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Abstract
Thanks to emerging techniques in the field of signal processing and due to
improvements in smart sensing systems which enable the event-triggered
acquisition of high-fidelity data at the occurrence of strong ground motion
events, seismic structural health monitoring has grown considerably in the last
few decades. In this paper, themodal assurance distribution, an alternative time-
frequency representation of the modal features of multivariate and multicompo-
nent signals, is extended for application to short-term nonstationary vibrational
structural responses in which the systemmay manifest its nonlinear behavior. A
general procedure for the extraction of the decoupled normalmodes is presented,
which allows the identification of instantaneous modal parameters in order
to investigate in detail the structural behavior during earthquakes. Valuable
information that cannot be recovered by means of traditional criteria can thus
be exploited for accurate damage assessment. The results obtained for two case
studies consisting of a numerical model with softening nonlinear behavior and
a full-scale experimental reinforced concrete benchmark show the potential
and applicability of the method proposed for the integrity assessment of civil
structures.
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1 INTRODUCTION

In nature, the dynamic behavior of structures generally follows nonlinear laws.1 In civil engineering, there are several
sources of nonlinearity, mostly related to material behavior (i.e., constitutive laws), geometry (whenever the magnitude
of the displacements affects the structural response), and boundary conditions.2,3 Several studies also show how nonlin-
earities usually increase in damaged structures, for which cracks and loosening of connections may occur.3,4
In the context of vibration-based structural health monitoring (SHM), “linearity” is a necessary assumption for using

classical modal analysis methods. Thus, nonlinearities are usually overlooked during the application of operational modal
analysis, relating to the fact that ambient vibration is modest, and the effects of nonlinearities are noticeable only under
high-energy excitation.5
One of the latest trends in the field of SHM is known as seismic structural health monitoring (S2HM),6 for which

recordings obtained during seismic events are used for dynamic identification and model updating. This approach allows
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the assessment of damage in the aftermath of an earthquake, avoiding the effects of temperature or variable environmental
conditions which may alter the parameters identified through long-term procedures.7
Improvements in the field of microelectromechanical systems and wireless smart sensor networks, which lead to

increased energy efficiency and to the possibility of collecting high-fidelity data, have recently enabled the development
of event-triggered sensing systems.8 These systems are designed to collect data (usually consisting of acceleration record-
ings) only when a certain amplitude threshold is exceeded. The transmission of a short dataset to the monitoring station
is far more efficient than a transmission carried out during a continuous monitoring procedure. Furthermore, recordings
obtained during strong events usually have a high signal-to-noise ratio, which allows the structural characterization even
with short data series. However, in the case of strong events, many systems, such as reinforced concrete (RC) structures,
may manifest strong nonlinearities, which can no longer be even assimilated to a linear behavior. In fact, according to
current codes, civil structures are designed with certain ductility requirements to take advantage of the excursion in the
nonlinear field during earthquakes.3
Since the use of nonlinear structural elements is increasingly growing in engineering applications, several studies have

recently been conducted on modeling and identification of nonlinear structures.9
The basic principles usually assumed for modal identification of linear systems (such as the superposition principle)

may be no longer usable in the presence of nonlinearities. In this case, modal responses cannot be studied separating
space and time information and the traditional concept of “vibration modes” is no longer applicable. Rosenberg10 first
extended this concept by defining a nonlinear normal mode (NNM) of an undamped system as a synchronous (vibra-
tion in-unison) periodic oscillation where all material points of the system reach their extreme values and pass through
zero simultaneously. This definition is also usable in the case of weakly damped systems and enables the description of
nonlinear structures employing a (nonlinear) modal curve in the configuration space.3
Several identification algorithms for nonlinear systems operating in time,11,12 frequency,4 and time-frequency13 domain

have been proposed in the last decades. Also, model-based14,15 and black-box16 techniques are taking a step into SHM
applications, based upon finite element model updating and artificial neural networks.
In the time domain, recursive approaches for estimating time-varying structural features have been largely investi-

gated. Loh and Lin identified time-varying natural frequencies and damping ratios employing single-input and single-
output pairs consisting of the ground excitation and the structural response, respectively.17 More recently, Bhowmik et al.
used the recursive canonical correlation analysis to implement a reference-free damage identification method for online
applications.18 Recursive approaches, however, generally need a convergence interval, which makes them not suitable
for short-term event-triggered applications. The Hilbert–Huang transform (HHT),19 that is, the Hilbert transform (HT)
applied to the intrinsic mode functions (IMFs) obtained through the empirical mode decomposition, is currently one of
the most largely used time-domain techniques for the instantaneous description of structural resonant frequencies and
modal amplitudes.11,12,20 However, this method is affected by knownmode-mixing problems, for which noise-assisted and
multivariate improvements have been proposed.21,22
The instantaneous description of dynamic features is also obtainable by applying transforms that enable time-frequency

representations (TFRs) of the signal. The wavelet transform has been widely employed in research, including studies
concerning nonlinear dynamic systems.13 The S-transform has recently been exploited by Ditommaso et al.23 through
an adaptive filter bank to extract decoupled energy-dependent modal responses from multicomponent signals, providing
an estimate of the instantaneous dynamic parameters. In particular, Ditommaso et al. analyzed the dynamic behavior of
structures under seismic excitation, considering the mode shape related to the minimum frequency recorded during the
maximum excursion in the plastic field as a damage-sensitive feature (DSF). Other developments of this method gave rise
to reliable damage localization algorithms.24 Recently, Quqa et al.25 presented a novel TFR usable for the near-real-time
visualization and extraction of instantaneous modal parameters of dynamic systems. The modal assurance distribution
(MAD) presented in thementioned paper highlights valuable information for the extraction of decoupledmodal responses
for linear time-varying systems.
The present work has threemain goals: (1) verify the applicability of MAD to nonlinear dynamic responses, considering

the Rosenberg definition of NNM; (2) propose an extended decomposition algorithm suitable for short-term applications
(e.g., using recordings collected by event-triggered systems) to extract time-domain representations of the NNMs; (3) use
the identified parameters for damage identification in output-only conditions. The proposed technique is based on the
multivariate analysis of structural responses, that is, all the collected vibrational recordings are processed together. This
aspect involves important advantages over most of the identification methods based on the analysis of one-dimensional
signals, where different structural features could be identified at each instrumented location.
The analysis of two case studies, a nonlinear numerical model and an experimental full-scale RC benchmark, both

subjected to seismic motions, proves the potential of the method proposed. In particular, the identified modal parameters
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show a detailed description of the structural behavior during the nonlinear excursion due to the strongmotion. Moreover,
a flexibility-based approach is used to evaluate instantaneous damage indices, which can be exploited for the assessment
of the structural integrity in the aftermath of a seismic event.

