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A near-threshold RISC-V core
with DSP extensions for scalable IoT Endpoint Devices
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Pasquale Davide Schiavone, Student Member, IEEE, Andreas Traber, Igor Loi, Member, IEEE, Antonio Pullini, Student

Member, IEEE, Davide Rossi, Member, IEEE, Eric Flamand, Frank K. Gürkaynak, and Luca Benini, Fellow, IEEE

Abstract—Endpoint devices for Internet-of-Things not only need
to work under extremely tight power envelope of a few milliwatts, but
also need to be flexible in their computing capabilities, from a few
kOPS to GOPS. Near-threshold (NT) operation can achieve higher
energy efficiency, and the performance scalability can be gained
through parallelism. In this paper we describe the design of an open-
source RISC-V processor core specifically designed for NT operation
in tightly coupled multi-core clusters. We introduce instruction-
extensions and microarchitectural optimizations to increase the
computational density and to minimize the pressure towards the
shared memory hierarchy. For typical data-intensive sensor process-
ing workloads the proposed core is on average 3.5× faster and 3.2×
more energy-efficient, thanks to a smart L0 buffer to reduce cache
access contentions and support for compressed instructions. SIMD
extensions, such as dot-products, and a built-in L0 storage further re-
duce the shared memory accesses by 8× reducing contentions by 3.2×.
With four NT-optimized cores, the cluster is operational from 0.6 V to
1.2 V achieving a peak efficiency of 67 MOPS/mW in a low-cost 65 nm
bulk CMOS technology. In a low power 28 nm FDSOI process a peak
efficiency of 193 MOPS/mW (40 MHz, 1 mW) can be achieved.

Index Terms—Internet-of-Things, Ultra-low-power, Multi-core,
RISC-V, ISA-extensions.

I. INTRODUCTION

In the last decade we have been exposed to an increasing demand
for small, and battery-powered IoT endpoint devices that are con-
trolled by a micro-controller (MCU), interact with the environment,
and communicate over a low-power wireless channel. Such devices
require ultra-low-power (ULP) circuits which interact with sensors.
It is expected that the demand for sensors and processing platforms
in the IoT-segment will skyrocket over the next years [1]. Current
IoT endpoint devices integrate multiple sensors, allowing for sensor
fusion, and are built around a MCU which is mainly used for
controlling and light-weight processing. Since endpoint devices
are often untethered, they must be very inexpensive to maintain and
operate, which requires ultra-low power operation. In addition, such
devices should be scalable in performance and energy efficiency
because bandwidth requirements vary from ECG sensors to cameras,
to microphone arrays and so does the required processing power. As
the power of wireless (and wired) communication from the endpoint
to the higher level nodes in the IoT hierarchy is still dominating the
overall power budget [2], it is highly desirable to reduce the amount
of transmitted data by doing more complex near-sensor processing
such as feature extraction, recognition, or classifications [3]. A
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simple MCU is very efficient for controlling purposes and light-
weight processing, but not powerful nor efficient enough to run
more complex algorithms on parallel sensor data streams [4].

One approach to achieve a higher energy efficiency and perfor-
mance is to equip the MCU with digital signal processing (DSP) en-
gines which allow to e.g. extract the heart rate of an ECG signal more
efficiently and reduce the transmission costs by only transmitting the
extracted feature [5]. Such DSPs achieve a very high performance
when processing data, but are not as flexible as a processor and
also harder to program. An even higher energy efficiency can be
achieved with dedicated accelerators. In a biomedical platform for
seizure detection it has been shown that it is possible to speed up
Fast Fourier Transformations (FFT) by a dedicated hardware block
which is controlled by a MCU [6]. Such a combination of MCU and
FFT-accelerator is superior in performance, but also very specialized
and hence, not very flexible nor scalable.

The question arises if it is possible to build a flexible, scalable
and energy-efficient platform with programmable cores consuming
only a couple of milliWatts. We claim that, although the energy
efficiency of a custom hardware block can never be achieved
with programmable cores, it is possible to build a flexible and
scalable multi-core platform with a very high energy efficiency.
ULP-operations can be achieved by exploiting the near-threshold
voltage regime where transistors become more energy-efficient [7].
The loss in performance (frequency) can be compensated by
exploiting parallel computing. Such systems can outperform single
core equivalents due to the fact that they can operate at a lower
supply voltage to achieve the same throughput [8].

A major challenge in low-power multi-core design is the memory
hierarchy. Low-power MCUs typically fetch data and instructions
from single-ported dedicated memories. Such a simple memory
configuration is not adequate for a multi-core system, but on the
other hand, complex multi-core cache hierarchies are not compatible
with extremely tight power budgets. Scratchpad memories offer
a good alternative to data caches as they are smaller and cheaper
to access [9]. Another advantage is that such tightly-coupled-
data-memories (TCDM) can be shared in a multi-core system
and allow the cores to work on the same data structure without
coherency hardware overhead. One limiting factor in decreasing the
supply voltage are memories which typically start failing first. The
introduction of standard-cell-memories (SCMs) on the other hand
allows for near-threshold operation and consume fewer milliWatts
at the price of additional area [10]. In any case, memory access time
and energy is a major concern in the design of a processor pipeline
optimized for integration in an ULP multi-core cluster.

An open source ISA is a desirable starting point for an IoT
core, as it can potentially decrease dependency from a single IP
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provider and cut cost, while at the same time allowing freedom
for application-specific instruction extensions. Therefore, we focus
on building a micro-architecture based on the RISC-V instruction
set architecture (ISA) [11] which achieves similar performance and
code density to state-of-the art MCUs based on a proprietary ISA,
such as ARM Cortex M series cores. The focus of this work is
on ISA and micro-architecture optimization specifically targeting
near-threshold parallel operation, when cores are embedded in a
tightly-coupled shared-memory cluster. Our main contributions can
be summarized as follows:

• An optimized instruction fetch micro-architecture, featuring
an L0 buffer with prefetch capability and support for hardware
loop handling, which significantly decreases bandwidth and
power in the instruction memory hierarchy.

• An optimized execution stage supporting flexible fixed-point
and saturated arithmetic operations as well as SIMD extensions,
including dot-product and shuffle instructions, and misaligned
load support that greatly reduce the load-store traffic to data
memory while maximizing computational efficiency.

• An optimized pipeline architecture and logic, RTL design and
synthesis flow which minimize redundant switching activity
and expose one full cycle time for accessing instruction caches
and two cycles for the shared data TCDM, thereby giving
ample timing budget to memory access that is most critical
in near-threshold shared-memory operation.

The backend of the RISC-V GCC compiler has been extended
with fixed-point support, hardware loops, post-increment addressing
modes and SIMD instructions1. We show that with the help of
the additional instructions and micro-architectural enhancements,
signal processing kernels, such as filters, convolutions, etc. can be
completed 3.5× faster on average, leading to a 3.2× higher energy
efficiency. We also show that convolutions can be optimized in
C with intrinsics by using the dot-product and shuffle instruction,
which reduces accesses and contentions for the shared data memory
utilizing the register file as L0-storage allowing the system to achieve
a near linear speedup of 3.9× when using four cores instead of one.

The following sections will first summarize the related work
in Section II and explain the target multi-core platform and its
applications in Section III. The core architecture is presented in
Section IV with programming examples in Section V. Finally,
Section VI discusses the experimental results and in Section VII
we draw our conclusions.

II. RELATED WORK

The majority of IoT endpoint devices use single core MCUs for
controlling and light-weight processing. Single-issue in-order cores
with a high IPC are typically more energy-efficient as no operations
have to be repeated due to mispredictions and speculation [12].
Commercial products often use ARM processors from the Cortex-
M families [13]–[15] which work above the threshold voltage.
Smart peripheral control, power managers and combination with
non-volatile memories allow these systems to consume only tens of
milliWatts in active state, and a few microWatts in sleep mode. In
this work we will focus on active power and energy minimization.
Idle and sleep reduction techniques are surveyed in [16].

1Both the RTL HW description and the GCC compiler are open source and can
be downloaded at http://www.pulp-platform.org

Several MCUs in the academic domain and a few commercial
ones exploit the use of near-threshold operation to achieve
energy-efficiencies in active state down to 10 pJ/op [14], [17]. These
designs take advantage of standard cells and memories which are
functional at very low voltages. It is even possible to operate in the
sub-threshold regime and achieve excellent energy-efficiencies of
2.6 pJ/op at 320 mV and 833 kHz [18]. Such systems can consume
well below 1mW active power, but reach their limit when more than
a few MOPS of computing power is required as for near-sensor
processing for IoT endpoint devices.

One way to increase performance while maintaining power
in the mW range is to use DSPs which make use of several
optimizations for data intensive kernels such as parallelism through
very long instruction words (VLIW) and specialized memory
architectures. Low-power VLIW DSPs operating in the range of
3.6-587 MHz where the chip consumes 720 µW to 113 mW have
been proposed [19]. It is also possible to achieve energy-efficiencies
in the range of a couple of pJ/op. Wilson et al. designed a VLIW
DSP for embedded Fmax tracking with only 62 pJ/op at 0.53V [20],
and a 16b low-power fixed-point DSP with only about 5 pJ/op has
been proposed by Le et al. [21]. DSPs typically have zero overhead
loops to eliminate branch overheads and can execute operations in
parallel, but are harder to program than general purpose processors.
In this work we borrow several ideas from the DSP domain, but
we still maintain complete compatibility with the streamlined
and clean load-store RISC-V ISA, and full C-compiler support
(no-assembly level optimization needed) with a simple in-order
four-stage pipeline with Harvard memory access.

