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Abstract: Breast cancer is the most frequent and lethal tumor in women and finding the best ther-
apeutic strategy for each patient is an important challenge. PARP inhibitors (PARPis) are the first,
clinically approved drugs designed to exploit synthetic lethality in tumors harboring BRCA1/2 muta-
tions. Recent evidence indicates that PARPis have the potential to be used both in monotherapy and
combination strategies in breast cancer treatment. In this review, we show the mechanism of action
of PARPis and discuss the latest clinical applications in different breast cancer treatment settings,
including the use as neoadjuvant and adjuvant approaches. Furthermore, as a class, PARPis show
many similarities but also certain critical differences which can have essential clinical implications.
Finally, we report the current knowledge about the resistance mechanisms to PARPis. A systematic
PubMed search, using the entry terms “PARP inhibitors” and “breast cancer”, was performed to
identify all published clinical trials (Phase I-II-III) and ongoing trials (ClinicalTrials.gov), that have
been reported and discussed in this review.

Keywords: PARP inhibitors; breast cancer; PARP inhibitor resistance

1. Introduction

Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of
cancer death in women [1]. One of the several risk factors for BC development is genetic
predisposition, mainly linked to mutations in BRCA1 and BRCA2 genes [2]. In the early
years of the current millennium, the evidence that BRCA1/2-mutant cells could be sensitive
to PARP inhibitors (PARPis) emerged and paved the way for new therapeutic opportunities
in different tumors, including BC [3–6].

Olaparib (Lynparza®) was the first PARPi approved by the Food and Drug Admin-
istration (FDA) in 2014 for the treatment of patients with advanced ovarian cancer and
germline or somatic mutations in BRCA1/2 genes who have been previously treated with
three or more lines of chemotherapy [7]. Specific approval for advanced epithelial ovarian,
fallopian tube or primary peritoneal cancer maintenance treatments occurred after few
years, based on SOLO-1 clinical trial [8]. Selected patients for this treatment are in complete
or partial response to first-line platinum-based therapy and carriers of germline or somatic
BRCA1/2 mutations [9]. In 2020 the use of olaparib in combination with bevacizumab was
approved as a maintenance treatment for patients with advanced ovarian cancer [10].

Olaparib efficacy was demonstrated also in other tumors, such as pancreatic, prostate
and breast cancers [11]. In particular, olaparib was approved by the FDA in 2019 as a
maintenance treatment for patients with germline BRCA1/2 mutations and metastatic
pancreatic adenocarcinoma [12], after the demonstration of its efficacy in the multi-center
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trial POLO [13]. In addition, in 2018, olaparib has been authorized also in the treatment
of metastatic BC, germline BRCA1/2-mutated and HER2-negative, based on OlympiAD
clinical trial [14]. Finally, in 2020, the FDA approved the use of olaparib also in metastatic
castration-resistant prostate cancers (mCRPC) with germline or somatic BRCA1/2 muta-
tions previously treated with Enzalutamide and/or Abiraterone, as demonstrated in the
PROfound clinical trial [15,16].

Since 2016, other PARPis were authorized for the treatment of ovarian, prostate and
breast cancers. In 2016, FDA approved rucaparib (Rubraca®) for the treatment of BRCA1/2-
mutated patients with advanced ovarian carcinoma [17]. TRITON2 and TRITON3 clinical
trials evaluated the efficacy of rucaparib also in mCRPC patients with germline or somatic
BRCA1/2 mutations [18].

Moreover, niraparib (Zejula®) has recently been approved for maintenance treatment
of ovarian cancer patients based on the PRIMA clinical trial [19,20]. Finally, talazoparib
(Talzenna®) has been authorized in 2018 for the treatment of BCs with germline BRCA1/2
mutations based on the EMBRACA clinical trial [21].

Finally, several phase-II and phase-III trials are in progress focusing on the efficacy
of new PARPis in the treatment of advanced ovarian cancer, advanced prostate cancer
and non-small cell lung cancer (NSCLC) [22]. Current clinical trials on olaparib for the
treatment of triple-negative breast cancer (TNBC) are evaluating also the PARPi efficacy in
patients who carry mutations in other homologous recombination genes such as PALB2,
ATM, RAD51 [23].

2. DNA Damage Repair and Mechanism of Action of PARPis

DNA instability is an important characteristic of carcinogenesis. Endogenous and
exogenous factors are responsible for DNA damage, such as chemical and physical agents
including ROS or ultraviolet radiations [24]. Tumor takes advantage of these damaging
agents, bypassing cellular repair mechanisms and upsetting correct signaling networks.
In addition, chemotherapy and radiation therapy, despite their benefits, can be considered
among DNA mutational agents [25].

Once the DNA damage has occurred, cells activate different repair systems. Some of
them act on single base mutation, such as base excision repair (BER), nucleotide excision
repair (NER) and DNA mismatch repair (MMR) [26–28]. Regarding double-strand breaks
(DSB), the damage repair is mediated by nonhomologous end-joining (NHEJ) and homol-
ogous recombination repair (HRR) systems [29]. The first DNA repair system directly
binds DNA breaks but it can introduce alterations in the sequence. On the contrary, in the
second case, there is the necessity to have a strand to guide the repair and replicate the
sequence correctly. Schwart et al. demonstrated that downregulation of NHEJ and HRR key
components generated fragile sites on DNA, proving the two systems are complementary
and essential to maintain chromosome stability [30].