2 MODAL ASSURANCE DISTRIBUTION

The wavelet packet transform (WPT) is a particular case of discrete wavelet transform that can be employed to represent
a signal into the time-scale domain by filtering the original sequence through high-pass and low-pass wavelet filters (and
downsampling the outcomes) following theMallat recursive algorithm,26 or employing equivalent filters obtained through
convolution (and upsampling) of the wavelet filters following a specific order.27 The outcomes of this filtering process are
the wavelet components (or signal subbands). The two-dimensional representation of a signal into the time-scale domain,
generated using the squares of the obtained wavelet components, is called scalogram and can be converted into a TFR
using the relation that exists between scales and frequencies.27 The scalogram is generally used as a representation of the
energy distribution of the analyzed signal into the time-scale plane and is employed to visualize the presence of resonant
signal components, which generate high-valued areas. Such resonant components are commonly interpreted as themodal
components (or modal responses) of the analyzed signal in SHM applications.
The wavelet components obtained using WPT contain frequency-band-limited information of the original signal over

time. The width 𝑓𝑤 of the frequency band described by each component (and then the frequency resolution of the scalo-
gram) depends on the level of the transform (𝑛) and the sampling frequency of the original signal (𝐹𝑠), resulting in
𝑓𝑤 = 𝐹𝑠 ∕2

𝑛+1. Moreover, selecting a transform level 𝑛, the original signal is represented by 2𝑛 wavelet components, each
corresponding to a specific frequency band (referred to as “frequency subband”), which are evaluated through WPT.
Operating deflection shapes (ODSs) have been traditionally defined as the deflection of a structure at a particular fre-

quency of excitation.5 Information related to both the forcing input and the resonant structural components is gener-
ally fused into ODSs, while mode shapes are inherent properties of the structure. However, it can be assumed that near
to the resonance peak of the frequency response spectrum, ODSs are dominated by structural modes. In modal iden-
tification, ODSs evaluated at resonant frequencies are, therefore, assumed as fair approximations of the mode shapes.
Similar to traditional identification methods where amplitudes of the Fourier spectra of a set of structural responses
are assumed to form ODSs, the values of the wavelet components related to a given time instant and a given fre-
quency subband of each recording channel can be interpreted as the elements of an instantaneous ODS. The vector
generated collecting these elements represents, indeed, the amplitude of the signal for a specific (narrow) frequency
range at all the instrumented locations. Depending on 𝑓𝑤, a resonant component in the scalogram may be described by
multiple wavelet components. In other words, a modal response may have a frequency range larger than 𝑓𝑤, depend-
ing on damping. Thus, performing the WPT of structural responses, each resonant component is likely to be repre-
sented by a set of wavelet components with consecutive subband index (i.e., neighboring components on the frequency
axis).
TheMAD is a TFR based on the idea that thewavelet components obtained throughWPT of a set of structural responses

will formODSs, which are instantaneously similar to each other if they refer to the same resonant component. In this case,
the ODSs will be an approximation of the mode shapes of the structure. Moreover, due to the orthogonality property of
vibration modes, the ODSs of two different modal responses will likely to be orthogonal. The MAD is thus a map in the
time-frequency plane that indicates the “similarity” of neighboring ODSs obtained by applying the WPT to the channels
of a multivariate signal consisting of structural responses. In the original formulation,25 the MAD is obtained for long-
term applications to linear time-varying structures. In this paper, the concept behind this technique is exploited to obtain
a novel formulation of the MAD applicable to the response of nonlinear systems even for short-term applications, such
as the analysis of the structural behavior during earthquakes. The instantaneous identification of resonant components
in this situation enables the extraction of a time-domain description of NNMs during the structural nonlinear excursion,
which may provide valuable information for the evaluation of the structural integrity in the aftermath of a seismic event.
However, due to the significant differences that exist between the long-term linear case25 and the short-term nonlinear
situation addressed in this study, a novel identification algorithm is proposed hereinafter.
In this section, first, the basic theory of MAD is reported and extended for applicability to nonlinear problems. A novel

decomposition algorithm is then proposed, explaining how decoupled normal modes can be extracted from amultivariate
signal and analyzed to retrieve instantaneous dynamic parameters usable for damage identification during seismic strong
motions.
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2.1 Original formulation

The MAD is a TFR of multivariate and multicomponent signals used to highlight the presence of different modal
responses based on the analysis of signal subbands obtained through a preliminary time-frequency decomposition. In
the original formulation,25 the decomposition of each channel of the multivariate signal is performed through the WPT,
which enables the extraction of nonredundant wavelet coefficients representative of localized (in frequency and time)
dynamic features. For each time instant 𝑡 and frequency subband 𝑘 (with 𝑘 = 1,… , 2𝑛, and 𝑛 denoting the trans-
form level), an instantaneous ODS 𝝋𝑘[𝑡] can be evaluated considering the corresponding wavelet coefficients obtained
from each data channel. The normalized elements of the column vector 𝝋𝑘[𝑡] over a reference location 𝑟 can thus be
evaluated as:

𝜑𝑖,𝑘 [𝑡] =
𝑑
(𝑛)

𝑖,𝑘
[𝑡]

𝑑
(𝑛)

𝑟,𝑘
[𝑡]

, (1)

with 𝑑
(𝑛)

𝑖,𝑘
[𝑡] denoting the 𝑡-th sample of the wavelet coefficients at the transformation level 𝑛 related to the subband 𝑘

obtained by decomposing the signal collected at the location 𝑖. The similarity between the ODSs obtained for neighboring
subbands 𝑘 and 𝑘 + 1 at a given time instant is then evaluated through the modal assurance criterion, from which the
method takes its name. The elements of MAD are, therefore, defined as:

𝑚𝑘 [𝑡] =

|||𝝋T𝑘 [𝑡] 𝝋𝑘+1 [𝑡]|||
2

(
𝝋T
𝑘
[𝑡] 𝝋𝑘 [𝑡]

) (
𝝋T
𝑘+1

[𝑡] 𝝋𝑘+1 [𝑡]
) . (2)

