
1.  Introduction
Post-depositional sediment intrusion is a significant hazard associated with subsurface overpressure, 
methane release, hydrodynamic perturbations, and slope failure (Mazzini & Etiope, 2017). Sediment in-
trusion and its extrusion at the surface may have a profound impact on nearby ecosystems (Judd & Hov-
land,  2007), depositional environment (Blanchard et  al.,  2018), anthropic activities, and human society 
(Davies et al., 2011). The large-scale intrusion of deeply buried sediments is commonly imaged in reflection 
seismic data (e.g., Capozzi et al., 2012), and it is documented in a few outcrops (e.g., Barreca, 2014; Oppo 
& Capozzi, 2016). The high-magnitude overpressure responsible for the intrusion commonly generates at 
depth (i.e., >1 km) and may move updip for tens of kilometers via highly permeable units (i.e., sandstones) 
or faults/fractures by processes such as lateral or vertical pressure transfer (Oppo et al., 2021; Reilly & Flem-
ings, 2010; Tingay et al., 2007; Traugott & Heppard, 1994). These transfers create shallower areas of high 
overpressure, potentially leading to early burial mud diapirs when conditions suitable for hydrofracturing 
are met (Morley et al., 2008).

Our knowledge of early burial mud diapirism (i.e., with source <200 m deep) and its implications is limited 
by the sparsity of records. Early burial mud diapirs have been documented only within deltaic sediments 
(Blanchard et al., 2018; Morgan et al., 1968), where they form by reactive rise (i.e., along faults) and down-
building (i.e., passive growth), thus excluding any active diapirism driven by near-lithostatic overpressure. 
Therefore, the exact nature of early burial mud diapirs and the factors governing the associated shallow 
overpressure are poorly constrained, particularly in compressive geodynamic settings.
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Here, we document the unprecedented outcrop of an early burial mud diapir formed within foredeep units 
deformed in the Northern Apennines (Italy) fold and thrust belt. We then reconstruct the lateral transfer 
of overpressure within low-permeability, shallowly buried (<200 m) mudstones. The exceptional exposure 
of the entire sedimentary succession, from the diapir source to its complete overburden, provides precise 
temporal and stratigraphic constraints for these processes. This example offers essential, high-resolution 
information on pressure-driven sediment intrusion. It also links shallow fluid and sediment dynamics to 
the equivalent deep-rooted (>1 km) processes occurring in analogous tectonic settings, which are, instead, 
widely studied but less directly constrained (Huuse et al., 2010 and references therein).

2.  Regional Setting
From the Messinian to the Pliocene, NE-verging compressive tectonics associated with the collision be-
tween Europe and Africa plates controlled the Northern Apennines architecture (Barchi et al., 2001). The 
resulting deformation generated a complex morphology, with ramp anticlines and intervening troughs 
(Ghielmi et al., 2010). These troughs developed as satellite basins, one of which, the Samoggia, hosts the 
Rio Albonello mud diapir (Figure 1). The Samoggia is confined to the South by a late Miocene blind thrust 
which creates a large wavelength structural flexure in the Miocene foredeep deposits (Figure S1). To the NE, 
the basin is limited by the Marzeno high, deformed from the Messinian through the Pliocene (Figure 1). 
The Marzeno high plunges to the NW and is buried under upper Pliocene to Pleistocene sedimentary units. 
The Samoggia basin experienced a phase of structural rearrangement since the late Zanclean due to the 
shortening at the Marzeno ramp (Capozzi & Picotti, 2003). This structural rearrangement was associated 
with the regional shortening of deeper Mesozoic units, which ultimately caused the northward tilting and 
steepening of the Samoggia basin (Picotti & Pazzaglia, 2008).

3.  Stratigraphic Record
By using standard techniques for field survey and foraminifera biostratigraphy, integrated with the inter-
pretation of reflection seismic and well logs (Supplemental Material), we reconstructed the stratigraphic 
setting of the Samoggia basin. Five stratigraphic sections show the basin stratigraphy of the units involved 
in and deformed by the mud diapir (Figure S3).