The HRR process consists of three main phases: damage recognition, strand prepa-
ration and junction resolution (Figure 1). The damage identification is the result of the
activity of the MRN complex, composed of Mre11, Rad50, and Nbs1 proteins, that starts the
degradation of the 5′ strand, in collaboration with CtBP-interacting protein (CtIP) nuclease,
recruits and activates the upstream ATM kinase [31–33]. Subsequently, ATM phosphory-
lates the BRCA1 protein, which is involved in the third process phase [34,35].

The second phase involves Replication Protein A (RPA), a heterotrimeric protein that
binds to just generated 3′ single-strand DNA (ssDNA) [36]. RPA tightly cooperates with
RAD51 protein, a DNA-dependent ATPase, binding ssDNA within a gap and pairs linear
dsDNA with a small circular ssDNA (called intermediate joint). Meanwhile, RPA promotes
the RAD51-DNA link by removing secondary structures and stabilizing the intermediate
joint through the non-complementary DNA strand sequestration [37–40].
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RAD51 repairs the damage with the support of BRCA1-BARD1 and BRCA2-PALB2 complexes (D). 
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Figure 1. When a DSB occurs in the DNA (A), the MRN complex recognizes the damage (B) and starts 5′ strand degradation
to get a 3′ ssDNA free to be coated by RPA and ATM is activated by phosphorylation (C). The interaction of RPA and RAD51
repairs the damage with the support of BRCA1-BARD1 and BRCA2-PALB2 complexes (D).

In the third phase, RAD51 recombinase activity is enhanced by the activated BRCA1-
BARD1 complex, which interacts with both ssDNA and RAD51 [41,42]. The coiled-coil
domain of BRCA1 binds the PALB2-BRCA2 complex, which stabilizes RAD51 nucleofila-
ment and promotes the interaction between RAD51 and RPA [43,44]. CDK12, cyclinD1,
CHK1 and many other players cooperate to complete the structural mechanism of the HRR
pathway [45,46].

Mutations in genes coding the HRR system components can alter the process and
generate a homologous recombination deficiency (HRD). The HRD is a frequent driver
of tumorigenesis in many tumors, in particular ovarian, pancreatic, prostate and breast
cancers [2,47–50].

However, the HRD signature can be exploited for personalized medicine since it is
predictive of the sensitivity to targeted therapy with inhibitors of the poly ADP-ribose
polymerase (PARP) enzyme, as well as DNA damaging reagents [5,47,51–53].

PARP is a family of 17 proteins essential in the BER system, involved in DNA single-
strand break (SSB) repair [54]. In particular, PARP-1, PARP-2, and PARP-3 are primarily
involved in DNA damage repair, otherwise PARP-5a and PARP-5b act in the regulation
of mitosis and telomere maintenance for the conservation of chromosome stability [55].
As DNA damage sensors, PARP proteins bind DNA and start the synthesis of a poly
(ADP-Ribose) chain (PARylation), which acts as a recruitment signal for other scaffold and
regulatory proteins, such as DNA Ligase III (LigIII), DNA polymerase beta (polβ) and X-ray
Cross Complementing Protein 1 (XRCC1) to repair the DNA damage (Figure 2A) [56].

The use of PARPis generates an impairment of the BER system and the inability to
repair SSBs. In this situation, SSBs are converted into DSBs and the HRR system becomes
essential to repair the damage [57,58].

This process can be exploited in cancer therapy through the mechanism of synthetic
lethality. Indeed, if the cell is characterized by an HRD, caused by a mutation in BRCA1/2
or other HRR genes, the treatment with a PARPi generates a genetic instability that leads
to cell death (Figure 2B) [3]. Substantially, the PARPi treatment is a targeted therapy that
selects HRD cancer cells and brings exclusively them to death [59,60].
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using NAD+ (A-2). The PARylation also promotes PARP-1 dissociation and leads scaffold proteins to repair the SSB
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way (B-2). Since the SSB cannot be repaired by PARP enzyme, the HRR system can repair the damage but the coexistence of
HRD prevents the repair and induces cell death (B-3 and B-4).

3. Clinical Development of PARPis as a Single Agent in Breast Cancer Treatment
3.1. Advanced and/or Metastatic Breast Cancer

