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The local motivic DT/PT correspondence

Ben Davison and Andrea T. Ricolfi

Abstract

We show that the Quot scheme Qn
L = Quot

A3(IL, n) parameterising length n quotients of the
ideal sheaf of a line in A3 is a global critical locus, and calculate the resulting motivic partition
function (varying n), in the ring of relative motives over the configuration space of points in A3.
As in the work of Behrend–Bryan–Szendrői, this enables us to define a virtual motive for the
Quot scheme of n points of the ideal sheaf IC ⊂ OY , where C ⊂ Y is a smooth curve embedded
in a smooth 3-fold Y , and we compute the associated motivic partition function. The result
fits into a motivic wall-crossing type formula, refining the relation between Behrend’s virtual
Euler characteristic of QuotY (IC , n) and of the symmetric product Symn C. Our ‘relative’
analysis leads to results and conjectures regarding the pushforward of the sheaf of vanishing
cycles along the Hilbert–Chow map Qn

L → Symn(A3), and connections with cohomological Hall
algebra representations.
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1. Introduction

1.1. Overview

Let C be a smooth curve embedded in a smooth 3-fold Y with ideal sheaf IC ⊂ OY . For an
integer n � 0, the Quot scheme

Qn
C = QuotY (IC , n)

parameterises closed subschemes Z ⊂ Y containing C and differing from it by an effective
zero-cycle of length n. The main purpose of this paper is to construct a virtual motive[

Qn
C

]
vir

∈ MC (1)
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for this Quot scheme, that we view as a 1-dimensional analogue of the degree 0 motivic
Donaldson–Thomas invariant [Hilbn Y ]vir defined by Behrend, Bryan and Szendrői [3].

The Quot scheme Qn
C can be seen as a moduli space of curves and points in Y , where

the curve C is fixed. This geometric situation presents a new feature that was absent in the
purely 0-dimensional case: wall-crossing. More precisely, it is proved in [32, Proposition 5.1]
that the generating function of the Behrend weighted Euler characteristics χ̃(Qn

C) satisfies the
wall-crossing type formula∑

n�0

χ̃(Qn
C)tn = M(−t)χ(Y ) · (1 + t)−χ(C), (2)

where M(t) =
∏

m�1(1 − tm)−m is the MacMahon function. We show that the motivic partition
function encoding the motivic classes (0.1) admits a factorisation similar to (0.2), where the
point contribution, refining the factor M(−t)χ(Y ), is precisely the motivic partition of the
Hilbert schemes Hilbn Y computed in [3]. The curve contribution, on the other hand, refines
the factor (1 + t)−χ(C) and is given by the (shifted) motivic zeta function of the curve C,
namely ∑

n�0

L−n
2
[
Symn C

]
vir

tn. (3)

Our approach to the problem is a natural extension of the approach of Behrend, Bryan and
Szendrői, in that our definitions and calculations take place with respect to the natural local
model L ⊂ A3 given by fixing a line in affine space — since they consider only finite-dimensional
quotients of OA3 , their local model is simply A3. As in their work, for general embeddings
C ⊂ Y , we build [Qn

C ]vir out of the local model via power structures. We leave for another day
the question of whether this virtual motive accords with the virtual motive one obtains from
the machinery of (−1)-shifted symplectic stacks, and concentrate on calculating everything
in sight for the local theory. Furthermore, since the key to gluing local models appears to
be the direct image of the vanishing cycles sheaf to the configuration space of points on A3,
we prove all of our results in the lambda ring of motives relative to this configuration space.
We conjecture, moreover, that the wall-crossing type identity (0.2) can be categorified, that
is, lifted to an isomorphism between the vanishing cycle cohomologies of the relevant moduli
spaces (see Section 5.1).

Just as Behrend, Bryan and Szendrői realise the local model Hilbn
A3 as a critical locus and

show that the associated motivic Donaldson–Thomas invariants [Hilbn
A3]vir are determined,

via power structures, by the motivic weights of the punctual Hilbert schemes Hilbn(A3)0, we
show, for two convenient local models that can also be realised as critical loci, that the induced
virtual motives are determined by the motivic contribution of the punctual loci. In our case,
we also need to consider the contribution of points embedded on the curve C ⊂ Y , and this is
what gives rise to the factor (0.3) in our motivic wall-crossing formula.

The appearance of symmetric products is pretty natural and has a neat interpretation in
terms of the (C-local) DT/PT correspondence: on a Calabi–Yau 3-fold Y , the symmetric
products Symn C ⊂ Pχ(OC)+n(Y, [C]) are precisely the C-local moduli spaces in the stable
pair theory of Y , just as Qn

C ⊂ Iχ(OC)+n(Y, [C]) are the C-local moduli spaces in Donaldson–
Thomas theory.

For a rigid curve C ⊂ Y in a Calabi–Yau 3-fold, one can interpret the classes (0.1) as motivic
Donaldson–Thomas invariants, in the same spirit as in the 0-dimensional case.

We next give an overview of our main results. The main technical tool we use is a motivic
stratification technique, that we apply to the study of the (relative) motivic Donaldson–Thomas
invariants of the Quot schemes Qn

C0
, where C0 ⊂ X is the exceptional curve in the resolved

conifold X = Tot(OP1(−1) ⊕ OP1(−1)).



1386 BEN DAVISON AND ANDREA T. RICOLFI

Main results

The first step towards the construction of the motivic classes (0.1) consists in setting up a
convenient local model. With respect to the local model

L ⊂ A3,

we then prove the following as part of Theorem 2.2.

Theorem A. The Quot scheme Qn
L is a global critical locus.

An analogous statement is proven in [3, Proposition 3.1] for the Hilbert scheme Hilbn(A3),
which is realised as the critical locus of a function on the non-commutative Hilbert scheme.

Via the theory of motivic vanishing cycles [12], Theorem A produces a relative virtual motive

Qrel
L/A3 =

∑
n�0

(−1)n
[
Qn

L
hcn−−→ Symn A3

]
vir

∈ MSym(A3),

where the maps hcn are Hilbert–Chow morphisms. The following result, proven in Section 4.2,
follows from Corollary 4.6 and the main calculation of Section 3.

Theorem B. There is an identity

Qrel
L/A3 = Exp∪

(∑
n>0

Δn !

([
A3 id−→ A3

]
� ΩBBS

n

))
�∪ Exp∪

(
Δ1 !

(
[L ↪→ A3] �

(
−L− 1

2
)))

,

(4)

where Δn : A3 → Symn A3 is the small diagonal, and

ΩBBS
n = (−1)nL− 3

2
L

n
2 − L−n

2

L
1
2 − L− 1

2
∈ MC.

Passing to absolute motives, the first factor in (0.4) becomes the (signed) motivic partition
function of Hilbn(A3) computed in [3] and reviewed in Section 1.7. The operation Exp∪ in
Theorem B is a lift to the lambda ring MSym(A3) of the usual plethystic exponential for power
series with coefficients in the ring of absolute motives. These motivic exponentials are reviewed
in Section 1.5.1. We let

QL/A3(t) =
∑
n�0

[
Qn

L

]
vir

· tn

be the absolute partition function. Up to a sign, it is obtained by pushing (0.4) forward to a
point. The absolute version of Theorem B then reads

QL/A3(−t) = Exp

(
−L

3
2 t(

1 + L− 1
2 t
)(

1 + L
1
2 t
) − L

1
2 t

)
. (5)

Let Pn
crv ⊂ Qn

L be the closed subset parameterising quotients IL � F such that F is entirely
supported at the origin 0 ∈ L. We assign a motivic weight[

Pn
crv

]
vir

∈ MC

to this locus. The subscript ‘crv’ stands for ‘curve’. The punctual Hilbert scheme Pn
pt ⊂ Qn

L,
which we view as parameterising quotients supported at a single point in A3 \ L, also inherits a
motivic weight, that agrees (as shown in Proposition 4.3) with the class [Hilbn(A3)0]vir defined
in [3] starting from the critical structure on Hilbn(A3). We show in Theorem 4.7 that [Qn

L]vir is
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determined by these two types of ‘punctual’ motivic classes. They moreover allow us to define
a virtual motive [Qn

C ]vir ∈ MC for every smooth curve C ⊂ Y in a smooth quasi-projective
3-fold Y . In other words, the class we define satisfies χ[Qn

C ]vir = χ̃(Qn
C).

We then consider the generating function

QC/Y (t) =
∑
n�0

[
Qn

C

]
vir

· tn. (6)

For a smooth quasi-projective variety X of dimension at most 3, let

ZX(t) =
∑
n�0

[
Hilbn X

]
vir

· tn

be the motivic partition function of the Hilbert scheme of points. In Theorem 4.9, we prove
the following explicit formula, generalising (0.5).

Theorem C. Let Y be a smooth quasi-projective 3-fold, C ⊂ Y a smooth curve. Then[
Qn

C

]
vir

=
n∑

j=0

[
Hilbn−j Y

]
vir

·
[
Symj C

]
vir

(7)

in MC. In other words, we have a factorisation

QC/Y = ZY · ZC ,

that, rewritten in terms of the motivic exponential, reads

QC/Y (−t) = Exp
(
−t[Y ]vir Exp(−t[P1]vir) − t[C]vir

)
.

In the above formulas, one has [U ]vir = L−(dimU)/2[U ] ∈ MC for a smooth scheme U . One can
view the factorisation QC/Y = ZY · ZC as a motivic refinement of the identity (0.2). Indeed, we
have M(−t)χ(Y ) = χZY (t), and (1 + t)−χ(C) =

∑
n χ̃(Symn C)tn = χZC(t). The relation (0.2)

says that Quot schemes and symmetric products are related by a χ̃-weighted wall-crossing type
formula, and Theorem C upgrades this statement to the motivic level.

Calabi–Yau 3-folds

Let Y be a smooth projective Calabi–Yau 3-fold. For an integer m ∈ Z and a homology class
β ∈ H2(Y,Z), the moduli space Im(Y, β) of ideal sheaves IZ ⊂ OY with Chern character
(1, 0,−β,−m) carries a symmetric perfect obstruction theory and the Donaldson–Thomas
invariant DTm

β ∈ Z is by definition the degree of the associated virtual fundamental class.
These invariants are related to the stable pair invariants of Pandharipande–Thomas [25] by
a well-known wall-crossing formula [6, 41], and the same is true for the C-local invariants
DTn

C ∈ Z. The numbers DT•
C represent the contribution of C to the full virtual invariants

DT•
[C]. The C-local wall-crossing formula [31, Theorem 1.1], written term by term, reads

DTn
C =

n∑
j=0

DTn−j
0 · PTj

C , (8)

where DTk
0 = χ̃(Hilbk Y ) are the degree 0 DT invariants of Y , PTj

C = ng,C · χ̃(Symj C) are the
C-local stable pair invariants of Y and ng,C is the BPS number of C (see [26] and Section 4.3).
There is an identity χ[Qn

C ]vir = DTn
C when ng,C = 1 (Corollary 4.10). Indeed, in this case,

equation (0.8) is equivalent to (0.2). This is especially meaningful from the point of view of
motivic DT theory in the situation of the following example.
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Example 0.1. Assume C ⊂ Y is a smooth rigid curve, that is, H0(C,NC/Y ) = 0. Then
C has BPS number 1, the Quot scheme Qn

C is a connected component of the Hilbert scheme
Iχ(OC)+n(Y, [C]), and the motivic class [Qn

C ]vir is a motivic Donaldson–Thomas invariant in
the sense that its Euler characteristic computes the degree of the virtual fundamental class
of Qn

C . In this case, the formula QC/Y = ZY · ZC of Theorem C can be regarded as a C-local
motivic DT/PT correspondence, refining the enumerative correspondence DTC = DT0 · PTC

spelled out in (0.8).

Organisation of contents

The paper is organised as follows. In Section 1, we recall foundational material on rings of
motivic weights and we revisit the main formula of [3] expressing the virtual motive of Hilbn X
for 3-folds. In Section 2, we prove Theorem A by restricting the critical structure on Qn

C0
,

where C0
∼= P1 is the exceptional curve in the resolved conifold X = Tot(OP1(−1) ⊕ OP1(−1)).

In Section 3, we prove that the virtual motives of Qn
L and Qn

C0
are determined by motivic

classes Ωn
pt, Ωn

crv expressing the contributions of ‘fully punctual loci’ (cf. Definition 3.16
and Theorem 3.17). By explicitly calculating these motives in Section 4.2, we finally prove
Theorem B. We then use these classes to define (cf. Definition 4.8) a virtual motive of Qn

C for
every smooth curve C in a smooth 3-fold Y , and in Section 4.2 we also prove Theorem C.

2. Background material

In this section, we set up the notation and introduce the main tools that will be used in the
rest of the paper.

2.1. Grothendieck rings of varieties

Definition 1.1. Let S be a locally finite type algebraic space over C.

(i) If S is a variety, the Grothendieck group of S-varieties is the free abelian group
K0(VarS) generated by isomorphism classes [X → S] of finite type varieties over S, modulo
the scissor relations, namely the identities [p : Y → S] = [p|X : X → S] + [p|Y \X : Y \X → S]
whenever X ↪→ Y is a closed S-subvariety of Y . For general S, we impose the locality relation
[f : X −→ S] = [g : X ′ −→ S] if for all varieties U ⊂ S there is an identity [f |U : X ×S U −→ U ] =
[g|U : X ′ ×S U −→ U ] in K0(VarU ). The group K0(VarS) is a ring via [Y → S] · [Z → S] =
[Y ×S Z → S].