Since typical sensor data from ADCs uses 16b or less, there
is a major trend to support SIMD operations in programmable
cores such as in the ARM Cortex M4 [22] which supports DSP
functionalities while remaining energy-efficient (32.8 µW/MHz
in 90 nm low power technology [22]). The instruction set contains
DSP instructions which offer a higher throughput as multiple
data elements can be processed in parallel. ARM even provides a
Cortex-M Software Interface Standard (CMSIS) DSP library which
contains several functions which are optimized with builtins [22].
Performance can for example be increased with a dot-product
instruction which accumulates two 16b×16b multiplication results
in a single cycle. Such dot-product operations are suitable for
media processing applications [23] and even versions with 8b inputs
can be implemented [24] and lead to high speedups. While 16b
dot-products are supported by ARM, the 8b equivalent is not.

Dedicated hardware accelerators, coupled with a simple processor
for control, can be used for specific tasks offering the ultimate
energy efficiency. As an example, a battery-powered multi-sensor
acquisition system which is controlled by an ARM Cortex M0 and
contains hardware accelerators for heart rate detection has been
proposed by Konijnenburg et al. [4]. Ickes et al. propose another
system with FFT and FIR filter accelerators which are controlled
by a 16b CPU and achieves an energy efficiency of 10 pJ/op at
0.45V [25]. Also convolutional engines [26]–[28] which outperform
general purpose architectures have been reported. Hardwired
accelerators are great to speedup certain tasks and can be a great
improvement to a general purpose system as described in [28].
However, since there is no standard to interface such accelerators,
and the fact that such systems cannot be scaled up, prompts us to
explore in this paper a scalable multi-core platform which covers
all kind of processing demands and is fully programmable.
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NXP, TI and other vendors offer heterogenous dual-core MCUs
featuring decoupled execution of an extremely energy-efficient
Cortex M0+ for control tasks, and a Cortex M3 or M4 for
computationally-intensive kernels [15], [29]. Such systems are
not scalable in terms of memory hierarchy and number of cores
as cores are embedded in their own subsystems and M0+ cannot
run M3/4 executables. A few multi-core platforms have already
been proposed. E.g. Neves et al. proposed a multi-core system
with SIMD capabilities for biomedical sensors [30] and Hsu et
al. implemented a reconfigurable SIMD vector machine which is
very powerful, energy-efficient and scalable in performance [31].
Both are specialized processors which are not general purpose,
but optimized for a specific domain and very difficult to program
efficiently in C. A very powerful multi-core architecture consisting
of 64 cores operating near the threshold voltage has been proposed
by [32]. The system is designed for high performance computing
and its power consumption is in the range of a couple of hundreds
milliWatts and not suitable for IoT-applications.

III. PARALLEL ULTRA-LOW POWER PLATFORM

In this section we briefly review the parallel ultra-low power
(PULP) cluster architecture which embeds our RISC-V cores.
Interested readers are refered to [33]–[35] for more details. Our
focus is on highlighting the key elements of the PULP memory
hierarchy and the targeted workloads, which have been the main
drivers of the core design. Many MCUs operate on instruction, and
data memories and do not use caches.

Parallel execution in the PULP cluster requires a scalable memory
architecture to achieve near-ideal speedups in parallel applications,
while curtailing power. A PULP cluster supports a configurable
number of cores with a shared instruction cache and scratchpad
memory. Both memory ports have variable latency and can stall
the pipeline. Figure 1 shows a PULP cluster in a configuration with
4 cores, and 8 TCDM-banks. A shared I$ is used to reduce the
cost per core, leveraging the single-program-multiple-data nature
of most parallel near-sensor processing application kernels. A
tightly coupled DMA engine manages transfers between IO and L2
memory and the shared TCDM. Data access pattern predictability
of key application kernels, the relatively low clock frequency target
and the tightly constrained area and power budget make a shared
TCDM preferable over a collection of coherent private caches [9].

The data memories are split in area-efficient SRAM, and energy-
efficient SCM blocks. Since SCMs are built of standard cells, it is
possible to scale the supply voltage and operate near the threshold
voltage of transistors [10]. By clock-gating the SRAM blocks and
the individual cores, it is possible to scale down the system to
a simple single core architecture which can act as an extremely
energy-efficient controller operating near the threshold voltage
where only SCMs are active. If more processing power is required,
the power manager of the cluster can wake up more cores and by
dynamic-voltage and frequency-scaling (DVFS), the performance
of a 28nm FDSOI implementation can be adjusted from a couple
of operations per second to 2.35 GOPS by scaling the voltage from
0.32V to 1.15V where the cores run at 630 MHz (Throughput =
#cores· IPC· frequency). The PULP-cluster has been successfully
taped out with OpenRISC, and RISC-V cores [33]–[35] and its
latest version achieves a top energy efficiency in NT-operation of
193 MOps/mW in 28 nm FDSOI technology.

Fig. 1. The PULP cluster with four cores, eight shared TCDM-banks and a shared
I$. Each TCDM-bank is split in 1 kB SCM and 8 kB SRAM. The shared I$ is fully
implemented with SCMs allowing ultra-low voltage operation. The cores (PE) are
RISC-V architectures with extended DSP capabilities.

In this paper, we will focus on ISA extensions, micro-architecture
optimizations and RTL design to balance pipeline stages and further
improve the energy efficiency of the RISC-V cluster. It is well
known that memory accesses for both data and instructions are
the most critical operations that contribute to energy consumption
in a microprocessor as we will show in Section VI-B, and we will
present several methods to reduce costly memory access operations
for both data and instructions.

The RISC-V ISA used as a starting point in this paper already
supports a compressed ISA-extension that allows several common
instructions to be coded in 16b instead of 32b, reducing the pressure
on the instruction cache (I$). The PULP architecture is designed
to use a shared I$ to decrease the per-core instruction fetch cost. A
shared I$ is especially efficient when the cores execute the same
parallel program (e.g. when using OpenMP). Since PULP, unlike
GP-GPUs, does not enforce strict single-instruction-multiple data
execution, the shared cache may produce stalls that add to energy
losses. We have therefore added a L0-buffer into the core to reduce
access contentions, reduce instruction read power, and shorten the
critical path between I$ and the core. In addition we have modified
the L0-buffer to cope with non-aligned accesses due to compressed
instructions more efficiently as discussed in Section IV-B. As for
the data access, we will illustrate the major gains that can be
achieved by our extensions using the example of a 2D-convolution
implementation that is widely used in many applications in the image
processing domain [36]. 2D-convolutions are not only very pervasive
operators in state-of-the-art sensor data processing , but they also
contain the same iterative patterns as digital filtering (FIR, IIR)
and statistical signal processing (matrix-vector product) operations.
The main task of a convolution operation is to multiply subsequent
values with a set of weights and accumulate all values for which a
Multiply-Accumulate (MAC) units would be most commonly used.

A straightforward implementation of a 5×5 2D-convolution of a
64×64 pixel image on the RISC-V architecture with compressed in-
structions takes 625k cycles, of which 389k are for various load/store
(ld/st) operations to and from memory and 100k are actual operations
calculating the values. The same algorithm when parallelized to four
cores on the PULP requires only 173k cycles per convolution on
average. However, increased parallelism also results in increased
demand to the shared TCDM which puts additional strain on the
TCDM design. TCDM-contentions can be reduced by increasing
the number of banks, which unfortunately in turn increases power-
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Fig. 2. a) Example of a 5×5 convolution to compute output N and N+1 in the
image domain and b) how the register content is efficiently updated using the shuffle
instruction. One 5×5 convolution requires exactly 4 move, one shuffle, and 2 loads to
prepare the operands and 1 dotp-, and 6 sdotp-operations to compute one output pixel.

per-access due to more complex interconnection and increased
memory area because smaller and less dense memories have to be
used. Improving the arithmetic capabilities of the cores will further
exacerbate this problem as it will lead to a higher portion of ld/st
instructions which will result in even more contentions (up to 20%).

A common technique to reduce the data bandwidth is to make
use of vector instructions that process instead of a single 32 b value,
two 16 b values, or four 8 b values simultaneously. Most arithmetic
and logic operations can be parallelized in sub-fields with very little
overhead. As explained in Section IV, we have added a large variety
of vector instructions to the RISC-V ISA including dot product
(dotp, sdotp) instructions that can multiply four pairs of 8 b numbers
and accumulate them in a single instruction.