The first phase-I trial evaluating olaparib in metastatic breast cancer (mBC) was
reported in 2009 by Fong et al. [53]. This trial enrolled 60 patients with refractory disease
to standard therapies or those for whom there were no suitable or effective standard
treatments. They were treated using a dose-escalation strategy ranging from 10 mg per
day to 600 mg twice per day. Of these patients, nine had mBC and three of them carried a
BRCA1/2 mutation. One of the latter three patients showed a complete response according
to the RECIST classification, lasting for 60 weeks. Mainly grade I and II adverse events were
reported and included digestive (anorexia, nausea, vomiting) and hematological (anemia,
thrombocytopenia) toxicities. These initial results led to the completion of three phase-II
trials evaluating olaparib in BC. The first, published in 2010, by Tutt et al. [52], recruited
54 patients with locally advanced or mBC carrying a BRCA1/2 mutation. They were
divided into two cohorts of 27 patients; the first cohort received 400 mg olaparib twice
daily (which was found to be the maximum tolerated dose in the phase-I trial) and the
second was treated with 100 mg olaparib twice daily (minimum pharmacodynamically
effective dose as identified in the phase-I trial). The main goal of this study was to
determine the objective response rate (ORR). The 41% (11 out of 27) in the first cohort
responded to olaparib therapy, with one patient in complete response and ten in partial
response, while the 22% (6 out of 27) in the second cohort, did not exhibit complete
response. Again, mainly grade I and II adverse effects, similar to those experienced in the
phase-I trial, were reported. The second study by Gelmon et al. [61], treated patients with
400 mg olaparib twice daily but unfortunately could not determine a conclusive ORR after
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treatment. Finally, Kaufman et al. [62] reported an ORR of 12.9% in their cohort of 62 heavily
pretreated patients, all bearing BRCA1/2-mutated mBC. In 2017, Robson et al. [14] reported
the first randomized phase-III trial comparing olaparib with standard chemotherapy in
patients with HER2-negative mBC carrying a BRCA1/2 germline mutation with resistance
to hormone treatment and having received no more than two lines of chemotherapy for the
treatment of their mBC. A total of 302 patients were randomized (2:1), 205 received olaparib
at a dose of 300 mg twice daily (new dosage form in film-coated tablets) and 97 received
clinician’s choice chemotherapy (vinorelbine, eribulin or capecitabine). The study met its
primary endpoint of a statistically significant increase in progression-free survival (PFS);
however, there was no significant difference in overall survival (OS) between the two
groups. The most frequently observed hematological adverse reaction was anemia [63].
These results led to the approval of olaparib by the FDA and the European Medicines
Agency (EMA), for locally advanced or HER2-negative mBCs, as a monotherapy.

In addition to the inhibition of catalytic activity common to all PARPis, talazoparib
has exhibited in vitro “trapping” of the PARP complex at the most important breakage
site. In 2017, De Bono et al. [64] published the results of the first phase-I trial evaluat-
ing talazoparib in the treatment of advanced solid tumors. The trial consisted of two
phases: a dose-escalation phase in which patients received talazoparib at a dose between
0.025 mg/day and 1.1 mg/day and an expansion phase comprising 71 patients receiv-
ing talazoparib at the recommended dose of 1 mg/day. Significant PARP inhibition was
observed for a dose of 0.60 mg/day, with hematological toxicity reported to be the most
frequent adverse effect, although reversible with the suspension of treatment and reduction
of doses. The reported ORR was 50% and included one patient with complete response.
Further to this, Turner et al. [65] reported the results of the ABRAZO trial: a phase-II trial
evaluating talazoparib at a dose of 1 mg/day in patients with locally advanced or mBC
and with a BRCA1/2 germline mutation. In this trial, the population under investigation
consisted of 2 cohorts of individuals: the first cohort included patients who had previously
been treated with platinum salts while the second cohort enrolled patients without prior
exposure to platinum. The ORR for cohort 1 was 21% and 37% for cohort 2, and the most
common adverse reaction was anemia. In 2018, Litton et al. [66] conducted the first ran-
domized phase-III trial comparing talazoparib with chemotherapy (capecitabine, eribulin,
gemcitabine or vinorelbine) in germline BRCA1/2-mutated HER2-negative advanced BC.
All patients randomized to talazoparib started at 1 mg once daily. This trial met its primary
endpoint of a statistically significant increase in PFS from 5.6 months to 8.6 months and
the ORR was found to be twice as high in patients treated with talazoparib (62.6% vs.
27.2%). The most frequent adverse event was haematological toxicity for all talazoparib
treatment arms and approximately 50% of patients in the chemotherapy arm. The other
predominantly reported adverse reactions were asthenia and nausea. Finally, patients
reported an improvement in the quality of life (mean change in QLQ-C30 score), greater
with talazoparib (3.0) vs. chemotherapy (−5.4), and the time to deterioration in the quality
of life was significantly lengthened in the talazoparib arm. Recently, talazoparib obtained
the marketing authorization for the treatment of locally advanced BRCA1/2-mutated HER2-
negative mBCs. It has been approved for use as a monotherapy in patients who have
already received treatment with an anthracycline and/or a taxane, as (neo) adjuvant ther-
apy, for locally advanced or metastatic cancers, unless they were not eligible for this type
of treatment. Patients with hormone receptor-positive BC must have previously received
hormone therapy or be considered ineligible for hormone therapy to receive this form
of treatment.