(ii) We denote by L = [A1
S ] ∈ K0(VarS) the Lefschetz motive, the class of the affine line

over S.
(iii) The Grothendieck group of S-stacks is the free abelian group K0(StaffS ) generated by

isomorphism classes [X → S] of locally finite type Artin S-stacks X → S with affine stabilisers,
modulo the scissor and locality relations, and the following additional relation: if f : X → S is
an S-stack, such that f factors as g ◦ π for g : Y → S an S-stack and π the projection from the
total space of a rank r vector bundle, then

[X
f−→ S] = Lr · [Y g−→ S].

(iv) Define the group K(VarS) = Image(K0(VarS) → K0(StaffS )), and give it the induced
ring structure.

Where S =
∐

i∈I Si is a possibly infinite union of algebraic spaces, we will write

∑
i∈I

[
Xi

fi−→ Si

]
:=

[∐
i∈I

(Xi
fi−→ Si)

]
.
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By results of Kresch [18, Section 4], we have

K0(StaffS ) = K0(VarS)
[
L−1, (Ln − 1)−1

∣∣n � 1
]

and so we can alternatively define K(VarS) as the quotient of K0(VarS) by the ideal

JS = ker(·L) +
∑
n�1

ker(·(Ln − 1)) ⊂ K0(VarS). (1.1)

For S and S′ two varieties, there is an external product

K(VarS) ×K(VarS′) �−→ K(VarS×S′),

defined on generators by

[g : Y → S] � [h : Z → S′] = [g × h : Y × Z → S × S′].

In particular, K(VarS) is a K(VarC)-module. When we are considering the action of absolute
motives on relative motives, we will often abbreviate

[X][X ′ f−→ S′] = [X → pt] � [X ′ f−→ S′]

= [X ×X ′ f◦πX′−−−−→ S′].

Often for a relative motive [X → S] ∈ K(VarS) we will denote it by [X]S , retaining the
subscript to at least remind the reader of which motivic ring it lives in.

Given a morphism f : S → T of varieties, there is an induced pullback map

f∗ : K(VarT ) → K(VarS),

which is a ring homomorphism given by f∗[X]T = [X ×T S]S on generators. Composi-
tion with f defines a direct image homomorphism f! : K(VarS) → K(VarT ), which is
K(VarT )-linear.

If S comes with an associative map ν : S × S → S, we define the convolution ring structure
via �ν = ν! ◦�, that is, we set

A�ν B = ν!(A�B) ∈ K(VarS). (1.2)

The resulting associative product on K(VarS) is commutative if ν commutes with the
symmetrising isomorphism.

The ring

MS = K(VarS)
[
L− 1

2
]

is called the ring of motivic weights over S. The structures f∗, f!, � and �ν carry over to
MS without change. When f : S → Spec C is the structure morphism of S, we use the special
notation

∫
S

for the pushforward f!.

Definition 1.2. We define S0(VarS) ⊂ MS to be the sub semigroup of effective motives,
that is, the subset of sums of elements of the form

(−L
1
2 )n[X → S].

Remark 1.3. By Definition 1.2, the motive −L1/2 is effective, as opposed to L1/2. This is
dictated by the fact that in the language of lambda rings (Section 1.3), we make definitions so
that L1/2 is not a line element, while −L1/2 is.
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2.2. Equivariant K-groups, quotient and power maps

Let G be a finite group. A G-action on a variety X is said to be good if every point of X has
a G-invariant affine open neighbourhood; all actions are assumed to be good throughout. For
instance, any G-action on a quasi-projective variety is good. Moreover, for a good G-action,
an orbit space X/G exists as a variety.

Definition 1.4. Let S be a variety with good G-action. We let K̃G
0 (VarS) denote the

abelian group generated by isomorphism classes [X → S] of G-equivariant S-varieties, modulo
the G-scissor relations (over S). The equivariant Grothendieck group KG

0 (VarS) is defined
by imposing the further relations [V → X → S] = [Ar

X ], whenever V → X is a G-equivariant
vector bundle of rank r, with X → S a G-equivariant S-variety. The element [Ar

X ] in the right-
hand side is taken with the G-action induced by the trivial action on Ar and the isomorphism
Ar

X = Ar ×X.

There is a natural ring structure on K̃G
0 (VarS) given by fibre product; if X and Y are

G-equivariant S-varieties, we give X ×S Y the diagonal G-action.
We shall consider the quotient rings

K̃G
0 (VarS) � K̃G(VarS), KG

0 (VarS) � KG(VarS)

obtained by modding out the ideal

J̃G = ker(·L) +
∑
n�1

ker(·(Ln − 1)) ⊂ K̃G
0 (VarS)

and its image JG ⊂ KG
0 (VarS), respectively. We let

M̃G
S = K̃G(VarS)

[
L− 1

2
]
, MG

S = KG(VarS)
[
L− 1

2
]

be the rings of G-equivariant motivic weights.
There exists a natural ‘quotient map’

πG : K̃G
0 (VarS) → K0(VarS/G), (1.3)

defined on generators by taking the orbit space:

πG[X → S] = [X/G → S/G].

If the G-action on S is trivial, K̃G
0 (VarS) becomes a K0(VarS)-algebra, and πG is K0(VarS)-

linear. More generally, we have the following:

Lemma 1.5. The map (1.3) is K0(VarS/G)-linear.

Proof. The action of a generator u = [U → S/G] ∈ K0(VarS/G) on a G-equivariant motive
x = [h : X → S] ∈ K̃G

0 (VarS) is given by

u · x = h!h
∗q∗(u) = [U ×S/G X

pr2−−→ X
h−→ S],

where q : S → S/G is the quotient map. We have

u · πG(x) = u · [X/G → S/G] = [U ×S/G X/G → X/G → S/G],

and this is the same motive as πG(u · x) = πG[U ×S/G X → X → S], since G does not act on
U . �
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By Lemma 1.5, the map (1.3) sends the ideal J̃G onto the ideal JS/G ⊂ K0(VarS/G) defined
in (1.1), therefore it descends to a K(VarS/G)-linear map

πG : K̃G(VarS) → K(VarS/G).

This map extends to a map M̃G
S → MS/G, still denoted πG, by setting πG(Ln/2 · [X → S]) =

Ln/2 · πG([X → S]).
Furthermore, by [4, Lemma 3.2], if the G-action on S is free,† πG descends to a K(VarS/G)-

linear map

πG : KG(VarS) → K(VarS/G),

which again extends to a morphism πG : MG
S → MS/G.

Let Sn be the symmetric group on n elements.

Lemma 1.6 [3, Lemma 2.4]. For every n > 0, there exists an nth power map

( · )⊗n : MS → M̃Sn

Sn ,

where Sn carries the natural Sn-action, defined by the property that for

T = (−L
1
2 )α · [A f−→ S] + Lβ · [B g−→ S] − (−L

1
2 )γ · [C h−→ S] − Lδ · [D i−→ S] ∈ MS ,

we have

T⊗n :=
∑

a+b+c+d=n

(−1)c+d(−L
1
2 )aα/2+bβ+cγ/2+dδ[Xa,b,c,d → Sn],

where Xa,b,c,d is the space of homomorphisms of schemes

s : {1, . . . , n} → A ∪B ∪ C ∪D

with the domain considered as a scheme with n points, a of which are sent to A, b of which
are sent to B and so on. We consider this variety as a Sn-equivariant variety over Sn, sending
s to the point (j(s(1)), . . . , j(s(n))), where j : A ∪B ∪ C ∪D → S is the union of the maps
f, g, h, i.

The above lemma is proved in [3] in the case S = Spec C, but the proof for the general case
is the same. We remark that, by definition, there is an identity

(−[A → S])⊗n = (−1)n[A → S]⊗n. (1.4)

2.2.1. The monodromic motivic ring. Let μn = Spec C[x]/(xn − 1) be the group of nth
roots of unity. We define a good action of the procyclic group

μ̂ = lim←−μn

as an action that factors through a good μn-action for some n. The additive group

Mμ̂
S

carries a commutative bilinear associative product ‘�’ called the convolution product. See [12,
Section 5] or [19, Section 7] for its definition. The product ‘�’ provides an alternative ring
structure on the group of μ̂-equivariant motivic weights, and it restricts to the usual product
‘·’ on the subring

MS ⊂ Mμ̂
S

†Without freeness, the naive quotient map may fail to respect the relation identifying G-bundles with trivial
G-bundles.
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of classes with trivial μ̂-action. The main role of ‘�’ will be played through the motivic Thom–
Sebastiani theorem (cf. Theorem 1.19).

2.3. Lambda ring structures

Let A ∈ MS . We define

�σn(A) = πSn
(A⊗n) ∈ MSn/Sn

.

The lambda ring operations on K0(VarC)[L−1/2] are defined by setting σn(A) = �σn(A) for
A effective, and then taking the unique extension to a lambda ring on K0(VarC)[L−1/2],
determined by the relation

n∑
i=0

σi([X] − [Y ])σn−i([Y ]) = σn([X]). (1.5)

Note that σn(−L1/2) = (−L1/2)n. By [8, Remark 3.5 (4)], these operations induce a lambda
ring structure on the localisation K0(StaffC )[L−1/2], and thus a lambda ring structure on MC.

Remark 1.7. Note that by definition, �σn(A) = σn(A) for A effective. The logical structure
of the paper is such that we will often end up proving relations involving �σn first, and then
using them to prove that the motives we consider are effective, so that we can state those same
relations in terms of the more well-behaved operations σn.

If S comes with a commutative associative map ν : S × S → S, and A ∈ MS , we likewise
define

�σn
ν (A) = ν!(�σn(A)) = ν!

(
πSn

(A⊗n)
)
∈ MS ,

where we abuse notation by denoting by ν the map Sn/Sn → S. As above, using the analogue
of the relation (1.5) there is a unique set of lambda ring operators σn

ν agreeing with �σν on
effective motives.

As a special case, we obtain operations �σn and σn on MC � t � via the isomorphism

MC � t � →̃MN (1.6)

defined by

∑
n�0

[Xn]tn 
→
[∐
n∈N

Xn → {n}
]

(1.7)

for X0, X1, . . . varieties, and then extending by linearity. Here, N is a considered as a scheme
by identifying each natural number with a distinct closed point, and this scheme is considered
as a commutative monoid under the addition map.

2.4. Motivic measures

Ring homomorphisms with source K(VarC) or MC are frequently called motivic measures,
realisations, or generalised Euler characteristics. We recall some of them here.

Let K0(HS) be the Grothendieck ring of the abelian category HS of Hodge structures. For a
complex variety X, taking its Hodge characteristic

χh(X) =
∑
i�0

(−1)i
[
Hi

c(X,Q)
]
∈ K0(HS)
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defines a motivic measure. The E-polynomial is the specialisation

E(X) =
∑
p,q�0

(−1)p+qhp,q
(
Hp+q

c (X,Q)
)
upvq ∈ Z[u, v].

As E(A1
C
) = uv, the E-polynomial can be extended to a motivic measure

E : MC → Z
[
u, v, (uv)−

1
2
]

satisfying E(L1/2) = −(uv)1/2. The further specialisations u = v = q1/2, (uv)1/2 = q1/2 define
the weight polynomial W : MC → Z[q±1/2] and one has W (L) = q. Finally, specialising to
q1/2 = 1 recovers the Euler characteristic χ : K(VarC) → Z, extending to χ : MC → Z after
setting

χ(L− 1
2 ) = −1.

See [12, Section 2] for a natural extension to a ring homomorphism

χ : Mμ̂
C
→ Z.

Remark 1.8. Our sign conventions differ slightly from [3]. We have chosen them so that all
specialisations are homomorphisms of pre λ-rings. Note that, putting all the changes together,
our convention that χ(L−1/2) = −1 is the same as theirs.

2.5. Power structures and motivic exponentials

We recall the notion of a power structure on a commutative ring R, mainly following [14, 15].

Definition 1.9. A power structure on a ring R is a map

(1 + tR � t �) ×R → 1 + tR � t �

(A(t), X) 
→ A(t)X ,

satisfying the following conditions:

(1) A(t)0 = 1;
(2) A(t)1 = A(t);
(3) (A(t) ·B(t))X = A(t)X ·B(t)X ;
(4) A(t)X+Y = A(t)X ·A(t)Y ;
(5) A(t)XY = (A(t)X)Y ;
(6) (1 + t)X = 1 + Xt + O(t2);
(7) A(t)X |t→tk = A(tk)X .

Notation 1.10. If α is a partition of an integer n, which we indicate α � n, by writing
α = (1α1 · · · iαi · · · rαr ) we mean that there are αi parts of size i, so that we recover n as the sum
|α| =

∑
i iαi. The number of distinct parts of α is denoted l(α) =

∑
i αi. The automorphism

group of α is the product of symmetric groups Gα =
∏

i Sαi
.