Assuming that each channel of the multivariate signal consists of the structural response (given by modal superpo-
sition) plus instrumentation noise, and considering a high transformation order, such that each resonant component
in the analyzed signal is represented by more than one wavelet component, persistent high values in the MAD (i.e.,
close to 1) will appear in the time-frequency areas where modal responses are present. On the other hand, random
similarities between noise-generated ODSs will give rise to beta-distributed noise with values in the range between
0 and 1. In order to improve the readability of the MAD, two approaches were also proposed.25 The former con-
sists of averaging the MAD estimates using a forgetting factor which gives exponentially less weight to older samples
in the time domain, while the latter involves a noise-assisted criterion that consists of evaluating the average MAD
𝑚̃𝑘[𝑡] obtained by an ensemble of 𝐿 MADs 𝑚(𝜆)

𝑘
computed on the original signal plus different Gaussian white noise

components:

𝑚̃𝑘 [𝑡] =
1

𝐿

𝐿∑
𝜆 = 1

𝑚
(𝜆)

𝑘
[𝑡] . (3)

The original formulation of MAD was only used to analyze linear time-varying systems, with the assumption of
piecewise-constant dynamic parameters. Indeed, the WPT is characterized by shift-variance that makes it unsuitable
for the evaluation of instantaneous ODSs using short recordings collected during seismic events. Moreover, a for-
getting factor cannot be considered to improve the readability of the distribution due to the loss of accurate time
information.

2.2 Modal assurance distribution for S2HM

A particular dynamic feature of nonlinear systems consists of the frequency-energy dependency of their oscillations that
involves variations in the frequency response functions depending on the level of excitation.1 Thus, frequencies and ampli-
tudes of NNMs are typically time-varying and energy-dependent. Considering a structure with nonlinear displacement-
dependent stiffness, excited by a generic forcing function, assume the discrete-time acceleration response collected by an
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accelerometer deployed at the 𝑖-th material point as the combination of 𝑝 dominant resonant components 𝑞𝑗[𝑡]:

𝑥̈𝑖 [𝑡] =

𝑝∑
𝑗=1

𝜙𝑖,𝑗 [𝑡] 𝑞𝑗 [𝑡] + 𝑣𝑖 [𝑡] , (4)

where 𝜙𝑖,𝑗[𝑡] is the 𝑖-th element of a time-varying and energy-dependent 𝑗-thmode shape, 𝑞𝑗[𝑡] is amonocomponent func-
tion of time with a narrow frequency band (generally, depending on the damping) centered around the time-varying and
energy-dependent damped frequency 𝜔𝑑,𝑗[𝑡], 𝑞𝑗[𝑡] is its double time derivative, and 𝑣𝑖[𝑡] is the recording noise, modeled
here as a Gaussian white noise component. In general, 𝑝 can be considered as the number of dominant resonant com-
ponents in the structural response that exceed the noise threshold given by the 𝑣𝑖[𝑡] term. Each term of the summation
in Equation (4) is called here nonlinear modal response (NMR) and represents the time-domain description of a single
NNM during the application of a given excitation.
In general, assuming 𝜙𝑖,𝑗[𝑡] as a nonzero-mean function, its Fourier transformΦ𝑖,𝑗[𝜔] evaluated in𝜔 = 0 isΦ𝑖,𝑗[0] ≠ 0.

Moreover, other peaks in the spectrum of Φ𝑖,𝑗[𝜔] appear centered at frequencies 𝜔𝑘̄, which depend on the nature of non-
linearity and the instantaneous frequencies of the system (which, in turn, depend on the energy of excitation). Also,
assume that Φ𝑖,𝑗[0] ≫ Φ𝑖,𝑗[𝜔𝑘̄], that is, the fluctuations in time of the elements of instantaneous mode shapes around
their mean values have modest amplitude compared to their mean values. This assumption should be verified by observ-
ing the final results of the identification procedure. However, in general, the nonlinear excursion slightly affects the mode
shapes. Moreover, the frequency spectrum of the noise component 𝑉𝑖[𝜔] assumes constant values that can be considered
as negligible compared to the amplitude of the NMRs if high-performance accelerometers are employed (i.e., having high
resolution and sensitivity, and low noise floor, such as the specific instrumentation typically used for SHM applications5).
For a given mode 𝑗̂, according to the convolution theorem, the product between 𝜙𝑖,𝑗̂ and 𝑞𝑗̂ in the time domain is equiv-

alent to a convolution between their Fourier spectra in the frequency domain (indicated as Φ𝑖,̂𝑗[𝜔] and 𝑄𝑗̂[𝜔], respec-
tively). Through the assumptions made above, considering a time-windowed slice of the structural response such that the
frequency spectrum has clear peaks at the instantaneous natural frequency values, the following relation is admissible if
modes are well distanced:

(
Φ𝑖,̂𝑗 ∗ 𝑄𝑗̂

) [
𝜔𝑗̂

]
≈

𝑝∑
𝑗 = 1

(
Φ𝑖,𝑗 ∗ 𝑄𝑗

) [
𝜔𝑗̂

]
, (5)

with ∗ denoting the convolution operator and 𝜔𝑗̂ the frequency value, where (Φ𝑖,̂𝑗 ∗ 𝑄𝑗̂)[𝜔] reaches its maximum. Thus,
considering a narrow bandpass filter centered in 𝜔𝑗̂ with impulse response described by 𝑏𝑗̂[𝑡],

(
𝑏𝑗̂ ∗ 𝑥̈𝑖

)
[𝑡](

𝑏𝑗̂ ∗ 𝑥̈𝑟

)
[𝑡]

≈
𝜙𝑖,𝑗̂ [𝑡]

𝜙𝑟,𝑗̂ [𝑡]
, (6)

where 𝑟 indicates a reference location. Assuming the Rosenberg definition of NNM, the ratio on the right-hand side of
Equation (6) represents a point in the two-dimensional projection of the configuration space onto the directions of 𝑖 and
𝑟. Indeed, different points in the configuration space can be evaluated considering specific time instants of the narrow
frequency subband of the multicomponent signal that instantaneously isolates a single NMR.
Considering a generic frequency value 𝜔𝑘, Equation (5) is no more valid for frequencies far from 𝜔𝑗̂ . Moreover, 𝑉𝑖[𝜔𝑘]

may be non-negligible compared to
∑𝑝

𝑗 = 1
(Φ𝑖,𝑗 ∗ 𝑄𝑗)[𝜔𝑘]. In particular, considering a narrow bandpass filter with central

frequency 𝜔𝑘 ≠ 𝜔𝑘̄, the noise component is likely to prevail, leading to (𝑏𝑘∗𝑥̈𝑖)[𝑡] ≈ (𝑏𝑘∗𝑣𝑖)[𝑡]. On the other hand, in
𝜔𝑘 = 𝜔𝑘̄ , the frequency component generated by the variability of 𝜙𝑖,𝑗[𝑡] may lead to spurious peaks in the frequency
spectrum of 𝑥̈𝑖[𝑡]. However, considering the assumptions made, such peaks have modest amplitudes, proportional to the
fluctuations of the elements of mode shapes.
In general, the 𝑖-th element of the ODS associated with the 𝑘-th subband can be computed as:

