
14 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

On the relative usefulness of fireballs / Accattoli, Beniamino; SACERDOTI COEN, Claudio. - ELETTRONICO. -
(2015), pp. 7174877.141-7174877.155. (Intervento presentato al convegno 30th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2015 tenutosi a Grand Prince Hotel, jpn nel 2015)
[10.1109/LICS.2015.23].

Published Version:

On the relative usefulness of fireballs

This version is available at: https://hdl.handle.net/11585/552425 since: 2016-07-14

Published:
DOI: http://doi.org/10.1109/LICS.2015.23

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

https://hdl.handle.net/11585/552425
http://doi.org/10.1109/LICS.2015.23

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

B. Accattoli and C. S. Coen, "On the Relative Usefulness of Fireballs," 2015 30th
Annual ACM/IEEE Symposium on Logic in Computer Science, 2015, pp. 141-155, doi:
10.1109/LICS.2015.23.

The final published version is available online at:
http://dx.doi.org/10.1109/LICS.2015.23

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.1109/LICS.2015.23

On the Relative Usefulness of Fireballs
Beniamino Accattoli

INRIA & LIX/École Polytechnique
1 rue Honoré d’Estienne d’Orves, Palaiseau, France

Email: beniamino.accattoli@inria.fr

Claudio Sacerdoti Coen
Department of Computer Science and Engineering

University of Bologna
Mura Anteo Zamboni 7, Bologna (BO), Italy

Email: claudio.sacerdoticoen@unibo.it

Abstract—In CSL-LICS 2014, Accattoli and Dal Lago [1]
showed that there is an implementation of the ordinary (i.e.
strong, pure, call-by-name) λ-calculus into models like RAM
machines which is polynomial in the number of β-steps, answer-
ing a long-standing question. The key ingredient was the use of
a calculus with useful sharing, a new notion whose complexity
was shown to be polynomial, but whose implementation was not
explored. This paper, meant to be complementary, studies useful
sharing in a call-by-value scenario and from a practical point of
view. We introduce the Fireball Calculus, a natural extension of
call-by-value to open terms, that is an intermediary step towards
the strong case, and we present three results. First, we adapt
useful sharing, refining the meta-theory. Then, we introduce
the GLAMOUr, a simple abstract machine implementing the
Fireball Calculus extended with useful sharing. Its key feature
is that usefulness of a step is tested—surprisingly—in constant
time. Third, we provide a further optimisation that leads to an
implementation having only a linear overhead with respect to the
number of β-steps.

I. INTRODUCTION

The λ-calculus is an interesting computational model be-
cause it is machine-independent, simple to define, and it
compactly models functional programming languages. Its def-
inition has only one rule, the β rule, and no data structures.
The catch is the fact that the β-rule—which by itself is Turing-
complete—is not atomic. Its action, namely (λx.t)u →β

t{x�u}, can make many copies of an arbitrarily big sub-
program u. In other computational models like Turing or RAM
machines, an atomic operation can only move the head on the
ribbon or access a register. Is β atomic in that sense? Can one
count the number of β-steps to the result and then claim that it
is a reasonable bound on the complexity of the term? Intuition
says no, because β can be nasty, and make the program grow
at an exponential rate. This is the size explosion problem.

Useful Sharing: nonetheless, it is possible to take the
number of β-steps as an invariant cost model, i.e. as a
complexity measure polynomially related to RAM or Turing
machines. While this was known for some notable sub-calculi
[2]–[6], the first proof for the general case is a recent result
by Accattoli and Dal Lago [1]. Similarly to the literature, they
circumvent size explosion by factoring the problem via an
intermediary model in between λ-calculus and machines. Their
model is the linear substitution calculus (LSC) [1], [7], that
is a simple λ-calculus with sharing annotations (also known
as explicit substitutions) where the substitution process is
decomposed in micro steps, replacing one occurrence at a time.
In contrast with the literature, the general case is affected by

a stronger form of size explosion, requiring an additional and
sophisticated layer of sharing, called useful sharing. Roughly,
a micro substitution step is useful if it contributes somehow
to the creation of a β-redex, and useless otherwise. Useful
reduction then selects only useful substitution steps, avoiding
the useless ones. In [1], the Useful LSC is shown to be
polynomially related to both λ-calculus (in a quadratic way)
and RAM machines (with polynomial overhead, conjectured
linear). It therefore follows that there is a polynomial relation-
ship λ→ RAM. Pictorially:

λ RAM

Useful LSC

polynomial

quadratic polynomial (linear?)

Coming back to our questions, the answer of [1] is yes,
β is atomic, up to a polynomial overhead. It is natural to
wonder how big this overhead is. Is β reasonably atomic? Or
is the degree of the polynomial big and does the invariance
result only have a theoretical value? In particular, in [1] the
definition of useful steps relies on a separate and global
test for usefulness, that despite being tractable might not be
feasible in practice. Is there an efficient way to implement
the Useful LSC? Does useful sharing—i.e. the avoidance of
useless duplications—bring a costly overhead? This paper
answers these questions. But, in order to stress the practical
value of the study, it shifts to a slightly different setting.

The Fireball Calculus: we recast the problem in terms
of the new fireball calculus (FBC), essentially the weak call-
by-value λ-calculus generalised to handle open terms. It is an
intermediary step towards a strong call-by-value λ-calculus,
that can be seen as iterated open weak evaluation. A similar
approach to strong evaluation is followed also by Grégoire
and Leroy in [8]. It avoids some of the complications of the
strong case, and at the same time exposes all the subtleties of
dealing with open terms.

Free variables are actually formalised using a distinguished
syntactic class, that of symbols, noted a, b, c. This approach is
technically convenient because it allows restricting to closed
terms, so that any variable occurrence x is bound, while still
having free variables, represented as symbols.

The basic idea is that—in the presence of symbols—
restricting β-redex to fire only in presence of values is prob-
lematic. Consider indeed the following term:

t := ((λx.λy.u)(aa))w

where w is normal. For the usual call-by-value operational
semantics t is normal (because aa is not a value) while for
theoretical reasons (see [9]–[11]) one would like to be able
to fire the blocked redex, reducing to (λy.u{x�aa})w, so
that a new redex is created and the computation can continue.
According to the standard classification of redex creations due
to Lévy [12], this is a creation of type 11.

The solution we propose here is to relax the constraint about
values, allowing β-redexes to fire whenever the argument is a
more general structure, a so-called fireball, defined recursively
by extending values with inert terms, i.e. applications of
symbols to fireballs. In particular, aa is inert, so that e.g.
t→ (λy.u{x�aa})w, as desired.

Functional languages are usually modelled by weak and
closed calculi, so it is natural to wonder about the practical
relevance of the FBC. Applications are along two axes. On
the one hand, the evaluation mechanism at work in proof
assistants has to deal with open terms for comparison and
unification. For instance, Grégoire and Leroy’s [8], meant
to improve the implementation of Coq, relies on inert terms
(therein called accumulators). On the other hand, symbols may
also be interpreted as constructors, meant to represent data as
lists or trees. The dynamics of fireballs is in fact consistent
with the way constructors are handled by Standard ML [13]
and in several formalisation of core ML, as in [14]. In this
paper we omit destructors, whose dynamics is orthogonal to
the one of β-reduction, and we expect all results presented
here to carry-over with minor changes to a calculus with
destructors. Therefore firing redexes involving inert terms is
also justified from a practical perspective.

The Relative Usefulness of Fireballs: as we explained, the
generalisation of values to fireballs is motivated by creations of
type 1 induced by the firing of inert terms. There is a subtlety,
however. While substituting a value can create a new redex
(e.g. as in (λx.(xI))I → (xI){x�I} = II , where I is the
identity—these are called creations of type 3)— substituting a
inert term can not. Said differently, duplicating inert terms is
useless, and leads to size explosion. Note the tension between
different needs: redexes involving inert terms have to be fired
(for creations of type 1), and yet the duplication and the
substitution of inert terms should be avoided (since they do
not give rise to creations of type 3). We solve the tension by
turning to sharing, and use the simplicity of the framework
to explore the implementation of useful sharing. Both values
and inert terms (i.e. fireballs) in argument position will trigger
reduction, and both will be shared just after, but only the
substitution of values might be useful, because inert terms are
useless. This is what we call the relative usefulness of fireballs.
It is also why—in contrast to Grégoire and Leroy—we do not
identify fireballs and values.

1The reader unfamiliar with redex creations should not worry. Creations are
a key concept in the study of usefulness—which is why we mention them—
but for the present discussion it is enough to know that there exists two kinds
of creations (type 1 and the forthcoming type 3, other types will not play a
role), no expertise on creations is required.

The Result: our main result is an implementation of FBC
relying on useful sharing and such that it has only a linear
overhead with respect to the number of β-steps. To be precise,
the overhead is bilinear, i.e. linear in the number of β-steps
and in the size of the initial term (roughly the size of the
input). The dependency from the size of the initial term is
induced by the action of β on whole subterms, rather than
on atomic pieces of data as in RAM or Turing machines.
Therefore, β is not exactly as atomic as accessing a register or
moving the head of a Turing machine, and this is the price for
embracing higher-order computations. Bilinearity, however,
guarantees that such a price is mild and that the number of
β steps—i.e. of function calls in a functional program—is a
faithful measure of the complexity of a program. To sum up,
our answer is yes, β is also reasonably atomic.

A Recipe for Bilinearity, with Three Ingredients: our
proof technique is a tour de force progressively combining
together and adapting to the FBC three recent works involving
the LSC, namely the already cited invariance of useful sharing
of [1], the tight relationship with abstract machines developed
by Accattoli, Barenbaum, and Mazza in [15], and the optimisa-
tion of the substitution process studied by the present authors
in [16]. The next section will give an overview of these works
and of how they are here combined, stressing how the proof is
more than a simple stratification of techniques. In particular, it
was far from evident that the orthogonal solutions introduced
by these works could be successfully combined together.

This Paper: the paper is meant to be self-contained, and
mostly follows a didactic style. For the first half we warm up
by discussing design choices, the difficulty of the problem,
and the abstract architecture. The second half focuses on the
results. We also suggest reading the introductions of [1], [15],
[16], as they provide intuitions about concepts that here are
only hinted at. Although not essential, they will certainly
soften the reading of this work. Omitted proofs are in the
companion technical report [17] and related work is discussed
in Sect. III.