Let us focus on R = K0(VarC). If X is a variety and A(t) = 1 +
∑

n>0 Ant
n is a power series

in K0(VarC) � t �, we define

(A(t))[X]
� = 1 +

∑
α

πGα

([∏
i

Xαi \ Δ

]
·
∏
i

A⊗αi
i

)
t|α|. (1.8)
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In the above formula, Δ ⊂
∏

i X
αi = X l(α) is the ‘big diagonal’ (where at least two entries are

equal), and the class [∏
i

Xαi \ Δ

]
·
∏
i

A⊗αi
i ∈ K̃Gα

0 (VarC)

is Gα-equivariant due to the ‘power map’ of Lemma 1.6. Gusein-Zade, Luengo and Melle-
Hernández have proved [14, Theorem 2] that there is a unique power structure on K0(VarC)
for which the restriction to the case where all Ai are effective is given by the formula (1.8), for
every variety X. Moreover, by [14, Theorem 1], such a power structure is determined by the
relation

(1 − t)−[X] = ζ[X](t),

where

ζ[X](t) =
∑
n�0

[
Symn X

]
· tn ∈ K0(VarC) � t � (1.9)

is the Kapranov motivic zeta function of X. Since we always consider effective exponents when
taking powers, we just recall the recipe for dealing with general A(t) and effective exponent
[X]. First, note that for any such A(t) there is an effective B(t) such that A(t) ·B(t) = C(t)
is effective. Then we have

A(t)[X] := (C(t))[X]
� · ((B(t))[X]

� )−1,

where both factors in the right-hand side are defined via (1.8).

Lemma 1.11. Let [X] ∈ K0(VarC) be invertible in K0(StaffC ). Then (−)[X]
� and (−)[X] are

injective maps.

Proof. By [9, Remark 3.7], the power structure can be extended to K0(StaffC ), and so the
second statement follows from (A(t)[X])[X]−1

= A(t).
Next we consider the first statement. Assume A(t)[X]

� = B(t)[X]
� . Write A(t) =

∑
i�0 Ait and

B(t) =
∑

i�0 Bit, where A0 = B0 = 1, and assume that we have shown that Ai = Bi for i < n.

Let α � n. Comparing the contributions from α in the tn coefficients of A(t)[X]
� and B(t)[X]

� ,
by assumption they agree for α �= (n), since these terms only involve Ai and Bi for i < n. We
deduce that the terms for α = (n1) agree, and so [X] ·An = [X] ·Bn, and the result follows by
injectivity of [X]·. �

As noted in [3], there is an extension of the power structure to MC uniquely determined by
the substitution rules

A((−L
1
2 )nt)[X] = A(t)(−L

1
2 )n[X] = A(t)

∣∣
t
→(−L

1
2 )nt

.

2.5.1. Motivic exponential. It is often handy to rephrase motivic identities in terms of the
motivic exponential, which is a group isomorphism†

Exp: tMC � t � →̃ 1 + tMC � t � .

Under (1.6), this can be seen as an inclusion of groups

K0(VarN\0) ↪→ K0(VarN)×.

†The group structures are the additive one on the source and the multiplicative one on the target.
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First, define �Exp =
∑

n�0
�σn, relative to the monoid (N,+). Then if A and B are effective

classes, we set

Exp(A−B) = �Exp(A) · �Exp(B)−1.

As in the proof of Lemma 1.11, �Exp and Exp are injective.
Now if (S, ν : S × S → S) is a commutative monoid in the category of schemes, with a

submonoid S+ such that the induced map
∐

n�1 S
×n
+ → S is of finite type, we similarly define

�Expν(A) =
∑
n�0

�σn
ν (A),

and for A and B effective classes, we define

Expν(A−B) = �Expν(A) · �Expν(B)−1.

The principal example will be

S = Sym(U) =
∐
n�0

Symn(U)

for U a variety, and S+ =
∐

n�1 Symn(U). We define

∪ : Sym(U) × Sym(U) → Sym(U)

to be the morphism sending a pair of sets of unordered points with multiplicity to their union.
Note that Expν sends effective motives to effective motives, as the same is true of σn

ν for
each n.

In order to recover a formal power series from a relative motive over Sym(U), we consider
the operation

#!

⎛⎝∑
n�0

[
An

fn−→ Symn(U)
]⎞⎠ :=

∑
n�0

[An]tn.

In other words, we take the direct image along the ‘tautological’ map #: Sym(U) → N which
sends Symn(U) to the point n — recall that via (1.6) we consider power series in t with
coefficients in MC as the same thing as elements of MN.

Proposition 1.12. Let U, V be varieties. Set S = Sym(U × V ) =
∐

n�0 Symn(U × V ), and

for i ∈ N denote by ∪ : Sym(U × V )i → Sym(U × V ) the map taking i sets of points (with
multiplicity) to their union (with multiplicity). Let

ι̃n : U × Symn(V ) → Symn(U × V )

be the inclusion of the n-tuples ((u1, v1), . . . , (un, vn)) such that u1 = · · · = un. Write B = 1 +∑
n>0 Bn = �Exp∪(

∑
n>0 An) = �Exp∪(A) for some set of An, Bn ∈ K(VarSymn(V )). Define

the S-motive

Z =
∑
n�0

∑
α�n

∪!πGα
j∗α

(
�

i|αi �=0
ι̃i,!
(
[U id−→ U ] �Bi

)⊗αi

)
,

where jα is the Gα-equivariant inclusion from the space of points in
∏

i|αi �=0 Symi(U × V )αi

that are not sent to the big diagonal after projection to
∏

i|αi �=0 Symi(U)αi . Then

Z = �Exp∪

(∑
n>0

ι̃n,!
(
[U id−→ U ] �An

))
.
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and if A is effective, one has

#!Z = (#!B)[U ].

Proof. The second statement follows directly from the definition of the power structure.
The first arises from the decomposition of the right-hand side according to incidence partition
in the U factor. �

2.6. The virtual motive of a critical locus

Let X be a complex scheme of finite type, and let νX : X(C) → Z be the canonical constructible
function introduced by Behrend [2]. The weighted (or virtual) Euler characteristic of X is
defined via νX as

χ̃(X) =
∫
X

νX dχ =
∑
r∈Z

r · χ(ν−1
X (r)).

When X is a proper moduli space of stable sheaves on a Calabi–Yau 3-fold, this number agrees
with the Donaldson–Thomas invariant of X by the main result of [2]. The following definition
is central to this paper.

Definition 1.13 [3]. A virtual motive of a scheme X is a motivic weight ξ ∈ Mμ̂
C

such that
χ(ξ) = χ̃(X).

Definition 1.14. A scheme X is a critical locus if it is of the form

X = crit(f) = Z(df),

where f : U → A1 is a regular function on a smooth scheme U .

The Behrend function of a critical locus X = crit(f) ⊂ U agrees with the Milnor function
μf , the function counting the number of vanishing cycles [27, Corollary 2.4 (iii)]. In particular,
νX(x) = (−1)dimU−1(χ(MFf,x) − 1), where MFf,x is the Milnor fibre of f at x. More globally,
one can write

νX = χ(Φf [dimU − 1]),

where Φf [dimU − 1] ∈ Perv(X) is the perverse sheaf of vanishing cycles, the image of the
constant perverse sheaf Q

U
[dimU ] under the vanishing cycle functor ϕf [−1] : Perv(U) →

Perv(U0). Here U0 = f−1(0) denotes the hypersurface determined by f . The pair (U, f) also
determines a canonical relative virtual motive

MFU,f = L− d
2 [−φf ]X ∈ Mμ̂

X ⊂ Mμ̂
U , (1.10)

where d = dimU and [φf ]X is the relative motivic vanishing cycle class introduced by Denef
and Loeser [12]. It is a class in Kμ̂

0 (VarU0), supported on X = crit(f), that we view as an
element of Mμ̂

X . We write [φf ] for the pushforward of [φf ]X to a point. We will repeatedly use
the following proposition, due to Bittner [4].

Proposition 1.15. Let G be a finite group acting freely on a smooth variety U , let q : U →
U/G be the quotient map and let f be a regular function on U/G. Then:

(1) there is a well-defined equivariant motivic vanishing cycle [φfq]GU0
∈ KG×μ̂

0 (VarU0) such

that the relative motive in Kμ̂
0 (VarU0) induced by forgetting the G-action is [φfq]U0 ;

(2) there is an equality of motives

πG

(
[φfq]GU0

)
= [φf ]U0/G ∈ Kμ̂

0 (VarU0/G).
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Notation 1.16. If X = crit(f) → Y is a morphism of varieties, we denote by

[crit(f) → Y ]vir = (crit(f) → Y )!MFU,f ∈ Mμ̂
Y

the induced relative virtual motive. More generally, if ι : Z ↪→ crit(f) is a locally closed
subscheme and Z → Y is a morphism, we let

[Z → Y ]vir = (Z → Y )!ι∗MFU,f ∈ Mμ̂
Y .

When Y = Spec C, we denote [Z → Spec C]vir simply by [Z]vir.

Since the fibrewise Euler characteristic of MFU,f equals νX as a function on X [3,
Proposition 2.16], the absolute class

[X]vir =
∫
X

MFU,f = L− d
2 · [−φf ] ∈ Mμ̂

C
(1.11)

is a virtual motive for X in the sense of Definition 1.13.

Remark 1.17. A critical locus X = crit(f) ⊂ U has a canonical virtual fundamental class
[X]vir ∈ A0X, attached to the symmetric perfect obstruction theory determined by the Hessian
of f . When X is proper, Behrend’s theorem [2] can be phrased as

χ[X]vir =
∫

[X]vir
1 ∈ Z.

Remark 1.18. If X is a smooth scheme, it can be considered as a critical locus via the zero
function f = 0 ∈ Γ(OX). The associated virtual motive is

[X]vir = L− dim X
2 · [X] ∈ MC.

Via the stated sign conventions, we see that χ[X]vir recovers the virtual Euler characteristic of
the smooth scheme X, namely χ̃(X) = (−1)dimXχ(X).

We end this subsection with two results that are of crucial importance in calculations
involving motivic vanishing cycles. Recall from Section 1.2.1 that the groups Mμ̂

S carry the
convolution product ‘�’ besides the ordinary product.

Theorem 1.19 [11, 19]. Let f : U → A1 and g : V → A1 be regular functions on smooth
varieties U and V . Consider the function f ⊕ g : U × V → A1 given by (x, y) 
→ f(x) + g(y). Let
i : U0 × V0 → (U × V )0 be the inclusion of the zero fibres, and let pU and pV be the projections
from U0 × V0. Then one has

i∗
[
φf⊕g

]
(U×V )0

= p∗U
[
φf

]
U0

� p∗V
[
φg

]
V0

∈ Mμ̂
U0×V0

.

The following result will be used in Propositions 2.9 and 2.11.

Theorem 1.20 [3, Theorem B.1]. Let f : U → A1 be a regular function on a smooth complex
quasi-projective variety, with critical locus X. Assume U is acted on by a connected complex
torus T in such a way that f is T-equivariant with respect to a primitive character χ : T → Gm.

(i) If there is a one parameter subgroup Gm ⊂ T such that the induced action is circle
compact, then [

φf

]
=
[
f−1(1)

]
−
[
f−1(0)

]
∈ MC ⊂ Mμ̂

C
.
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Figure 1. The framed 3-loop quiver QBBS.

(ii) Let τ : X → Y be a map to an affine variety. If, in addition to the assumption in (i), the
hypersurface f−1(0) ⊂ U is reduced, then the relative class [φf ]Y = τ![φf ]X lies in the subring

MY ⊂ Mμ̂
Y of classes with trivial monodromy.

Remark 1.21. The original statement of this theorem in [3] fixed Y to be the affinisation of
X — the statement above then follows from the fact that τ must factor through the affinisation,
and the direct image of a monodromy-free motive is monodromy-free.

2.7. The virtual motive of the Hilbert scheme of points

Quivers with potentials provide a large class of examples of critical loci. For instance, consider
the framed 3-loop quiver QBBS (studied by Behrend–Bryan–Szendrői) depicted in Figure 1.
The arrow 1 → ∞ is called a framing, and ∞ is the framing vertex. Throughout the paper, the
vertices of a framed quiver are ordered so that the framing vertex is last.

The space of (n, 1)-dimensional right CQBBS-modules is the affine space End(Cn)3 × Cn

parameterising triples of n× n matrices (A,B,C) and vectors v ∈ Cn. Consider the potential
W = x[y, z], viewed as an element of the path algebra C〈x, y, z〉 of the (unframed) 3-loop
quiver. Then by [3, Proposition 3.1], one has, as schemes,

Hilbn(A3) = crit(TrW ) ⊂ NCHilbn,

where NCHilbn is the non-commutative Hilbert scheme, defined as follows. The open
subscheme

Vn ⊂ End(Cn)3 × Cn = rMod(n,1)(CQBBS),

parameterising tuples (A,B,C, v) such that v ∈ Cn generates the C〈x, y, z〉-module defined by
the triple (A,B,C), carries a free GLn-action, and NCHilbn = Vn/GLn is a smooth quasi-
projective variety of dimension 2n2 + n. The generating function ZA3(t) for which the tn

coefficient is the virtual motive[
Hilbn(A3)

]
vir

= L− 2n2+n
2 [−φTrW ] ∈ MC

was computed in [3, Theorem 3.7]. The result is the equation

ZA3(t) =
∏
m�1

m−1∏
k=0

(
1 − Lk+2−m

2 tm
)−1 ∈ MC � t � .

Let [
Hilbn(A3)0

]
vir

=
∫

Hilbn(A3)0

ι∗MFNCHilbn,TrW ∈ MC (1.12)
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be the virtual motive of the punctual Hilbert scheme ι : Hilbn(A3)0 ↪→ Hilbn(A3) (cf. Nota-
tion 1.16), the closed subscheme parameterising subschemes entirely supported at the origin
0 ∈ A3. Then the generating series

Z0(t) =
∑
n�0

[
Hilbn(A3)0

]
vir

· tn

satisfies the relation

Z0(−t) = Exp

(
−L− 3

2 t(
1 + L− 1

2 t
)(

1 + L
1
2 t
)). (1.13)

Remark 1.22. As a corollary of Formula (1.13), the motive (−1)n[Hilbn(A3)0]vir is effective,
that is, it belongs to the sub semigroup S0(VarC) ⊂ MC.

