-/Ku-only products, confirming that the synergy be-

tween the two frequencies increases the overall quality.

On this basis, the analysis was carried out on the DPR

prEs product for all scans (NS, MS, and HS). Moreover,

the statistical scores computed between the satellite and

ground references are very close to each other, showing a

slightly better performance for the radar comparison.

The Italian Peninsula represents a key region to describe

theMediterranean climate, and its complex orography

makes it difficult to measure precipitation from both

ground-based instruments and remote satellite sensors.

For these reasons, we evaluated the DPR product’s perfor-

mances for different rain-rate intensities, seasons, and alti-

tudes. For light precipitation (0.5 # RR , 1.0mmh21),

the HS scan markedly outperforms NS and MS prod-

ucts, but shows worse performance for the heavy rain

class (RR $ 10mmh21), indicating its greater aptitude in

detecting lower rain rates with respect to heavier

precipitation. The DPR-NS product shows similar per-

formances for the different precipitation classes. Looking

at the seasonal scores, we noted better performances

during warmermonths (mainlyMAM) in terms of RMSE,

CC, and FSE for the NS and MS products. The winter

season (DJF) prevails only for lower false alarm values,

indicating a dependence on cloud system types when

wider-spread precipitation is more frequent. It has to be

remarked that for thewinter season (and higher elevation)

the results may be contaminated by snowfall episodes

not screened by the DPR detection of liquid/solid pre-

cipitation. The study on the orography highlights a greater

agreement for DPR-NS and DPR-MS in the hill region

and an increasing underestimation with altitude.

A deeper analysis was carried out to investigate the

main causes of the largest discrepancies between theDPR-

NS product and ground reference data. We focused both

on the BS and on the OUT samples. This analysis was

applied to the rain gauge data and did not show any clear

signal that is able to explain the reason for the large dis-

crepancies. From the radar analysis, we found a more

marked dependence on the ground radar quality with the

number of BS increasing, improving the UQI values.

Analogously, the prevalence of DPRout at lower UQI

indicates a general underestimation of the precipita-

tion intensity by ground radars with respect to the DPR

products. The results obtained by filtering datasets for UQI

values above 0.8 show a significant improvement for all sta-

tistical scores considered, resulting inRMSE5 3.57mmh21,

FSE5 142%, POD5 65%, VHI5 83%, FAR5 1%, and

VFAR5 0% for rainfall above 0.5mmh21.
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