II. A RECIPE WITH THREE INGREDIENTS

This section gives a sketch of how the bilinear implemen-
tation is built by mixing together tools from three different
studies on the LSC.

1) Useful Fireballs: we start by introducing the Useful
Fireball Calculus (Useful FBC), akin to the Useful LSC, and
provide the proof that the relationship FBC → Useful FBC,
analogously to the arrow λ → Useful LSC, has a quadratic
overhead. Essentially, this step provides us with the following
diagram:

FBC RAM

Useful FBC

quadratic

We go beyond simply adapting the study of [1], as the use of
evaluation contexts (typical of call-by-value scenarios) leads
to the new notion of useful evaluation context, that simplifies
the technical study of useful sharing. Another key point is the

2

relative usefulness of fireballs, according to their nature: only
values are properly subject to the useful discipline, i.e. are
duplicated only when they contribute somehow to β-redexes,
while inert terms are never duplicated.

2) Distilling Useful Fireballs: actually, we do not follow
[1] for the study of the arrow Useful FBC→ RAM. We rather
refine the whole picture, by introducing a further intermediary
model, an abstract machine, mediating between the Useful
FBC and RAM. We adopt the distillation technique of [15],
that establishes a fine-grained and modular view of abstract
machines as strategies in the LSC up to a notion of structural
equivalence on terms. The general pattern arising from [15] is
that for call-by-name/value/need weak and closed calculi the
abstract machine adds only a bilinear overhead with respect
to the shared evaluation within the LSC:

λ-Calculus RAM

LSC Abstract Machine
bilinear

bilinear

Distilleries owe their name to the fact that the LSC retains
only part of the dynamics of a machine. Roughly, it isolates
the relevant part of the computation, distilling it away from the
search for the next redex implemented by abstract machines.
The search for the redex is mapped to a notion of structural
equivalence, a particular trait of the LSC, whose key property
is that it can be postponed. Additionally, the transitions imple-
menting the search for the next redex are proved to be bilinear
in those simulated by the LSC: the LSC then turns out to be
a complexity-preserving abstraction of abstract machines.

The second ingredient for the recipe is then a new abstract
machine, called GLAMOUr, that we prove implements the
Useful FBC within a bilinear overhead. Moreover, the GLAM-
OUr itself can be implemented within a bilinear overhead.
Therefore, we obtain the following diagram:

FBC RAM

Useful FBC GLAMOUr AM

quadratic

bilinear

quadratic bilinear

This is the most interesting and original step of our study. First,
it shows that distilleries are compatible with open terms and
useful sharing. Second, while in [15] distilleries were mainly
used to revisit machines in the literature, here the distillation
principles are used to guide the design of a new abstract
machine. Third, useful sharing is handled via a refinement
of an ordinary abstract machine relying on a basic form of
labelling. The most surprising fact is that such a labelling
(together with invariants induced by the call-by-value scenario)
allows a straightforward and very efficient implementation
of useful sharing. While the calculus is based on separate
and global tests for the usefulness of a substitution step,
the labelling allows the machine to do on-the-fly and local
tests, requiring only constant time (!). It then turns out that
implementing usefulness is much easier than analysing it.
Summing up, useful sharing is easy to implement and thus a

remarkable case of a theoretically born concept with relevant
practical consequences.

3) Unchaining Substitutions: at this point, it is natural to
wonder if the bottleneck given by the side of the diagram FBC
→ Useful FBC, due to the overhead of the decomposition of
substitutions, can be removed. The bound on the overhead is
in fact tight, and yet the answer is yes, if one refines the actors
of the play. Our previous work [16], showed that (in ordinary
weak and closed settings) the quadratic overhead is due to
malicious chains of renamings, i.e. of substitutions of variables
for variables, and that the substitution overhead reduces to
linear if the evaluation is modified so that variables are never
substituted, i.e. if values do not include variables.

For the fireball calculus the question is tricky. First of all
a disclaimer: with variables we refer to occurrences of bound
variables and not to symbols/free variables. Now, our initial
definition of the calculus will exclude variables from fireballs,
but useful sharing will force us to somehow reintroduce them.
Our way out is an optimised form of substitution that unchains
renaming chains, and whose overhead is proved linear by
a simple amortised analysis. Such a third ingredient is first
mixed with both the Useful FBC and the GLAMOUr, obtain-
ing the Unchaining FBC and the Unchaining GLAMOUr, and
then used to prove our main result, an implementation FBC
→ RAM having an overhead linear in the number of β steps
and in the size of the initial term:

FBC RAM

Unchaining FBC Unchaining GLAMOUr

bilinear

bilinear

linear bilinear

In this step, the original content is that the unchaining
optimisation—while inspired by [16]—is subtler to define than
in [16], as bound variables cannot be simply removed from
the definition of fireballs, because of usefulness. Moreover,
we also show how such an optimisation can be implemented
at the machine level.

The next section discusses related work. Then there will be a
long preliminary part providing basic definitions, an abstract
decomposition of the implementation, and a quick study of
both a calculus, the Explicit FBC, and a machine, the Open
GLAM, without useful sharing. Both the calculus and the
machine will not have any good asymptotical property, but
they will be simple enough to familiarise the reader with the
framework and with the many involved notions.

III. RELATED WORK

In the literature, invariance results for the weak call-by-
value λ-calculus have been proved three times, independently.
First, by Blelloch and Greiner [2], while studying cost models
for parallel evaluation. Then by Sands, Gustavsson and Moran
[3], while studying speedups for functional languages, and
finally by Dal Lago and Martini [4], who addressed the
invariance thesis for λ-calculus. Among them, [3] is the closest
one, as it also provides an abstract machine and bounds its
overhead. These works however concern closed terms, and so

3

they deal with a much simpler case. Other simple call-by-
name cases are studied in [5] and [6]. The difficult case of the
strong λ-calculus has been studied in [1], which is also the
only reference for useful sharing.

The LSC is a variation over a λ-calculus with ES by Robin
Milner [18], [19], obtained by plugging in some of the ideas
of the structural λ-calculus by Accattoli and Kesner [20],
introduced as a syntactic reformulation of linear logic proof
nets. The LSC is similar to calculi studied by De Bruijn [21]
and Nederpelt [22]. Its first appearances are in [6], [23], but
its inception is actually due to Accattoli and Kesner.

Many abstract machines can be rephrased as strategies in λ-
calculi with explicit substitutions (ES), see at least [24]–[29].

The related work that is by far closer to ours is the
already cited study by Grégoire and Leroy of an abstract
machine for call-by-value weak and open reduction in [8].
We developed our setting independently, and yet the FBC is
remarkably close to their calculus, in particular our inert terms
are essentially their accumulators. The difference is that our
work is complexity-oriented while theirs is implementation-
oriented. On the one hand they do not recognise the relative
usefulness of fireballs, and so their machine is not invari-
ant, i.e. our machine is more efficient and on some terms
even exponentially faster. On the other hand, they extend
the language up to the calculus of constructions, present a
compilation to bytecode, and certify in Coq the correctness of
the implementation.

The abstract machines in this paper use global environ-
ments, an approach followed only by a minority of authors
(e.g. [3], [15], [30], [31]) and essentially identifying the envi-
ronment with a store. The distillation technique was developed
to better understand the relationship between the KAM and
weak linear head reduction pointed out by Danos & Regnier
[32]. The idea of distinguishing between operational content
and search for the redex in an abstract machine is not new, as it
underlies in particular the refocusing semantics of Danvy and
Nielsen [33]. Distilleries however bring an original refinement
where logic, rewriting, and complexity enlighten the picture,
leading to formal bounds on machine overheads.

Our unchaining optimisation is a lazy variant of an opti-
misation that repeatedly appeared in the literature, often with
reference to space consumption and space leaks, for instance
in [3] as well as in Wand’s [34] (section 2), Friedman et al.’s
[35] (section 4), and Sestoft’s [36] (section 4).

IV. THE FIREBALL CALCULUS

The setting is the one of the call-by-value λ-calculus ex-
tended with symbols a, b, c, meant to denote free variables (or
constructors). The syntax is:

Terms t, u, w, r ::= x | a | λx.t | tu
Values v, v′ ::= λx.t

with the usual notions of free and bound variables, capture-
avoiding substitution t{x�u}, and closed (i.e. without free
variables) term. We will often restrict to consider closed

terms, the idea being that an open term as x(λy.zy) is rather
represented as the closed term a(λy.by).

The ordinary (i.e. without symbols) call-by-value λ-calculus
has a nice operational characterisation of values:

closed normal forms are values

Now, the introduction of symbols breaks this property,
because there are closed normal forms as a(λx.x) that are not
values. In order to restore the situation, we generalise values
to fireballs2, that are either values v or inert terms A, i.e.
symbols possibly applied to fireballs. Associating to the left,
fireballs and inerts are compactly defined by

Fireballs f, g, h ::= v | A
Inert Terms A,B,C ::= af1 . . . fn n ≥ 0

For instance, λx.y and a are fireballs, as well as a(λx.x),
ab, and (a(λx.x))(bc)(λy.(zy)). Fireballs can also be defined
more atomically by mixing values and inert terms as follows:

f ::= v | A A ::= a | Af

Note that AB and AA are always inert.
Next, we generalise the call-by-value rule (λx.t)v →βv

t{x�v} to substitute fireballs f rather than values v. First
of all, we define a notion of evaluation context (noted F
rather than E, reserved to forthcoming global environments),
mimicking right-to-left CBV evaluation:

Evaluation Contexts F ::= 〈·〉 | tF | Ff

note the case Ff , that in CBV would be Fv. Last, we define
the f(fireball) rule →f as follows

RULE AT TOP LEVEL CONTEXTUAL CLOSURE
(λx.t)f 7→f t{x�f} F 〈t〉 →f F 〈u〉 if t 7→f u

Our definitions lead to:

Theorem 1.
1) Closed normal forms are fireballs.
2) →f is deterministic.

In the introduction we motivated the notion of fireball both
from theoretical and practical points of view. Theorem 1.1
provides a further, strong justification: it expresses a sort
of internal harmony of the FBC, allowing to see it as the
canonical completion of call-by-value to the open setting.