Behrend, Bryan and Szendrői also define a virtual motive [Hilbn X]vir for arbitrary smooth
3-folds. The motivic partition function

ZX(t) =
∑
n�0

[Hilbn X]vir · tn ∈ MC � t �

is again fully determined by the punctual contributions, that is, by [3, Proposition 4.2], one
has

ZX(−t) = Z0(−t)[X]. (1.14)

Remark 1.23 (Related work on Quot schemes). The identity (1.14), as well as its
reformulation in terms of the motivic exponential, has been generalised in [34] to the case
of Quot schemes QuotY (F, n) where F is an arbitrary locally free sheaf on a smooth 3-fold. See
also [33] for the ‘non-virtual’ setup. In higher rank, the starting point of motivic DT theory is
the observation that QuotA3(O⊕r, n) is a global critical locus [1, Theorem 2.6]. This has also
been exploited to prove a plethystic formula (the Awata–Kanno conjecture in String Theory)
for the partition function of higher rank K-theoretic DT invariants [13].

3. The local model as a critical locus

For a smooth curve C embedded in a smooth 3-fold Y with ideal sheaf IC ⊂ OY , we let

Qn
C = QuotY (IC , n) = {IC � F |dim(Supp F ) = 0, χ(F ) = n}

denote the Quot scheme of n points of IC . Given a surjection θ : IC � F , we can consider
its kernel IZ ⊂ IC , and thus think of [θ] ∈ Qn

C as a closed 1-dimensional subscheme Z ⊂ Y
containing C as its maximal purely 1-dimensional subscheme. We will switch between these two
interpretations of Qn

C without further comment. Note that we generally suppress the ambient
3-fold Y from the notation.

Remark 2.1. When Y is projective, the association [θ] 
→ ker θ defines a closed immersion
into the moduli space of ideal sheaves

Qn
C ↪→ Iχ(OC)+n(Y, [C]),

as proved in [32, Lemma 5.1]. This closed immersion can be generalised to higher rank sheaves,
see [1, Proposition 5.1].

Let now L ⊂ A3 be a line; for concreteness set IL = (x, y) ⊂ C[x, y, z]. The scheme Qn
L

parameterises surjections IL � N of C[x, y, z]-modules, where N is n-dimensional as a
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C-vector space. As such there is a forgetful map from Qn
L to the stack of n-dimensional C[x, y, z]-

modules, and postcomposing with the affinisation map for this stack, a ‘Hilbert-to-Chow’
morphism

hcA3 : Qn
L → Symn(A3). (2.1)

This map is a special case of [35, Corollary 7.15].
The goal of this section is to prove the following result, which is a 1-dimensional counterpart

of the analogous statement for Hilbn(A3), considered in [3]. Part (A) is Theorem A from the
introduction.

Theorem 2.2. Consider the embedding L ⊂ A3 from above. Then:

(A) the Quot scheme Qn
L is a global critical locus, that is, there is a smooth variety U and

a function f : U → A1 such that Qn
L
∼= crit(f);

(B) the relative motive [φf ]Symn(A3) is an element of the subring MSymn(A3) ⊂ Mμ̂
Symn(A3).

Part (A) is proved at the end of Section 2.1, and part (B) is proved in Proposition 2.11.
The main step in the proof consists of realising Qn

L as a suitable open subscheme of the
Quot scheme Qn

C0
, where C0 ⊂ X is the exceptional curve in the resolved conifold X. In the

next subsection, we review the critical locus structure on Qn
C0

, and more generally, the non-
commutative Donaldson–Thomas theory of the conifold as introduced in [39].

3.1. Conifold Geometry

Given a quiver Q = (Q0, Q1) with potential W and a field K, we define K(Q,W ) to be the
associated Jacobi algebra, that is, the quotient of the free path algebra KQ by the non-
commutative derivatives ∂W/∂a for a ∈ Q1 ranging over the arrows of Q.

Given a dimension vector d = (d(i))i∈Q0 ∈ NQ0 , we define

rModd(CQ) =
∏

(i→j)∈Q1

Hom(Cd(j),Cd(i))

to be the affine space of d-dimensional right CQ-modules. Given a King stability condition
ζ ∈ QQ0 , we denote by

rModζ
d(CQ) ⊂ rModd(CQ),

the open subscheme of ζ-semistable CQ-modules. Both schemes are acted on by the gauge
group

GLd :=
∏
i∈Q0

GLd(i)

by change of basis.
Throughout the paper, we let X denote the resolved conifold, namely the total space of the

rank 2 locally free sheaf OP1(−1) ⊕ OP1(−1). We denote by C0 ⊂ X the zero section of this
vector bundle, so C0

∼= P1. Let

π : X → C0

denote the projection onto the zero section. The local Calabi–Yau 3-fold X is the crepant
resolution of the conifold singularity

Spec C[x, y, z, w]/(xy − zw) ⊂ A4,

and C0 is the exceptional curve, the only strictly positive dimensional proper subvariety of
X. Since C0 is a rigid smooth rational curve in X, the Hilbert scheme In+1(X, [C0]) of
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Figure 2. The framed conifold quiver Q̃con.

1-dimensional subschemes Z ⊂ X with homology class [C0] and χ(OZ) = n + 1 agree (as a
scheme) with the Quot scheme Qn

C0
. This space was realised as a global critical locus by Nagao

and Nakajima [24], by studying representations of the Jacobi algebra C(Q̃con,Wcon). Here,
Q̃con is the (framed) conifold quiver depicted in Figure 2, and

Wcon = a1b1a2b2 − a1b2a2b1 (2.2)

is the Klebanov–Witten potential [16]. We denote by Qcon the quiver obtained by removing
from Q̃con the framing vertex ∞ and the arrow ι. Since we consider right modules, a KQ̃con-
module ρ̃ is defined by the following data.

(1) A right KQcon-module ρ, with KQcon-action defined via the KQ̃con-action on ρ̃ and the
inclusion KQcon ↪→ KQ̃con.

(2) A linear map V → ρ1, with V = ρ̃∞.

Remark 2.3. The orientation of Q̃con differs from [24, Figure 4], but our notion of framing is
the same as loc. cit. (see (1) and (2) above) — note that we are considering right CQ̃con-modules
throughout — see Remark 2.4.

We identify quasicoherent OX -modules with triples (F , α1, α2) where F ∈ QCoh(P1) and
α1, α2 ∈ HomO

P1
(F ,F (−1)) commute in the sense that α1(−1) ◦ α2 = α2(−1) ◦ α1. Then the

above noncommutative conifold is the natural enhancement of Beilinson’s noncommutative P1:
given a complex of quasicoherent sheaves F on P1, we set ρ1 and ρ2 to be the complexes of
vector spaces RHomO

P1
(OP1 ,F ) and RHomO

P1
(OP1(1),F ). We let

ρ(b1), ρ(b2) : RHomO
P1

(OP1(1),F ) → RHomO
P1

(OP1 ,F )

be the maps induced by the two sections x and y of OP1(1). We set ρ(ai) = αi for i = 1, 2, and
it is easy to check that the commutativity conditions are given precisely by the superpotential
relations for Wcon, so that we obtain in this way a right C(Qcon,Wcon)-module.

This description of the non-commutative conifold makes the translation of various geo-
metrically defined functors rather transparent. For instance, the direct image along the
projection map π∗ : Db(QCoh(X)) → Db(QCoh(P1)) becomes the forgetful map from the non-
commutative conifold to Beilinson’s non-commutative P1, forgetting the action of the arrows
a1, a2, and the direct image along the inclusion C0 ↪→ X becomes the extension by zero functor.

Let

E = π∗(OP1 ⊕ OP1(1))

and let

Acon = EndOX
(E )

∼= C(Qcon,Wcon).

We denote by

Φ = RHom(E , •) : Db(CohX) →̃Db(Acon-mod)
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the equivalence of derived categories, where on the right-hand side of the equivalence we have
the derived category of right Acon-modules with finitely generated total cohomology. We denote
by

Ψ: M → M
L
⊗Acon E ,

the quasi-inverse.

Remark 2.4. As one sees from the above, the general setup leads us to consider right Acon-
modules. On the other hand, for an arbitrary quiver Q, there is an equivalence of categories
between K-linear Q-representations and left KQ-modules. Since we consider right modules (as
in [24]), if one wants to think of modules over algebras such as Acon as quiver representations,
one should reverse the orientation of the underlying quiver.

The chamber decomposition of the space of stability parameters for Q̃con was worked out
by Nagao and Nakajima in [24], where the DT and PT chambers were precisely characterised.
For a generic stability condition

ζ = (ζ1, ζ2,−(ζ1(n + 1) + ζ2n)) ∈ R3

in the ‘DT region’ for X, defined by the conditions ζ1 < ζ2 and ζ1 + ζ2 < 0, we consider the
moduli space

Nn := rModζ
(n+1,n,1)(Q̃con)/GLn+1 ×GLn (2.3)

of ζ-stable framed representations of Qcon, having dimension vector (n + 1, n, 1). Here the
dimension vector (n + 1, n, 1) refers to the vertices ordered as (1, 2,∞).

The work of Nagao–Nakajima then implies that Qn
C0

is isomorphic to the subscheme of
Nn defined by the defining relations of Acon. Since these are exactly the non-commutative
derivatives of the Klebanov–Witten potential (2.2), it follows from [38, Proposition 3.8] that
Qn

C0
is identified with the critical locus of the function

gn : Nn → A1

given by taking the trace of (2.2).
Consider the open subset

N ◦
n ⊂ Nn

parameterising stable representations ρ such that the linear map ρ(b2) : Cn → Cn+1 is injective,
and let

fn : N ◦
n → A1

be the restriction of the function gn. We now prove that

Qn
L
∼= crit(fn) ⊂ N ◦

n .

Proof of Theorem 2.2 (A). For skyscraper sheaves of points Ox, corresponding to represen-
tations of dimension vector (1, 1) under Φ, injectivity of ρ(b2) corresponds to the condition that
π(x) �= ∞. We identify A3 with X \ π−1(∞), and we have the following Cartesian diagram

where the horizontal maps are closed inclusions, and vertical maps open inclusions.
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Let L be the tautological C(Qcon,Wcon) ⊗ Ocrit(gn)-module. Let G be the submodule
generated by

ρ(b1)L + ρ(b2)L .

Consider the exact sequence

0 → G → L → V → 0

of C(Qcon,Wcon) ⊗ Ocrit(gn)-modules. Let Spec (K) ↪→ Nn be a geometric point of crit(gn),
corresponding to a K(Qcon,Wcon)-module ρ. By the above-mentioned result of Nagao–
Nakajima, Ψ(ρ) corresponds to a K-point of Qn

C , and so admits a unique (up to scalar)
surjective map to OC0 ⊗K, with kernel a coherent sheaf F with 0-dimensional support. It
follows that ρ admits a unique (up to scalar) non-zero map to the nilpotent simple module at
vertex 1, with kernel isomorphic to Φ(F ). In particular, the space spanned by the image of
ρ(b1) and ρ(b2) is n-dimensional. It follows that dim(VK) = 1 for all K-points, and so V is a
locally free Ocrit(gn)-module of rank 1, and thus G is locally free of rank (n, n).

Let Spec (K) ↪→ crit(gn) be the inclusion of a point, and let i : X × Spec (K) ↪→ X × crit(gn)
be the induced inclusion. The OX×crit(gn)-module Ψ(G ) is a coherent sheaf after pullback along
i, and so is a coherent sheaf in [5, Lemma 4.3]. The coherent sheaf Ψ(L ) is equipped with a
tautological map from OX×crit(gn), surjective by stability, inducing the tautological surjective
map

fr : IC0 � Ocrit(gn) � G .

The condition on ρ(b2) defining N ◦
n implies that each i∗Ψ(G ) has support away from π−1(∞).

Since crit(fn) = crit(gn) ∩ N ◦
n , the inverse image sheaf of Ψ(G ) on crit(fn) × A3 is a vector

bundle on crit(fn), equipped with a surjection from IL � Ocrit(fn). This defines the map
crit(fn) → Qn

L. The inverse is defined similarly: given a family of surjections IL � F , we
obtain a family of surjections IC0 → u∗IL → u∗F . �

This completes the proof of Theorem A from the Introduction.

3.2. Relative virtual motives

Via the coherent sheaf Ψ(G ) of OX×crit(gn)-modules constructed in the proof, we obtain the
map

hcX : Qn
C0

→ Symn(X) (2.4)

extending the map (2.1). It is again a special case of the Quot-to-Chow map [35, Corollary 7.15].
In particular, we can write

Qn
L
∼= Qn

C0
×Symn(X) Symn(A3) (2.5)

via the map hcX and the inclusion u : A3 → X. Via projection to the Symn(A3)-factor, we
recover the map

hcA3 : Qn
L → Symn(A3).

Where it is clear which of the two Hilbert–Chow maps we mean, we will drop the subscript.

Remark 2.5. In a little more detail, at a K-valued point of Qn
C0

, the corresponding
K(Qcon,Wcon)-module admits a filtration by (1, 1)-dimensional (ζ1, ζ2)-stable K(Qcon,Wcon)-
modules, that is, quadruples (α1, α2, β1, β2) ∈ C4 such that β1 �= 0 or β2 �= 0, modulo the
equivalence relation

(α1, α2, β1, β2) ∼ (z · α1, z · α2, z
−1 · β1, z

−1 · β2)
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Figure 3 (colour online). A singular point of the Quot scheme Q2
L.

for z ∈ C∗. This is the fine moduli space of point sheaves on X, and we identify it with X.
Then taking the union of the supports of the subquotients in the filtration gives the map (2.4)
to Symn(X).