𝜑𝑖,𝑘 [𝑡] = 𝛾
(𝑡)

𝑘

(𝑏𝑘 ∗ 𝑥̈𝑖) [𝑡]

(𝑏𝑘 ∗ 𝑥̈𝑟) [𝑡]
. (7)
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However, calculating 𝜑𝑖,𝑘[𝑡] for different values of 𝑘 = 1,… , 2𝑛 for the evaluation of the MAD, the following three
different situations can occur:

1. Using 𝑏𝑘 with central frequency 𝜔𝑘 = 𝜔𝑗 (i.e., coinciding with an instantaneous natural frequency of the system),
𝜑𝑖,𝑘[𝑡] represents an element of the 𝑗-th instantaneous mode shape and Equation (7) becomes equivalent to Equa-
tion (6).

2. Using 𝑏𝑘 with central frequency 𝜔𝑘 = 𝜔𝑘̄ (i.e., coinciding with a signal component generated by the fluctuations of
mode shapes), 𝜑𝑖,𝑘[𝑡] depends on the nature of nonlinearity.

3. Using 𝑏𝑘 with central frequency 𝜔𝑘 different from the previous conditions, 𝜑𝑖,𝑘[𝑡] varies over time without reflecting
the structural behavior (i.e., the ratio between filtered noise components).

The MAD can thus be computed even in the case of nonlinear structural responses using the ODS obtained as shown
in Equation (7). In this case, however, the spurious similarity of neighboring ODSs generated by time-varying modal
amplitudes must be taken into account. In particular, if the inequality Φ𝑖,𝑗[0] ≫ Φ𝑖,𝑗[𝜔𝑘̄] is not verified, the readability of
the MADmay be affected, making the identification of NNMs challenging.
Differently from other TFRs that represent the energy of the signal in a time-scale or time-frequency plane, the MAD

only relies on the “similarity” between ODSs. In other words, the magnitude of the wavelet components and, therefore,
the level of excitation in a given frequency range, has not a fundamental role in MAD formation, which only depend on
the ratios between wavelet components generated at different locations. Thus, the only requirement for the application of
the proposed method is that the level of excitation in all the considered frequency range generates a structural response,
which exceeds the noise floor of the instrumentation. This requirement is generally satisfied in all SHM applications and
is much less demanding than the typical assumption involving white noise excitation.
In this paper, a filter bank formed of the bandpass filters 𝑏𝑘 = 𝑑𝑘 ∗𝑟𝑘 is considered, with 𝑑𝑘 and 𝑟𝑘 denoting the 𝑘-th

equivalent decomposition and reconstruction filters associated with an 𝑛-th level stationary wavelet packet transform
(SWPT). The size and performance of these filters were investigated in a previous work,28 showing their applicability to
near-real-time identification procedures.

2.3 Instantaneous structural identification

Based on the idea that signal subbands forming similar instantaneous ODSs are likely to belong to the same modal com-
ponent, a new algorithm for the decomposition of nonlinear structural response into decoupled NMRs is proposed in this
section. In this context, theMAD is used as the starting point of the algorithm, necessary to select the wavelet components
corresponding to physical modes over those describing noise. As discussed before, the use of a forgetting factor is not indi-
cated to improve the readability of the MAD when dealing with short and strongly nonstationary recordings. Although
the noise-assisted approach may still be pursued, the final distribution may be noisy and not suitable for the application
of image processing techniques, such as the watershed transform25 for the extraction of decoupled NMRs. Moreover, due
to the strong nonstationarity of seismic events, clear ridges in the MAD may not be visible and disconnected areas may
belong to the same NMR. For these reasons, a clustering procedure is applied to partition the instantaneous ODSs into
sets referring to separate modes. Upon reconstructing the signal of each identified cluster, the instantaneous parameters
of decoupled structural responses can be exploited for damage identification. The procedure proposed in this work for the
extraction of decoupled modal responses is illustrated in Figure 1 and explained in detail below.
First, the instantaneous ODSs obtained in Equation (7) from the filtered components of the multivariate signal are used

to evaluate an MAD, as shown in Equation (2). A decomposition matrix 𝐌, having the same size of the MAD, is then
generated using the following rule:

𝜇𝑘 [𝑡] =

{
1

0

𝑖𝑓 𝑚𝑘 [𝑡] ≥ 𝜂

𝑖𝑓 𝑚𝑘 [𝑡] < 𝜂
, (8)

where𝜇𝑘[𝑡] is a generic element of𝐌 (𝑘 denotes the row index and 𝑡 is the column index) and 𝜂 is a user-defined threshold.
The optimal value of 𝜂 can be determined by analyzing the residuals of the decomposition algorithm.25 However, 𝜂 = 0.5

can be generally adopted and a lower value may be considered depending on the number of instrumented locations if the
noise-assisted procedure is carried out.
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F IGURE 1 Workflow of the procedure proposed

The𝐌 matrix represents a “mask” of 1 and 0 values that selects high-valued areas in the MAD. Morphological opera-
tions, such as erosion, can be applied to𝐌 if a high transformation level is selected for signal decomposition since filter
overlaps may origin spurious ODS similarities.28 In a morphological operation, each element 𝜇𝑘[𝑡] is interpreted as a
pixel in the time-frequency distribution and is adjusted based on the value of neighboring pixels.29 Erosion, in particular,
replaces each value with the local minimum of its neighborhood and can be used to remove spurious elements. Consid-
ering the matrix 𝐌̃, obtained using morphological operations on 𝐌, the set 𝑆 of ODSs representing physical modes is
generated by selecting, among the 𝜑𝑖,𝑘[𝑡] identified using Equation (7), only the ODSs similar to each other in the neigh-
boring subbands, that is, generating highMAD values and, hence, 1 values in the 𝐌̃matrix. This selection procedure can,
therefore, be written as:

𝝋𝑘 [𝑡] , 𝝋𝑘+1 [𝑡] ∈ 𝑆 ⇔ 𝜇̃𝑘 [𝑡] = 1, (9)

where 𝝋𝑘 [𝑡] = [𝜑1,𝑘[𝑡], … , 𝜑𝑟,𝑘[𝑡]]
𝑇 and 𝜇̃𝑘[𝑡] is a generic element of 𝐌̃.