V. SIZE EXPLOSION

Size explosion is the side effect of a discrepancy between
the dynamics and the representation of terms. The usual
substitution t{x�u} makes copies of u for all the occurrences
of x, even if u is useless, i.e. it is normal and it does not create
redexes after substitution. These copies are the burden leading
to the exponential growth of the size. To illustrate the problem,
let’s build a size exploding family of terms.

Note that a inert term A, when applied to itself still is a
inert term AA. In particular, it still is a fireball, and so it can

2About fireball: the first choice was fire-able, but then the spell checker
suggested fireball.

4

Table I
SYNTAX, REWRITING RULES, AND STRUCTURAL EQUIVALENCE OF THE EXPLICIT FBC

t, u, w, r ::= x | a | λx.t | tu | t[x�u]
v, v′ ::= λx.t
L, L′ ::= 〈·〉 | L[x�t]
A,B,C ::= a | L〈A〉L〈f〉
f, g, h ::= v | A
F ::= 〈·〉 | tF | FL〈f〉 | F [x�t]

RULE AT TOP LEVEL CONTEXTUAL CLOSURE
L〈λx.t〉L′〈f〉 7→m L〈t[x�L′〈f〉]〉 F 〈t〉(m F 〈u〉 if t 7→m u

F 〈x〉[x�L〈f〉] 7→e L〈F 〈f〉[x�f]〉 F 〈t〉(e F 〈u〉 if t 7→e u

t[x�u][y�w] ≡com t[y�w][x�u] if y /∈ fv(u) and x /∈ fv(w)
(tw)[x�u] ≡@r tw[x�u] if x 6∈ fv(t)
(tw)[x�u] ≡@l t[x�u]w if x 6∈ fv(w)

t[x�u][y�w] ≡[·] t[x�u[y�w]] if y 6∈ fv(t)

be used as an argument for redexes. We can then easily build
a term of size linear in n that in n steps evaluates a complete
binary tree A2n . Namely, define the family of terms tn for
n ≥ 1:

t1 := λx1.(x1x1)
tn+1 := λxn+1.(tn(xn+1xn+1))

Now consider tnA, that for a fixed A has size linear in n.
The next proposition shows that tnA reduces in n steps to
A2n , causing size explosion.

Proposition 1 (Size Explosion in the FBC). tnA→n
f A

2n .

Proof: by induction on n. Let B := A2 = AA. Cases:

t1 = (λx1.(x1x1))A →f A2

tn+1 = (λxn+1.(tn(xn+1xn+1)))A →f

tnA
2 = tnB →n

f (i.h.)
B2n = A2n+1

VI. FIREBALLS AND EXPLICIT SUBSTITUTIONS

In a ordinary weak scenario, sharing of subterms prevents
size explosion. In the FBC however this is no longer true, as
we show in this section. Sharing of subterms is here repre-
sented in a variation over the Linear Substitution Calculus,
a formalism with explicit substitutions coming from a linear
logic interpretation of the λ-calculus. At the dynamic level,
the small-step operational semantics of the FBC is refined
into a micro-step one, where explicit substitutions replace one
variable occurrence at a time, similarly to abstract machines.

The terms of the Explicit Fireball Calculus (Explicit FBC)
are:

t, u, w, r ::= x | a | λx.t | tu | t[x�u]

where t[x�u] is the explicit substitution (ES) of u for x in t,
that is an alternative notation for let x = u in t, and where x
becomes bound (in t). We silently work modulo α-equivalence
of these bound variables, e.g. (xy)[y�t]{x�y} = (yz)[z�t].
We use fv(t) for the set of free variables of t.

Contexts: the dynamics of explicit substitutions is defined
using (one-hole) contexts. Weak contexts subsume all the kinds
of context in the paper, and are defined by

W,W ′ ::= 〈·〉 | tW |Wt |W [x�t] | t[x�W]

The plugging W 〈t〉 of a term t into a context W is de-
fined as 〈·〉〈t〉 := t, (λx.W)〈t〉 := λx.(W 〈t〉), and so on.
As usual, plugging in a context can capture variables, e.g.

((〈·〉y)[y�t])〈y〉 = (yy)[y�t]. The plugging W 〈W ′〉 of a
context W ′ into a context W is defined analogously. Since all
kinds of context we will deal with will be weak, the definition
of plugging applies uniformly to all of them.

A special and frequently used class of contexts is that of
substitution contexts L ::= 〈·〉 | L[x�t].

Switching from the FBC to the Explicit FBC the syntactic
categories of inert terms A, fireballs f , and evaluation contexts
F are generalised in Table I as to include substitution contexts
L. Note that fireballs may now contain substitutions, but not at
top level, because it is technically convenient to give a separate
status to a fireball f in a substitution context L: terms of the
form L〈f〉 are called answers. An initial term is a closed term
with no explicit substitutions.

Rewriting Rules: the fireball rule→f is replaced by(f,
defined as the union of the two rules (m and (e in Table I:

1) Multiplicative (m: is a version of →f where λx.t and
f can have substitution contexts L and L′ around, and
the substitution is delayed.

2) Exponential(e: the substitution or exponential rule(e

replaces exactly one occurrence of a variable x currently
under evaluation (in F) with its definiendum f given by
the substitution. Note the apparently strange position of
L in the reduct. It is correct: L has to commute outside
to bind both copies of f , otherwise the rule would create
free variables.

The name of the rules are due to the linear logic interpretation
of the LSC.

Unfolding: the shared representation is related to the
usual one via the crucial notion of unfolding, producing the
λ-term t

→

denoted by t and defined by:

x

→

:= x (tu)

→

:= t

→

u

→

(λx.t)

→

:= λx.t

→

t[x�u]

→

:= t

→

{x�u

→

}

Note that rn

→

= A2n .
As for the FBC, evaluation is well-defined:

Theorem 2.
1) Closed normal forms are answers, i.e. fireballs in sub-

stitution contexts.
2) (f is deterministic.

Structural Equivalence: the calculus is endowed with
a structural equivalence, noted ≡, whose property is to be
a strong bisimulation with respect to (f. It is the least

5

equivalence relation closed by weak contexts defined by the
axioms in Table I.

Proposition 2 (≡ is a Strong Bisimulation wrt (f). Let x ∈
{sm, se}. Then, t ≡ u and t(x t

′ implies that there exists u′

such that u(x u
′ and t′ ≡ u′.

Size Explosion, Again: coming back to the size explosion
example, the idea is that—to circumvent it—tn should better
(m-evaluate to:

rn := (x0x0)[x0�x21][x1�x22] . . . [xn−1�x2n][xn�A]

which is an alternative, compact representation of A2n , of
size linear in n, and with just one occurrence of A. Without
symbols, ES are enough to circumvent size explosion [2]–[4].
In our case however they fail. The evaluation we just defined
indeed does not stop on the desired compact representation,
and in fact a linear number of steps (namely 3n) may still
produce an exponential output (in a substitution context).

Proposition 3 (Size Explosion in the Explicit FBC).
tnA((m(2

e)nL〈A2n〉.

Proof: by induction on n. Let B := A2 = AA. Cases:

t1 = (λx1.(x1x1))A (m

(x1x1)[x1�A] (e

(x1A)[x1�A] (e

(AA)[x1�A] = A2[x1�A]

tn+1 = (λxn+1.(tn(xn+1xn+1)))A (m(2
e

(tnA
2)[x1�A] = L〈tnB〉 ((m(2

e)n (i.h.)
L′〈B2n〉 = L′〈A2n+1〉

Before introducing useful evaluation—that will liberate us
from size explosion—we are going to fully set up the archi-
tecture of the problem, by explaining 1) how ES implement
a calculus, 2) how an abstract machine implements a calculus
with ES, and 3) how to define an abstract machine for the
inefficient Explicit FBC. Only by then (Sect. XI) we will start
optimising the framework, first with useful sharing and then
by eliminating renaming chains.

VII. TWO LEVELS IMPLEMENTATION

Here we explain how the the small-step strategy →f of
the FBC is implemented by a micro-step strategy (. We
are looking for an appropriate strategy (with ES which
is polynomially related to both →f and an abstract machine.
Then we need two theorems:

1) High-Level Implementation:→f terminates iff(termi-
nates. Moreover, →f is implemented by (with only a
polynomial overhead. Namely, t(k u iff t→h

f u

→

with
k polynomial in h;

2) Low-Level Implementation: (is implemented on an
abstract machine with an overhead in time which is
polynomial in both k and the size of t.

We will actually be more accurate, giving linear or quadratic
bounds, but this is the general setting.

A. High-Level Implementation

First, terminology and notations. Derivations d, e, . . . are
sequences of rewriting steps. With |d|, |d|m, and |d|e we
denote respectively the length, the number of multiplicative,
and exponential steps of d.

Definition 1. Let→f be a deterministic strategy on FBC-terms
and (a deterministic strategy for terms with ES. The pair
(→f,() is a high-level implementation system if whenever
t is a λ-term and d : t(∗ u then:

1) Normal Form: if u is a (-normal form then u

→

is a
→f-normal form.

2) Projection: d

→

: t
→

→∗f u

→

and |d

→

| = |d|m.
Moreover, it is

1) locally bounded: if the length of a sequence of substi-
tution e-steps from u is linear in the number |d|m of
m-steps in d;

2) globally bounded: if |d|e is linear in |d|m.

The normal form and projection properties address the
qualitative part, i.e. the part about termination. The normal
form property guarantees that(does not stop prematurely, so
that when(terminates→f cannot keep going. The projection
property guarantees that termination of→f implies termination
of (. The two properties actually state a stronger fact: →f

steps can be identified with the (m-steps of the (strategy.
The local and global bounds allow to bound the overhead

introduced by the Explicit FBC wrt the FBC, because by
relating (m and (e steps, they relate |d| and |d

→

|, since →f

and (m steps can be identified.
The high-level part can now be proved abstractly.

Theorem 3 (High-Level Implementation). Let t be an ordi-
nary λ-term and (→f,() a high-level implementation system.

1) Normalisation: t is →f-normalising iff it is (-
normalising.

2) Projection: if d : t(∗ u then d

→

: t→∗f u

→

.
Moreover, the overhead of (is, depending on the system:

1) locally bounded: quadratic, i.e. |d| = O(|d

→

|2).
2) globally bounded: linear, i.e. |d| = O(|d

→

|).