Theorem 2.2 (A) has the following immediate consequence.

Corollary 2.6. The function fn : N ◦
n → A1 induces a relative virtual motive

L− 2n2+3n
2 [−φfn ]Qn

L
∈ Mμ̂

Qn
L
,

that is the pullback under the inclusion Qn
L ↪→ Qn

C0
of the relative virtual motive

L− 2n2+3n
2 [−φgn ]Qn

C0
∈ Mμ̂

Qn
C0
.

Proof. The space Nn is a smooth scheme of dimension 2n2 + 3n, so the machinery recalled
in Section 1.6 gives the relative motive

MFNn,gn = L− 2n2+3n
2 [−φgn ]Qn

C0

according to (1.10). The statement follows since fn is defined as the restriction of gn to the
smooth open subscheme N ◦

n ⊂ Nn. �

According to Notation 1.16, we can write down the absolute motives[
Qn

C0

]
vir

=
∫
Qn

C0

L− 2n2+3n
2 [−φgn ]Qn

C0

[Qn
L]vir =

∫
Qn

L

L− 2n2+3n
2 [−φfn ]Qn

L
.

(2.6)

We end this subsection with two examples of the geometric and motivic behaviour of Qn
L for

low n.

Example 2.7. The scaling action of the torus G3
m on A3 lifts to an action on Qn

L. Let us
consider the Quot scheme Q2

L. We will exhibit a singular point belonging to the torus fixed
locus. First of all, we have dimQ2

L = 6. Consider the point p ∈ Q2
L corresponding to

IZ = (x2, y2, xy, xz, yz) ⊂ IL ⊂ C[x, y, z].

This is depicted in Figure 3. It is easy to check that HomA3(IZ ,IL/IZ), the tangent space
of Q2

L at p, is 10-dimensional, so that p is a singular point.

Example 2.8. The Hilbert scheme Hilbn
A3 is non-singular if n � 3 and singular otherwise,

whereas Qn
L is already singular if n = 2, by Example 2.7. Let us fix n = 1, so that both trace
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functions (the ones giving rise to Hilb1
A3 and to Q1

L, respectively) vanish, and the virtual
motives are a shift of the naive motives by L−3/2. On the Hilbert scheme side we have, using
Remark 1.18, [

Hilb1
A3
]
vir

= L− 3
2 · L3 = L

3
2 ,

while on the Quot scheme side we find, using that Q1
L = BlL A3,[

Q1
L

]
vir

= L− 3
2 ·
[
BlL A3

]
= L− 3

2 ·
(
[A3 \ L] + [L× P1]

)
= L

3
2 + L

1
2 .

This is the first instance of formula (0.7).

3.3. Equivariance of the family

Let Rn = rMod(n+1,n,1)(CQ̃con) be the affine space parameterising framed Q̃con-modules of
dimension vector (n + 1, n, 1). Let us set G = GLn+1 ×GLn and let S ⊂ Γ(ORn

) be the
subalgebra of functions scaling, under the G-action, as a positive power of the given character
realising framed stability. Then by general GIT we have Nn = Proj S, and the natural inclusion
Γ(ORn

)G ⊂ S induces a projective morphism

pn : Nn → Y0 = Spec Γ(ORn
)G, (2.7)

where the affine scheme Y0 can be viewed as the GIT quotient Rn//0G at the trivial character.

Proposition 2.9. There is an identity[
φgn

]
=
[
g−1
n (1)

]
−
[
g−1
n (0)

]
∈ MC ⊂ Mμ̂

C
.

In particular, [Qn
C0

]vir lies in MC.

Proof. The 4-dimensional torus T = G4
m acts on Nn by

t · (A1, A2, B1, B2, v) = (t1A1, t2A2, t3B1, t4B2, t1t2t3t4v).

Moreover, the trace function gn : Nn → A1 is T -equivariant with respect to the primitive
character χ(t) = t1t2t3t4. This means that for all P ∈ Nn, we have gn(t · P ) = χ(t)gn(P ). We
claim that the induced action on Nn by the diagonal torus Gm ⊂ T is circle compact, that is,
it has compact fixed locus and the limits limt→0 t · P exist in Nn for all P ∈ Nn. Following
the proof of [3, Lemma 3.4], we note that (2.7) is a projective Gm-equivariant map, where Y0

has a unique Gm-fixed point, and moreover all orbits have this point in their closure. In other
words, limits exist in Y0. Therefore, by properness of pn, we conclude that the Gm-fixed locus
in Nn is compact and limits exist. This proves the claim.

Then the equation involving gn follows by part (i) of Theorem 1.20, proved by Behrend,
Bryan and Szendrői. In particular, the absolute virtual motive of Qn

C0
carries no monodromy,[

Qn
C0

]
vir

= L− 2n2+3n
2

[
−φgn

]
∈ MC. �

3.4. A direct critical locus description

There is a way of writing down the above critical locus description of Qn
L that does not

involve pulling back from a moduli space of representations for the non-commutative conifold.†

†Although, to be precise, for the proof that the description really does recover Qn
L, the only method we offer

will rely on the geometry of the non-commutative conifold.
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Figure 4. The quiver Qr.

Consider again the space N ◦
n . In the definition, we have imposed an open condition on

representations in Nn, namely

(1) ρ(b2) is injective.

We have seen above that the points of crit(fn) correspond to Q̃con-representations ρ satisfying
the extra condition that the short exact sequence of vector spaces

0 → Image(ρ(b2)) → ρ1 → Coker(ρ(b2)) → 0

is induced by a short exact sequence of C(Qcon,Wcon)-modules, and in particular,
Image(ρ(b1)) ⊂ Image(ρ(b2)). Stability then imposes the extra open condition

(2) Span(Image(ρ(ι)), Image(ρ(b2))) = ρ1.

Let N ◦◦
n ⊂ Nn be the open substack defined by the open conditions (1) and (2) above. For a

CQ̃con-module parameterised by a point in N ◦◦
n , there is a canonical direct sum decomposition

ρ1
∼= Image(ρ(b2)) ⊕ Image(ρ(ι)) and moreover an identification between Image(ρ(b2)) and ρ2

via the action of ρ(b2), and an identification of Image(ρ(ι)) and ρ∞ via ρ(ι). It follows that
there is an isomorphism

Γ: N ◦◦
n →̃ rModζ′

(n,1)(Qr)/GLn (2.8)

with the fine moduli space of ζ ′-semistable (n, 1)-dimensional CQr-representations of the
‘reduced’ quiver Qr depicted in Figure 4.

In (2.8), we have put ζ ′ = (−1, n). In a little more detail, given ρ a CQ̃con-module
corresponding to a point in N ◦◦

n , we set

ρ∞ = Image(ρ(ι))

ρ2 = ρ2 (∼= Image(ρ(b2))).

Then for s = 1, 2, we set

ρ(a′s) =ρ(as)|Image(ρ(ι))

ρ(b′1) =πImage(ρ(ι)) ◦ ρ(b1)

ρ(b′′1) =πImage(ρ(b2)) ◦ ρ(b1)

ρ(a′′s ) =ρ(as)|Image(ρ(b2)),

where π denotes the projection maps. Then

hn := fn
∣∣
N◦◦

n
= Tr(Wr) ◦ Γ, (2.9)

for Wr the potential

Wr = a′′1b
′
1a

′
2 − a′′2b

′
1a

′
1 + a′′1b

′′
1a

′′
2 − a′′2b

′′
1a

′′
1 .
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Proposition 2.10. There is an isomorphism of schemes

Qn
L
∼= crit(hn).

The result follows directly from our analysis of the non-commutative conifold. From that
description, we see that in the stable locus, we have ρ(b′1) = 0. Then the superpotential relations
become

a′2a
′′
1 = a′1a

′′
2

a′′1a
′′
2 = a′′2a

′′
1

a′′1b
′′
1 = b′′1a

′′
1

a′′2b
′′
1 = b′′1a

′′
2

and the stable locus is identified with the moduli space of triples (vx, vy, N) where N is a
C[x, y, z]-module, vx, vy ∈ N generate under the action of C[x, y, z], and xvy = yvx. This is the
same data as a C[x, y, z]-linear surjection θ : (x, y) � N , by setting vx = θ(x) and vy = θ(y).

The next result contains the statement of Theorem 2.2 (B).

Proposition 2.11. There is an identity[
φfn

]
=
[
h−1
n (1)

]
−
[
h−1
n (0)

]
∈ MC ⊂ Mμ̂

C
.

In particular, [Qn
L]vir lies in MC. Moreover, the relative motive [φfn ]Symn(A3) belongs to the

subring MSymn(A3) ⊂ Mμ̂
Symn(A3) of monodromy-free motives.

Proof. The first statement is proved the same way as Proposition 2.9, noting that by
construction, [φfn ] = [φhn

], and by (2.8), hn is a potential on a GIT moduli space of quiver
representations admitting a contracting C∗-action for which Tr(Wr) has weight three.

Next, we claim that the hypersurface h−1
n (0) ⊂ N ◦◦

n is reduced. This will follow from the claim
that the variety cut out by the function Tr(Wcon) on rModζ

(n+1,n,1)(Q̃con) is reduced, which is

in turn weaker than the claim that the variety cut out by Tr(Wcon) on rMod(n+1,n,1)(Q̃con)
is reduced. This variety is affine, and so it is enough to show that the function Tr(Wcon) is
reduced. With respect to the T-grading this function has degree (1, 1, 1, 1), and so it cannot be
factorised with a repeated factor.

The statement regarding [φfn ]Symn(A3) then follows from part (ii) of Theorem 1.20. �

The proof of Theorem 2.2 is complete.

4. Relative DT theory of the conifold

The goal of this section is to express the motive [Qn
C0

]vir defined in (2.6) in terms of motivic
contributions coming from the ‘punctual loci’ inside Qn

C0
. For n ∈ N, we define:

(i) Pn
pt ⊂ Qn

C0
, the subvariety parameterising quotients IC0 � F such that F is set-

theoretically supported at a fixed single point, away from C0; and
(ii) Pn

crv ⊂ Qn
C0

, the subvariety parameterising quotients IC0 � F such that F is set-
theoretically supported at a fixed single point on the curve C0.

Items (i) and (ii), respectively, will lead (cf. Definition 3.16) to the definition of motivic weights

Ωn
pt, Ωn

crv ∈ MC,
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which will be the basic building blocks for the construction of a virtual motive of the Quot
scheme Qn

C for an arbitrary curve C ⊂ Y in a 3-fold.

4.1. Motivic stratifications I: partially punctual strata

In what follows, we streamline proofs by deducing results for the embedded curve C0 ⊂ X from
the embedded curve L ⊂ A3. In order to achieve this, we introduce two automorphisms of Nn

(see (2.3)):

σλ · (ρ(ι), ρ(a1), ρ(a2), ρ(b1), ρ(b2)) = (ρ(ι), ρ(a1), ρ(a2), ρ(b1) + λρ(b2), ρ(b2)),

ξλ · (ρ(ι), ρ(a1), ρ(a2), ρ(b1), ρ(b2)) = (ρ(ι), ρ(a1), ρ(a2), ρ(b1), ρ(b2) + λρ(b1)).

Note that both of these automorphisms preserve Tr(Wcon) and the ζ-stable locus, and so they
induce automorphisms of Qn

C0
preserving [φgn ]Qn

C0
. The two automorphisms of C4 defined by

σλ(x, y, z, w) = (x, y, z + λw,w) and ξλ(x, y, z, w) = (x, y, z, w + λz) induce automorphisms of
X commuting with hcX in the sense that Symn(σλ) ◦ hcX = hcX ◦σλ and Symn(ξλ) ◦ hcX =
hcX ◦ξλ (see Remark 2.5).

Lemma 3.1. Let α ∈ Mμ̂
Symn(X) satisfy:

(1) (Symn(A3) ↪→ Symn(X))∗α = 0;
(2) σ∗

λα = α for all λ ∈ C;
(3) ξ∗λα = α for all λ ∈ C.

Then α = 0.

Proof. The space Symn(X) has an open cover by open subsets of the form Ut = Symn(X \
π−1(t)) for t ∈ P1: if γ ∈ Symn(X) is in the complement of ∪t∈TUt for |T | > n, then the support
of γ is spread across more than n fibres of the projection π : X → P1. By our assumptions, the
restriction of α to Ut is zero. By the scissor relations, it follows that α = 0. �

Corollary 3.2. Let α, β ∈ Mμ̂
Symn(X) satisfy conditions (2) and (3) from Lemma 3.1, and

(Symn(A3) ↪→ Symn(X))∗α = (Symn(A3) ↪→ Symn(X))∗β. Then α = β.

The next lemma is an incarnation of the fact that taking box sum with a quadratic function
(locally) does not change the vanishing cycle complex, while for global triviality one has to be
mindful of monodromy. The implication is that we can pass to a ‘minimal’ potential at the
expense of keeping track of some extra monodromy data, which in the Kontsevich–Soibelman
framework, and then elsewhere, is called orientation data. In the language of potentials on
3-Calabi–Yau categories, one can think of the proof of part (2) of Lemma 3.7 as working by
proceeding to a ‘partially minimised’ potential.