The k-means algorithm30 is thus applied to partition the set of selected instantaneous ODSs into different clusters
referring to separate modes. However, the number of clusters is a parameter required to initialize the k-means algorithm
and, especially when dealing with high-dimensional data, its determination is not straightforward. For this reason, in this
study, a self-organizing map (SOM)31 is employed to help the user in the selection of the optimal number of clusters.
SOM is a type of unsupervised neural network that generates a low-dimensional (generally two-dimensional) repre-

sentation of the input space (the dimension of which is equal to the number 𝑟 of channels that form the multivariate
signal) approximating the data distribution through a user-defined number of neurons.31 These neurons, upon training
the neural network, can be represented on a regular grid with hexagonal or rectangular mesh to visualize the obtained
low-dimensional approximation of the input data. This process is possible since the trained map preserves the topological
properties of the input space. Thus, the visualization of the U-matrix, that is, the map of Euclidean distances between the
weight vectors of an SOM (that are the coordinates of each neuron in the input space)may be useful for the selection of the
number of clusters. Upon training the SOM, the input data (that in this application consists of the 𝑟-dimensional ODSs)
can, indeed, be represented on a plane, where the number of clusters can be visually (or automatically, using suitable
algorithms) inferred.
It is worthy to note that the step involving SOMs is not strictly necessary for the aim of this procedure; however, it may

facilitate the selection of the number of clusters. Moreover, due to the variability over time of ODSs during the nonlinear
excursion, nonconvex clusters may be generated in the original ODS space. However, the approximation generated by the
SOM generally mitigates this phenomenon. Therefore, applying the k-means algorithm to the weights of the neurons of
the trained SOM may improve the performance of the decomposition technique. In this case, however, a further step is
required to generate the final sets of ODSs associated with different modes. The clusters of weight vectors should, indeed,
be converted into sets of original ODSs by selecting the elements of the original space classified by each neuron in the
obtained clusters.
In this work, the k-means algorithm is applied to the weight vectors obtained upon training the SOM using the input

ODSs. After using the k-means method, in order to retrieve the clusters in the input space, the ODSs are associated with
the cluster 𝐶𝑗 of the neuron which classifies them. Once the clustering process is completed, a reconstruction mask𝐑𝑗 is
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built for each cluster 𝐶𝑗 , selecting the elements of the filtered signals previously used to generate the clustered ODSs. The
elements 𝜌𝑗,𝑘[𝑡] of 𝐑𝑗 can thus be built as:

𝜌𝑗,𝑘 [𝑡] =

{
1

0

if 𝝋𝑘 [𝑡] ∈ 𝐶𝑗
otherwise

. (10)

Due to the perfect reconstruction property of the selected filter bank, the decoupled 𝑗-th NMR 𝑦𝑖,𝑗[𝑡] associated with
the location 𝑖 can be directly retrieved by summing the filtered components associated with the same cluster for each time
sample:

𝑦𝑖,𝑗 [𝑡] =

2𝑛∑
𝑘=1

𝜌𝑗,𝑘 [𝑡] (𝑏𝑘 ∗ 𝑥̈𝑖) [𝑡] . (11)

It is worthy to note that the process described above can be seen as the construction of a signal-adaptive filter bank
with band-variable filters capable of extracting decoupled modal responses through cutoff frequencies selected based on
the clustering process. This process can be, therefore, intended as an adaptive generalization of the clustered filter bank
procedure proposed in a previous work28 for applications with decentralized smart sensor networks.
Upon reconstruction, each monocomponent NMR can be processed through the HT to evaluate its instantaneous fre-

quency, which is interpreted here as one of the time-varying natural frequencies of the nonlinear structure. Moreover, the
𝑗-th time-varying mode shape 𝝓𝑗[𝑡] can be evaluated considering the vector 𝐲𝑗[𝑡] of NMRs normalized over a reference
value 𝑦𝑟,𝑗[𝑡]:

𝝓𝑗 [𝑡] =
𝐲𝑗 [𝑡]

𝑦𝑟,𝑗 [𝑡]
. (12)

3 APPLICATIONS

In this section, theMAD is evaluated for two nonlinear case studies. TheNMRs are extracted through the presented proce-
dure and instantaneousmodal parameters are identified, enabling the application of a flexibility-basedmethod for damage
identification. It is shown how the dynamic behavior of the structure during the maximum excursion in the nonlinear
field can be related to the structural damage, manifesting effects which cannot be identified using low-amplitude ambient
vibration. In particular, the localized increase in curvature in flexural-type structures or anomalous interstory displace-
ments in shear-type frames can be detected using the instantaneous flexibility matrix built from the modal parameters
identified during the seismic event. If these effects vanish or are attenuated in the short term, they may indicate the pres-
ence of breathing cracks.

3.1 Case study 1: numerical simulation

The first case study considered in this work is a two-dimensional, four degrees of freedom (DOFs), shear-type frame with
masses equal to 𝑚 = 8 ⋅ 104kg, damping coefficients equal to 𝑐 = 5 ⋅ 105Ns/m, and stiffness consisting of a linear part
equal to 𝑘𝑙 = 2 ⋅ 108N/m plus a nonlinear part, which is a function of the displacement, modeled to simulate a softening
behavior, typical of RC frame structures. In particular, the equation of motion of the 𝑖-th level of the system can be written
as:

𝑚𝑥̈𝑖 + 𝑐

𝑟∑
𝑗 = 1

𝑝𝑖,𝑗𝑥̇𝑗 +

𝑟∑
𝑗 = 1

𝑝𝑖,𝑗

(
𝑘𝑙𝑥𝑗 + 𝑘3𝑥

3
𝑗
+ 𝑘5𝑥

5
𝑗

)
= −𝑚𝑠, (13)

where 𝑥𝑗 is the relative displacement of the 𝑗-th DOF with respect to the ground, 𝑘3 = −3 ⋅ 1011N/m3 and 𝑘5 = 1.8 ⋅