Let us see our framework at work:

Theorem 4. (→f,(f) is a high-level implementation system.

Note the absence of complexity bounds. In fact, (→f,(f)
is not even locally bounded. Let tn here be defined by
t1 = t and tn+1 = tnt, and un := (λx.xn)A. Then
d : un (m(n

e An[x�A] is a counter-example to local
boundedness. Moreover, the Explicit FBC also suffers of size
explosion, i.e. implementing a single step may take exponential
time. In Sect. XI useful sharing will solve these issues.

B. Low-Level Implementation: Abstract Machines

Introducing Distilleries: an abstract machine M is meant
to implement a strategy (via a distillation, i.e. a decoding
function · . A machine has a state s, given by a code t, i.e. a λ-
term t without ES and not considered up to α-equivalence, and

6

some data-structures like stacks, dumps, environments, and
eventually heaps. The data-structures are used to implement
the search of the next (-redex and some form of parsimo-
nious substitution, and they distill to evaluation contexts for
(. Every state s decodes to a term s, having the shape F 〈t〉,
where t is a λ-term and F is some kind of evaluation context.

A machine computes using transitions, whose union is noted
 , of two types. The principal one, noted p, corresponds
to the firing of a rule defining (. In doing so, the machine
can differ from the calculus implemented by a transformation
of the evaluation context to an equivalent one, up to structural
equivalence ≡. The commutative transitions, noted c, imple-
ment the search for the next redex to be fired by rearranging
the data-structures to single out a new evaluation context, and
they are invisible on the calculus. The names reflect a proof-
theoretical view, as machine transitions can be seen as cut-
elimination steps [15], [29]. Garbage collection is here simply
ignored, as in the LSC it can always be postponed.

To preserve correctness, structural equivelance ≡ is required
to commute with evaluation (, i.e. to satisfy

t

u

r

≡ ⇒ ∃q s.t.
t

u

r

q

≡ ≡

for each of the rules of (, preserving the kind of rule. In
fact, this means that ≡ is a strong bisimulation (i.e. one
step to one step) with respect to (. Strong bisimulations
formalise transformations which are transparent with respect
to the behaviour, even at the level of complexity, because they
can be retarded without affecting the length of evaluation:

Lemma 1 (≡ Postponement). If ≡ is a strong bisimulation
and t (→ ∪ ≡)∗ u then t →∗≡ u and the number and kind
of steps of (in the two reduction sequences is the same.

We can finally introduce distilleries, i.e. systems where a
strategy(simulates a machine M up to structural equivalence
≡ (via the decoding ·).

Definition 2. A distillery D = (M,(,≡, ·) is given by:
1) An abstract machine M, given by

a) a deterministic labeled transition system on
states s;

b) a distinguished class of states deemed initial, in
bijection with closed λ-terms and from which one
obtains the reachable states by applying ∗;

c) a partition of the labels of the transition system
as:
• principal transitions, noted p,
• commutative transitions, noted c;

2) a deterministic strategy (;
3) a structural equivalence ≡ on terms s.t. it is a strong

bisimulation with respect to (;
4) a distillation · , i.e. a decoding function from states to

terms, s.t. on reachable states:
• Principal: s p s

′ implies s(≡ s′,
• Commutative: s c s

′ implies s ≡ s′.

We will soon prove that a distillery implies a simulation the-
orem, but we want a stronger form of relationship. Additional
hypothesis are required to obtain the converse simulation,
handle explicit substitution, and talk about complexity bounds.

Some terminology first. An execution ρ is a sequence of
transition from an initial state. With |ρ|, |ρ|p, and |ρ|c we
denote respectively the length, the number of principal, and
commutative transitions of ρ. The size of a term is noted |t|.

Definition 3 (Distillation Qualities). A distillery is
• Reflective when on reachable states:

– Termination: c terminates;
– Progress: if s reduces then s is not final.

• Explicit when
– Partition: principal transitions are partitioned into

multiplicative m and exponential e, like for the
strategy (.

– Explicit decoding: the partition is preserved by the
decoding, i.e.
∗ Multiplicative: s m s′ implies s(m≡ s′;
∗ Exponential: s e s

′ implies s(e≡ s′;
• Bilinear when it is reflective and

– Execution Length: given an execution ρ from an
initial term t, the number of commutative steps |ρ|c
is linear in both |t| and |ρ|p (with a slightly stronger
dependency on |t|, due to the time needed to recog-
nise a normal form), i.e. if |ρ|c = O((1 + |ρ|p) · |t|).

– Commutative: c is implementable on RAM in a
constant number of steps;

– Principal: p is implementable on RAM in O(|t|)
steps.

A reflective distillery is enough to obtain a bisimulation
between the strategy (and the machine M, that is strong
up to structural equivalence ≡. With |ρ|m and |ρ|e we denote
respectively the number of multiplicative and exponential
transitions of ρ.

Theorem 5 (Correctness and Completeness). Let D be a
reflective distillery and s an initial state.

1) Strong Simulation: for every execution ρ : s ∗ s′ there
is a derivation d : s(∗≡ s′ s.t. |ρ|p = |d|.

2) Reverse Strong Simulation: for every derivation d :
s (∗ t there is an execution ρ : s ∗ s′ s.t. t ≡ s′

and |ρ|p = |d|.
Moreover, if D is explicit then |ρ|m = |d|m and |ρ|e = |d|e.

Bilinearity, instead, is crucial for the low-level theorem.

Theorem 6 (Low-Level Implementation Theorem). Let(be
a strategy on terms with ES and D = (M,(,≡, ·) a bilinear
distillery. Then a (-derivation d is implementable on RAM
machines in O((1 + |d|) · |t|) steps, i.e. bilinear in the size of
the initial term t and the length of the derivation |d|.

Proof: given d : t (n u by Theorem 5.2 there is an
execution ρ : s ∗ s′ s.t. u ≡ s′ and |ρ|p = |d|. The number

7

Table II
OPEN GLAM: DATA-STRUCTURES, DECODING AND TRANSITIONS

φ ::= t | (t, π) E,E′ ::= ε | [x�t] : E
π, π′ ::= ε | φ : π s, s′ ::= (D, t, π, E)
D,D′ ::= ε | D : (t, π)

ε := 〈·〉 [x�t] : E := 〈〈·〉[x�t]〉E
φ : π := 〈〈·〉φ〉π Fs := 〈D〈π〉〉E
(t, π) := 〈t〉π s := Fs〈t〉

D : (t, π) := D〈〈t〈〉〉π〉 where s = (D, t, π, E)

D tu π E c1 D : (t, π) u ε E
D λx.t u : π E m D t π [x�u]E

D : (t, π) λx.u ε E c2 D t λx.u : π E
D : (t, π) a π′ E c3 D t (a, π′) : π E

D x π E1[x�u]E2 e D uα π E1[x�u]E2

where uα is any code α-equivalent to u that preserves well-naming of the machine, i.e. such that any bound name in uα
is fresh with respect to those in D, π and E1[x�u]E2.

of RAM steps to implement ρ is the sum of the number for
the commutative and the principal transitions. By bilinearity,
|ρ|c = O((1+ |ρ|p) · |t|) and so all the commutative transitions
in ρ require O((1+|ρ|p)·|t|) steps, because a single one takes a
constant number of steps. Again by bilinearity, each principal
one requires O(|t|) steps, and so all the principal transitions
together require O(|ρ|p · |t|) steps.

We will discuss three distilleries, summarised in Table IV
(page 11), and two of them will be bilinear. The machines will
be sophisticated, so that we will first present a machine for the
inefficient Explicit FBC (Sect. VIII, called Open GLAM), that
we will later refine with useful sharing (Sect. XII, GLAMOUr)
and with renaming chains elimination (Sect. XIV, Unchaining
GLAMOUr).

Let us point out an apparent discrepancy with the literature.
For the simpler case without symbols, the number of com-
mutative steps of the abstract machine studied in [3] is truly
linear (and not bilinear), i.e. it does not dependent on the size
of the initial term. Three remarks:

1) Complete Evaluation: it is true only for evaluation to
normal form, while our theorems are also valid for
prefixes of the evaluation and diverging evaluations.

2) Normal Form Recognition: it relies on the fact that
closed normal forms (i.e. values) can be recognised in
constant time, by simply checking the topmost construc-
tor. With symbols checking if a term is normal requires
time linear in its size; linearity is simply not possible.

3) Asymptotically Irrelevant: the dependency from the ini-
tial term disappears from the number of commutative
transitions but still affects the cost of the principal ones,
because every exponentials transition copies a subterm
of the initial term, and thus it takes O(|t|) time.

VIII. AN INEFFICIENT DISTILLERY: THE OPEN GLAM

In this section we introduce the Open GLAM machine and
show that it distills to the Explicit FBC. The distillery is
inefficient, because the Explicit FBC suffers of size explosion,
but it is a good case study to present distilleries before the
optimisations. Moreover, it allows to show an unexpected fact:
while adding useful sharing to the calculus will be a quite
tricky and technical affair (Sect. XI), adding usefulness to the

Open GLAM will be surprisingly simple (Sect. XII), and yet
tests of usefulness will only require constant time.

Open GLAM stays for Open Global LAM, in turn referring
to a similar machine, based on local environments, introduced
in [15] and called LAM—standing for Leroy Abstract Ma-
chine. The Open GLAM differs from the LAM in two respects:
1) it uses global rather than local environments, and 2) it has
an additional rule (c3) to handle open terms (i.e. symbols).

Data-Structures: at the machine level, terms are replaced
by codes, i.e. terms not considered up to α-equivalence. To
distinguish codes from terms, we over-line codes like in t.

States (noted s, s′, . . .) of the abstract machine are made out
of a context dump D, a code t, an argument stack π, and a
global environment E, defined by the grammars in Table II. To
save space, sometimes we write [x�t]E for [x�t] : E. Note
that stacks may contain pairs (t, π) of a code and a stack, used
to code the application of t to the stack π. This representation
allows to implement commutative rules in constant time.

The Machine: the machine transitions are given in Ta-
ble II. Note that the multiplicative one m puts a new entry
in the environment, while the exponential one e performs a
clashing-avoiding substitution from the environment. The idea
is that the principal transitions m and e implement (m

and (e while the commutative transitions c1 , c2 , and
 c3 locate and expose the next redex following a right-to-left
strategy.