Lemma 3.3. Let π : Tot(V ) → X be the projection from the total space of a vector bundle
on a smooth connected variety X, and let f : Tot(V ) → C be a function that is quadratic in
the fibres, that is, f(z · v) = z2f(v) for z ∈ C, where we have given Tot(V ) the scaling action
of C∗. Assume X = crit(f), where we have identified X with the zero section of Tot(V ).

(1) For x ∈ X, there is an equality

[x]vir = L− dim(X)
2 ∈ MC ⊂ Mμ̂

C
. (3.1)

(2) Assume that V ∼= V− ⊕ V+ where f |Tot(V−) = f |Tot(V+) = 0. Then there is an equality[
−φf

]
X

=
[
id : X → X

]
∈ MX ⊂ Mμ̂

X . (3.2)
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(3) Under the conditions of (2), let G be a finite group acting freely on X, let V ∼= V− ⊕ V+ be
a direct sum decomposition of G-equivariant vector bundles, and assume that f is G-invariant.
Then [

−φf

]G
X

=
[
id : X → X

]
∈ MG

X ⊂ MG×μ̂
X .

In part (3), we include the assumption that G acts freely so that we may apply
Proposition 1.15.

Proof. Part (1): Zariski locally, we can write Tot(V ) = X × Am, and f =
∑

1�i,j�m fijtitj
for F = (fij)1�i,j�m a matrix of functions on X, and t1, . . . , tm coordinates on Am. We can,
and will, assume that fij = fji for all i and j. For every closed point x ∈ X, the functions
(∂/∂ti)f and (∂/∂s)f , for s local coordinates at x, generate

(t1, . . . , tm)OX,x[t1, . . . , tm]/(t1, . . . , tm)2OX,x[t1, . . . , tm].

On the other hand, (∂/∂s)f = 0 in this quotient. It follows that det(fij)1�i,j�m is an invertible
function on X. In an analytic open neighborhood of x, we may thus apply a change of
coordinates and obtain fij = δi−j , and then the first result follows from direct calculation,
or the explicit formula of Denef and Loeser [12, Theorem 4.3.1].

Part (2+3): By nondegeneracy of F , if V ∼= V− ⊕ V+ is a decomposition as in the statement
of the lemma, then dim(V−) = m/2, and the symmetric bilinear form F establishes an
isomorphism of vector bundles V+

∼= (V−)∗. Replacing V+ by (V−)∗ we obtain

F =
(

0 Idm/2×m/2

Idm/2×m/2 0

)
.

Letting C∗ act by scaling V+, the function f is equivariant of weight one. The proof of
[8, Theorem 5.9] shows that if we have a smooth variety Y , an integer r and a function
g =

∑
giti on Y × Ar, then πY,!([φg]g−1(0)) = [V (g1, . . . , gr)]. Moreover the proof generalises

without modification to the case in which πY : Y × Ar → Y is a projection from the total
space of a G-equivariant vector bundle. The second and the third parts follow, putting
Y = X × Tot(V−). �

Remark 3.4. If we relax the condition on f , part (2) may fail. For instance, consider the
function f = zx2 on Spec C[z±1, x] ∼= C∗ × A1

C
. It is easy to check that the associated virtual

motive satisfies [C∗]vir = 0.

Remark 3.5. Likewise, if we relax the condition on the G-action on V , part (3) may fail.
For instance, let G be the cyclic group of order 2, let Tot(V ) = Spec C[x, y] ∼= A2, with f = xy
and G swapping x and y. Then it is easy to check that for the associated equivariant critical
structure, we have [pt]vir = [G] − [pt], where on the right-hand side [G] is a pair of points,
permuted by the G-action, and pt carries the trivial G-action. This is a consequence of the fact
that the G-action on H(A2,Φxy) is the sign representation, see, for instance, [29, Lemma 4.1].

The ultimate goal of this section is to show that as a relative motive over Sym(X), the
virtual motive ∑

n�0

(−1)n
[
Qn

C0

hcX−−−→ Symn(X)
]
vir

(3.3)

is generated under Exp∪ by motives that are supported on the punctual locus, and constant
away from C0, as well as constant on C0. To get to this point will require some work, and
we break the proof up by showing first that (3.3) is at least generated by motives supported
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on a ‘partially punctual’ locus. By Lemma 3.1, it is enough to prove the analogous result for∑
n(−1)n[Qn

L
hc−→ Symn(A3)]vir.

We explain here what we mean by the partially punctual locus. Consider again the map

hc : Qn
L → Symn(A3).

The embedding of the xy-plane in A3 induces an embedding of varieties

ιn : Symn(A2) ↪→ Symn(A3) (3.4)

and we denote by Q•,•,nilp,n
L the preimage of Symn(A2) under hc, that is,

Q•,•,nilp,n
L = hc−1(Symn(A2)) ⊂ Qn

L. (3.5)

The map ιn is the inclusion of the subspace of configurations of points which all have z-
coordinate 0, which explains the notation (•, •,nilp) — the scheme-theoretic version of this
condition is that the operator corresponding to the action of z is nilpotent. So, ordering the
operators corresponding to x, y, z alphabetically, the first two are unconstrained, and the third
is nilpotent.

Notation 3.6. More generally, for #x,#y,#z ∈ {uni,nilp, •} we define Q
#x,#y,#z,n
L ⊂ Qn

L

by imposing the closed conditions that for w ∈ {x, y, z} the operator ·w is nilpotent if #w =
nilp, or unipotent if #w = uni — so, for instance, Qn

L = Q•,•,•,n
L .

There is an action of A1 on Symn(A3) via simultaneous addition on the z coordinate of all
points in a configuration, and we let

ι̃n : Symn(A2) × A1 → Symn(A3) (3.6)

be the restriction of this action. It is again an embedding, this time of the subvariety of n-tuples
of points which all have the same z-coordinate (not necessarily zero). It is this locus that we
call ‘partially punctual’. Finally, consider the morphism

qz : Symn(A3) → Symn(A1)

obtained by projecting onto the z coordinate. We define hcz = qz ◦ hc. More generally, for
a1, . . . , ar distinct elements of {x, y, z} and T ⊂ Qn

L, we denote by

hca1···ar : T → Symn(Ar)

the map given by composing the restriction of hc to T with the projection Sym(A3) → Sym(Ar)
induced by the projection A3 → Ar defined by forgetting the coordinates not contained in
a1, . . . , ar.

The space Symn(A1) is stratified according to partitions of n, and for α � n we denote by
Q•,•,α

L ⊂ Qn
L the corresponding stratum of the stratification of Qn

L given by pulling back along
hcz : Qn

L → Symn(A1). So, for instance,

Q
•,•,(n)
L = (Symn(A2) × A1) ×Symn(A3) Q

n
L ⊂ Qn

L

is the fibre product of ι̃n and hc.

Lemma 3.7. (1) There is an equality

ι̃∗n
[
Q

•,•,(n)
L

hc−→ Symn(A3)
]
vir

= ι∗n
[
Qn

L
hc−→ Symn(A3)

]
vir

�
[
A1 id

A1−−→ A1
]

in MSymn(A2)×A1 . In other words, the motive on the left-hand side is constant in the A1-factor.
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(2) Moreover, for α � n there is an equality

[
Q•,•,α

L → Symn(A3)
]
vir

= ∪!πGα
j∗α

(
�

i|αi �=0

[
Q

•,•,(i)
L → Symi(A2) × A1

]⊗αi

vir

)
(3.7)

where jα is the Gα-equivariant inclusion of the complement of the pullback of the big diagonal
under the Gα-equivariant projection onto z-coordinates:∏

i|αi �=0

(Symi(A2) × A1)αi → A
∑

αi .

Here Gα is the automorphism group for the partition type α, and ∪ is the union of points map
on Sym(A3).

Before we begin the proof, we give some guidance for how to read the right-hand side of
(3.7). Firstly, recall from Section 1.5 that the infinite union of algebraic varieties Sym(A3) has
a symmetric monoidal structure ∪, given by taking unions of unordered points with multiplicity.
We consider Symi(A2) × A1 as a subvariety of Symi(A3) via ι̃i. We abuse notation by writing
∪ again for the map Sym(A3)m → Sym(A3) taking an m-tuple of sets of unordered points with
multiplicity to their union. The term in big round brackets on the right is a Gα-equivariant
motive via Lemma 1.6.

Proof. Consider again the space N ◦◦
n ⊂ Nn from Section 2.4. We define the subspace Tn ⊂

N ◦◦
n by the condition that Tr(ρ(b′′1)) = 0. Then there is an isomorphism

Tn × A1 →̃N ◦◦
n

given by

(ρ(a′′1), ρ(a′′2), ρ(b′′1), ρ(a′1), ρ(a
′
2), ρ(b

′
1), t) 
→ (ρ(a′′1), ρ(a′′2), ρ(b′′1) + t · Idn×n, ρ(a′1), ρ(a

′
2), ρ(b

′
1)),

and the function hn = fn|N◦◦
n

(cf. (2.9) and Proposition 2.10) is pulled back from a function hn

on Tn. The stratification by partition type of ρ(b′′1) for Qn
L ⊂ N ◦◦

n is induced by a stratification
of Tn: for α a partition of n, define Tα ⊂ Tn to be the locally closed subvariety whose C-points
correspond to Qr-representations for which the partition type of the generalised eigenvalues of
ρ(b′′1) are given by α. Then crit(hn) ∩ T(n) = Q•,•,nilp,n

L , that is, the isomorphism Tn × A1→̃N ◦◦
n

sends (crit(hn) ∩ T(n)) × {0} onto Q•,•,nilp,n
L .

Let Symn
0 (A1) ⊂ Symn(A1) be the closed subvariety of n-tuples summing to zero. Let

λ : N ◦◦
n → Symn(A1)

be the morphism taking a module ρ to the eigenvalues (with multiplicity) of ρ(b′′1). Note that
λ|Qn

L
= hcz. Then the first equality follows from the commutativity of

and the fact that, pulling back along the top isomorphism, the function hn becomes hn ⊕ 0.
Let α = (1α1 · · · rαr ) � n be a partition. We write l(α) =

∑
i�r αi for the total number

of parts of α. For the proof of the second part of the lemma, we adapt the proof of [3,
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Figure 5. The quiver Qα, for the case in which l(α) = 2. The index k varies in {1, 2}.

Proposition 2.6], via the following commutative diagram, which will take some time to define
and describe.

All of the dotted arrows correspond to the inclusion of the critical locus of a function. All
hooked arrows denote open inclusions.

The open subspace Ũ ⊂
∏

i(Q
i
L)αi is defined by the condition that the set of eigenvalues of

ρ(b′′1) in each of the l(α) factors of the product are distinct from the set of eigenvalues for ρ(b′′1)
in any other factor in the product. The open subset U ⊂ Qn

L is the image of the étale map
Ũ → Qn

L given by sending the l(α)-tuple {IL � Fj}j�l(α) to

IL �
⊕

j�l(α)

Fj .

The closed subset V ⊂ Ũ is defined by the condition that in each of the l(α) factors in
the product decomposition there is only one eigenvalue. It is in fact the preimage of Qα

L =
hc−1(Symα(A3)) ⊂ U under the map Ũ → U .

We form the quiver Qα (Figure 5) and dimension vector dα as follows. Set

(Qα)0 =
{

21, . . . , 2l(α),∞
}

(Qα)1 =
{
a′1,i, a

′
2,i, b

′
1,i, b

′′
1,i

}
1�i�l(α)

∪
{
a′′1,i,j , a

′′
2,i,j

}
1�i,j�l(α)

.

We set

t(a′1,i) = t(a′2,i) = s(b′1,i) = ∞

s(a′1,i) = s(a′2,i) = t(b′1,i) = t(b′′1,i) = s(b′′1,i) = 2i
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t(a′′1,i,j) = t(a′′2,i,j) = 2j

s(a′′1,i,j) = s(a′′2,i,j) = 2i.

We give Qα the dimension vector dα = (1α1 , . . . , rαr , 1), that is, we always assign the vertex
∞ dimension 1, and then the rest of the dimension vector is given by the ordered set of numbers
α. We give this quiver the stability condition

ζα = (−1, . . . ,−1, n).

A (ζα-stable) CQα-module is the same data as a (ζ ′-stable) CQr-module ρ, along with an
ordered vector space decomposition of the vector space ρ2 that is preserved by the operation
ρ(b′′1). As such, there is a forgetful functor from CQα-modules to CQr-modules, inducing a
generically finite morphism

s : Nα = rModζα
dα

(Qα)/GLα → N ◦◦
n ,

which at the level of points amounts to setting

s(ρ2) =
⊕

i�l(α)

ρ2i
.

The scheme is Gα-equivariant, via the obvious Gα-action on the quiver Qα.
There is a unique potential Wα on Qα such that Tr(Wα) is the pullback of Tr(Wr) under

this forgetful map. Precisely, we define

Wα =
∑

1�i,j�l(α)

(
a′′1,j,ib

′
1,ja

′
2,i − a′′2,j,ib

′
1,ja

′
1,i

)
+

∑
1�i,j�l(α)

(
a′′1,j,ib

′′
1,ja

′′
2,i,j − a′′2,j,ib

′′
1,ja

′′
1,i,j

)
.