Allowing one data word to hold multiple values directly reduces
the memory bandwidth for data accesses, which is only useful if
the data at sub-word level can be efficiently manipulated without
additional instructions. Figure 2 explains how a 5×5 2D-convolution
can be computed with vector instructions. It can be seen that for
each convolution step, 25 data values have to be multiplied with 25
constants and accumulated. If 8 b values are being used, registers can
be used to hold vectors of four elements each. Once this calculation
is completed, for the next step of the iteration, the five values of the
first row will be discarded, and a new row of five values will be read.
If these vectors are not aligned to word boundaries, an unaligned
word has to be loaded from memory which can be supported either
in hardware or software. A software implementation requires at
least five instructions to load two words and combine the pixels
in a vector. In addition, it blocks registers from being used for
actual computations, which is the reason why we support unaligned
memory accesses directly in the load-store-unit (LSU) by issuing
two subsequent requests to the shared memory. Hence, unaligned
words can be loaded in only two cycles. We also implement the
shuffle instruction that can combine sub-words from two registers
in any combination. Figure 2b) shows how move and shuffle
instructions are used to recombine the pixels in the right registers
instead of loading all elements from memory. This allows to reduce
register file pressure and the number of loads per iteration from 5 to
2. One iteration can therefore be computed in about 20 instructions
(4 move, 1 shuffle, 2 load, 7 dotp, 1 store, 5 control flow), or
26 cycles on average. Thus, when all of the improvements are

combined, the time to complete the operations can be reduced by
14.72× when compared to the original single core implementation.
Coupled by efficient DVFS methods used in a PULP cluster this
performance gain can be used to increase energy efficiency by
working at NT-operation or to reduce computation time at the same
operation voltage, allowing the system a wide range of tunability
which will be very important for future IoT systems that need to
adapt to a variety of operating conditions and computation loads.

IV. RISC-V CORE MICRO-ARCHITECTURE

In this section, we will detail the extensions made to the
RISC-V ISA and micro-architectural optimizations for increasing
the efficiency of the processor core when working in a multi-core
platform with shared memory. The pipeline architecture will be
described first in Section IV-A and the individual components
of the core are discussed starting with Section IV-B where the
IF-stage with the pre-fetch buffer is explained. Hardware-loop
and post-increment extensions to the RISC-V ISA are explained
in Section IV-C, and IV-D. The EX-stage with a more powerful
dot-product-multiplier and a vector-ALU with fixed-point support
and a shuffle-unit will be explained in Section IV-E and IV-F.

A. Pipeline Architecture

The number of pipeline stages used to implement the processor
core is one of the key design decisions. A higher number of pipeline
stages allows for higher operating frequencies, increasing overall
throughput, but also increases data and control hazards, which
in turn reduces the IPC. For high-performance processors, where
fast operation is crucial, optimizations such as branch predictions,
pre-fetch-buffers, and speculation can be introduced. However,
these optimizations add to the overall power consumption and are
usually not viable for ultra-low power operation where typically
a shallow pipeline of 1-5 stages with a high IPC is preferred.

The basic goal to keep the IPC high is to reduce stalls as much as
possible. The ARM Cortex M4, for example, features a 3-stage fetch-
decode-execute pipeline with a single write-back port on the register
file (RF). The absence of a fourth pipeline stage and a separate
write-back port for the load-store unit (LSU) leads to stalls when
executing load-operations. ARM compilers reduce such stalls by
grouping load/store-operations as much as possible as this removes
stalls for all subsequent load/store operations. A forwarding path
from load-operations to store-operations allows to efficiently copy
data hence and forth, but also limits the frequency of such a pipeline.

In the presented multi-core setting, the shared TCDM can be
accessed over a logarithmic interconnect which adds delay for arbi-
tration and muxing to the data request and return paths. In contrast
to a 3-stage pipeline, our 4-stage pipeline organization exposes 2 full
cycles for memory accesses. This allows to balance TCDM request
and return paths by employing useful skew techniques. Skewing
the clock of the core allows to balance the request and return paths
and thus achieving a higher clock frequency. The amount of skew
depends on the available memory macros, the number of cores
and memory banks in the cluster. This 65 nm implementation with
a 2.8 ns clock period for 1.08 worst-case conditions uses a 0.5 ns
skew. Even in a multi-core context the cluster is ultimately achieving
frequencies of 350-400 MHz when implemented in 65 nm. Hence,
thanks to a balanced pipeline the PULP cluster reaches higher
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Fig. 3. Simplified block diagram of the RISC-V core architecture showing its four pipeline stages and all functional blocks.

frequencies than commercially available MCUs operating in the
range of 200 MHz (CortexM4 based MCUs in 90 nm).

The 4-stage pipeline requires a separate write-back port on the
latch-based RF for the LSU which increases its size by 1 kGE but
also eliminates the write-back muxes (ALU, CSR, MULT) from the
critical path. The organization of the pipeline and all functional units
are shown in Figure 3. Since the critical path is mainly determined
by the memory interface, it was possible to extend the ALU with
fixed-point arithmetic and a more capable multiplier that supports
dotp operations without incurring additional timing penalties.

B. Instruction Fetch Unit

Similar to the Thumb-2 instruction set of ARM, the
RISC-V standard contains a specification for compressed instruc-
tions which are only 16b long and mirror full instructions with a re-
duced immediate size and RF-address. As long as these 16b instruc-
tions are aligned to 32b word boundaries, they are easy to handle. A
compressed instruction decoder unit detects and decompresses these
instructions into standard 32b instructions, and stalls the fetch unit
for one cycle whenever 2 compressed instructions have been fetched.

Inevitably some 32b instructions will become unaligned when an
odd number of 16b instructions are followed by a 32b instruction,
requiring an additional fetch cycle for which the processor will
have to be stalled. As described earlier in Section III, we have
added a pre-fetch-buffer which allows to fetch a complete cache
line (128b) instead of a single instruction to reduce the access
contentions associated with the shared I$ [37]. While this allows
the core to access 4 to 8 instructions in the pre-fetch-buffer, the
problem of fetching unaligned instructions remains, it is just shifted
to cache-line boundaries as illustrated in Figure 4 where the current
32b instruction is split over two cache-lines.

To prevent the core from stalling in such cases, an additional
register is used to keep the last instruction. In the case of an
unaligned 32b instruction, this register will contain the lower 16b of
the instruction which can be combined with the higher part (1) and
forwarded to the ID-stage. This addition allows unaligned accesses
to the I$ without stalls unless a branch, hardware loop, or jump is
processed. In these cases, the FSM has to fetch a new cache-line
to get the new instruction. The area cost of this pre-fetch buffer is
mainly due to additional registers and accounts for 4 kGE.

C. Hardware-loops

Zero-overhead loops are a common feature in many processors,
especially DSPs, where a hardware loop-controller inside the
core can be programmed by the loop count, the beginning and
end-address of a loop. Whenever the current program counter
(PC) matches the end-address of a loop, and as long as the loop
counter has not reached 0, the hardware loop-controller provides
the start-address to the fetch engine to re-execute the loop. This
eliminates instructions to test the loop counter and perform branches,
thereby reducing the number of instructions fetched from I$.

The impact of hardware loops can be amplified by the presence
of a loop buffer, i.e. a specialized cache holding the loop instructions,
which removes any fetch delay [38], in addition fetch power can
also be reduced by the presence of a small loop cache [39]. Nested
loops can be supported with multiple sets of hardware loops, where
the innermost loop always gives the highest speedup as it is the
most frequently executed. We have added hardware loop support
to the RISC-V cores at the micro-architectural level with only two
additional blocks: A controller and a set of registers to store the
loop information. Each set has associated 3 special registers to
hold the loop counter, the start- and the end-address. The registers
are mapped in the CSR-space which allows to save and restore
loop information when processing interrupts or exceptions. A set
of dedicated instructions have been provided that will initialize a
hardware loop in a single instruction using lp.setup (or lp.setupi).
Additional instructions are provided to set individual registers

Fig. 4. Block Diagram of the pre-fetch buffer with an example when fetching full
instructions over cache-line boundaries.
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TABLE I
INSTRUCTIONS DESCRIPTION

Instruction format Description Instruction format Description
Hardware Loop Instructions Fixed Point Instructions

lp.starti L, I Set the HW loop start address p.add[R]N rD, rA, rB, I Addition with round and
normalization by I bits a

lp.endi L, I Set the HW loop end address p.sub[R]N rD, rA, rB, I Subtraction with round and
normalization by I bits a

lp.count L, rA Set the HW loop number of
iterations

p.mul[hh][R]N rD, rA, rB, I Multiplication with round and
normalization by I bits ab

lp.setup L, rA, I HW loop setup with registers p.mac[hh][R]N rD, rA, rB, I MAC with round and
normalization by I bits ab

lp.setupi L, I1, I2 HW loop setup with immediate p.clip rD, rA, I Clip the value between−2I−1

and 2I−1−1
Extended Load/Store Instructions Vectorial Instructions

p.l{b,h,w} rD, {rB,I}(rA) Load a value from address
(rA+{rB,I})c

pv.inst.{b,h} rD, rA, rB General vectorial instruction
between two registers c

p.l{b,h,w} rD, {rB,I}(rA!) Load a value from address rA
and increment rA by{rB,I} c

pv.inst.{b,h} rD, rA, I General vectorial instr. between
a register and an immediate c

p.s{b,h,w} rB, {rD,I}(rA) Store a value to address
(rA+{rD,I}) c

p.s{b,h,w} rB, {rD,I}(rA!) Store a value to address rA and
increment rA by{rD,I} c

a

If R is not specified, there is no round operation before shifting.
b

If hh is specified, the operation takes the higher 16b of the operands.
c

b, h, w specific the data lenght of the operands: byte (8b), halfword (16b), word (32b).

explicitly (lp.start, lp.end, lp.count, lp.counti).
Since the performance gain is maximized when the loop body

is small, supporting many register sets only brings marginal
performance improvements at a non-negligible cost in terms of area
(≈ 1.5 kGE per register set). Our experiments have shown that two
register sets provide the best trade-off. As mentioned earlier, our im-
proved cores feature a pre-fetch-buffer able to hold 4 to 8 instructions
of the I$. This pre-fetch-buffer can act as a very small loop cache
and if the loop body fits into the pre-fetch-buffer, I$ accesses can be
eliminated during the loop, reducing the power considerably. The
GCC compiler has been modified to automatically insert hardware
loops by using the dedicated instructions provided in Table I.