1014N/m5 are the nonlinear stiffness coefficients, 𝑠 is the acceleration of the seismic motion applied at the base of the
structure, and 𝑝𝑖,𝑗 are the elements of a tridiagonal matrix with 𝑝𝑖,𝑖 = 2 on the main diagonal, except for 𝑝𝑟,𝑟 = 1 (i.e.,
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F IGURE 3 Structural responses of the numerical model (A) and frequency spectrum of the seismic ground acceleration (B)

at the top level of the frame), and 𝑝𝑖,𝑗 = − 1 in the other nonzero elements. The nonlinear stiffness coefficients were
selected to simulate strong softening nonlinear effects in the displacement range of the structural response, keeping the
overall instantaneous stiffness always positive. In linear conditions, that is, only considering the linear stiffness 𝑘𝑙, the
natural frequencies of the numerical benchmark are 2.76, 7.96, 12.19, and 14.96 Hz.
At each level, a simulated uniaxial sensing device was considered, recording the absolute acceleration of the system in

the direction of the seismic motion. A scheme of the case study with the deployment of simulated sensors (indicated as
S#) is reported in Figure 2. In this test, the seismic motion recorded by the station located in Mirandola (Italy) during the
Emilia earthquake of May 20th, 2012 was used. The acceleration time histories collected by each simulated sensor with
a sampling frequency of 50 Hz, together with the input excitation, are reported in Figure 3A. Here, PGA indicates the
peak ground acceleration, while PRA indicates the peak response acceleration at the top level. The total duration of the
recording is 40.96 s. In order to simulate the instrumentation noise, a white Gaussian noise component with a standard
deviation of 0.02m/s2 (i.e., the 1.11% of the standard deviation of the response collected at the top of the building, or the
0.13% of the peak response collected at the same point) was included in the analyzed response. The Fourier spectrum of
the input excitation is reported in Figure 3B, where the natural frequencies 𝑓𝑗 of the benchmark are also indicated. In this
figure, it is possible to notice that the first mode is the most stimulated by the Emilia earthquake, while the others are less
excited.
Between time instants 10.70 s and 11.60 s, a uniform decrease (following a linear function) of 𝑘𝑙 in time was induced at

the base level to simulate progressive damage, passing from the “undamaged” State 1 to a “damaged” State 2 with a final
linear stiffness of 1.8 ⋅ 108N/m. A representation of the force-displacement and stiffness-displacement diagrams obtained
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during the dynamic tests is reported in Figure 4 for each level. Moreover, the instantaneous stiffness of each level in time
is represented in Figure 5. From this last graph, it is possible to notice that the excursion in the nonlinear field leads to
much lower instantaneous stiffness values than the residual stiffness of the damaged condition, for all the levels.
Using the multivariate signal consisting of the four acceleration channels collected by sensors S1, S2, S3, and S4, an

MAD was computed following the noise-assisted approach. In particular, an ensemble of 100 different white Gaussian
noise sets with a standard deviation of 0.05 m/s2 were added to the collected structural responses to obtain the average
distribution reported in Figure 6. Here, MAD values are represented in a time-component plane where the component
axis represents the 𝑘 index used in Equation (7), indicating the frequency bands. In this figure, orange areas indicate𝑚𝑘[𝑡]

values close to 1, while blue areas indicate values close to 0. A mask matrix was then built, as described in Equation (8),
to select the ODSs that generated MAD values over a threshold 𝜂 = 0.5.
In order to apply the k-means algorithm, the number of clusters was determined by analyzing the U-matrix of an SOM

trained with the selected set of ODSs that generatedMAD values over the selected threshold. Themap is sized considering
that the SOM is a quantizingmethod and, to have a satisfactory resolution to visualize the data distribution, at least 50 items
(on average) should be classified by each node, otherwise, the resolution of the outcome will be limited by the sparsity of
data. Moreover, the array of neurons should have horizontal and vertical dimensions complying with the largest principal
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F IGURE 7 Self-organizing map (A) and corresponding U-matrix (B)

components of the input data.32 Therefore, in this study, the number of neurons is selected as a number close to 𝑁∕100,
with 𝑁 denoting the number of observations (i.e., the 26,091 selected ODSs), forming a square array. Indeed, since the
input vectors are normalized ODSs, that is, vectors lying on the surface of an 𝑟-dimensional hypersphere, the variance
explained by their first two principal components is likely to be the same. In particular, a 15 × 15 map with a hexagonal
grid consisting of 225 neurons was employed.
The training process was performed over 200 epochs, in which all the selected ODSs are used to update the weights of

neurons in batch mode (i.e., at the end of each epoch). In Figure 7, two representations of the trained SOM are reported.
Figure 7A shows a two-dimensional projection of the neurons (orange dots) and the connections of the SOM (blue lines)
onto the first two weights, that is, the DOFs of the structure corresponding to levels 1 and 2. Here, the light blue points are
the vectors of the input space. On the other hand, Figure 7B shows the U-matrix of the SOM, that is, a low-dimensional
representation of the selected ODSs. In this figure, the neurons are depicted as orange hexagons, while the color of their
connections depends on their Euclidean distance. In particular, light blue connections denote close neurons, while dark
blue connections denote larger distances. Moreover, the size of the hexagons of Figure 7B is proportional to the number
of ODSs classified by each cluster. From a visual analysis of the U-matrix, it is easier to identify a reasonable number of
clusters, that is, dense areas in the low-dimensional distribution. These areas are light blue regions populated by large
orange hexagons, delimited by dark blue boundaries. In this study, four clusters can be clearly identified, the first in the
left-lower region, the second from the central part to the right-lower corner, the third in the right-upper region, and the
fourth in the left-upper part. Although in this work a manual selection of the number of clusters is performed, image
processing techniques can be applied to the U-matrix to automatically identify the most likely number of clusters.33
The k-means algorithmwas then applied to the weight vectors of the neurons, partitioning the set of selected ODSs into