We define the open subscheme S̃ ⊂ Nα by the condition that for every i, j � l(α) the
endomorphisms ρ(b′′1,i) and ρ(b′′1,j) share no eigenvalues. The map

s : S̃ → N ◦◦
n

is quasi-finite, and factors through a finite morphism S̃ → S where S ⊂ N ◦◦
n is an open sub-

scheme.
Let ρ ∈ S̃ ∩ crit(Tr(Wα)). Then s(ρ)(b′1) = 0 by stability, and so from the superpotential

relations we deduce that a′′1,i,jb
′′
1,i = b′′1,ja

′′
1,i,j and a′′2,i,jb

′′
1,i = b′′1,ja

′′
2,i,j for all i, j and so from

our condition on the eigenvalues of the b′′1,i we deduce that for all 1 � i �= j � l(α) we have
ρ(a′′1,i,j) = ρ(a′′2,i,j) = 0. As such, in calculating the relative vanishing cycle [φTr(Wα)]S̃ we can
restrict to the set S̃◦ ⊂ S̃ defined by the condition that ρ remains stable after setting all
ρ(a′′1,i,j) = ρ(a′′2,i,j) = 0 for i �= j. So both the inclusions Ũ → S̃ and Ũ → S̃◦ are the inclusions
of the critical locus of the function Tr(Wα) on the respective targets.

The space S̃◦ is a vector bundle over

P̃ ⊂
∏
i

(N ◦◦
i )αi , (3.8)

the open subset defined by the condition that the generalised eigenvalues of the ρ(b′′1)-operators
from different factors are distinct. The projection from S̃◦ to P̃ is given by forgetting the values
of ρ(a′′k,i,j) for k = 1, 2 and i �= j.

The map π is a Galois cover with Galois group Gα, and the map S̃◦ → S is a Galois cover
in a formal neighbourhood of the morphism π.

The space P̃ carries the free Gα-action inherited from Nα, and furthermore the vector bundle
S̃◦ has a direct sum decomposition V− ⊕ V+, where V− keeps track of the entries of ρ(a′′1,i,j)
for i �= j and V+ keeps track of the entries of ρ(a′′2,i,j) for i �= j, and so the decomposition is
preserved by the Gα-action.
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Let m = rk(V+) = rk(V−). If we let G1 = C∗ act on S̃◦ by scaling V+ with weight 1 and V−
with weight −1, then Tr(Wα) is C∗-invariant. Let G2 = C∗ act by scaling both V+ and V− with
weight one. Then since each term in the potential contains at most two instances of a′′k,i,j , for
k = 1, 2, for every ρ ∈ S̃◦, there is a fixed constant C for which |Tr(Wα)(z ·2 ρ)| � C|z|2 where
the action is via the G2-action. We deduce that on S̃◦ we can write

Tr(Wα) = g0 + g1,

where g0 is a function pulled back from the projection to P̃ and g1 is a G1-invariant function
on S̃◦, quadratic in the fibres. After passing to a Gα-invariant Zariski open subset, we can
trivialise the vector bundle S̃◦ and write

g1 =
∑

1�i,j�m

gi,jtisj ,

where ti and sj are coordinates on the fibre of Tot(V+) and Tot(V−), respectively. From the
equality crit(Tr(Wα)) = crit(g0), arguing as in the proof of the second part of Lemma 3.3,
the matrix {gij}1�i,j�m is invertible, and after a change of coordinates on Tot(V+) we may
assume that gij = δi−j . By the Thom–Sebastiani isomorphism, and the third part of Lemma 3.3
we deduce that [φTr(Wα)]

Gα

S̃◦ = [φg0 ]
Gα

P̃
∈ MGα×μ̂

P̃
. Finally, we note that g0 is the sum of the

potentials on the factors of
∏

i(N ◦◦
i )αi , and the result follows from Proposition 1.15 and the

Thom–Sebastiani theorem. �

Recall from (3.5) the subvarieties Q•,•,nilp,n
L ⊂ Qn

L, relative over Symn(A2) via the map hcxy.
The next corollary follows from Proposition 1.12.

Corollary 3.8. Define classes Φn ∈ MSymn(A2) via

∑
n�0

(−1)n
[
Q•,•,nilp,n

L
hcxy

−−−→ Symn(A2)
]
vir

= �Exp∪

⎛⎝∑
n�1

Φn

⎞⎠.

Then ∑
n�0

(−1)n
[
Qn

L
hc−→ Symn(A3)

]
vir

= �Exp∪

⎛⎝∑
n�1

(
Symn(A2) × A1 ι̃n−→ Symn(A3)

)
!

(
Φn �

[
A1 id−→ A1

])⎞⎠.

Proof. By Lemma 3.7 (2) and (1.4), we deduce that for α � n

(−1)n
[
Q•,•,α

L → Symn(A3)
]
vir

= ∪!πGα
j∗α

(
�

i|αi �=0
(−1)i

[
Q

•,•,(i)
L → Symi(A2) × A1

]⊗αi

vir

)
.

The result then follows from Proposition 1.12 and[
Qn

L → Symn(A3)
]
vir

=
∑
α�n

[
Q•,•,α

L → Symn(A3)
]
vir

.
�

4.2. Motivic stratifications II: fully punctual strata

Corollary 3.8 says that, considered as relative motives over Sym(A1), via projection to the
z coordinate, the DT invariants are generated by classes on the small diagonals, which are
moreover constant as relative motives over A1. In other words, there are relative motives over
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Symn(A2) that generate the motivic DT partition function under taking the external product
with the constant motive on A1 and taking exponentials.

We next show that these relative motives are themselves supported on the small diagonal
(although they are non-constant, with a ‘jump’ at the intersection A2 ∩ L) so that considered
as a relative motive over Sym(A3), the virtual motive of Qn

L is generated on the small diagonal.
For n′ � n and α a partition of n− n′, we define

Qn′,α = Q•,•,nilp,n
L ∩ (hcy)−1(An′,α),

where An′,α is the subvariety of Symn(A1) defined by the condition that 0 occurs n′ times, and
the partition defined by the (n− n′)-tuple of points away from 0 is α. We denote by

κ1
n : Symn(A1) ↪→ Symn(A2) κ0

n : Symn(A1) ↪→ Symn(A2)

(z1, . . . , zn) 
→ ((z1, 1), . . . , (zn, 1)) (z1, . . . , zn) 
→ ((z1, 0), . . . , (zn, 0))

and

κ̃n : Symn(A1) × A1 ↪→ Symn(A2)

((z1, . . . , zn), z) 
→ ((z1, z), . . . , (zn, z))

the inclusions analogous to ιn and ι̃n defined in (3.4) and (3.6). Let ln : Symn(A1) × Gm ↪→
Symn(A1) × A1 be the inclusion.

Lemma 3.9. (1) There is an equality

l∗nκ̃
∗
n

[
Q•,•,nilp,n

L
hcxy

−−−→ Symn(A2)
]
vir

= κ1,∗
n

[
Q•,•,nilp,n

L
hcxy

−−−→ Symn(A2)
]
vir

�
[
Gm

id−→ Gm

]
in MSymn(A1)×Gm

. In other words, away from 0, the motive

κ̃∗
n

[
Q•,•,nilp,n

L
hcxy

−−−→ Symn(A2)
]
vir

is constant along the A1-factor.
(2) More generally, there is an equality[

Qn′,α hcxy

−−−→ Symn(A2)
]
vir

=
[
Qn′,∅ hcxy

−−−→ Symn′
(A2)

]
vir

�∪

∪! πGα
j∗α

(
�

i|αi �=0

[
Q0,(i) hcxy

−−−→ Symi(A1) × A1
]⊗αi

vir

)
,

where jα is the inclusion of the complement to the preimage of the big diagonal in A
∑

i αi

under the projection
∏

i(Symi(A1) × A1)αi → A
∑

i αi .

See the remarks following the statement of Lemma 3.7, as well as equation (1.2), for some
guidance on how to read the right-hand side of the second equation.

Proof. Let Gm act on N ◦◦
n via

z · (ρ(a′1), ρ(a′2), ρ(b′1), ρ(a′′1), ρ(a′′2), ρ(b′′1)) = (zρ(a′1), z
−1ρ(a′2), ρ(b

′
1), zρ(a

′′
1), z−1ρ(a′′2), ρ(b′′1)).

Then Tr(Wr) is invariant under the Gm-action. We define the space Un ⊂ N ◦◦
n by the condition

that det(ρ(a′′2)) = 1. Consider the morphism

J : Un × Gm → N ◦◦
n

given by restricting the Gm-action. This is a Galois cover of the open subscheme Y ⊂ N ◦◦
n

defined by the condition that ρ(a′′2) is invertible. Let Vn ⊂ Un be the subvariety defined by



1416 BEN DAVISON AND ANDREA T. RICOLFI

the condition that ρ(a′′2) has only one eigenvalue. Then as a μn-equivariant variety, there is an
isomorphism

Vn
∼= Wn × μn,

where the action on the first factor is trivial, and is the action of group multiplication on the
second. Here Wn ⊂ Un is the subvariety defined by the condition that ρ(a′′2) is unipotent.

Recall from Section 2.4 the function hn on N ◦◦
n . The function hn ◦ J factors through a

function h̃ on Un, since h is Gm-invariant. By Proposition 1.15,

(Y → N ◦◦
n )∗

[
φhn

]
N◦◦

n
= (Y → N ◦◦

n )∗πμn
J!([φh̃]Un

� [Gm
idGm−−−→ Gm]).

It follows that

l∗nκ̃
∗
nι

∗
n hc![φhn

]N◦◦
n

= l∗nκ̃
∗
nι

∗
n hc! πμn

J!([φh̃]Un
� [Gm

idGm−−−→ Gm])

= l∗nκ̃
∗
nι

∗
n hc! πμn

J!([φh̃]Vn
� [Gm

idGm−−−→ Gm])

= l∗nκ̃
∗
nι

∗
n hc! J!([φh̃]Wn

� [Gm
idGm−−−→ Gm]),

implying the triviality along the Gm-factor required for part (1). The second equality follows
from the fact that only the part of the motive over Vn can contribute to the pullback along κ̃n,
since by definition this is the pullback along the locus where ρ(a′′2) has only one eigenvalue.

For part (2), consider the quiver Q′
α defined as follows. Set

(Q′
α)0 =

{
20, . . . , 2l(α),∞

}
(Q′

α)1 =
{
a′1,i, a

′
2,i, b

′
1,i, a

′′
1,i

}
0�i�l(α)

∪
{
b′′1,i,j , a

′′
2,i,j

}
0�i,j�l(α)

with

t(a′1,i) = t(a′2,i) = s(b′1,i) = ∞

s(a′1,i) = s(a′2,i) = t(b′1,i) = t(a′′2,i) = s(a′′2,i) = 2i

t(a′′1,i,j) = t(b′′1,i,j) = 2j

s(a′′1,i,j) = s(b′′1,i,j) = 2i.

We give this quiver the dimension vector d = (n′, 1α1 , . . . , rαr , 1) and the stability condition
(−1, . . . ,−1, n). As in the proof of Lemma 3.7, a (stable) Q′

α-representation corresponds to a
(ζ ′-stable) Qr-representation ρ along with a direct sum decomposition of ρ2 that is respected
by the operator ρ(a′′2). A point in Qn′,α gives rise to a d-dimensional Q′

α-representation, in a
formal neighbourhood of which the forgetful map is a Galois covering — from this point, the
proof proceeds exactly as in the proof of Lemma 3.7. �

The following is proved in the same way as Corollary 3.8.

Corollary 3.10. Define classes Ψ#
n ∈ MSymn(A1) for # ∈ {nilp,uni}, via

∑
n�0

(−1)n
[
Q•,#,nilp,n

L
hcx

−−→ Symn(A1)
]
vir

= �Exp∪

⎛⎝∑
n�1

Ψ#
n

⎞⎠.

Then
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∑
n�0

(−1)n
[
Q•,•,nilp,n

L
hcxy

−−−→ Symn(A2)
]
vir

= �Exp∪

(∑
n�1

(
Symn(A1) × Gm

κ̃n◦ln−−−−→ Symn(A2)
)

!

(
Ψuni

n � [Gm
id−→ Gm]

)

+
(

Symn(A1)
κ0
n−−→ Symn(A2)

)
!

Ψnilp
n

)
.

We are now two-thirds of the way toward showing that the relative DT invariants are fully
punctual over Sym(A3). Since the proof of Lemma 3.11 is almost identical to that of Lemma 3.9,
while the proof of Lemma 3.12 is strictly simpler, we omit them. Before stating them, we
introduce one last stratification; for n′ � n, and α � n− n′, let

Pn′,α ⊂ Q•,nilp,nilp,n
L

be the preimage under the map

Q•,nilp,nilp,n
L

hcx

−−→ Symn(A1)

of the space of tuples of length n′ at the origin, and for which the partition type of the tuple
away from the origin is α. Likewise, for α � n we define

Uα ⊂ Q•,uni,nilp,n
L

to be the preimage of Symα(A1) under Q•,uni,nilp,n
L

hcx

−−→ Symn(A1). Let also Δn : A1 →
Symn(A1) be the diagonal.

Lemma 3.11. (1) There is an equality

(Gm
Δn|Gm−−−−→ Symn(A1))∗

[
Q•,nilp,nilp,n

L
hcx

−−→ Symn(A1)
]
vir

= ({1}
Δn|{1}−−−−→ Symn(A1))∗

[
Q•,nilp,nilp,n

L
hcx

−−→ Symn(A1)
]
vir

�
[
Gm

id−→ Gm

]
in MGm

. In other words, away from 0, the motive Δ∗
n[Q•,nilp,nilp,n

L → Symn(A1)]vir is constant.
(2) Moreover, there is an equality[

Pn′,α hcx

−−→ Symn(A1)
]
vir

=
[
Pn′,∅ hcx

−−→ Symn′
(A1)

]
vir

�∪ ∪!πGα

(
�

i|αi �=0

[
P0,(i) hcx

−−→ Sym(i)(A1)
]⊗αi

vir

)
.