D. Load-store unit

The basic RISC-V architecture only supports one type of ld/st op-
eration where the effective address is computed by adding an offset
coming from an immediate to the base address stored in a register.
We have first added an additional addressing mode where the offset
can be stored in a register instead of an immediate, and then added
a post-increment addressing mode with an immediate or register
offset to automatically update pointers. A pre-increment ld/st mode
was not deemed necessary as every pre-increment ld/st operation
can be rewritten in a post-increment ld/st operation. Support for post-
increment instructions leads to high speedup of up to 20% when
memory access patterns are regular as it is the case for example in a
matrix multiplication. To support ld operations with post-increment,
two registers have to be updated in the RF: the data from memory
and the incremented address pointer which is computed in the ALU.
Since ALU and LSU have separate register file write ports, both
values can be written back without experiencing any contentions.
Table I shows the various forms of additional ld/st-instructions.

The LSU has also been modified to support unaligned data
memory accesses which frequently happen during vector operations
such as the 5×5 2D-convolution described earlier in Section III. If

Fig. 5. a) support for unaligned access in software (5 instructions/cycles) and b)
with hardware support in the LSU (1 instruction, 2 cycles).

the LSU detects an unaligned data access, it issues first a request
to the high word and stores the data in a temporary register. In a
second request, the lower bytes are accessed, which are then on
the fly combined with the temporary register and forwarded to the
RF. This approach not only allows to reduce the pressure on the
number of used registers, but also reduces code size as shown in
Figure 5, and the number of required cycles to access unaligned
vector elements. In addition, this low-overhead approach is better
than full hardware support as this would imply to double the width
of the interconnect and change to the memory architecture.

E. EX-Stage: ALU

1) Packed-SIMD support: To take advantage of applications in
the IoT domain that can work with 8b and 16b sensor data, the ALU
of a 32b microprocessor can be modified to work on vectors of
four and two elements using a vectorized datapath segmented into
two or four parts, allowing to compute up to four bytes in parallel.
Such operations are also known as subword parallelism [40],
packed-SIMD or micro-SIMD [41] instructions.

We have extended the RVC32IM ISA with sub-word parallelism
for 16b (halfword) and 8b (byte) operations in three addressing varia-
tions. The first variation uses two registers, the second uses an imme-
diate value and the third replicates the scalar value in a register as the
second operand for the vectorial operation. Vectorial operations like
additions or subtractions have been realized by splitting the operation
in four sub-operations which are connected through the carry
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propagation signals. For example, the full 32b result is computed by
enabling all the carry propagation signals while in vector addition
at byte level, the carry propagation is terminated between sub-
operations. The final vectorial adder is therefore a 36b architecture
(32b for operands, and 4 carry bits). Vectorial comparison and shift
operations have similarly been realized by splitting the datapath in
four separate segments. A 32b comparison is then computed using
the four 8b comparison results. Logic vectorial operations as and,
or and xor are trivial since the exact same datapath can be used.

Additional sub-word data manipulation instructions are needed
to prepare vector operands [42] for vector ALUs. We have
implemented a three operand shuffle instruction that can generate
the output as any combination of the sub-words of two input
operands, while the third operand, sets selection criteria either
through an immediate value or a register as seen in Figure 6.
The shuffle instruction is supported through a tree of shared
multiplexers and can also be used to implement further sub-word
data manipulation instructions such as: insert to overwrite only one
sub-word, extract to read only one sub-word and pack to combine
sub-words of two registers in single vector.

Fig. 6. The Shuffle instruction allows to efficiently combine 8b, or 16b elements
of two vectors in a single one. For each byte the mask encodes which byte (index)
is used from which register (select).

2) Fixed-Point support: There are many applications, such as
speech processing, where floating-point accuracy is not always
needed, and simpler fixed-point arithmetic operations can be used
instead [43]. This has the advantage of re-using the integer datapath
for most operations with the help of some dedicated instructions for
fixed-point support, such as saturation, normalization and rounding.

Fixed-point numbers are often given in the Q-Format where a
Qn.m number consists of n integer bits and m fractional bits. Some
processors support a set of fixed-point numbers encoded in 8b, 16b
or 32b, and provide dedicated instructions to handle operations with
these numbers. For example, the ARM Cortex M4 ISA provides
instructions as QADD or QSUB to add two numbers and then
saturate the results to 8b, 16b or 32b.

Our extensions to the RISC-V architecture has been designed to

1 2 3 4 5

vectorial

adder

adder

vector shifter

vectorial

comparator
logic unit

clip unit

shuffle

unit

bmask_a bmask_boperand_a operand_b operand_c

bit man unit

branch-decision alu-result

alu-operator

Fig. 7. Simplified block diagram of the RISC-V ALU.

TABLE II
ADDITION OF FOUR Q1.11 FIXED-POINT NUMBERS WITH AND W/O

FIXED-POINT INSTRUCTIONS.

Without Add Norm Round With Add Norm Round
add r3, r4, r5 add r3, r4, r5
add r3, r3, r6 add r3, r3, r6
add r3, r3, r7 p.addRN r3, r3, r7, 2
addi r3, r3, 2
srai r3, r3, 2

support fixed-point arithmetic operations in any Q-format with the
only limitation that n+m<32. We provide instructions that can
add/subtract numbers in fixed-point arithmetic and shift them by a
constant amount to perform normalization. The two code examples
in Table II show how the combined add-round-normalize (p.addRN)
instruction can save both code size (3 instead of 5 instructions) and
execution time (2 cycles less). In this example, four numbers repre-
sented by Q1.11 are summed up. The result, if not normalized will
be a 14 bit long Q3.11 number. To keep the result in 12 bits, rounding
can be achieved by adding 2 units of least precision (ulp) to the result
and shift the number right by 2 places. The result can then be inter-
preted as a 12 bit number in Q3.9 format. The final p.addRN instruc-
tion achieves this rounding in a single step by first adding the two
operands using the vectorial adder, adding 2(I−1) to the intermediate
result before it is shifted by I bits utilizing the shifter of the ALU.
An additional 32b adder was added to the ALU to help with the
rounding operation as seen in the highlighted region 1 of Figure 7.

For fixed point operations, a clip instruction has been
implemented to check if a number is between two values and
saturates the result to a minimum or maximum bound otherwise.
No significant hardware has been added to the ALU to implement
the clip instruction, indeed the greater than comparison is done
using the existing comparator and the less than comparison is done
in parallel by the adder. The clip instruction relies on the input data,
therefore handling overflows is left to the programmer. Unlike the
ARM Cortex M4 implementation, our implementation requires an
additional clip instruction, but has the added benefit of supporting
any Q-number format and allows to round and normalize the value
before saturating which provides higher precision.

Table III shows an example of compiler-generated code where
two arrays, each containing n Q1.11 signed elements are added
together, then the result is normalized between−1 and 1 represented
in the same Q1.11 format. The example clearly illustrates the
difference between the RISC-V ISA with and without clip support.
Table I shows the added instructions for fixed-point support. Note
that the code to the right is not only shorter, it also does not have
control flow instructions, thereby achieving better IPC.

3) Bit manipulation support: There are many instances where
a single bit of a word needs to be accessed e.g. to access a
configuration bit of a memory-mapped register. We have enhanced
the RISC-V ISA with instructions such as p.extract (read a register
set of bits), p.insert (write to a register set of bits), p.bclr, p.bset
(clear/set a set of bits), p.cnt (count number of bits that are 1),
p.ff1,p.fl1 (find index of first/last bit that is 1 in a register) and p/clb
(count leading bits in a register).

4) Iterative Divider: To fully support the RVC32IM
RISC-V specification we have opted to support division by using
long integer division algorithm by reusing existing comparators,
shifters and adders of the ALU. Depending on the input operands,
the latency of the division operation can vary from 2 to 32
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TABLE III
ADDITION OF n ELEMENTS WITH SATURATION.

Without clip support With clip support
addi r15, r0, 0x800 addi r3, r0, n
addi r14, r0, 0x7FF lp.setup r0, r3, endL
addi r3, r0, n p.lh r4, 0(r10!)
lp.setup r0, r3, endL p.lh r5, 0(r11!)
p.lh r4, 0(r10!) add r4, r4, r5
p.lh r5, 0(r11!) p.clip r4, r4, 12
add r4, r4, r5 endL: sw 0(r12!), r4
blt r4, r15, lb
blt r14, r4, ub
j endL
lb: mv r4, r15
j endL
ub: mv r4, r14
endL: sw 0(r12!), r4

cycles. While it is slower than a dedicated parallel divider, this
implementation has low area overhead (2 kGE).