The commutative rule c1 forces evaluation to be right-to-
left on applications: the machine processes first the argument
u, saving the left sub term t on the dump together with its
current stack π. The role of c2 and c3 is to backtrack to
the saved subterm. Indeed, when the argument, i.e. the current
code, is finally put in normal form, encoded by a stack item
φ, the stack item is pushed on the stack, and the machine
backtracks to the pair on the dump.

The Distillery: machines start an execution on initial
states defined as (ε, t, ε, ε), i.e. obtained by taking the term,
seen now as the code t, and setting to ε the other machine
components. A state represents a term—given by the code—
and an evaluation context, that for the Open GLAM is obtained
by decoding D, π, and E. The decoding · (or distillation)
function is defined in Table II. Note that stacks are decoded

8

Table III
CONTEXT AND RELATIVE UNFOLDING

Context Unfolding Relative Unfolding Relative Context Unfolding
〈·〉

→

:= 〈·〉
(tS)

→

:= t

→

S

→

(St)

→

:= S

→

t

→

S[x�t]

→

:= S

→

{x�t

→

}

t

→

〈·〉 := t

→

t

→

uS
:= t

→

S
t

→

Su
:= t

→

S
t

→

S[x�u] := t

→

S
{x�u

→

}

S′

→

〈·〉 := S′

→

S′

→

uS
:= S′

→

S
S′

→

Su
:= S′

→

S
S′

→

S[x�u] := S′

→

S
{x�u

→
}

to contest in postfix notation for plugging. To improve read-
ability, when we decode machines, we will denote W 〈t〉 with
〈t〉W , if the component occurs on the right of t in the machine
representation.

A machine state is closed when all free variables in any
component of the state are bound in E or, equivalently, when s
is closed in the usual sense. It is well-named when all variables
bound in the state are distinct. We require well-namedness as
a machine invariant to allow every environment entry [x�t]
to be global (i.e. to bind x everywhere in the machine state).
From now on, the initial state associated to a term t has as
code the term obtained α-converting t to make it well-named.

For every machine we will have invariants, in order to
prove the properties of a distillery. They are always proved
by induction over the length of the execution, by a simple
inspection of the transitions. For the Open GLAM:

Lemma 2 (Open GLAM Invariants). Let s = (D,u, π,E) be
a state reachable from an initial code t. Then:

1) Closure: s is closed and well-named;
2) Value: values in components of s are subterms of t;
3) Fireball: every term in π, in E, and in every stack in D

is a fireball;
4) Contextual Decoding: E, D, π, and Fs are evaluation

contexts;

The invariants are used to prove the following theorem.

Theorem 7 (Open GLAM Distillation). (Open GLAM,(f,≡
, ·) is a reflective explicit distillery. In particular, let s be a
reachable state reachable:

1) Commutative: if s c1,2,3 s
′ then s = s′;

2) Multiplicative: if s m s
′ then s(m≡ s′;

3) Exponential: if s e s
′ then s(e s

′.

Since the Explicit FBC suffers of size explosion, an expo-
nential step (and thus an exponential transition) may dupli-
cate a subterm that is exponentially bigger than the input.
Then (Open GLAM,(f,≡, ·) does not satisfy bilinearity,
for which every exponential transition has to be linear in the
input.

IX. INTERLUDE: RELATIVE UNFOLDINGS

Now we define some notions for weak contexts that will be
implicitly instantiated to all kind of contexts in the paper. In
particular, we define substitution over contexts, and then use
it to define the unfolding of a context, and the more general
notion of relative unfolding.

Implicit substitution on weak contexts W is defined by

〈·〉{x�u} := 〈·〉
(tW){x�u} := t{x�u}W{x�u}
(Wt){x�u} := W{x�u}t{x�u}
W [y�t]{x�u} := W{x�u}[y�t{x�u}]
t[y�W]{x�u} := t{x�u}[y�W{x�u}]

Lemma 3. Let t be a term and W a weak context. Then
W 〈t〉{x�u} = W{x�u}〈t{x�u}〉.

Now, we would like to extend the unfolding to contexts,
but in order to do so we have to restrict the notion of context.
Indeed, whenever the hole of a context is inside an ES, the
unfolding may erase or duplicate the hole, producing a term
or a multi-context, which we do not want. Thus, we turn to
(weak) shallow contexts, defined by:

S, S′, S′′ ::= 〈·〉 | St | tS | S[x�t].

(note the absence of the production t[x�S]).
Now, we define in Table III context unfolding S

→

, unfolding
t

→

S
of a term t relative to a shallow context S and unfolding

S′

→

S
of a shallow context S′ relative to a shallow context S.

Relative unfoldings have a number of properties, summed
up in the companion technical report [17]. Last, a definition
that will be important in the next section.

Definition 4 (Applicative Context). A shallow context S is
applicative when its hole is applied to a sub term u, i.e. if
S = S′〈Lu〉.

X. INTRODUCING USEFUL SHARING

Beware: this and the next sections will heavily use contexts
and notions about them as defined in Sect. VI and Sect. IX, in
particular the notions of shallow context, applicative context,
and relative unfolding.

Introducing Useful Reduction: note that the substitution
steps in the size exploding family do not create redexes. We
want to restrict the calculus so that these useless steps are
avoided. The idea of useful sharing, is to trigger an exponential
redex only if it will somehow contribute to create a multiplica-
tive redex. Essentially, one wants only the exponential steps

F 〈x〉[x�L〈f〉](e L〈F 〈f〉[x�f]〉

s.t. F is applicative and f is a value, so that the firing creates
a multiplicative redex. Such a change of approach, however,
has consequences on the whole design of the system. Indeed,
since some substitutions are delayed, the present requirements
for the rules might not be met. Consider:

(λx.t)y[y�ab]

9

we want to avoid substituting ab for the argument y,
but we also want that evaluation does not stop, i.e. that
(λx.t)y[y�ab] →m t[x�y[y�ab]]. To accomodate such a
dynamics, our definitions have to be up to unfolding, i.e.
fireballs have to be replaced by terms unfolding to fireballs.
There are 4 subtle things about useful reduction.

1) Multiplicatives and Variables: the idea is that the
multiplicative rule becomes

L〈λx.t〉L′〈u〉 7→m L〈t[x�L′〈u〉]〉

where it is the unfolding L′〈u〉

→

of the argument L′〈u〉 that is a
fireball, and not necessarily L′〈u〉 itself. Note that sometimes
variables are valid arguments of multiplicative redexes, and
consequently substitutions may contain variables.

2) Exponentials and Future Creations: the exponential
rule involves contexts, and is trickier to make it useful. A first
approximation of useful exponential step is

F 〈x〉[x�L〈u〉] 7→e L〈F 〈u〉[x�u]〉

where L〈u〉

→

is a value (i.e. it is not inert) and F is applicative,
so that—after eventually many substitution steps, when x
becomes u

→

—a multiplicative redex will pop out.
Note that an useful exponential step does not always imme-

diately create a multiplicative redex. Consider the following
step (where I is the identity):

(xI)[x�y][y�I](e (yI)[x�y][y�I] (1)

No multiplicative redex has been created yet, but step (1) is
useful because the next exponential step creates a multiplica-
tive redex (note how such lookahead is captured by working
up to unfoldings):

(yI)[x�y][y�I](e (II)[x�y][y�I]

3) Evaluation and Evaluable Contexts: the delaying of
useless substitutions impacts also on the notion of evaluation
context F , used in the exponential rule. For instance, the
following exponential step should be useful

((xI)y)[x�I][y�ab](e ((II)y)[x�I][y�ab]

but the context ((〈·〉I)y)[x�I][y�ab] isolating x is not an
evaluation context, it only unfolds to one. We then need a no-
tion of evaluation context up to unfolding. The intuition is that
a shallow context S is evaluable if S

→

is an evaluation context
(see Sect. IX for the definition of context unfolding), and it is
useful if it is evaluable and applicative. The exponential rule
then should rather be:

S〈x〉[x�L〈u〉] 7→e L〈S〈u〉[x�u]〉

where u

→

is a value and S is useful.

4) Context Closure vs Global Rules: such a definition,
while close to the right one, still misses a fundamental point,
i.e. the global nature of useful steps. Evaluation rules are
indeed defined by a further closure by contexts, i.e. a step
takes place in a certain shallow context S′. Of course, S′ has
to be evaluable, but there is more. Such a context, in fact, may
also give an essential contribution to the usefulness of a step.
Let us give an example. Consider the exponential step

(xx)[x�y](e (yx)[x�y]

By itself it is not useful, since y is not a value nor unfolds to
one. If we plug that redex in the context S := 〈·〉[y�I], how-
ever, then y unfolds to a value in S, as y

→

S
= y

→

〈·〉[y�λz.z] =
λz.z, and the step becomes:

(xx)[x�y][y�λz.z](e (yx)[x�y][y�λz.z] (2)

As before, no multiplicative redex has been created yet, but
step (2) is useful because it is essential for the creation given
by the next exponential step:

(yx)[x�y][y�λz.z](e ((λz.z)x)[x�y][y�λz.z]

Note, indeed, that (λz.z)x gives a useful multiplicative redex,
because x unfolds to a fireball in its context 〈·〉[x�y][y�λz.z].

Summing up, the useful or useless character of a step
depends crucially on the surrounding context. Therefore useful
rules have to be global: rather than given as axioms closed by
evaluable contexts, they will involve the surrounding context
itself and impose conditions about it.

The Useful FBC, presented in the next section, formalises
these ideas. We will prove it to be a locally bounded imple-
mentation of→f, obtaining our fist high-level implementation
theorem.

XI. THE USEFUL FIREBALL CALCULUS

For the Useful FBC, terms, values, and substitution contexts
are unchanged (with respect to the Explicit FBC), and we use
shallow contexts S as defined in Sect. IX. An initial term is
still a closed term with no explicit substitutions.

The new key notion is that of evaluable context.

Definition 5 (Evaluable and Useful Contexts). Evaluable
(shallow) contexts are defined by the inference system in
Table V. A context is useful if it is evaluable and applicative
(being applicative is easily seen to be preserved by unfolding).