We identified seven units (U1-U7) involved in the intrusion (Figure 2). The basin hosts up to 1 km of prevail-
ing mudstones belonging to the Argille Azzurre (AA) Fm., deposited in a tectonic slope setting during the 
Plio-Pleistocene. Their Zanclean interval (U1) deposited relatively fast (c. 604 m/My). The topmost 100 m of 
U1 host bulbous carbonate concretions up to 2 m in diameter (Figure 2d). The δ13C of the carbonate cement 
(high-Mg calcite and dolomite) ranges from c. −27‰ to −15‰ and is characteristic of methane-derived au-
thigenic carbonates, analogously to similar concretions along the Northern Apennines (Capozzi et al., 2017; 
Oppo et al., 2017; Viola et al., 2015). The AA Fm. sedimentation is interrupted in the early Piacenzian by 
sand sheets and interbedded mud (U2), and by two well-bedded, up to c. 200 m thick, dominantly calcaren-
ite intervals locally named Spungone Mb. (U3-5, lower and upper, respectively; Figure 1c). The Spungone 
Mb. filled the Samoggia basin at a rate of c. 415 m/My following the onset of a carbonate factory on top of 
the Marzeno structural high (Figure 1c; Capozzi & Picotti, 2003). After the Spungone Mb., the AA Fm. re-
sumed deposition in the basin with sandy mudstones (Figure 2). A more recent (2.87 Ma) AA Fm. interval 
(U6) overlies undeformed U1 to U5 stratigraphy and hosts allochthonous olistoliths of U5 (up to 10 m in 
diameter) downslope to the mud intrusion (U7; Figure 2c).

4.  Evidence of Sediment Intrusion and Destabilization
The exposed, present-day mud diapir originates from U1 mudstones (top 40 m cropping out) and pierces 
10 m thick U2 sandstones and 28 m of U3 Spungone Mb. It thus extends vertically for 78 m. Whereas U1 
cropping out nearby the mud diapir is massive and chaotic, it shows bedding away from the intrusion. The 
overlying U2 sandstones display tensional features and partial remobilization recorded by boudinage and 
dispersed strata blocks (Figure 3c). The mud intrusion (U7) folded upwards U3, which is also displaced by 
small reverse faults (up to 5 m throw) caused by the vertical and lateral mud intrusion at the U2-U3 contact 
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(Figure  3a). The eroded top of the mud diapir is cropping out where U4-5, which are unaltered updip, 
abruptly end (Figure 3). This end coincides with a scarp (Figure 1b), suggesting the post-depositional re-
moval of U4-5. Because of regional uplift, no units younger than U5 were deposited in the mud diapir area. 
The complete U2-5 succession, cropping out immediately updip to the mud diapir, shows that the intrusion 
formed when U1 was buried by up to c. 100 m of overburden (Figure 1c).

The scarp borders the up-slope side of an area extending a few hundred meters downslope the diapir, where 
the top part of U3 and the overlying units are missing (Figure 2b). In this area, slumped mudstones overlie 
U3 and contain G Bononiensis (Piacenzian) and reworked G. Puncticulata, the biostratigraphic marker of 
the late Zanclean U1 (Figure S3). Older markers of Zanclean age are absent. Despite the true base of the 
mud diapir is not exposed, this evidence suggests that only the top c. 100 m of U1 remobilized vertically in 
the intrusion.

Figure 1.  (a) Geological map of the Samoggia basin showing the mud diapir's location. The sampled stratigraphic sections (Figure S3) are indicated. Geology 
and topography are modified from Regione Emilia-Romagna maps (https://geo.regione.emilia-romagna.it/). (b) Closeup view of the Rio Albonello area showing 
the mud diapir (red stars), head scarp (barbed line) outcrops, and largest Spungone Mb. olistoliths. (c) Section across strike the Samoggia basin depicting its 
setting at 2.87 Ma, time of the mud diapir intrusion, along with the location of stratigraphic sections and main biostratigraphic events. Diapir not to scale.
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The mud diapir crops out on both sides of the Rio Albonello valley, with unchanged characteristics (Fig-
ure S5). This similarity suggests that the intrusion develops as a dike-like structure with an E-W strike, for 
a length of at least c. 400 m (the valley width).