F. EX-Stage: Multiplication

While adding vectorial support for add/sub and logic operations
was achieved with relative ease, the design of the multiplier was
more involved. The simplified final multiplier architecture shown in
Figure 8 contains four modules: A 32b×32b multiplier, a fractional
multiplier, and two dot-product (dotp) multipliers.

The proposed multiplier, has the capability to multiply two
vectors and accumulate the result in a 32b value in one cycle.
A vector can contain two 16b elements or four 8b elements. To
perform signed and unsigned multiplications, the 8b/16b inputs
are sign extended, therefore each element is a 17b or 9b signed
word. A common problem with an N bit multiplier is that its output
needs to be 2·N bits wide to be able to cover the entire range. In
some architectures an additional register is used to store part of the
multiplication result. The dot product operation produces a result
with a larger dynamic than its operands without any extra register
due to the fact that its operands are either 8b or 16b. Such dot-
product (dotp) operations can be implemented in hardware with four
multipliers and a compression tree and allow to perform up to four
multiplications and three additions in a single operation as follows:

d=a[0]·b[0]+a[1]·b[1]+a[2]·b[2]+a[3]·b[3],

where a[i], b[i] are the individual bytes of a register and d is
the 32b accumulation result. The multiply-accumulate (MAC)
equivalent is the Sum-of-Dot-Product (sdotp) operation which
can be implemented with an additional accumulation input at the
compression tree. With a vectorized ALU, and dotp-operations it
is possible to significantly increase the computational throughput
of a single core when operating on short binary numbers.

The implementation of the dot-product unit has been designed
such that its longest path is shorter or equal to the critical path of
the overall system. In our case, this path is from the processor core
to the memories and vice versa. Additional pipeline registers would
have resulted in additional stalls when computing back-to-back
dotp operations. Since dotp operations are near to be timing
critical, multiplication resources are not shared between the four
regions but only within regions allowing the additional circuitry
to have no impact on the overall operation speed. Figure 8 shows
the 16b dotp-unit (region 3) and 8b dotp-unit (region 4) which
have been implemented by one partial product compressor which
sums up the accumulation register and all partial products coming
from the partial product generators. The multiplications exploit
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Fig. 8. Simplified block diagram of the Multiplier in the RISC-V core
implementation reflecting the behavioural implementation.

TABLE IV
ELEMENT-WISE MULTIPLICATION OF n Q1.11 ELEMENTS WITH ROUND AND

NORMALIZATION.

Without Mul Norm Round With Mul Norm Round
addi r3, r0, n addi r3, r0, n
lp.setup r0, r3, endL lp.setup r0, r3, endL
p.lh r4, 0(r10!) p.lh r4, 0(r10!)
p.lh r5, 0(r11!) p.lh r5, 0(r11!)
mul r4, r4, r5 p.mulsRN r4, r4, r5, 12
addi r4, r4, 0x800 endL: sw 0(r12!), r4
srai r4, r4, 12
endL: sw 0(r12!), r4

carry-save format without performing a carry-propagation before
the additions. The stand-alone multiplier has been analyzed in detail
to minimize the area-delay product. Area can be saved when sharing
compression-trees of the two dot multipliers. However, sharing
resources also makes the unit slower, which is why the dot-product-
units are described behaviorally following Synopsys Design rules
to give the synthesizer maximum freedom for optimizations.

The proposed multiplier also offers functionality to support
fixed-point numbers. In this mode the p.mul instruction accepts two
16b values (signed or unsigned) as input operands and calculates a
32b result. The p.mac multiply-add instruction allows an additional
32b value to be accumulated to the result. Both instructions produce
a 32b value which can be shifted to the right by I bits, moreover it is
possible to round the result (adding 2I−1) before shifting as shown
in Figure 8 where the fractional multiplier is shown in region 1.

Consider the code example given in Table IV that demonstrates
the difference between the RISC-V ISA with and without fixed-
point multiplication support. In this example, two vectors of n Q1.11
elements are multiplied with each other (a common operation in
the frequency domain to perform convolution). The multiplication
results in a Q2.22 number and a subsequent rounding and normaliza-
tion step will be needed to express the result with 12 bits as a Q1.11
number. It is important to note that, for such operations, performing
the rounding operation before normalization reduces the error.

The p.mulsRN multiply-signed with round and normalize
operation is able to perform all three operations (multiply, add and
shift) in one cycle thus reducing both the codesize and the number
of cycles. The two additional 32b values need to be added to the
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partial-products compressor, which does not increase the number of
the levels of the compressor-tree and therefore does not add delay
to the circuit [44].

Naturally the multiplier also supports standard 32b×32b integer
multiplications, and it is also possible to support 16b×16b + 32b
multiply-accumulate operations at no additional cost. Similar to the
ARM Cortex M4 MLS instruction a multiply with subtract using
32b operands is also supported.

The proposed ISA-extensions are realized with separate execution
units in the EX-stage which have contributed to an increase in
area (8.3 kGE ALU, 12.6 kGE multiplier). To keep the power
consumption at a minimum, switching activity at unused parts of the
ALU has to be kept at a minimum. Therefore, all separate units: the
ALU, the integer and fractional multiplier, and the dot-product unit
all have separate input operand registers which can be clock gated.
The input operands are controlled by the instruction decoder and
can be held at constant values to further eliminate propagation of
switching activity in idle units. The switching activity reduction is
achieved by additional flip-flops (FF) at the input of each unit (192
in total). These additional FFs allow to reduce the switching activity
which decreases the power consumption of the core by 50%.

V. TOOLCHAIN SUPPORT

The PULP-compiler used in this work has been derived from the
original GCC RISC-V version which is itself derived from the MIPS
GCC version. GCC-5.2 release and the latest binutils release have
been used. The binutils have been modified to support the extended
ISA as well as a few new relocation schemes have been added.

Hardware loop detection and mapping has been enabled as well as
post modified pointers detection. The GCC internal support for hard-
ware loops is sufficient but the module taking care of post modified
pointers is rather old and primitive. As a comparison, more recent
modules geared toward vectorization and dependency analysis are
way more sophisticated. One of the consequences is that the scope
of induced pointers is limited to a single loop level and we miss
opportunities that can be exposed across loop levels in a loop nest.

Further, sum of products and sum of differences are automatically
exposed allowing the compiler to always favor the shortest form
of mac/msu (use 16b×16b into 32b instead of 32b×32b into 32b)
to reduce energy.

Vector support (4 bytes or 2 shorts) has been enabled to take
advantage of the SIMD extensions. The fact that we support
unaligned memory accesses plays a key role into the exposition of
vectorization candidates. Even though auto-vectorization works well,
we believe that for deeply embedded targets such as PULP, it makes
sense to use the GCC extensions to manipulate vectors as C/C++
objects. It avoids overly conservative prologue and epilogue insertion
created by the auto vectorizer that are having a serious negative
impact on code size. We have opted for a less specialized scheme
for the fixed-point representation, to give more flexibility. The archi-
tecture supports any fixed-point format between Q2 and Q31 with
optimized instructions for normalization, rounding and clipping.

All these instructions fit nicely into the instruction combiner pass
of GCC. Normalization and rounding can be combined with com-
mon arithmetic instructions such as addition, subtraction and multi-
plication/mac, everything being performed in one cycle. Dot product
instructions are more problematic since they are not a native GCC
internal operation and the depth of its representation prevent it from

being automatically detected and mapped by the compiler which is
the reason why we rely on built-in support. More generally most of
our extensions can also be used through built-ins as an alternative
to automatic detection (in contrast with assembly insertions built-
ins can easily capture the precise semantic of the instructions they
implement). An example of using dotp instructions is given below:

// define vector data type and dotp instruction
typedef short PixV __attribute__((vector_size(4)));
#define SumDotp16(a,b,c) __builtin_sdotsp2(a,b,c);

PixV VectA , VectB; // vectors of shorts
int S;
...
S = 0;
// each iteration is computing two mult and 2 accum
for (int k = 0; k < (SIZE >>1); k++) {
S = SumDotp16(VectA[k], VectB[k], S);

}
C[i*N+j] = S;
...

Finally, the bit manipulation part of the presented ISA-extensions
fits well into GCC since most instructions have already an internal
GCC counterpart. 2

VI. EXPERIMENTAL RESULTS

For hardware, power and energy efficiency evaluations, we have
implemented the original and extended core in a PULP-cluster with
72 kB TCDM memory and 4 kB I$. The two clusters (cluster A with
a RVC32IM RISC-V core, and cluster B with the same core plus the
proposed extensions) have been synthesized with Synopsys Design
Compiler-2016.03 and complete back-end flows have been per-
formed using Cadence Innovus-15.20.100 in a 8-metal UMC 65 nm
LL CMOS technology. A set of benchmarks has been written in C
(with no assembly-level optimization) and compiled with the modi-
fied RISC-V GCC toolchain which makes use of the ISA-extensions.
The switching activity of both clusters have been recorded from
simulations in Mentor QuestaSim 10.5a using back-annotated post-
layout gate-level netlists and analyzed with the obtained value
change dump (VCD) files in Cadence Innovus-15.20.100.