four clusters. An illustration of the clustered ODSs is reported in Figure 8A, where the instantaneous wavelet components
associated with the selected ODSs are represented as points in the time-component plane, with a color depending on the
belonging cluster. In Figure 8B, the ODSs associated with each point of Figure 8A are illustrated in the space domain,
along with the height of the structure. Moreover, the average trend of each cluster is indicated as an orange dashed line.
It is possible to observe how the shapes belonging to the same cluster are similar between each other and the average
curves may be interpreted as an estimate of the mode shapes of the structure. However, in this phase, it is not possible
to distinguish between ODSs before and after the seismic event, that is, possibly referring to an “undamaged” and a
“damaged” condition since, in this case, the differences are minimal compared to the variability of the ODSs in a given
cluster. More sophisticated clusteringmethods not requiring the knowledge of the number of clustersmay also be applied,
such as the density-based spatial clustering of applications with noise,34 which is, however, very sensitive to the distance
thresholds, that is another parameter required in the mentioned procedure. On the other hand, the SOM-based criterion
is not very sensitive to the number of neurons forming the map, which is the only parameter needed for the realization of
the U-matrix.
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The NMR of each identified node was then reconstructed by summing the wavelet components used to obtain the ODSs
referring to a given cluster (i.e., to a single modal component). The instantaneous resonant frequencies were thus identi-
fied using the HT. In this study, the HHT is also considered to have a comparison with one of the most used techniques
for the instantaneous identification of nonlinear systems in the time domain.20 In particular, the fast and adaptive variant
presented by Thirumalaisamy and Ansell35 of the MEMD algorithm proposed by Rehman and Mandic21 was employed
to extract the IMFs from the input multivariate dataset, and the HT was used to obtain the reference parameters for com-
parison, that is, instantaneous frequencies and amplitudes. TheMEMDwas applied to the set of four structural responses
collected during the seismic excitation at the different levels of the numerical benchmark, aiming to identify a maximum
of 10 IMFs. The IMFs were extracted considering a sifting tolerance of 0.01 (i.e., the sifting procedure is stopped when the
mean-squared error between the IMFs obtained in current and in the previous iteration is lower than 0.01). It was also
noted that by further decreasing the tolerance, the results did not vary and thus the outcomes of this application do not
depend on the selected parameters. In the algorithmbyThirumalaisamy andAnsell,35 two order-statistic filters are applied
to calculate the envelopes for sifting, avoiding spline interpolation, whichmay become burdensome in multivariate appli-
cations. Another parameter of the algorithm is thus the window size for order-statistic filters, which is determined, for
each iteration, as the median of distances between consecutive local extrema of the signal (minima or maxima) in this
application.
In Figure 9, both the instantaneous frequencies obtained through the procedure presented in this paper and those

obtained using the HHT are reported, superimposed on the theoretical values of the instantaneous frequencies obtained
using the numerical model shown above. In particular, the instantaneous frequencies of the numerical benchmark during
the seismic event are reported in blue (from light to dark blue referring to modes from 1 to 4, respectively) over time. The
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solid lines indicate the theoretical values, calculated by resolving the eigenproblem of the system at each time instant,
considering varying stiffness. On the other hand, the dashed lines with the same color of theoretical curves represent the
instantaneous identified values. Due to the application of a noise-assisted procedure, which involves the introduction of
stationary noise components, the NMRs extracted through clustering, and thus the dashed lines illustrated in Figure 9,
have a length limited to the regions where the signal has high amplitudes. However, these results are enough for S2HM if
the DSF is evaluated in the instant of the maximum nonlinear excursion. The orange lines in Figure 9 indicate the instan-
taneous frequencies of the IMFs identified by applying the MEMD to the multivariate structural response. To improve
the readability of the diagrams, a median filter over 101 samples was used on all the identified parameters, that is, at each
time instant, the instantaneous frequency estimate is assumed as the median value computed on a window of 101 samples
centered in the considered instant. In the figure, a good agreement of the parameters identified through the proposed
procedure with the theoretical curves is observable (blue lines) for the first three modes. In particular, in the instant of
maximum excursion in the nonlinear field, indicated as condition B using a vertical dashed line, an accurate estimate of
natural frequency is achieved for all modes. On the other hand, the instantaneous frequencies obtained through the HHT
(orange lines) follow the theoretical curves only for the first two modes, showing to have no physical meaning at lower
frequencies.
Figure 10A shows the instantaneous amplitude of the first two modes, computed through the HT of the reconstructed

NMRs. The shapes formed of these amplitudes are referred to as “mode shapes” since they are ODSs evaluated at the
resonant frequencies and are, therefore, an estimate of the instantaneous mode shapes of the structure. Moreover, in
Figure 10B, three instantaneous conditions, namely, A, B, and C, corresponding to the instants prior, during (i.e., at the
instant of peak response acceleration), and after the seismic strong motion, are analyzed in detail. It should be noted that,
as supposed in the theoretical description of the presented approach, in this case, the fluctuations of mode shapes due to
nonlinearities are generally modest compared to their mean values. Therefore, the spurious components due to nonlin-
earities do not affect the accuracy of the method. Indeed, the identified instantaneous mode shapes well approximate the
theoretical values, especially in condition B.
The instantaneous estimates of natural frequencies and mode shapes identified in conditions A, B, and C were used

to generate the uniform load line (ULL) corresponding to each condition. In particular, using 𝑝 natural frequencies and
mass-normalized modal vectors, an approximation of the structural flexibility matrix 𝐅 is evaluated as:

𝐅 ≅

𝑝∑
𝑗 = 1

1

𝜔2
𝑗

𝝓𝑗 𝝓
T
𝑗
, (14)
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where 𝝓𝑗 is the 𝑗-th mass-normalized modal vector. The displacements generated by the application of a unit load vector
𝐩 = [1, 1, … , 1]T are the elements of the vector:

𝐮 = 𝐅𝐩 (15)

In general, 𝐮 is known as the uniform load surface,36 which in this case degenerates into a line. In this study, 𝝓𝑗 were
normalized to the identity matrix, which is proportional to the mass matrix of the system. In Figure 11, the ULL and the
interstory drifts (ISDs) obtained from this analysis are reported.
As expected, the ISD in condition B is generally higher, especially for the base level. On the other hand, keeping inmind

the curves of Figure 6, conditions A and C should have similar ISDs for all the levels except for the first, where a residual
stiffness loss of 10% was simulated.