5.  Overpressure Build Up
Sediment intrusion is often caused by the build up of near-lithostatic overpressure and resultant hydrofrac-
turing. At Rio Albonello, we exclude the vertical transfer of overpressure from fluid migration via faults as 
none occurs in the mud diapir area (Figures 1 and S1). Additionally, regional compression (i.e., horizontal 
loading) is not regarded as a significant cause of overpressure in the basin because it is improbable to occur 

Figure 2.  Stratigraphic log, aerial images, and interpretation of the outcrop on the western side of Rio Albonello valley (WGS84, 44.197466°N, 11.841907°E). 
(a) Gray mudstones (U1) at the outcrop base are the mud diapir (U7) source unit. View from SE. (b) A head scarp marks the abrupt truncation of U4-5 above 
and downslope of the mud diapir. View from the East. (c) Upper Spungone Mb. (U5) olistolith within U6. (d) Carbonate concretion within the uppermost U1 
(tape is 1 m).
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Figure 3.  (a, b) Details of the deformation associated with the mud diapir intrusion in the western Rio Albonello valley. Locations in Figure 2. (c) Boudinage 
of sandstone beds and mobilized block within U2 mudstones. (d) Vertical contact between intruded mud (U7) and the pierced calcarenites (U3). A block of 
remobilized U2 is shown.
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in shallow and underconsolidated sequences, such as those involved in the intrusion. Instead, the carbonate 
concretions within U1 provide firm evidence for an active, along strata fluid migration system and associat-
ed lateral transfer of overpressure in the Samoggia basin (Figure 4a).

Since the late Zanclean, basin tilt favored pressure buildup and fluid escape from the forming, and still 
poorly sealed, Marzeno ramp anticline. The basin asymmetry promoted updip fluid migration from the NE, 
according to the maximum tilt of the deformation front, and laterally from the SE sector of the Marzeno 
ramp. During this period, recently generated microbial methane possibly mixed with minor amounts of 
thermogenic hydrocarbons sourced from deeper foredeep units (Figure 1c; Oppo et al., 2017). However, the 

Figure 4.  History of fluid migration in the Samoggia basin with schematic pressure-depth plots. (a) 3.59 Ma: methane migration resulted in diffuse seafloor 
seepage with the formation of methane-derived carbonates; (b) 3.00 Ma: methane seepage ceased with the deposition of U2 sandstones and the overlying 
U3-5 units. Increased basin tilt led to small-scale slope destabilization, while lateral migration focused overpressure toward the basin margin; (c) 2.87 Ma: 
overpressure reached near-lithostatic values, leading to the mud diapir formation and the collapse of the already unstable slope.
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low content of organic matter and its dilution within the thick AA Fm. (Capozzi & Picotti, 2003) account 
for reduced methane volume and, thus, reduced potential to generate the overpressure. A different, more 
impactful, overpressure generating mechanism is necessary.

Disequilibrium compaction is the most common cause of elevated fluid overpressure within rapidly depos-
ited mudstones (Osborne & Swarbrick, 1997). Disequilibrium compaction is mainly documented in deltas, 
where it causes early burial mud diapirism (Blanchard et al., 2018; Morgan et al., 1968). Less frequently, it 
occurs within syntectonic sediments of foreland basins, such as the Northern Apennines (Obradors-Prats 
et al., 2017). In the Samoggia basin, the rapid deposition of U1 mudstones led to disequilibrium compaction 
and overpressure. However, the mud diapir's location near the edge of the basin where U1 thins and is less 
buried limited the overpressure magnitude. Thus, an additional mechanism was responsible for increasing 
the overpressure to the near-lithostatic levels needed for the intrusion.

5.1.  Transfer of Shallow Overpressure

Inclined units can be responsible for the local enhancement of pore pressure at structural crests or at ba-
sin margins, where they impose overpressure conditions and promote hydrofracture and fluid escape in 
passive margins (Reilly & Flemings, 2010). Lateral overpressure transfer has been implied in basins where 
low-permeability sediments confine permeable (i.e., sandstone) inclined units, which laterally transfer 
overpressure from deeper to shallower areas (Davies, 2003; Reilly & Flemings, 2010). The overpressure can 
either develop within the permeable layers or transfer into them from the surrounding units. Because the 
mud diapir formed in a zone with reduced potential for creating near-lithostatic pressure, the only possible 
mechanism to increase overpressure is its convergence toward the uplifted southern margin of the basin via 
inclined carrier beds. Here, it exceeded the least principal stress, inducing overburden hydrofracture and 
the mud diapir formation.