In the following sections, we will first discuss the area, frequency
and power of the cluster in Section VI-A. Then the energy
efficiency of several instructions is discussed in Section VI-B.
Speedup and energy efficiency gains of cluster B are presented
in Section VI-C followed by an in-depth discussion about
convolutions in Section VI-D including a comparison with
state-of-the-art hardware accelerators. While the above sections
focus on relative energy, and power comparisons which are best
done in a consolidated technology in super threshold conditions,
the overall cluster performance is analyzed in NT conditions and
compared to previous PULP-architectures in Section VI-E.

A. Area, Frequency, and Power

Table V shows a comparison of the basic and extended
RISC-V cores with an OpenRISC architecture, and the ARM
Cortex M4. The RISC-V architecture is similar in performance
to an OpenRISC architecture, but with a smaller dynamic power
consumption due to support of compressed instructions (less

2PULP Parallel Programming is possible thanks to OpenMP 3 support integrated
in our GCC compiler. The interested reader is referred to [45] for more information.
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Cluster Area 1.30 MGE

Core0 3.6%

+Ext 0.6%Core1 3.7%

+Ext 0.4%

Core2 3.6%

+Ext 0.5%

Core3 3.6%

+Ext 0.5%

ICache 25.1%

Interconnect 5.5%

ClusterIO 3.0%
DMA 6.4%

TCDM SRAM 26.4%

TCDM SCM 17.9%

Cluster Power Coremark: 4.0mW

Core0 35.7%

Core1 1.0%
Core2 0.9%
Core3 0.9%

ICache 14.9%
Interconnect 10.6%

TCDM SRAM 8.5%

TCDM SCM 3.8%

ClusterIO 6.7%

DMA 1.9%

Peripherals 3.4%

Clock Tree 11.7%

Fig. 9. a) Area distribution of the cluster optimized for 2.8 ns cycle time. The
DSP-extensions of each core are highlighted. b) Power distribution when running
CoreMark on a single core at 50 MHz, 1.08 V.

TABLE V
COMPARISON OF DIFFERENT CORE ARCHITECTURES

This Work
Processor Core RISC-V

Basic
RISC-V
Ext.

OpenRISC
[46]

CortexM4 [22]

Technology 65 nm 65 nm 65 nm 90 nm 40 nm

Vdd [V] 1.08 1.08 1.2 1.2 1.1
Freq. [MHz] 357 357 362 216 216
Dyn. Power 26.28 28.68 33.8 32.8 12.26[µW/MHz]
Area [kGE] 46.9 53.5 44.5 - -
[mm2] 0.068 0.077 0.064 0.119 0.028

CoreMark/MHz 2.94a 3.19a 2.66 3.40b / 2.55c
a

GCC-5.2.0, Flags: “-O2 -g -falign-functions=16 -funroll-all-loops”
b

IAR v6.50, Flags: “-e -Ohs –use c++ inline –no size constraints”
c

GCC-5.2.1, Flags: “-O3 –g -falign-functions=16 -falign-loops=16 -mno-
unaligned-access -finline-functions -fno-strict-aliasing”

instruction fetches) and low-level power optimizations to reduce
switching activity. The extended RISC-V core architecture increases
in size by 6.6 kGE as a result of additional execution units
(dot-product unit, shuffle unit, fixed-point support) but these
extensions allow the core to reach a higher CoreMark score of 3.19.

With respect to ARM architectures, the proposed core is compa-
rable in size and reaches better CoreMark scores than ARM when
relying on gcc compilers. ARM’s top score cannot yet be achieved
due to 11% of cycle penalty for taken branches, 3% for jumps and
7% for load-use penalties. These penalties could be removed to
some degree if the compiler would reorder instructions (load-use),
and with a branch prediction circuit. The proposed extensions
are also not utilized best in CoreMark as it is a rather control-
intensive benchmark with up to 20% branch instructions. The real
performance of the proposed core becomes apparent in a shared-
memory multi-core system, where even in a four-core configuration
it reaches higher operating frequencies on comparable technologies.

The area distribution of the cluster is shown in Figure 9a). The
total area of the cluster is 1.30 MGE of which the additional area
for the dot-product unit and ALU-extensions accounts for only 2%.
Figure 9b) shows the power distribution when running CoreMark
on a single core. The total power consumption at 50 MHz and
1.08V is only 4 mW of which 35% is consumed by the active core.
The three idle cores consume only 2.8% of which 83% is leakage.

B. Instruction Level Performance

The power consumption and energy efficiency of the two
RISC-V core versions have been analyzed at instruction level. To

determine the power and energy of each instruction, they have
been executed in a loop with 100 iterations each containing 100
instructions. The energy of a single instruction is then the product
of the execution time and the power divided by the number of
executed instructions (10’000) and cores (4). The power of each
instruction consists of TCDM-power (including interconnect),
core-power, and I$-power. The execution time of the loop depends
on the latency of the instruction (2 cycles for unaligned memory
access instructions, 1 cycle for others).

Figure 10 shows the resulting energy per operation for different
types of instructions. As expected, nop consumes the least power,
which is not 0, because it has to be fetched from the I$/L0-buffer.
Then comes a set of arithmetic instructions (add, mul, mac, dotp,
sdotp) for different data types (char, short, int). The extended core is
bigger and hence, it also consumes more power. For the arithmetic
operations we observe a slight power increase of 4%.

While some of the new instructions (mac, sdotp, shuffle) consume
slightly more power than other arithmetic instructions, they actually
replace multiple instructions which makes them more energy effi-
cient. For example, the shuffle instruction is capable of reorganizing
bytes or shorts in any combination by utilizing the shuffle-unit.
Executing a shuffle operation (50 pJ) is equivalent to executing 3-4
simple ALU operations for 90-120 pJ. Similarly the proposed LSU
allows to perform unaligned memory accesses from SRAMs for only
93-106 pJ whereas software only support would require to execute 5
instructions in sequence which would cost about 3× as much energy.
We also observe that ld/st operations from SCMs are on average
46% more energy-efficient than from SRAMs. Unfortunately,
SCMs are not very area efficient and therefore limited in size.

C. Function Kernel Performance

To evaluate the performance gain of the proposed extensions,
a set of benchmarks ranging from cryptographic kernels (crc, sha,
aes, keccak), control intensive applications (fibonacci, bubblesort),
transformations (FFT, FDCT), over more data intensive linear
algebra kernels (matrix additions, multiplications), to various
filters (fir, 2D filters, convolutions) has been compiled. We have
also evaluated a motion detection application which makes use of
linear algebra, convolutions and filters.

Figure 11a) shows the IPC of all applications and Figure 11b)
shows the speedup of the RISC-V core with hardware loops and
post-increment extensions, versus a plain RISC-V ISA. In this case
an average speedup of 37% can be observed. As expected, filters
and linear algebra kernels with very regular data access patterns
benefit the most from the extensions. A second bar (+built-ins),
shows the full power of the proposed RISC-V ISA-extensions. Data
intensive kernels benefit from vector extensions, which can be used
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Fig. 11. a) IPC of all benchmarks with and without extensions, and with built-ins, b) Speedup, c) energy efficiency gains with respect to a RISC-V cluster with basic
extensions, d) Ratio of executed instructions (compressed/normal).
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Fig. 12. a) required cycles per output pixel, b) total energy consumption when processing the convolutions at 50 MHz at 1.08V, c) number of TCDM-contentions, and
d) the power distribution of the cluster when using the three diffrent instruction sets. e) and f) compare single- and multi-core implementations in speedup and energy.

with vector data types and the C built-in dotp-instruction. On these
kernels a much larger speedup, up to 13.2×, can be achieved, with
an average gain of 3.5×.

The overall energy gains of the extended core are shown in
Figure 11c) which shows an average of 3.2× gains. In an ideal case,
when processing a matrix multiplication that benefits from dotp,
hardware loop and post-increment extensions the gain performance
gain can reach 10.2×.

Finally, the ratio of executed instructions (compressed/normal)
is shown in Figure 11d). We see that 28.9-46.1% of all executed
instructions were compressed. Note that, the ratio of compressed
instructions is less in the extended core, as vector instructions, and
built-ins do not exist in compressed form.

D. Convolution Performance

Convolutions are common operations and are widely used in
image processing. In this section we compare the performance of
basic RISC-V implementation to the architecture with the extensions

proposed in this paper. Since not all instructions can be efficiently
utilized by the compiler, we also provide a third comparison called
built-ins which runs on the extended architecture by directly calling
these extended instructions. For the convolutions, a 64×64 pixel im-
age has been used with a Gaussian filter of size 3×3, 5×5, and 7×7.
Convolutions are shown for 8b (char) and 16b (short) coefficients.