Rucaparib has been evaluated by Drew et al. [67] in a phase-II trial including 78 patients
with BRCA1/2-mutated advanced breast or ovarian cancers. This trial had two cohorts,
an oral treatment cohort and an intravenous treatment cohort. In each cohort, the first
stage of the study included a dose-escalation phase. No objective response was observed
in BC patients, both in the oral and intravenous cohorts. In contrast, 44% of patients in
the intravenous cohort and 20% in the oral cohort exhibited disease stabilization over a
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12-week period. Rucaparib was generally well tolerated. The Hoosier Oncology BRE09-
146 group [68] reported a randomized phase-II trial evaluating rucaparib in combination
with cisplatin in adjuvant therapy in TNBC or BRCA1/2-mutated BC with residual disease
after neoadjuvant therapy (anthracyclines and/or taxanes). Patients were randomized
(1:1) to receive cisplatin alone or in combination with rucaparib, with the main goal being
two-year disease-free survival. A total of 128 patients were randomized, 22% of them
carrying a BRCA1/2 germline mutation. The toxicity profile was similar in both arms and
the addition of rucaparib did not show significant improvement in two-year disease-free
survival, regardless of BRCA1/2 mutational status.

Sandhu et al. reported a phase-I trial evaluating niraparib in patients with sporadic
advanced solid tumors or with a BRCA1/2 mutation. The maximum tolerated dose was
300 mg of niraparib orally per day. Sixty patients were included in phase-I dose-escalation
including 12 patients with mBC [20]. Among these patients, four carried a germline
BRCA1/2 mutation and 2/4 had a partial response to treatment. The toxicity was pre-
dominantly hematological with few grade 3 adverse effects. A phase-III randomized trial
(the BRAVO trial, NCT01905592) is currently underway, comparing niraparib at a dose
of 300 mg per day with chemotherapy of the physician’s choice in patients with locally
advanced or metastatic HER2-negative BC, carrying a BRCA1/2 germline mutation. Clinical
trials on the use of PARPis in the treatment of mBC are summarized in Table 1.

Table 1. Clinical trials with PARP inhibitors in the treatment of mBC.

Trial Study Design No. of Pts Phase Patients’ Population Primary
Endpoint Results Approval

OlympiAD [63] Olaparib vs. PCT 302 III Advanced/metastatic
gBRCA ≤2 prior lines PFS 7.0 vs. 4.2 months FDA/EMA

approved

BROCADE3 [69] CP + veliparib/placebo vs.
Temozolomide + veliparib 337 II Metastatic gBRCA

≤2 prior lines PFS 14.1 vs. 12.3 months -

EMBRACA [21] Talazoparib vs. PCT 431 III Advanced/metastatic
gBRCA ≤3 prior lines PFS 8.6 vs. 5.6 months FDA/EMA

approved

Abbreviations: C (carboplatin); P (paclitaxel); gBRCA (germline BRCA1/2 mutation); PFS (progression free-survival); PCT (physician’s
choice therapy).

3.2. Neoadjuvant Setting

The I-SPY 2 trial [70] was one of the first trials to evaluate the PARPi veliparib as
a neoadjuvant treatment for localized BC. This trial included patients with stage II or
III BC who had never received cytotoxic treatment for their BC. A total of 72 patients
were randomized to receive veliparib-carboplatin in addition to standard neoadjuvant
chemotherapy (weekly paclitaxel followed by doxorubicin plus cyclophosphamide), and
44 received standard therapy. Among the patients treated with a PARPi, 17% of them car-
ried a germline BRCA1/2 mutation. The addition of the veliparib-carboplatin combination
to the standard neoadjuvant chemotherapy regimen allowed a doubling of the complete
response rate in the TNBC subtype (51% vs. 26%). Another trial, confirming the effective-
ness of PARPis in the neoadjuvant setting was the BrighTNess trial [71], which included
women with stage II or III TNBC with or without a BRCA1/2 germline mutation. Patients
were randomized (2:1:1) to receive one of the following three treatment regimens: either
paclitaxel (80 mg/m2, weekly for a total of 12 doses) plus carboplatin (area under the curve
(AUC) 6 every three weeks for a total of four cycles) and veliparib (50 mg orally twice daily),
either paclitaxel plus carboplatin and a placebo of veliparib or paclitaxel plus a placebo of
carboplatin and a placebo of veliparib. After the weekly paclitaxel sequence, all patients
received doxorubicin-cyclophosphamide chemotherapy every two or three weeks. A to-
tal of 634 patients were randomized to one of the three arms of the study, among them
15% carried a BRCA1/2 germline mutation. Overall, the histologic complete response rate
was significantly increased in the carboplatin-veliparib paclitaxel arm compared to the
paclitaxel alone arm (53% vs. 31%).

In contrast, the addition of veliparib to the carboplatin-paclitaxel combination did
not increase the proportion of patients achieving a complete tumor response. This trial
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corroborates the previous results on the benefit of carboplatin as a neoadjuvant treatment
in TNBC. However, the presence of a BRCA1/2 germline mutation did not appear to be
associated with a greater benefit from the use of platinum and/or veliparib.

Furthermore, the GeparOLA study evaluated neoadjuvant olaparib in patients with
non-metastatic HER2-negative T2-T4 or T1c BCs with lymph node involvement with either
a BRCA1/2 mutation (germline or somatic) or a high HRD score. Patients were randomized
to receive chemotherapy combining weekly paclitaxel 80 mg/m2 and olaparib 100 mg
twice daily or a weekly combination of paclitaxel 80 mg/m2 and carboplatin AUC 2,
for 12 weeks. All patients received chemotherapy with epirubicin/cyclophosphamide
thereafter. A total of 107 patients were randomized, 72% of which had TNBCs and 60% of
patients had a BRCA1/2 mutation. The histologic complete response rates were 55% with
olaparib and 48% with carboplatin; however, the study could not rule out a 55% histological
complete response rate in the olaparib arm, which was the primary outcome, but the results
seemed more favorable in the subgroup of patients aged over 40 years or with hormone
receptor-positive BC [72].