Point 1 of the following Lemma 4 guarantees that evaluable
contexts capture the intended semantics suggested in the pre-
vious section. Point 2 instead provides an equivalent inductive
formulation that does not mention relative unfoldings. The
definition in Table V can be thought has been from the
outside, while the lemma give a characterisation from the
inside, relating subterms to their surrounding sub-context.

Lemma 4.
1) If S is evaluable then S

→

is an evaluation context.
2) S is evaluable iff u

→

S′ is a fireball whenever S =
S′〈S′′u〉 or S = S′〈S′′[x�u]〉.

10

Table IV
DISTILLERIES IN THE PAPER + REWRITING RULES FOR THE USEFUL FBC

Calculus Machine
FBC →f

Explicit FBC (f Open GLAM
Useful FBC (uf GLAMOUr

Unchaining FBC (of Unchaining GLAMOUr

RULE (ALREADY CLOSED BY CONTEXTS) SIDE CONDITIONS
S〈L〈λx.t〉u〉(um S〈L〈t[x�u]〉〉 S〈Lu〉 is useful

S〈S′〈x〉[x�L〈u〉]〉(ue S〈L〈S′〈u〉[x�u]〉〉 S〈S′[x�L〈u〉]〉 is useful
u 6= u′[y�w] and u

→

S〈L〉 = v

Table V
EVALUABLE SHALLOW CONTEXTS

〈·〉 is evaluable
S is eval. t

→

is a fireball

St is evaluable

S is evaluable
tS is evaluable

S{x�t

→

} is eval. t

→

is a fireball

S[x�t] is evaluable

Rewriting Rules: the two rewriting rules (um and (ue

are defined in Table IV, and we use (uf for (um ∪ (ue.
The rules are global, i.e. they do not factor as a rule followed
by a contextual closure. As already explained, the context has
to be taken into account, to understand if the step is useful to
multiplicative redexes.

In rule(um, the requirement that the whole context around
the abstraction is useful guarantees that the argument u unfolds
to a fireball in its context. Note also that in (ue this is not
enough, as such an unfolding has to be a value, otherwise it
will not be useful to multiplicative redexes. Moreover, the rule
requires u 6= u′[y�w], to avoid copying substitutions.

A detailed study of useful evaluation in the companion
technical report [17] shows that:

Theorem 8 (Quadratic High-Level Implementation). (→f

,(uf) is a locally bounded high-level implementation system,
and so it has a quadratic overhead wrt →f.

Moreover, the structural equivalence ≡ is a strong bisimu-
lation also with respect to (uf.

Proposition 4 (≡ is a Strong Bisimulation wrt (uf). Let
x ∈ {um, ue}. Then, t ≡ u and t (x t

′ implies that there
exists u′ such that u(x u

′ and t′ ≡ u′.

XII. THE GLAMOUR MACHINE

Here we refine the Open GLAM with a very simple tagging
of stacks and environments, in order to implement useful
sharing. The idea is that every term in the stack or in the
environment carries a label l ∈ {v,A} indicating if it unfolds
(relatively to the environment) to a value or to a inert term.

The grammars are identical to the Open GLAM, up to
labels:

l ::= v | A E,E′ ::= ε | [x�φl] : E
π, π′ ::= ε | φl : π

The decoding of the various machine components is identi-
cal to that for the Open GLAM, up to labels that are ignored.
The state context, however, now is noted Ss, as it is not
necessarily an evaluation context, but only an evaluable one.

The transitions are in Table VI. They are obtained from
those of the Open GLAM by:

1) Backtracking instead of performing a useless substitu-
tion: there are two new backtracking cases c4 and
 c5 (that in the Open GLAM were handled by the
exponential transition), corresponding to avoided use-
less duplications: c4 backtracks when the entry φ to
substitute is marked A (as it unfolds to a inert term) and
 c5 backtracks when the term is marked v but the stack
is empty (i.e. the context is not applicative).

2) Substituting only when it is useful: the exponential
transition is applied only when the term to substitute
has label v and the stack is non-empty.

Lemma 5 (GLAMOUr Invariants). Let s = (D,u, π,E) be a
state reachable from an initial code t. Then:

1) Closure: s is closed and well named;
2) Value: values in components of s are subterms of t;
3) Fireball: t

→

E
is a fireball (of kind l) for every code tl in

π, E, and in every stack of D;
4) Evaluability: E, D

→

E
, π

→

E
, and Ss are evaluable con-

texts;
5) Environment Size: the length of the global environment

E is bound by |ρ|m.

Theorem 9 (GLAMOUr Distillation). (GLAMOUr,(uf,≡
, ·) is a reflective explicit distillery. In particular, let s be a
reachable state:

1) Commutative: if s c1,2,3,4,5 s
′ then s = s′;

2) Multiplicative: if s um s
′ then s(um≡ s′;

3) Exponential: if s ue s
′ then s(ue s

′.

In fact, the distillery is even bilinear, as we now show. The
proof employs the following definition of size of a state.

Definition 6. The size of codes and states is defined by:

|x| = |a| := 1 |tu| := |t|+ |u|+ 1
|λx.t| := |t|+ 1 |(D, t, π,E)| := |t|+ Σ(u,π)∈D|u|

Lemma 6 (Size Bounded). Let s = (D,u, π,E) be a state
reached by an execution ρ of initial code t. Then |s| ≤ (1 +
|ρ|ue)|t| − |ρ|c.

Proof: by induction over the length of the derivation. The
property trivially holds for the empty derivation. Case analysis
over the last machine transition. Commutative rule c1 : the
rule splits the code tu between the dump and the code, and the
measure—as well as the rhs of the formula—decreases by 1
because the rule consumes the application node. Commutative
rules c2,3,4,5 : these rules consume the current code, so they

11

Table VI
TRANSITIONS OF THE GLAMOUR

D tu π E c1 D : (t, π) u ε E
D λx.t φl : π E um D t π [x�φl]E

D : (t, π) λx.u ε E c2 D t (λx.u)v : π E
D : (t, π) a π′ E c3 D t (a, π′)A : π E
D : (t, π) x π′ E1[x�φA]E2 c4 D t (x, π′)A : π E1[x�φA]E2

D : (t, π) x ε E1[x�uv]E2 c5 D t xv : π E1[x�uv]E2

D x φl : π E1[x�uv]E2 ue D uα φl : π E1[x�uv]E2

where uα is any code α-equivalent to u that preserves well-naming of the machine.

Table VII
IDENTITY, CHAIN, AND CHAIN-STARTING CONTEXT + REWRITING RULES OF THE UNCHAINING FBC

I, I′ ::= 〈·〉 | I〈x〉[x�I′] | I[x�t]
C,C′ ::= S〈x〉[x�I] | C〈x〉[x�I] | S〈C〉

←−−−−−−−
S〈y〉[y�I]x := S[y�I〈x〉]
←−−−−−−−
C〈y〉[y�I]x :=

←−
C y [y�I〈x〉]

←−−−
S〈C〉x := S〈

←−
C x〉

RULE (ALREADY CLOSED BY CONTEXTS) SIDE CONDITION
S〈L〈λx.t〉u〉(om S〈L〈t[x�u]〉〉 S〈〈·〉u〉 is useful

S〈S′〈x〉[x�L〈v〉]〉(oes S〈L〈S′〈v〉[x�v]〉〉 S〈S′[x�L〈v〉]〉 is useful

S〈C〈x〉[x�L〈v〉]〉(oec S〈L〈C〈v〉[x�v]〉〉 S〈
←−
C x[x�L〈v〉]〉 is useful

decrease the measure of at least 1. Multiplicative: it consumes
the lambda abstraction. Exponential: it modifies the current
code by replacing a variable (of size 1) with a value v coming
from the environment. Because of Lemma 5.2, v is a subterm
of t and the dump size increment is bounded by |t|.

Corollary 1 (Bilinearity of c). Let s be a state reached by
an execution ρ of initial code t. Then |ρ|c ≤ (1 + |ρ|e)|t|.

Finally, we obtain our first implementation theorem.

Theorem 10 (Useful Implementation).
1) Low-Level Bilinear Implementation: a (uf-derivation

d is implementable on RAM in O((1 + |d|) · |t|) (i.e.
bilinear) steps.

2) Low + High Quadratic Implementation: a→f-derivation
d is implementable on RAM in O((1 + |d|2) · |t|) steps,
i.e. linear in the size of the initial term t and quadratic
in the length of the derivation |d|.

XIII. THE UNCHAINING FBC
In this section we start by analysing why the Useful FBC

has a quadratic overhead. We then refine it, obtaining the
Unchaining FBC, that we will prove to have only a linear
overhead wrt the FBC. The optimisation has to do with the
order in which chains of useful substitutions are performed.

Analysis of Useful Substitution Chains: in the Useful
FBC, whenever there is a situation like

(x1A)[x1�x2] . . . [xn−1�xn][xn�v]

the (uf strategy performs n + 1 exponential steps (ue

replacing x1 with x2, then x2 with x3, and so on, until v
is finally substituted on the head

(xnA)[x1�x2] . . . [xn−1�xn][xn�v] (ue

(vA)[x1�x2] . . . [xn−1�xn][xn�v]

and a multiplicative redex can be fired. Any later occurrence
of x1 will trigger the same chain of exponential steps again.

Because the length n of the chain is bounded by the number
of previous multiplicative steps (local bound property), the
overall complexity of the machine is quadratic in the number
of multiplicative steps. In our previous work [16], we showed
that to reduce the complexity to linear it is enough to perform
substitution steps in reverse order, modifying the chains while
traversing them. The idea is that in the previous example
one should rather have a smart reduction (oe (o stays for
optimised, as u is already used for useful reduction) following
the chain of substitutions and performing:

(x1A)[x1�x2] . . . [xn−1�xn][xn�v] (oe

(x1A)[x1�x2] . . . [xn−1�v][xn�v] (oe

. . .
(x1A)[x1�v] . . . [xn−1�v][xn�v] (oe

(vA)[x1�v] . . . [xn−1�v][xn�v]

Later occurrences of x1 will no longer trigger the chain,
because it has been unchained by traversing it the first time.