3.2 Case study 2: experimental benchmark

The second case study considered in this paper is a five-story RC building tested on a shaking table at the University of
California, San Diego, through the George E. Brown Jr. Network for Earthquake Engineering Simulation program (NEES-
UCSD) between May 2011 and May 2012. The plan dimensions were 6.60×11.00 m and the total height was 21.34 m, with
a floor-to-floor distance of 4.27 m. The shaking was impressed in the longitudinal (east-west) direction, in which the
building had two RC frames as a lateral-load resisting system. The beams had a cross-section of 0.30×0.71 m, with varying
connection details, and the floor system consisted of a 0.2 m thick concrete slab on all levels. More details about the
specimen can be found in technical reports37–40 and a schematic representation of the geometry is reported in Figure 12.
Dense sensor equipment was originally deployed on the structure. In this study, only five acceleration channels were

considered (S1–S5), positioned in the northern-eastern quadrant of the plant, at the floor level, in the direction of the
seismic motion, as illustrated in Figure 12. Moreover, displacement measurements collected through linear (N1–N3) and
string (B1–B2) potentiometers are used as reference for damage identification in this study. Detailed information on the
sensor setup can be found in technical reports.37–40 In particular, the linear potentiometers measure the diagonal elonga-
tion of three beam-column nodes, while the string devices are used to estimate of the rotation at the base of the eastern
column, calculated as:

𝜗 =
Δ𝐵1 − Δ𝐵2

𝑑
, (16)

where Δ𝐵1 and Δ𝐵2 are the displacements collected by the two sensors, while 𝑑 is the distance between them.
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In the original testing campaign, the structurewas first subjected to seven seismicmotionswith functioning base isolator
devices and then tested with six seismic motions with increasing intensity with the basement of the building fixed to the
shaking table. The acceleration time histories used in this study (Figure 13) were collected during the fourth test performed
using the 2007 Pisco earthquake (Ica station, Peru) as input excitationwith fixed-base configuration. The original sampling
frequency was of 200 Hz, downsampled at 50 Hz in this study. The total duration of the recording is 327.68s.
As described in the reports of the experimental campaign,37 the building was designed to reach its performance targets

during the fifth seismic motion with the fixed-base configuration. Indeed, minimal damage was observed following the
first two motions, with the structure remaining serviceable. Limited structural cracking was also observed following the
application of the fourth motion, especially at the bases of the first-floor columns and in the slab of the first level.
The multivariate signal collected from sensors S1–S5 was used to generate the MAD through a noise-assisted procedure

similar to that applied in the first case study (Figure 14A), using a threshold value of 𝜂 = 0.5. TheMADwas thus employed
to extract the ODSs which are then clustered through SOM and k-means. As in the previous analysis, four clusters were
selected, obtaining the distribution illustrated in Figure 14B.
The instantaneous natural frequencies identified through the procedure proposed in this paper and those obtained by

means of the HHT are shown in Figure 15A, superimposed on the spectrogram evaluated through the short-time Fourier
transform of the structural responses collected by sensor S5. The implementation features of the HHT and the approach
for selecting the window size of order-statistic features are the same used for Case study 1. A median filter of 501 samples
was used to improve the readability of the figure. It is possible to notice that the instantaneous frequencies obtained by
the method proposed better approximate the ridges of the spectrogram, especially for the first three modes. Although the
performances of HHT are higher than in the previous analysis, nonphysical IMFs are extracted at low frequencies.
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Observing the reference measurements obtained from potentiometers (Figure 15B), it is possible to notice that local
minima in the identified frequencies are close to the point where maximum diagonal elongation is recorded at the nodes.
In this instant, nonlinear effects can be observed since a residual displacement is present in sensor N1.
The inspection instants A, B, and C indicated in Figure 15 were considered to evaluate the first four mode shapes and

the corresponding ULLs before, during, and after the seismic strong motion. In particular, condition B was selected at
the instant of peak response acceleration, which is in the proximity of a local minimum of the instantaneous natural
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frequencies. Observing themodal amplitudes of these three conditions in Figure 16, it is possible to notice a slight variation,
which confirms the applicability of the method since the oscillation due to nonlinearities is generally modest compared
to the average value. Nevertheless, the accurate estimation of such small variations enables the application of a flexibility-
based method for damage detection and localization.
In Figure 17, the ULLs of the building corresponding to the inspection time instants A, B, and C are shown. Since infor-

mation about the structural masses is missing, mode shapes were normalized to an identity matrix, assuming a uniform
distribution along with the height of the building. Moreover, since the structural behavior may be far from the shear-type
approximation, the curvature of ULL is used as a DSF in this case. A general increment in curvature is registered for each
level in condition B, while after the seismicmotion, only the first level has a residual difference in curvature, in agreement
with the damage observed during the visual inspections.38 Although the deformation of beam-column nodes is not the
only effect thatmay affect the curvature of theULL, this result is also confirmed by the recording of sensor N1 (Figure 15B),
where clear residual elongation can be noticed.
Moreover, the rotation at the base of the structure in condition B is visibly higher than pre- and after-earthquake con-

ditions, highlighting the presence of breathing cracks at the base of the first level columns, also confirmed by the visual
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inspections. Considerable rotation at the base of the building is also recorded by the reference potentiometers B1–B2, as
shown in Figure 15B.

4 CONCLUSIONS

In this paper, a novel procedure for the identification of instantaneous dynamic parameters is presented. TheMAD is used
to extract the signal features which are then processed bymeans of an SOM and clustered through the k-means algorithm.
The dimensionality reduction allows the user to consciously select the number of clusters and enables the automatization
of the process employing image processing techniques.Moreover, the use of SWPT for the construction of the filter banks at
the basis ofMAD enables its application to short and strongly nonstationary recordings, making the procedure suitable for
S2HM applications. Indeed, accurate estimates of the instantaneous modal parameters are identified, in accordance with
the analytical results and comparable to the values obtained by means of other widely used procedures. Nevertheless, the
main advantages over literature techniques lie in the immunity tomodemixing issues and the ability to identify vanishing
components. Moreover, compared to the traditional TFRs, theMAD is not directly dependent on the amplitude of wavelet
components, thus resulting in a distribution that is not generally dependent on the nature of the exciting input. This aspect
is of the utmost importance when dealing with seismic excitation.
The method proposed can thus be applied to analyze the structural behavior during seismic events and investigate

the condition of maximum excursion in the nonlinear field, which may include valuable information about the ongoing
damage. Indeed, from the analysis of two case studies, the first consisting of a numerical model and the second involving
a real-scale experimental benchmark, interesting information emerged analyzing the modal parameters at the instant of
the maximum nonlinear excursion.
The results obtained using the method proposed are compared to the instantaneous parameters identified through a

multivariate version of the largely used HHT, showing superior performance that enables an accurate damage identi-
fication through a flexibility-based approach. In particular, in this study, the ISDs and the curvature of the ULLs were
analyzed to detect and localize the damage, showing good agreement with the theoretical results, visual inspections, and
displacement recordings.
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