The Samoggia pressure system differs from any other documented example of lateral transfer for one key 
aspect: the overpressure built up and propagated through shallow, unconsolidated mudstone units and not 
along deeply buried, confined permeable sandstone layers. Although lateral transfer is most commonly 
observed along permeable beds such as sandstones (Davies, 2003; Reilly & Flemings, 2010), this condition 
is not theoretically required. In fact, lateral transfer could occur via any intra-layer permeability, and our 
data suggests that in the Samoggia basin it happened along layer-parallel permeability inside the mudstone 
sequence. This interpretation is supported by the lack of laterally continuous sandstone units underneath 
and within the AA Fm. (Figure 1) and by the MDAC occurrence along well-defined strata. Accordingly, 
the topmost U1 sediments acted as an overpressure carrier bed and not the U2 sand sheet and U3-5 cal-
carenites, the only more permeable units occurring in the area (Figure 2). U2 and U3-5 experienced early 
diagenesis, preserving part of their primary porosity. This early diagenesis may have created a weak seal 
and contributed to overpressure. Field and theoretical observations support this hypothesis. It is implau-
sible that near-lithostatic overpressure diffused downwards from U2-5 into the uppermost c. 100 m of U1 
mudstones because overpressure would have propagated in the direction with the largest pressure gradient. 
Indeed, at the time of intrusion (2.87 Ma), U2-5 were close or exposed at the seafloor, thus creating a net 
pressure gradient directed upward. An upward-directed pressure gradient would have favored overpressure 
dispersion into the water column. Additionally, U2-3 show tensional deformation such as boudinage and 
dispersed strata blocks, together with folding and fractures. This suggests a passive involvement in the in-
trusion rather than a driving role.

Detailed time calibration of the sedimentary sequence allows reconstructing the chronology of fluid mi-
gration and escape, started with fluid seepage and MDAC formation at 3.59 Ma (Figure 4). The mud diapir 
formation at 2.87 Ma indicates that overpressure build up occurred relatively fast in the Samoggia basin, 
over a time interval of only ca. 700 kyr. Most likely, the diapir intrusion was the principal and final pressure 
release event as no evidence of later fluid emission is documented.
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6.  Slope Failure
The synsedimentary deformation within U3-5 points to minor slope instability along the margin since 
3.0 Ma (Figure S5). This minor instability was mainly promoted by the contemporaneous tilt of the margin. 
Because overpressure can precondition for slope failure (Dugan & Flemings, 2000), we hypothesize that 
the early stages of pressure build up contributed to the initial instability. It is reasonable that this instability 
weakened the overburden by locally thinning the shallowest sedimentary units and, likely, generating a 
network of fractures. As a result, the reduced shear strength favored the mud diapir formation at 2.87 Ma. 
The mud intrusion triggered a major slope failure, as testified by the 5 km long scarp above the diapir and 
the lack of U4-5 downslope to the diapir. The U5 olistoliths hosted within U6 (Vid. S1) are only downslope 
to the scarp (i.e., outrunner blocks) and provide further evidence of gravitative collapse. Therefore, the 
spatial association between the mud diapir and the evidence of slope instability suggests a mutually causal 
relationship. On this basis, we also hypothesize that the mud diapir extends laterally in the subsurface for c. 
5 km to the East of Rio Albonello, along the area marked by the scarp at the surface (Figure 1b).

7.  Conclusions
The evidence presented here shows that sediment intrusion can develop with similar characteristics at shal-
low and at elevated depths in deformed foredeep settings. This has profound implications for linking fluid 
hydrodynamics at different burial depths to the increased potential for seafloor hazards.

This study provides evidence of lateral transfer of near-lithostatic overpressure along shallow, low-permea-
bility sediments. The evidence documented in the Samoggia basin shows that near-lithostatic overpressure 
can focus at the edge of deforming satellite basins, resulting in early burial mud diapirism and slope in-
stability. In this setting, overpressure can generate and transfer laterally within shallow, low-permeability 
sediments. Because lateral transfer can move high-risk overpressure across significant distances from their 
source, it may undermine the seafloor's long-term stability in areas not usually affected by this process.

Rio Albonello is the first description of early burial mud diapirism, an elusive and poorly recognized phe-
nomenon, in a deformed foredeep setting. Further occurrences should be identified in other basins, particu-
larly in areas non-traditionally prone to its occurrence.

Data Availability Statement
All data used for this study is available on Figshare at https://doi.org/10.6084/m9.figshare.16567395. Well 
data can be retrieved on ViDEPI https://www.videpi.com/videpi/pozzi/consultabili.asp.
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