Unfortunately, introducing such an optimisation for useful
reduction is hard. In the shown example, that has a very simple
form, it is quite easy to define what following the chain means.
For the distillation machinery to work, however, we need our
rewriting rules to be stable by structural equivalence, whose
action is a rearrangement of substitutions through the term
structure. Then the substitutions [xi�xi+1] of the example
can be spread all over the term, interleaved by applications
and other substitutions, and even nested one into the other
(like in [xi�xi+1[xi+1�xi+2]]). This makes the specification
of unchaining useful reduction a quite technical affair.

Chain Contexts: reconsider a term like in the example,
(xA)[x1�x2][x2�x3][x3�x4][x4�v]. We want the next step
to substitute on x4 so we should give a status to the context
C := (xA)[x1�x2][x2�x3][x3�〈·〉]. The problem is that C
can be deformed by structural equivalence ≡ as

C ′ := (x[x1�x2[x2�x3]]A)[x3�〈·〉]

12

and so this context has to be caught too. We specify these
context in Table VII as chain contexts C, defined using the
auxiliary notion of identity context I , that captures a simpler
form of chain (note that both notions are not shallow).

Given a chain context C, we will need to retrieve the point
where the chain started, i.e. the shallow context isolating the
variable at the left end of the chain (x1 in the example). We
are now going to define an operation associating to every chain
context its chain-starting (shallow) context. To see the two as
contexts of a same term, we need also to provide the subterm
that we will put in C (that will always be a variable). The
chain-starting context

←−
C x associated to the chain context C

(with respect to x) is defined in Table VII.
For our example C := (xA)[x1�x2][x2�x3][x3�〈·〉] we

have
←−
C x4 = (〈·〉A)[x1�x2][x2�x3][x3�x4], as expected.

Rewriting Rules: the rules of the Unchaining FBC are
in Table VII. Note that the exponential rule splits in two, the
ordinary shallow case (oes (now constrained to values) and
the chain case (oec (where the new definition play a role).
They could be merged, but for the complexity analysis and
the relationship with the next machine is better to distinguish
them. We use (oe for (oes ∪ (oec, and (of for (om

∪(oe. Note the use of
←−
C x in the third side condition.

A. Linearity: Multiplicative vs Exponential Analysis

To prove that(of implements→f with a global bound, and
thus with a linear overhead, we need to show that the global
number of exponential steps ((oe) in a (of-derivation is
bound by the number of multiplicative steps ((om). We need
the following invariant.

Lemma 7 (Subterm Invariant). Let t be a λ-term and d :
t(∗ u. Then every value in u is a value in t.

A substitution t[x�u] is basic if u has the form L〈y〉. The
basic size |t|b of t is the number of its basic substitutions.

Lemma 8 (Steps and Basic Size).
1) If t(oes u then |u|b = |t|b;
2) If t(oec u then |t|b > 0 and |u|b = |t|b − 1;
3) If t(om u then |u|b = |t|b or |u|b = |t|b + 1.

Lemma 9. Let t be initial and d : t (∗of u. Then |u|b ≤
|d|om − |d|oec.

Proof: by induction on |d|. If |d| = 0 the statement holds.
If |d| > 0 consider the last step w(of u of d and the prefix
e : t (∗of w of d. By i.h., |w|b ≤ |e|om − |e|oec. Cases of
w(of u.
Shallow Exponential Step (oes:

|u|b ≤L.8.1 |w|b − 1
≤i.h. |e|om − |e|oec − 1
= |e|om − (|e|oec + 1) = |d|om − |d|oec

Chain Exponential Step (oec:

|u|b =L.8.2 |w|b ≤i.h. |e|om − |e|oec = |d|om − |d|oec

Multiplicative Step (om:

|u|b ≤L.8.3 |w|b + 1
≤i.h. |e|om − |e|oec + 1
= e+ 1− |e|oec = |d|om − |d|oec

Corollary 2 (Linear Bound on Chain Exponential Steps). Let
t be initial and d : t(∗of u. Then |d|oec ≤ |d|om.

Next, we bound shallow steps.

Lemma 10 (Linear Bound on Shallow Exponential Steps). Let
t be initial and d : t(∗of u. Then |d|oes ≤ |d|om.

Proof: first note that if t(oes u then u(om w, because
by definition (oes can fire only if it creates a (om-redex.
Such a fact and determinism of (of together imply |d|oes ≤
|d|om +1, because every(oes step is matched by the eventual
(om steps that follows it immediately. However, note that in
t there are no explicit substitutions so that the first step is
necessarily an unmatched (om step. Thus |d|oes ≤ |d|om.

Theorem 11 (Linear Bound on Exponential Steps). Let t be
initial and d : t(∗of u. Then |d|oe ≤ 2 · |d|om.

Proof: by definition, |d|oe = |d|oec + |d|oes. By Corol-
lary 2, |d|oec ≤ |d|om and by Lemma 10 |d|oes ≤ |d|om, and so
|d|oe ≤ 2 · |d|om.

We presented the interesting bit of the proof of our im-
proved high-level implementation theorem, which follows. The
remaining details are in [17].

Theorem 12 (Linear High-Level Implementation). (→f,(of)
is a globally bounded high-level implementation system, and
so it has a linear overhead wrt →f.

Last, the structural equivalence ≡ is a strong bisimulation
also for the Unchaining FBC.

Proposition 5 (≡ is a Strong Bisimulation). Let x ∈
{om, oms, omc}. Then, t ≡ u and t (x t

′ implies that there
exists u′ such that u(x u

′ and t′ ≡ u′.

XIV. UNCHAINING GLAMOUR

The Unchaining GLAMOUr machine, in Table VIII, be-
haves like the GLAMOUr machine until the code is a variable
x1 that is hereditarily bound in the global environment to a
value via the chain [x1�x2]v . . . [xn�v]v , and the stack is not
empty (i.e. evaluation is in an applicative context). At this
point the machine needs to traverse the chain until it finds the
final binding [xn�v]v , and then traverse again the chain in
the opposite direction replacing every [xi�xi+1]v entry with
[xi�v]v .

The forward traversal of the chain is implemented by a new
commutative rule c6 that pushes the variables encountered in
the chain on a new machine component, called the chain heap.
The backward traversal is driven by the next variable popped
from the heap, and it is implemented by a new exponential
rule (the chain exponential rule, corresponding to that of the
calculus). Most of the analyses of the GLAMOUr carry over
to the Unchaining GLAMOUr.

13

Table VIII
TRANSITIONS OF THE UNCHAINING GLAMOUR

D ε tu π E c1 D : (t, π) ε u ε E
D ε λx.t φl : π E om D ε t π [x�φl]E

D : (t, π) ε λx.u ε E c2 D ε t (λx.u)v : π E
D : (t, π) ε a π′ E c3 D ε t (a, π′)A : π E
D : (t, π) ε x π′ E1[x�φA]E2 c4 D ε t (x, π′)A : π E1[x�φA]E2

D : (t, π) ε x ε E1[x�uv]E2 c5 D ε t xv : π E1[x�uv]E2

D ε x φl : π E1[x�vv]E2 oes D ε vα φl : π E1[x�vv]E2

D H x φl : π E1[x�yv]E2 c6 D H : x y φl : π E1[x�yv]E2

D H : y x φl : π E• oec D H y φl : π E◦

with E• := E1[x�vv]E2[y�xv]E3, E◦ := E1[x�vv]E2[y�vαv]E3, and where vα is any code α-equivalent to v
that preserves well-naming of the machine.

Every old grammar is as before, and heaps are simply lists
of variables, i.e. they are defined by H ::= ε | H : x.

Decoding and Invariants: because of chain heaps and
chain contexts, the decoding is involved.

First of all, note that there is a correlation between the chain
and the environment, as the variables of a chain heap H =
x1 : . . . : xn need to have corresponding entries [xi�xvi+1].
More precisely, we will show that the following notion of
compatibility is an invariant of the machine.

Definition 7 (Compatibility Heap-Environment). Let E be an
environment and H = x1 : . . . : xn be a heap. We say that H
is compatible with E if either H is empty or [xi�xvi+1] ∈ E
for i < n, [xn�xv] ∈ E, and [x�φv] ∈ E for some φv .

Given a state s = (D,H, t, π,E), the dump, the stack and
the environment provide a shallow context Ss := 〈D〈π〉〉E
that will be shown to be evaluable, as for the GLAMOUr.

If the chain heap H is not empty, the current code t is
somewhere in the middle of a chain inside the environment,
and it is not apt to fill the state context Ss. The right code
is the variable x1 starting the chain heap H = x1 : . . . : xn.
Thus, the term to plug in the state context is tH , given by:

t
ε

:= t t
x1:...:xn := x1

Finally, a state decodes to a term as follows: s := Ss〈t
H〉.

Lemma 11 (Unchaining GLAMOUr Invariants). Let s =
(D,H, u, π,E) be a state reachable from an initial code t.

1) Closure: s is closed and s is well named;
2) Value: values in components of s are subterms of t;
3) Fireball: t

→

E
is a fireball (of kind l) for every code tl in

π and E;
4) Evaluability: E, D

→

E
, π

→

E
, and Ss are evaluable cont.;

5) Environment Size: the length of the global environment
E is bound by |ρ|m.

6) Compatible Heap: if H 6= ε then the stack is not empty,
u = x, and H is compatible with E.

We need additional decodings to retrieve the chain-
starting context C in the side-condition of (oec rule, that—
unsurprisingly—is given by the chain heap. Let s = (D,H :
y, t, π, E) be a state s.t. H : y is compatible with E. Note
that compatibility gives E = E1[y�tv]E2. Define the chain
context Cs and the substitution context Ls as:

Cs := 〈D〈〈yH〉π〉〉E1[y�〈·〉] Ls := E2

The first point of the following lemma guarantees that Cs
and Ls are well defined. The second point proves that filling
Ls〈Cs〉 with the current term gives exactly the decoding of the
state s = Ss〈yH〉, and moreover the chain starts exactly on the
evaluable context given by the state, i.e. that Ss = Ls〈

←−
Cs

x〉.

Lemma 12 (Heaps and Contexts). Let s = (D,H : y, x, π,E)
be a state s.t. H : y is compatible with E. Then:

1) Ls is a substitution context and Cs is a chain context
2) s. t. s = Ss〈yH〉 = Ls〈Cs〈x〉〉 with Ss = Ls〈

←−
Cs

x〉

We can now sum up.