Regarding the use of talazoparib in this setting, Litton et al. [73] reported the results
of a pilot study evaluating talazoparib as a neoadjuvant monotherapy in the treatment of
localized (stage I to III) HER2-negative BRCA1/2-mutated BCs. Twenty patients (including
15 with a TNBC) were randomized to receive talazoparib at a dose of 1 mg/day for six
months. The main objective was the histological complete response rate at six months,
assessed on the surgical specimen. A total of 19 patients completed the six months of
treatment and ten of them (53%) achieved a complete tumor response. The main toxic-
ity was found to be hematological with grade I to III anemia leading to a need for dose
reduction in nine patients and to erythrocyte transfusions in eight patients. The most com-
monly reported non-hematological adverse reaction was nausea, and all of these toxicities
were easily managed with appropriate supportive care. Despite its small patients sample,
this trial is the first to demonstrate the effectiveness of targeted therapy in the neoadjuvant
setting in patients with BRCA1/2 mutations without the addition of chemotherapy.

3.3. Adjuvant Setting

OlympiA is a phase-III, randomized, double-blind, placebo-controlled trial that evalu-
ated olaparib as an adjuvant monotherapy in localized, HER2-negative BRCA1/2-mutated
BCs [74]. The recruited patients had to have completed local treatment and adjuvant or
neoadjuvant chemotherapy. Eligible patients should have had a TNBC (pT2 or pN1 for
patients operated on straight away or residual disease for those receiving neoadjuvant
chemotherapy) or expressing hormone receptors and should be without HER2 gene ampli-
fication, pN2 for patients treated with adjuvant chemotherapy or high-risk residual disease
after neoadjuvant chemotherapy, as defined by the CSP + EG score (clinical stage and
post-treatment pathological stage incorporating estrogen receptor status and tumor grade).
They were randomized in a 1:1 ratio to receive 300 mg olaparib twice daily or a placebo for
12 months. The main goal was invasive disease-free survival. Among the high-risk early
BC patients with germline BRCA1/2 mutations, 1 year of adjuvant olaparib was found to
significantly reduce the risk of recurrence and prevent progression to metastasis (85.9% in
the olaparib group and 77.1% in the placebo) [75]. Clinical trials on the use of PARPis in
the neoadjuvant/adjuvant treatment of BC are summarized in Table 2.
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Table 2. Clinical trials with PARP inhibitors in the neoadjuvant/adjuvant treatment of BC.

Trial Study Design No. of Pts Phase Patients’
Population

Primary
Endpoint Results

OlympiA [75] Olaparib vs. placebo 1836 III Early-stage gBRCA
adjuvant therapy IDFS 85.9% vs. 77.1%

BrighTNess [71]
CP + veliparib or CP +
placebo or P + placebo

+ placebo→AC
634 III

Stage II or III TNBC
gBRCA

neoadjuvant
therapy

pCR 58% vs. 53% vs.
31%

I-SPY 2 [70] CP +
veliparib/placebo→AC 116 II

Stage II or III TNBC
neoadjuvant

therapy
pCR 51% vs. 26%

Abbreviations: AC (doxorubicin plus cyclophosphamide); C (carboplatin); P (paclitaxel); gBRCA (germline BRCA1/2 mutation); IDFS (inva-
sive disease-free survival); pCR (pathological complete response).

4. Combination Strategies with PARPis in BC Treatment
4.1. PARPis and Chemotherapy

The mechanism of action of the majority of chemotherapeutic drugs is the damage
to the DNA of cancer cells. PARPis alter DNA repair mechanisms and may be used
as chemo-sensitizers. This hypothesis was examined by the trials cited above, as the
BrighTNess, which combined veliparib with carboplatin and paclitaxel, or the GeparOLA,
which combined olaparib and paclitaxel. However, despite obtaining promising results at
the preclinical data analysis stage, the concomitant combination of a PARPi with a cytotoxic
agent, including temozolomide, platinum salts, gemcitabine, or topoisomerase inhibitors,
has been shown to be tricky in terms of toxicities, with an increase of hematological
toxicity, leading to control by PARPi or chemotherapy dose reduction [76]. Regarding the
effectiveness, the benefit of these combinations still remains to be established in populations
with BRCA1/2 or HRD mutations as well as in patients without such anomalies.