Figure 12a) shows the required cycles per output pixel using
the three different versions of the architecture. In this evaluation,
the image to be processed is divided into four strips and each core
working on its own strip. Enabling the extensions of the core allows
to speedup the convolutions by up to 41% mainly due to the use of
hardware loops, and post-increment instructions. Another 1.7-6.4×
gain can be obtained when using the dotp and shuffle instructions
resulting in an overall speedup of 2.2-6.9× on average. Dotp
instructions are processing four multiplications, three additions
and an accumulation all within a single cycle and can therefore
reduce the number of arithmetic instructions significantly. A 5×5
filter would require 25 mac instructions, while 7 sdotp instructions
are sufficient when the vector extensions are used. As seen in
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TABLE VI
COMPARISON OF CONVOLUTIONAL PERFORMANCE WITH HARDWARE ACCELERATORS

This Work Origami [27] HWCE [28]
Type RISC-V Base ISA RISC-V + DSP-Ext. Accelerator Accelerator

Implementation
Technology UMC 65nm UMC 65nm UMC 65nm ST FDSOI 28nm
Results from: Post-layout Post-layout Silicon Post-layout
Coef. size 8b/16b/32b 8b/16b/32b 12b 16b
Core Area [kGE] 4×46.9 4×53.5 - 184b
Total Area [kGE] 1277 1300 912 -
Supply Voltage [V] 1.08V 0.6V 1.08V 0.6V 1.2V 0.8V 0.8V 0.4V
Frequency [MHz] 357 50c 357 50c 500 189 400 22

3x3 Convolution
Performance [Cycles/px] 14.0 14.0 6.3 6.3 - - 0.56 0.56
Energy efficiency [pJ/px] 2570 839c 1179 384c - - - 20a

5x5 Convolution
Performance [Cycles/px] 45.1 45.1 6.6 6.6 - - 0.56 0.56
Energy efficiency [pJ/px] 10094 3261c 1286 418c - - - 20a

7x7 Convolution
Performance [Cycles/px] 63.0 63.0 14.8 14.8 0.25 0.25 0.56 0.56
Energy efficiency [pJ/px] 12283 3994c 2847 926c 112 61 - 20a

a
HWCE 7x7 energy, does only include accelerator.

b
4.14×core area (core area of 44.5 kGE assumed[46])

c
Scaled with 65nm silicon measurements.

Figure 12b) the acceleration also directly translates into energy
savings, the extended architecture computing convolutions on a
64×64 image is 2.2-7.8× more energy efficient.

Utilizing vector extensions and the RF as a L0-storage allows to
reduce the number of load words as shown in Figure 12c) because
it is possible to keep more coefficients in the RF. When computing
3×3 and 5×5 convolutions it is even possible to store all required el-
ements in the RF, and only load the new pixels. The remaining pixels
can be reorganized using move and shuffle instructions as described
in the 2D convolution example of Section III. This not only reduces
the number of ld/st operations by 8.3×, but also reduces contentions
at the 8-bank shared memory. The extended cores have a higher ld/st-
density and thus experience the more contentions per TCDM access,
17.8% on average. With vector operations this number goes down to
only 6.2% which is a reduction from 11’100 contentions to only 390.

Figure 12d) shows the power distribution of the cluster. It is
interesting to note that, although for all examples the power of the
core increases, the overall system power is reduced in all but one
case, where it marginally increases by 5.3% (Conv 3x3 short).

The speedup and energy saving of the vector convolutions on
the four core system are shown in Figure 12e) and f) with respect
to a single-core configuration. Overheads at the strip boundaries
of the multi-core implementation are negligible as the speedup with
3.9× is almost ideal. Using four instead of one core requires only
2.4× more power leading to energy savings of 1.6×. Hence, the
system is very well scalable both in execution speed and energy.

Table VI shows a comparison of the proposed RISC-V core with
its plain ISA and state-of-the art hardware accelerators. Origami [27]
is a convolutional network accelerator capable of computing 7×7
convolutions and generating 4 output pixels per cycle. Its area with
912 kGE is almost the size of a complete cluster. HWCE [28] is
an accelerator which can be plugged to a memory system and is
approximately 184 kGE big and can compute almost 2 pixels per
cycle. Typically, a hardware accelerator outperforms a general
purpose architecture by factors of 100-1000. This certainly holds true
for the RISC-V core without extensions, which is 112× slower than
the HWCE, while the proposed RISC-V core with DSP extensions
is only 11-26× slower. This is a significant step in closing the gap
between programmable architectures and specialized hardware.
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Fig. 13. Energy consumption of different PULP architectures when processing a
matrix multiplication on four cores that shows the potential of the vector extensions.

In terms of energy the RISC-V core consumes only 15-25× more
than the Origami chip which is implemented in the same technology.

E. Near-threshold operation

The ISA extensions of the RISC-V cores decrease the execution
time significantly which at the same time reduces the energy.
Figure 13 shows the energy efficiency of several successfully
taped-out PULP chips when processing a matrix multiplication on
four cores. First, PULPv2 [34] an implementation of PULP with
basic OpenRISC cores without ISA-extensions in 28 nm FDSOI
and second Mia [35] a PULP cluster in 65 nm with an OpenRISC
core featuring a first set of ISA-extensions (hardware-loops,
post-increment instructions) [46]. While Mia had no support for
dot-products, and shuffle, Fulmine is already supporting a very
similar ISA as the presented RISC-V core in this work. All chips
are silicon proven and measured.

PULPv2, Mia, and this work feature SCMs which allow for
NT-operation. PULPv2 works down to 0.46V where it consumes
only 1.3 mJ for a matrix multiplication which is 5× less than at 1.1V.
This also means that the average energy per operation of 52 pJ/op
at 1.08V translates to approximately 10 pJ/op in NT-operation.

Figure 13 shows the evolution of the architecture. First, we
observe a 2.3× gain of the 28 nm PULPv2 versus a 65 nm RISC-V
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based cluster with comparable instruction sets (both architectures
feature no ISA-extensions). Then we see that the introduction of
hardware loops, and post-increment instructions in Mia almost
closes this gap as the execution speed improved by 1.8×. The
ISA-extensions presented in this paper bring the largest speedup
due to dot-product instructions and accounts for a factor of 10×
with respect to a RISC-V or OpenRISC core without extensions.

The graph also shows the expected energy efficiency of these
extensions in an advanced technology like 28 nm FDSOI. These
estimations show that moving to an advanced technology and
operating at the NT region will provide another 1.9× advantage
in energy consumption with respect to the 65 nm implementation
reported in this paper. In fact, a 28nm implementation achieving
193 MOPS/mW in NT-operation equals an energy consumption
of 5.2 pJ/op which is better than best MCUs which consume
10 pJ/op [14], [17] but typically have less powerful instructions than
our core. The proposed RISC-V cluster will work in the same condi-
tions (0.46 V-1.1 V), achieve the same throughput (0.15-2.35 GOPS)
while consuming 10× less energy due to the reduced runtime and
only moderate increase in power. The increased efficiency, as well as
low power consumption (1 mW at 0.46 V) and still high computation
power (0.15 GOPS at 0.46 V, 40 MHz) allows the cluster to be
perfectly suited for data processing in IoT endpoint devices.

VII. CONCLUSION

We have presented an extended RISC-V based processor core
architecture which is compatible with state-of-the art cores. The
processor core has been designed for a multi-core PULP system
with a shared L1 memory and a shared I$. To increase the
computational density of the processor, ISA-extensions, such as
hardware loops, post-incrementing addressing modes, fixed-point
and vector instructions have been added. Powerful dot-product
and sum-of-dot-products instructions on 8b and 16b data types
allow to perform up to 4 multiplications and accumulations in
a single cycle while consuming the same power as a single 32b
MAC operation. A smart L0 buffer in the fetch stage of the cores
is capable of fetching compressed instructions and buffering one
cacheline, greatly reducing the pressure on the shared I$.

On a set of benchmarks we observe that the core with the
extended ISA is on average 37% faster on general purpose
applications, and by utilizing the vector extensions another gain of
up to 2.3× can be achieved. When processing convolutions on the
proposed core the full benefit of vector and fixed-point extensions
can be used leading to an average speedup of 3.9×. The use of vector
instructions in combination with a L0-storage allow to decrease
the shared memory bandwidth by 8.3×. Since ld/st instructions
require the most energy, this decrease in bandwidth leads to energy
gains up to 7.8×. The extensions allow the core to be only 15×
less energy-efficient than state-of-the art hardware accelerators but
are general purpose architectures and can not only be used for a
specific task, but for the whole range of IoT applications.

In addition, multi-core implementations feature significantly
fewer shared memory contentions with the new ISA-extensions,
allowing a four-core implementation to outperform a single-core
implementation by 3.9× while consuming only 2.4× more power.

Finally, implemented in an advanced 28nm technology, we
observe a 5× energy efficiency gain when processing near-threshold
at 0.46V where the cluster is achieving 0.15 GOPS while consuming

only 1 mW. The cluster is scalable as it is operational from 0.46-
1.1V where it consumes 1-68 mW and achieves 0.15-2.35 GOPS
making it attractive for a wide range of IoT applications.

ACKNOWLEDGMENT

The authors would like to thank Germain Haugou for the tool and
software support. This work was partially supported by the FP7 ERC
Advance project MULTITHERMAN (No: 291125) and Micropower
Deep Learning (No: 162524) project funded by the Swiss NSF.

REFERENCES

[1] G. Lammel and Bosch Sensortec, “The Future of Mems Sensors in Our
Connected World the Three Waves of Mems,” in Int. Conf. Micro Electro
Mech. Syst., 2015, pp. 61–64.

[2] V. Shnayder et al., “Simulating the power consumption of large-scale sensor
network applications,” in Proc. 2nd Int. Conf. Embed. networked Sens. Syst.
- SenSys ’04, 2004, pp. 188–200.