Theorem 13 (Unchaining GLAMOUr Distillation).
(Unchaining GLAMOUr,(of,≡, ·) is a reflective explicit
distillery. In particular, let s be a reachable state:

1) Commutative: if s c1,2,3,4,5,6 s
′ then s = s′;

2) Multiplicative: if s om s
′ then s(om≡ s′;

3) Shallow Exponential: if s oes s
′ then s(oes s

′;
4) Chain Exponential: if s oec s

′ then s(oec s
′.

A. Bilinearity: Principal vs Commutative Analysis

Bilinearity wrt c1,2,3,4,5 is identical to that of the GLAM-
OUr, thus we omit it and focus on c6 .

The size |H| of a chain heap is its length as a list.

Lemma 13 (Linearity of c6). Let s = (D,H, t, π,E) be a
state reached by an execution ρ. Then

1) |ρ|c6 = |H|+ |ρ|oec.
2) |H| ≤ |ρ|m.
3) |ρ|c6 ≤ |ρ|m + |ρ|oec = O(|ρ|p).

Proof: 1) By induction over |ρ| and analysis of the
last machine transition. The c6 steps increment the size
of the heap. The oec steps decrement it. All other steps
do not change the heap. 2) By the compatible heap invariant
(Lemma 11.6), |H| ≤ |E|. By the environment size invariant
(Lemma 11.5), |E| ≤ |ρ|m. Then |H| ≤ |ρ|m. 3) Plugging
Point 2 into Point 1.

Corollary 3 (Bilinearity of c). Let s be a state reached by
an execution ρ of initial code t. Then |ρ|c ≤ (1 + |ρ|e)|t| +
|ρ|m + |ρ|oec = O((1 + |ρ|p) · |t|).

Finally, we obtain the main result of the paper.

14

Theorem 14 (Useful Implementation).
1) Low-Level Bilinear Implementation: a (of-derivation

d is implementable on RAM in O((1 + |d|) · |t|) steps.
2) Low + High Bilinear Implementation: a →f-derivation

d is implementable on RAM in O((1 + |d|) · |t|) steps.

Let us conclude with a remark. Our result requires a
compact representation of terms via ES. Because unfolding
may exponentially increase the size of a term, it is important
to show that common operations like equality checking (up to
α-conversion) can be implemented efficiently on the compact
representation. In other words, ES are succinct data structures,
in the sense of Jacobson [37].

Despite quadratic and quasi-linear recent algorithms [6],
[38] for testing equality of terms with ES, we discovered
that a linear algorithm can be obtained by slightly modifying
an algorithm already known quite some time before (1976!):
the Paterson-Wegman linear unification algorithm [39] (better
explained in [40]). The algorithm works on first order terms
represented as DAGs, and unification boils down to equality
checking when no metavariable occurs in the involved terms.

Our terms with ES can not be fed directly to the Paterson-
Wegmar algorithm: we represent shared terms via occurrences
of variables bound in substitutions, whereas Paterson-Wegmar
uses a simple DAG representation. The change of representa-
tion can be easily done in linear time in the size of the input.

Moreover, the Paterson-Wegmar algorithm works with stan-
dard equality, whereas we are interested in α-equivalence.
Therefore the algorithm needs to be adapted so that two λ-
bound variables are considered equivalent when they point to
binding nodes that have already been determined to be candi-
dates for equality. The details of the adaptation of Paterson-
Wegmar are left to a forthcoming publication.

ACKNOWLEDGEMENTS

A special acknowledgement to Ugo Dal Lago, to whom
we owe the intuition that using labels may lead to a local
and efficient implementation of useful sharing. We are also
grateful to François Pottier, whose comments on a draft helped
to improve the terminology and the presentation.

REFERENCES

[1] B. Accattoli and U. Dal Lago, “Beta Reduction is Invariant, Indeed,” in
CSL-LICS 2014, 2014, p. 8.

[2] G. E. Blelloch and J. Greiner, “Parallelism in sequential functional
languages,” in FPCA, 1995, pp. 226–237.

[3] D. Sands, J. Gustavsson, and A. Moran, “Lambda calculi and linear
speedups,” in The Essence of Computation, Complexity, Analysis, Trans-
formation. Essays Dedicated to Neil D. Jones, 2002, pp. 60–84.

[4] U. Dal Lago and S. Martini, “The weak lambda calculus as a reasonable
machine,” Theor. Comput. Sci., vol. 398, no. 1-3, pp. 32–50, 2008.

[5] ——, “On constructor rewrite systems and the lambda calculus,” Logical
Methods in Computer Science, vol. 8, no. 3, 2012.

[6] B. Accattoli and U. Dal Lago, “On the invariance of the unitary cost
model for head reduction,” in RTA, 2012, pp. 22–37.

[7] B. Accattoli, E. Bonelli, D. Kesner, and C. Lombardi, “A nonstandard
standardization theorem,” in POPL, 2014, pp. 659–670.

[8] B. Grégoire and X. Leroy, “A compiled implementation of strong
reduction,” in (ICFP ’02), 2002, pp. 235–246.

[9] L. Paolini and S. Ronchi Della Rocca, “Call-by-value solvability,” ITA,
vol. 33, no. 6, pp. 507–534, 1999.

[10] B. Accattoli and L. Paolini, “Call-by-value solvability, revisited,” in
FLOPS, 2012, pp. 4–16.

[11] A. Carraro and G. Guerrieri, “A semantical and operational account of
call-by-value solvability,” in FOSSACS 2014, 2014, pp. 103–118.

[12] J.-J. Lévy, “Réductions correctes et optimales dans le lambda-calcul,”
Thése d’Etat, Univ. Paris VII, France, 1978.

[13] R. Milner, M. Tofte, R. Harper, and D. Macqueen, The Definition of
Standard ML - Revised. The MIT Press, May 1997.

[14] D. Clément, T. Despeyroux, G. Kahn, and J. Despeyroux, “A simple
applicative language: Mini-ml,” in LFP ’86. New York, NY, USA:
ACM, 1986, pp. 13–27.

[15] B. Accattoli, P. Barenbaum, and D. Mazza, “Distilling abstract ma-
chines,” in ICFP 2014, 2014, pp. 363–376.

[16] B. Accattoli and C. Sacerdoti Coen, “On the value of variables,” in
WoLLIC 2014, 2014, pp. 36–50.

[17] ——, “On the Relative Usefullness of Fireballs,” arXiv:1505.03791,
pp. 1–34, 2015, pre-print with Technical Appendix. [Online]. Available:
http://arxiv.org/abs/1505.03791

[18] R. Milner, “Local bigraphs and confluence: Two conjectures,” Electr.
Notes Theor. Comput. Sci., vol. 175, no. 3, pp. 65–73, 2007.

[19] D. Kesner and S. Ó. Conchúir, “Milner’s lambda calculus with partial
substitutions,” Paris 7 University, Tech. Rep., 2008.

[20] B. Accattoli and D. Kesner, “The structural λ-calculus,” in CSL, 2010,
pp. 381–395.

[21] N. G. de Bruijn, “Generalizing Automath by Means of a Lambda-Typed
Lambda Calculus,” in Mathematical Logic and Theoretical Computer
Science, ser. Lecture Notes in Pure and Applied Mathematics, no. 106.
Marcel Dekker, 1987, pp. 71–92.

[22] R. P. Nederpelt, “The fine-structure of lambda calculus,” Eindhoven
Univ. of Technology, Tech. Rep. CSN 92/07, 1992.

[23] B. Accattoli, “An abstract factorization theorem for explicit substitu-
tions,” in RTA, 2012, pp. 6–21.

[24] P. Curien, “An abstract framework for environment machines,” Theor.
Comput. Sci., vol. 82, no. 2, pp. 389–402, 1991.

[25] T. Hardin and L. Maranget, “Functional runtime systems within the
lambda-sigma calculus,” J. Funct. Program., vol. 8, no. 2, pp. 131–176,
1998.

[26] M. Biernacka and O. Danvy, “A concrete framework for environment
machines,” ACM Trans. Comput. Log., vol. 9, no. 1, 2007.

[27] F. Lang, “Explaining the lazy Krivine machine using explicit substitution
and addresses,” Higher-Order and Symbolic Computation, vol. 20, no. 3,
pp. 257–270, 2007.

[28] P. Crégut, “Strongly reducing variants of the Krivine abstract machine,”
Higher-Order and Symbolic Computation, vol. 20, no. 3, pp. 209–230,
2007.

[29] Z. M. Ariola, A. Bohannon, and A. Sabry, “Sequent calculi and abstract
machines,” ACM Trans. Program. Lang. Syst., vol. 31, no. 4, 2009.

[30] M. Fernández and N. Siafakas, “New developments in environment
machines,” Electr. Notes Theor. Comput. Sci., vol. 237, pp. 57–73, 2009.

[31] O. Danvy and I. Zerny, “A synthetic operational account of call-by-need
evaluation,” in PPDP, 2013, pp. 97–108.

[32] V. Danos and L. Regnier, “Head linear reduction,” Tech. Rep., 2004.
[33] O. Danvy and L. R. Nielsen, “Refocusing in reduction semantics,”

BRICS, Tech. Rep. RS-04-26, 2004.
[34] M. Wand, “On the correctness of the krivine machine,” Higher-Order

and Symbolic Computation, vol. 20, no. 3, pp. 231–235, 2007.
[35] D. P. Friedman, A. Ghuloum, J. G. Siek, and O. L. Winebarger,

“Improving the lazy krivine machine,” Higher-Order and Symbolic
Computation, vol. 20, no. 3, pp. 271–293, 2007.

[36] P. Sestoft, “Deriving a lazy abstract machine,” J. Funct. Program., vol. 7,
no. 3, pp. 231–264, 1997.

[37] G. J. Jacobson, “Succinct static data structures,” Ph.D. dissertation,
Pittsburgh, PA, USA, 1988, aAI8918056.

[38] C. Grabmayer and J. Rochel, “Maximal sharing in the lambda calculus
with letrec,” in ICFP 2014, 2014, pp. 67–80.

[39] M. S. Paterson and M. N. Wegman, “Linear unification,” in STOC ’76.
New York, NY, USA: ACM, 1976, pp. 181–186.

[40] D. de Champeaux, “About the Paterson-Wegman linear unification
algorithm,” J. Comput. Syst. Sci., vol. 32, no. 1, pp. 79–90, Feb. 1986.

15