Veliparib (ABT-888) has primarily been evaluated in combination with platinum salt
chemotherapy in advanced mBC. Indeed, its low activity in terms of “trapping” of PARP-1
allows for its development in combination with chemotherapy. Several phase-I trials have
been reported evaluating the maximum tolerated dose and the potential efficacy of veli-
parib in solid tumors, alone [77] or in combination with other systemic treatments [78].
In 2017, Han et al. [79] reported the results of the BROCADE trial, a randomized phase-II
trial evaluating the combination of veliparib with carboplatin and paclitaxel in the treat-
ment of locally advanced or BRCA1/2-mutated HER2-negative BC. A third arm studied the
combination of veliparib with temozolomide, an alkylating agent, that has demonstrated
potential synergistic efficacy in combination with PARPis [80]. In each arm, veliparib
was administered at low doses and both intermittently and concomitantly with the ad-
ministration of chemotherapy (carboplatin or temozolomide). No significant difference
was observed in the mean PFS with the addition of veliparib to carboplatin/paclitaxel.
In contrast, there was a significant increase in the ORR in the experimental arms (ORR
77.8% vs. 61.3%, p = 0.027). The ORR of 61.3% in the carboplatin and paclitaxel arm
confirmed previous data on the efficacy of platinum salts in the treatment of BRCA1/2
mutated cancers [81]. As already described for the other PARPis, hematological adverse
events such as neutropenia and thrombocytopenia were the most reported. Moreover,
disappointing results were reported in the veliparib plus temozolomide arm with an ORR
of 28.6%. In 2020, Dieras et al. [69] reported the results of the BROCADE3 trial, a random-
ized (2:1) phase-III double-blind trial, evaluating veliparib vs. placebo in combination
with carboplatin (administered every 3 weeks) and paclitaxel (administered weekly) in the
treatment of locally advanced or metastatic HER2-negative BC with a BRCA1/2 germline
mutation. Veliparib was administered orally at a low dose (120 mg twice daily) from
day 2 to day 5, carboplatin with AUC 6 on day 1 every three weeks and paclitaxel on a
weekly basis. If chemotherapy was discontinued, veliparib was continued as a full-dose
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maintenance monotherapy (300–400 mg/day). A crossover was planned for progression to
veliparib monotherapy in patients receiving a placebo. The addition of veliparib showed
an increase in the median PFS from 13.5 to 19.3 months after Blinded Central Review.

4.2. PARPis and Immunotherapy

Checkpoint inhibitors, such as anti-CTLA4 and anti-PD-1/PD-L1, seem to be more
effective against cancer with a high mutagenic burden, probably because they have an
increased propensity to produce neo-antigens for immune activations [82]. Therefore,
tumors with BRCA1/2 mutations or BRCAness, given the potentially high mutagenic
burden, might be particularly responsive to checkpoint inhibitors [83].

Moreover, preclinical studies demonstrated an increased expression of immunologic
markers such as tumor-infiltrating lymphocytes (TILs), especially in BRCA1/2-mutated
TNBC [84]. In addition, in this specific subtype, olaparib has been shown to stimulate
PD-L1 expression in tumor cells, improving anti-PD-1 antibody efficacy. Considering these
data, clinical trials are underway to assess the combination of PARPis and immunological
checkpoint inhibitors [85]. MEDIOLA is a phase-II trial evaluating the combination of
olaparib plus durvalumab (anti-PD-L1 monoclonal antibody) in mBC HER2-negative
with a BRCA1/2 germline mutation. Patients were randomized to receive olaparib as
monotherapy at a dose of 300 mg, twice daily for four weeks, followed by durvalumab
1500 mg intravenously for four-week cycles, with disease assessment every eight weeks.
Domchek et al. published the results concerning the first 25 patients who showed a disease
control rate at 24 weeks of nearly 50% without differences, according to hormonal or
mutational status, and without an increase in toxicities during dual therapy [86]. MEDIOLA
is the first study to report encouraging results for hormone receptor (HR)-positive germline
BRCA1/2-mutated mBC treated with PARPis in combination with immune checkpoint
inhibitors. Similarly, TOPACIO [87] is a phase-I/II trial evaluating the combination of
niraparib with pembrolizumab (anti-PD-1 monoclonal antibody), particularly in metastatic
TNBCs and in ovarian cancers. A total of 55 women were included in the BC cohort to
receive niraparib at the recommended dose in phase I, i.e., 200 mg per day, in combination
with pembrolizumab (200 mg intravenous on day 1/21). Of the 47 evaluable patients,
21% presented an ORR with five patients in complete response and five in partial response.
Among 15 patients with a BRCA1/2 germline mutation, 32% showed an ORR.

4.3. Other Innovative Combinations

Recent preclinical studies are interested in combining PARPis with other molecular
targeted therapies to interfere with oncogenic pathways such as VEGF, IGF, PI3K and EGFR.
For instance, the PI3K/mTOR signaling pathway is essential, particularly in detecting DNA
DSBs, and it might be involved in the expression of BRCA1 and BRCA2 [76]. Therefore,
PI3K inhibition could potentially weaken the HRR mechanism, resulting in a “BRCAness”
tumor phenotype, regardless of BRCA1/2 mutational status, increasing the effect of PARPis.
Accordingly, early-phase clinical trials have been initiated evaluating the combination of
PI3K or mTOR inhibitors with PARPis. In addition, several studies are currently underway
evaluating treatments targeting molecules involved in cell cycle regulation or DNA repair,
in association with PARPis [88]. These trials included a phase-II study of olaparib and ATR
inhibitor (NCT02264678), a phase-IB study of olaparib and WEE1 inhibitor (NCT02511795),
and a phase-II study randomizing olaparib as monotherapy vs. olaparib and WEE1 or ATR
inhibitor in TNBC (VIOLETTE test, NCT03330847). A deeper knowledge of the biology
of the HR-positive mBC with germline BRCA1/2 mutations is necessary to define further
studies with PARPis and immune checkpoint inhibitors, based on known lower response
to anti-PD-L1 drugs and the potential sensitivity to CDK4/6 inhibitors; further studeis are
needed to investigate the combination or the sequence of PARP inhibitors and CDK4/6
inhibitors (e.g., olaparib, fulvestrant and palbociclib–NCT03685331). Ongoing clinical trials
of PARPis in combination with molecular targeted therapies are summarized in Table 3.
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Table 3. Selected ongoing trials with PARP inhibitors in combinations with molecular targeted therapies.