[3] E. F. Nakamura, A. a. F. Loureiro, and A. C. Frery, “Information fusion for
wireless sensor networks,” ACM Comput. Surv., vol. 39, no. 3, p. 9, 2007.

[4] M. Konijnenburg et al., “28.4 A Battery-Powered Efficient Multi-Sensor
Acquisition System with Simultaneous ECG,” in 2016 IEEE Int. Solid-State
Circuits Conf., 2016, pp. 480–482.

[5] F. Zhang et al., “A batteryless 19µW MICS/ISM-band energy harvesting body
area sensor node SoC,” in Dig. Tech. Pap. - IEEE Int. Solid-State Circuits
Conf., vol. 55, 2012, pp. 298–299.

[6] S. R. Sridhara et al., “Microwatt embedded processor platform for medical
system-on-chip applications,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp.
721–730, 2011.

[7] R. G. Dreslinski et al., “Near-threshold computing: Reclaiming moore’s law
through energy efficient integrated circuits,” Proc. IEEE, vol. 98, no. 2, pp.
253–266, 2010.

[8] A. Y. Dogan et al., “Low-power processor architecture exploration for online
biomedical signal analysis,” Circuits, Devices Syst. IET, vol. 6, no. 5, pp.
279–286, 2012.

[9] R. Banakar et al., “Scratchpad memory: a design alternative for cache on-chip
memory in embedded systems,” Proc. Tenth Int. Symp. Hardware/Software
Codesign. CODES 2002, pp. 73–78, 2002.

[10] A. Teman et al., “Power, area, and performance optimization of standard cell
memory arrays through controlled placement,” ACM Transactions on Design
Automation of Electronic Systems, vol. 21, no. 4, pp. 1–25, 2016.

[11] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovi, “The RISC-V
Instruction Set Manual, Volume I: Base User-Level ISA,” Electr. Eng., vol. I,
pp. 1–34, 2011.

[12] O. Azizi et al., “Energy-Performance Tradeoffs in Processor Architecture and
Circuit Design : A Marginal Cost Analysis Categories and Subject Descriptors,”
Comput. Eng., vol. 38, no. 3, pp. 26–36, 2010.

[13] STMicroelectronics, “Programming Manual,” Tech. Rep. April, 2016.
[14] Ambiqmicro, “Apollo Datasheet Ultra-Low Power MCU Family,” Tech. Rep.

September, 2015.
[15] NXP, “LPC5410x Datasheet,” Tech. Rep. July, 2016.
[16] R. Rele, Siddharth and Pande, Santosh and Onder, Soner and Gupta,

“Optimizing Static Power Dissipation by Functional Units in Suberscalar
Processors,” in Int. Conf. Compil. Constr., 2002, pp. 261–275.

[17] N. Ickes et al., “A 10 pJ/cycle ultra-low-voltage 32-bit microprocessor
system-on-chip,” in Eur. Solid-State Circuits Conf., 2011, pp. 159–162.

[18] B. Zhai et al., “Energy-efficient subthreshold processor design,” IEEE Trans.
Very Large Scale Integr. Syst., vol. 17, no. 8, pp. 1127–1137, 2009.

[19] G. Gammie et al., “A 28nm 0.6V low-power DSP for mobile applications,”
in Dig. Tech. Pap. - IEEE Int. Solid-State Circuits Conf., 2011, pp. 132–133.

[20] R. Wilson et al., “27.1 A 460MHz at 397mV, 2.6GHz at 1.3V, 32b VLIW DSP,
embedding F MAX tracking,” Dig. Tech. Pap. - IEEE Int. Solid-State Circuits
Conf., vol. 57, pp. 452–453, 2014.

[21] D.-H. Le et al., “Design of a Low-power Fixed-point 16-bit Digital Signal
Processor Using 65nm SOTB Process,” in Int. Conf. IC Des. Technol., 2015.

[22] ARM, “ARM Cortex M-4 Technical Reference Manual,” Tech. Rep., 2015.
[23] A. A. Farooqui, V. G. Oklobdzija, and M. Road, “Impact of Architecture

Extensions for Media Signal Processing on Data-Path Organization,” in
Thirty-Fourth Asilomar Conf. Asilomar Conf., 2000, pp. 1679–1683.

[24] X. Zhang, “Design of A Configurable Fixed-point Multiplier for Digital Signal
Processor,” in 2009 Asia Pacific Conf. Postgrad. Res. Microelectron. Electron.,
2009, pp. 217–220.

[25] N. Ickes et al., “A 10-pJ / instruction , 4-MIPS Micropower DSP for Sensor
Applications,” in IEEE Asian Solid-State Circuits Conf., 2008, pp. 289–292.



JOURNAL OF TVLSI, VOL. XX, NO. YY, MONTH 2016 14

[26] W. Qadeer et al., “Convolution engine: balancing efficiency & flexibility in
specialized computing,” ISCA, vol. 41, no. 3, pp. 24–35, 2013.

[27] L. Cavigelli and L. Benini, “Origami: A 803 GOp/s/W Convolutional Network
Accelerator,” IEEE Trans. Circuits Syst. Video Technol., vol. PP, no. 1, pp.
1–14, 2016.

[28] F. Conti and L. Benini, “A ultra-low-energy convolution engine for fast
brain-inspired vision in multicore clusters,” DATE, pp. 683–688, 2015.

[29] Texas Instruments, “CC2650 SimpleLink™ Multistandard Wireless MCU,”
Tech. Rep. July, 2016.

[30] N. Neves et al., “Multicore SIMD ASIP for Next-Generation Sequencing
and Alignment Biochip Platforms,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 23, no. 7, pp. 1287–1300, 2015.

[31] S. Hsu, A. Agarwal, and M. Anders, “A 280mV-to-1.1 V 256b reconfigurable
SIMD vector permutation engine with 2-dimensional shuffle in 22nm CMOS,”
in IEEE Int. Solid-State Circuits Conf., 2012, pp. 330–331.

[32] D. Fick et al., “Centip3De: A cluster-based NTC architecture with 64 ARM
cortex-M3 cores in 3D stacked 130 nm CMOS,” IEEE J. Solid-State Circuits,
vol. 48, no. 1, pp. 104–117, 2013.

[33] D. Rossi et al., “A 60 GOPS/W, -1.8 v to 0.9 v body bias ULP cluster in 28
nm UTBB FD-SOI technology,” Solid. State. Electron., vol. 117, pp. 170–184,
2016.

[34] D. Rossi et al., “193 MOPS/mW 162 MOPS, 0.32V to 1.15V Voltage Range
Multi-Core Accelerator for Energy-Efficient Parallel and Sequential Digital
Processing,” in Cool Chips XIX, 2016, pp. 1–3.

[35] A. Pullini et al., “A Heterogeneous Multi-Core System-On-Chip For Energy
Efficient Brain Inspired Vision,” in ISCAS, 2016, pp. 2–4.

[36] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine
Vision, 2014.

[37] I. Loi et al., “Exploring Multi-banked Shared-L1 Program Cache on Ultra-Low
Power, Tightly Coupled Processor Clusters,” in Proc. 12th ACM Int. Conf.
Comput. Front., 2015, p. 64.

[38] G. R. Uh et al., “Techniques for Effectively Exploiting a Zero Overhead Loop
Buffer,” in Int. Conf. Compil. Constr., 2000, pp. 157–172.

[39] R. S. Bajwa et al., “Instruction buffering to reduce power in processors for
signal processing,” IEEE Trans. Very Large Scale Integr. Syst., vol. 5, no. 4,
pp. 417–424, 1997.

[40] R. B. Lee, “Subword parallelism with MAX-2,” IEEE Micro, vol. 16, no. 4,
pp. 51–59, 1996.

[41] A. Shahbahrami, B. Juurlink, and S. Vassiliadis, “A Comparison Between
Processor Architectures for Multimedia Application,” in Proc. 15th Annu.
Work. Circuits, Syst. Signal Process. ProRisc, 2004, pp. 138–152.

[42] H. Chang, J. Cho, and W. Sung, “Performance evaluation of an SIMD
architecture with a multi-bank vector memory unit,” in IEEE Work. Signal
Process. Syst. Des. Implementation, SIPS, 2006, pp. 71–76.

[43] C.-H. Chang et al., “Transactions Briefs Fixed-Point Computing Element
Design for Transcendental Functions and Primary Operations in Speech
Processing,” IEEE Trans. Very Large Scale Integr. Syst., vol. 24, no. 5, pp.
1993–1997, 2016.

[44] B. Parhami, “Variations on multioperand addition for faster logarithmic-time
tree multipliers,” in Conf. Rec. Thirtieth Asilomar Conf. Signals, Syst. Comput.,
1996, pp. 899–903.

[45] D. Rossi et al., “Energy efficient parallel computing on the PULP platform
with support for OpenMP,” in IEEE 28th Convention of Electrical and
Electronics Engineers in Israel, 2014, pp. 1–5.

[46] M. Gautschi et al., “Tailoring Instruction-Set Extensions for an Ultra-Low
Power Tightly-Coupled Cluster of OpenRISC Cores,” in Very Large Scale
Integr., 2015, pp. 25–30.

Michael Gautschi received the M.Sc. degree in electrical
engineering and information technology from ETH
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