Clinical Trial Identifier Study Design Intervention/s Setting Primary Endpoint Phase Status

NCT02264678

330 Participants,
Interventional, Parallel

Assignment, open-label,
Non-Randomized, Multi-center

Olaparib + Ceralasertib

Advanced solid
malignancies not considered

appropriate for further
standard treatment

AE and SAE I Recruiting

NCT02511795

128 Participants,
Interventional, Parallel

Assignment, open-label,
Non-randomized

Olaparib + Adavosertib Refractory solid tumor DLT, MTD, TEAEs Ib Completed

NCT03330847
(VIOLETTE)

273 Participants
Interventional, Parallel

Assignment, open-label,
Randomized, Multi-center

Olaparib + Ceralasertib
Olaparib + Adavosertib Second or third line PFS, ORR, DoR II Active, Not Recruiting

NCT03685331 (HOPE)

54 Participants,
Interventional, Sequential
Assignment, open-label,

Non randomized

Olaparib + Palbociclib +
Fulvestrant First, second and third line PFS I/II Recruiting

NCT01905592 (BRAVO)

215 Participants,
Interventional, Parallel

Assignment, open-label,
Randomized, Multi-center

Niraparib First, second line and third
line PFS III Active, Not recruiting

Abbreviations: Adverse Events, AE; Dose Limiting Toxicity, DLT; Duration of response, DoR; Maximum Tolerated Dose, MTD; Objective Response Rate, ORR; Progression Free Survival, PFS; Serious Adverse
Events, SAEs; Treatment-emergent adverse events, TEAEs. The information was extracted from www.clinicaltrials.gov (accessed on 15 July 2021).

www.clinicaltrials.gov
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5. Acquired Resistance to PARPis

As PARPi therapy entered the clinical practice, resistance mechanisms to the treatment
have emerged. Mutations in BRCA1 and BRCA2 genes are excellent targets for PARPis,
but it has been shown that in 40–70% of patients the therapy is not effective [61].

The resistance to PARPis can be innate, when PARPis are ineffective from the begin-
ning of the treatment for the presence of intrinsic resistance mechanisms, or acquired,
when PARPis become ineffective after an initial benefit for the patient [89].

While innate resistance to PARPis is poorly known, several mechanisms of acquired
resistance have been observed during the treatment with PARPis.

5.1. Restoration of BRCA1 and BRCA2 Functionality

Among the resistance mechanisms occurring during the treatment with PARPis,
the restoration of BRCA1 and BRCA2 functionality by reversion mutations is the most
common one [60,90–99].

Quigley et al. demonstrated the acquisition of a multi-nucleotide deletion that removes
pathogenic mutation in BRCA2 gene, restoring the correct open reading frame (ORF).
Thus after some months of treatment, the recovered protein brings tumor cells to the loss of
sensitivity to the PARPi Talazoparib [100]. Another group identified a deleterious germline
mutation in BRCA2, whose carrier patient was treated with carboplatin and Rucaparib.
After therapies, they identified in cfDNA twelve new somatic mutations that have occurred.
Six new variants determined the restoration of the correct ORF [101]. Secondary restoration
mutations have been observed also in other genes involved in the HRR system, for example
in RAD51B and RAD51C [102].

5.2. Hypomorphic Forms of BRCA1

Another resistance mechanism observed during PARPi treatment is the partial restoration
of HRR through increased activity of hypomorphic mutant BRCA1/2 proteins [103,104].
In particular, it has been observed that the knockout of 53BP1, a protein involved in DSB
repair, can cause partial rescuing of the HRR in hypomorphic BRCA1 cells making them
resistant to PARPi treatment [105].

5.3. Epigenetic Changes in HRR Genes

PARPi resistance can be the result of epigenetic changes in HRR genes. In particular,
promoter hypermethylation of genes such as BRCA1/2 determines a reduced expression
of the corresponding mRNAs that results in HRD and PARPi sensitivity. On the opposite,
the demethylation of these genes is associated with the restoration of protein expression
and resistance to PARPi treatment [102,106,107].

5.4. Loss of End Resection Regulation

Another player involved in the PARPi resistance mechanism is the 53BP1 protein,
whose loss in mice with a BRCA1 mutation determines resistance to PARPi treatment
restoring the HRR system. Furthermore, this mechanism seems to be dependent on ATM,
another possible target in PARPi-resistant tumors [108]. PARPi resistance can also occur in
presence of BRCA1 mutations disrupting the N-term RING domain, taking advantage of
the residual DNA repair activity of the protein [109,110].

Moreover, another player involved in the PARPi resistance mechanism is the PTEN
protein, since the concomitant presence of PTEN loss and BRCA1 mutation rewires the
functionality of the HRR system [111].

5.5. Restoration of PARP-1 Activity

The PARP-1 enzyme is another player in PARPi resistance mechanisms, since muta-
tions in the Zinc Finger Domain (ZFD) of PARP-1 that abolish DNA binding cause PARPi
resistance [112]. Previous studies have demonstrated that a decrease in PARP-1 expression
during PARPi treatment can promote the onset of a resistance mechanism [113]. In a
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different study, phosphorylation of PARP-1 by receptor tyrosine kinase c-Met has been
shown to determine an increase in its enzymatic activity and reduce the binding to PARPi,
thereby rendering cancer cells resistant to the treatment [114].

Another important player is the poly(ADP-ribose glycohydrolase (PARG), an enzyme
the degrades the ADP-ribose chain synthetized by PARP-1. The depletion of PARG leads
to the partial restoration of PARP-1 activity, inducing less sensitivity to PARPis [115].

5.6. NHEJ Suppression

Different repair pathways act during the cell cycle in the repair of DNA damage: NHEJ
and HRR are complementary arms of the same system. When DNA strand breaks occur,
a precise balance between these two regulatory systems is maintained by competition in
binding broken strand ends, by Ku complex or MRN complex, respectively. The miR-662
can induce resistance to PARPis and platinum in BRCA1-mutant cells by targeting the Ku
complex and restoring HRR. Indeed, in BRCA1-mutated ovarian tumors, the overexpression
of miR-622 is associated with a reduced response to PARPi and platinum therapy [116,117].

5.7. Replication Fork Protection

Multiple studies showed that HRD tumor cells can develop PARPi resistance through
the protection of the replication forks during DNA replication [118,119]. In particular,
BRCA1/2-deficient cells have been shown to be able of reducing the recruitment of nu-
cleases, such as MRE11 and MUS81, to the stalled forks, becoming resistant to the PARPi
treatment without restoring the HRR [120,121].

5.8. Drug Concentration

The ABCB1 gene encodes a transmembrane transporter P-glycoprotein that pumps out
from cells a wide range of xenobiotic compounds, including drugs such as PARPis [122,123].
The overexpression of ABCB1 has been associated with PARPi resistance [124]. P-glycoprotein
inhibitors are able to restore the PARPi sensitivity in BRCA1-deficient cells [125].

6. Conclusions

Going forward, it has been well established that PARPis should be a component of the
therapeutic strategy for BC arising in BRCA1/2 mutation carriers. Furthermore, their appli-
cation will likely move beyond metastatic setting to the adjuvant and neoadjuvant settings.
In both OlympiAD and EMBRACA trials, PARPis demonstrated survival and quality of
life benefit compared to chemotherapy. However, the side effects associated with platinum
salts are known and are considered clinically significant. The PARPis talazoparib and
olaparib as maintenance therapy, after initial cytotoxic chemotherapy (with or without
platinum), have not been clearly evaluated, although patients with stable disease after
chemotherapy may be included in EMBRACA. On the other hand, this strategy has been
clearly provided in the BROCADE3 trial and may have played a major role in the PFS
benefit observed in this trial.

Nowadays, both talazoparib and olaparib are registered in the treatment of metastatic
or locally advanced BRCA1/2-mutated HER2-negative BC. However, patients must have
received prior treatment with anthracyclines and taxanes in an adjuvant, neoadjuvant
or metastatic setting. Moreover, PARPis might be used from the first line of cytotoxic
treatment, but in tumors expressing hormone receptors, prior hormone therapy must have
been administered or the patients must not be candidates for it. At this point, it is notewor-
thy to discuss different clinical strategies: in TNBCs with a BRCA1/2 germline mutation
and PD-L1 expression, which strategy should be adopted between taxanes-atezolizumab
combination and PARPis? The OS benefit, in the IMpassion 130 study, favoring the chemo-
immunotherapy combination does not seem to be impacted by the BRCA1/2 mutational
status [82,126]. On the other hand, in hormone receptor-positive BC patients, who have
already been exposed to hormone therapy but not in combination with CDK4/6 inhibitors,
should PARPis be preferred over a combination of hormone therapy plus cell cycle in-
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hibitors? Given the increased OS associated with the latter combination [83,127,128], this is
probably the most reasonable option. In the absence of visceral crisis, PARPis might be
useful when hormone therapy is no longer effective. The is no direct comparison beteween
PARPis and platinum salt-based chemotherapy: the efficacy of platinum salts in germline
BRCA1/2-mutated patients is already underscored in the metastatic setting [129]. Finally,
reinforcing the role of already approved PARPis, in a meta-analysis, Schettini et al. showed
that PARPi regimens are correlated with an overall reduction in the instantaneous risk of
progression of 41%, and about 14% reduction in the instantaneous risk of death. In addi-
tion, based on the results of subgroup analysis, they found an association between PARPis
and PFS in ovarian cancer, prostate cancer, pancreatic cancer, melanoma and small-cell
lung cancer, but also a statistically significant PFS improvement in BC, as it was already
described in olaparib and talazoparib pivotal trial [130].
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