Lemma 3.12. (1) There is an equality

(A1 Δn−−→ Symn(A1))∗
[
Q•,uni,nilp,n

L
hcx

−−→ Symn(A1)
]
vir

= ({0}
Δn|{0}−−−−→ Symn(A1))∗

[
Q•,uni,nilp,n

L
hcx

−−→ Symn(A1)
]
vir

�
[
A1 id−→ A1

]
in MA1 . In other words, the motive Δ∗

n[Q•,uni,nilp,n
L → Symn(A1)]vir is constant.

(2) Moreover, there is an equality[
Uα hcx

−−→ Symn(A1)
]
vir

= ∪! πGα

(
�

i|αi �=0

[
U (i) hcx

−−→ Sym(i)(A1)
]⊗αi

vir

)
.
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By the same argument as Corollary 3.8, we deduce the following.

Corollary 3.13. Define classes Λ#
n for # ∈ {nilp,uni} in MC via

∑
n�0

(−1)n
[
Q#,nilp,nilp,n

L

]
vir

= �Exp

⎛⎝∑
n�1

Λ#
n

⎞⎠. (3.9)

Then ∑
n�0

(−1)n
[
Q•,nilp,nilp,n

L
hcx

−−→ Symn(A1)
]
vir

= �Exp∪

⎛⎝∑
n�1

Λuni
n �

[
Gm

Δn|Gm−−−−→ Symn(A1)
]
+ Λnilp

n �
[
0 ↪→ Symn(A1)

]⎞⎠.

Corollary 3.14. Define Λn ∈ MC via

∑
n�0

(−1)n
[
Qnilp,uni,nilp,n

L

]
vir

= �Exp

⎛⎝∑
n�1

Λn

⎞⎠. (3.10)

Then

∑
n�0

(−1)n
[
Q•,uni,nilp,n

L
hcx

−−→ Symn(A1)
]
vir

= �Exp∪

⎛⎝∑
n�1

Λn �
[
A1 Δn−−→ Symn(A1)

]⎞⎠.

Lemma 3.15. In the notation of Corollaries 3.13 and 3.14, there is an equality

Λuni
n = Λn

for all n.

Proof. There is an automorphism Sn of N ◦◦
n , for all n, defined by

ρ(a′′1) 
→ ρ(a′′2)

ρ(a′′2) 
→ −ρ(a′′1)

ρ(a′1) 
→ ρ(a′2)

ρ(a′2) 
→ −ρ(a′1),

which leaves Tr(Wr) invariant, and so preserves [Qn
L → Qn

L]vir. Now

Sn,!

[
Quni,nilp,nilp,n

L → QL

]
vir

=
[
Qnilp,uni,nilp,n

L → QL

]
vir

and so
[
Quni,nilp,nilp,n

L

]
vir

=
[
Qnilp,uni,nilp,n

L

]
vir

. The lemma then follows from the defining
equations (3.9) and (3.10). �

Definition 3.16. Let us set

Ωn
pt = Λuni

n , Ωn
crv = Λnilp

n .

These fully punctual motives express the contribution of points away from the curve and
embedded on the curve, respectively.
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Let

ιL : L ↪→ A3, ιC0 : C0 ↪→ X

denote the closed inclusions, and let

uL : A3 \ L ↪→ A3, uC0 : X \ C0 ↪→ X

denote the inclusions of the open complements.

Theorem 3.17. There is an equality in MSym(A3):∑
n�0

(−1)n
[
Qn

L

hc
A3−−−→ Symn(A3)

]
vir

= �Exp∪

⎛⎝∑
n�1

(
Ωn

pt �
[
A3 \ L ΔnuL−−−−→ Symn(A3)

]
+ Ωn

crv �
[
L

ΔnιL−−−→ Symn(A3)
])⎞⎠,

(3.11)

and an equality in MSym(X):∑
n�0

(−1)n
[
Qn

C0

hcX−−−→ Symn(X)
]
vir

= �Exp∪

⎛⎝∑
n�1

(
Ωn

pt �
[
X \ C0

ΔnuC0−−−−→ Symn(X)
]
+ Ωn

crv �
[
C0

ΔnιC0−−−−→ Symn(X)
])⎞⎠.

(3.12)

Proof. By Corollary 3.8, we have∑
n�0

(−1)n
[
Qn

L

hc
A3−−−→ Symn(A3)

]
vir

= �Exp∪

⎛⎝∑
n�1

(
Symn(A2) × A1 ι̃n−→ Symn(A3)

)
!

(
Φn�

[
A1 id−→ A1

])⎞⎠.

Then by Corollary 3.10 and Proposition 1.12, we deduce that∑
n�0

(−1)n
[
Qn

L

hc
A3−−−→ Symn(A3)

]
vir

= �Exp∪

(∑
n�1

(
Symn(A1) × Gm × A1 ↪→ Symn(A3)

)
!
Ψuni

n �
[
Gm × A1 id−→ Gm × A1

]

+
(
Symn(A1) × {0} × A1 ↪→ Symn(A3)

)
!
Ψnilp

n �
[
{0} × A1 id−→ {0} × A1

])
.

Then by Corollaries 3.13 and 3.14 and Proposition 1.12 again, we deduce that
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∑
n�0

(−1)n
[
Qn

L

hc
A3−−−→ Symn(A3)

]
vir

= �Exp∪

(∑
n�1

(
A1 × Gm × A1 ↪→ Symn(A3)

)
!
Ωn

pt �
[
A1 × Gm × A1 id−→ A1 × Gm × A1

]
+
(
Gm × {0} × A1 ↪→ Symn(A3)

)
!
Ωn

pt �
[
Gm × {0} × A1 id−→ Gm × {0} × A1

]
+
(
{0} × {0} × A1 ↪→ Symn(A3)

)
!
Ωn

crv �
[
{0} × {0} × A1 id−→ {0} × {0} × A1

])
,

and the first statement follows. For the second statement, we observe that the right-hand
side of (3.12) satisfies conditions (2) and (3) of Lemma 3.1, and is obviously equal to the
right-hand side of (3.11) after restriction to Sym(A3). Then the second statement follows from
Corollary 3.2. �

5. The virtual motive of the Quot scheme

In this section, we define a virtual motive[
Qn

C

]
vir

∈ MC

for an arbitrary smooth curve C ⊂ Y in a smooth 3-fold Y . Before getting to this point, we
give an explicit formula for the generating series

QL/A3(t) =
∑
n�0

[
Qn

L

]
vir

· tn

QC0/X(t) =
∑
n�0

[
Qn

C0

]
vir

· tn

encoding the local absolute virtual motives attached to L ⊂ A3 and C0 ⊂ X. We shall also
prove Theorems B and C from the introduction.

5.1. The local absolute virtual motives

Let X be, as usual, the resolved conifold. Then Theorem 3.17 implies that for ι : x ↪→ X the
inclusion of a point, the absolute motive

(Symn ι)∗
[
Qn

C0

hcX−−−→ Symn(X)
]
vir

only depends on whether x is in C0 or not. We define:

•
[
Pn

pt

]
vir

= (Symn ι)∗
[
Qn

C0

hcX−−−→ Symn(X)
]
vir

for x /∈ C0;

•
[
Pn

crv

]
vir

= (Symn ι)∗
[
Qn

C0

hcX−−−→ Symn(X)
]
vir

for x ∈ C0.

Explicitly, these motives are determined by the identities∑
n�0

(−1)n
[
Pn

#

]
vir

· tn = �Exp

(∑
n>0

Ωn
# · tn

)
for # ∈ {pt, crv}. We define the generating functions

F#(t) =
∑
n�0

[
Pn

#

]
vir

· tn.
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Via the morphisms defining power structures for varieties, Lemmas 3.7, 3.9, 3.11, 3.12 and 3.15
can be neatly summed up in the following corollary.

Corollary 4.1. There are equalities in MC � t �

QL/A3(−t) = Fpt(−t)L
3−L

� · Fcrv(−t)L�

QC0/X(−t) = Fpt(−t)L
3+L

2−L−1
� · Fcrv(−t)L+1

� .

Remark 4.2. Note that the exponents in the statement of the corollary are effective (despite
the minus signs). Indeed, L3 − L is the class of A3 \ L, and L3 + L2 − L − 1 is the class of
X \ C0. The ‘�’ subscripts are in the statement because we are yet to prove that the classes
(−1)n[Pn

pt]vir and (−1)n[Pn
crv]vir are effective. As a result of Corollaries 4.4 and 4.6, we will be

able to remove them and the statements remain true, now expressed properly in terms of the
power structures on the Grothendieck rings of varieties.

The rest of this subsection is devoted to removing the decorations ‘�’ from the formulas in
Corollary 4.1. We start with # = pt.

Proposition 4.3. For all n � 0, there is an identity[
Pn

pt

]
vir

=
[
Hilbn(A3)0

]
vir

∈ MC.

Proof. By definition [
Pn

pt

]
vir

= j∗n
[
Qn

L
hc−→ Symn(A3)

]
vir

,

where jn : p ↪→ Symn(A3) is the inclusion of the point p = ((1, 1, 1), . . . , (1, 1, 1)). Consider
the open subvariety Un ⊂ rMod(n,1)(Qr) defined by the condition that ρ(a′′1) and ρ(a′′2) are
invertible, and the image of ρ(a′1) generates ρ2 under the action of ρ(a′′1), ρ(a′′2) and ρ(b′′1).
Note that this is a stronger notion of stability than ζ ′-stability. However, after restricting to
the critical locus of Tr(Wr), using our invertibility assumptions, we have that for ρ ∈ Un the
relation

ρ(a′′1)−1ρ(a′′2)ρ(a′1) = ρ(a′2)

holds, and so we deduce that ρ satisfies our stronger notion of stability if it is ζ ′-stable, lies
in crit(Tr(Wr)), and satisfies the above invertibility assumptions. It follows that, after setting
Un = Un/GLn, one has[

Pn
pt

]
vir

= j∗n
[
Un ∩ crit(Tr(Wr))

hc−→ Symn(A3)
]
vir

.

Let QBBS denote the quiver obtained from Qr by removing a′2 and b′1, in other words the framed
3-loop quiver of Figure 1. Then NCHilbn := rModζ′

(n,1)(QBBS)/GLn is the noncommutative
Hilbert scheme considered by Behrend, Bryan and Szendrői in [3] (cf. Section 1.7), and
Un = Un/GLn is a vector bundle over NCHilbn

◦ , the open subscheme of NCHilbn defined
by invertibility of ρ(a′′1) and ρ(a′′2).

We introduce a new set of matrix coordinates on Un by considering the matrices

A′′
1 = ρ(a′′1) A′′

2 = ρ(a′′2) B′′
1 = ρ(b′′1)

A′
2 = ρ(a′′2)ρ(a′1) − ρ(a′′1)ρ(a′2) A′

1 = ρ(a′′1)ρ(a′2) B′
1 = ρ(b′1).

With respect to these coordinates, we can write

Tr(Wr)|Un
= F + Tr(B′

1A′
2),
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where

F = Tr(A′′
1)Tr(B′′

1)Tr(A′′
2) − Tr(A′′

2)Tr(B′′
1)Tr(A′′

1)

is a function on NCHilbn considered as a function on Un by composition with the vector bundle
projection Un → NCHilbn. It follows from Lemma 3.3 (2) and the motivic Thom–Sebastiani
theorem that

j∗n
[
Un ∩ crit(Tr(Wr))

hc−→ Symn(A3)
]
vir

= j∗n
[
NCHilbn ∩ crit(Tr(F )) hc−→ Symn(A3)

]
vir

= j∗n
[
Hilbn(A3) hc−→ Symn(A3)

]
vir

=
[
Hilbn(A3)0

]
vir

as required. �

Corollary 4.4. For all n � 0, there is an identity

Ωn
pt = (−1)nL− 3

2
L

n
2 − L−n

2

L
1
2 − L− 1

2
∈ MC.

In particular, Ωn
pt is effective.

Proof. By definition, we have∑
n�0

(−1)n
[
Pn

pt

]
vir

tn =�Exp

(∑
n>0

Ωn
ptt

n

)
.

Since [Pn
pt]vir = [Hilbn(A3)0]vir, we deduce (see Remark 1.22) that (−1)n[Pn

pt]vir is effective,
and by Formula (1.13) we deduce also that∑

n�0

(−1)n
[
Pn

pt

]
vir

tn = Exp

(∑
n>0

(−1)nL− 3
2

L
n
2 − L−n

2

L
1
2 − L− 1

2
tn

)
.

The result follows since �Exp is injective, and agrees with Exp on effective motives. �

The corollary implies that in the right-hand side of the formulas in Corollary 4.1, we can
remove the decoration ‘�’ from the first factor. In other words, for all smooth quasi-projective
3-folds U , one has

Fpt(−t)[U ]
� = Fpt(−t)[U ] = Z0(−t)[U ] = ZU (−t). (4.1)

Next we deal with # = crv.
In [20, Proposition 4.3], the full motivic DT and PT theories of the resolved conifold X

are computed. The sign conventions in loc. cit. are different from ours, but the discrepancy
amounts to the substitution

L
1
2 → −L

1
2 .

After this change is done, the motivic partition function of the stable pair theory of X reads

ZPT(−s, T ) =
∏
m�1

m−1∏
j=0

(
1 + L−m

2 + 1
2+j(−s)mT

)
.

On the other hand, the DT partition ZDT function satisfies

ZDT(−s, T ) = ZX(−s) · ZPT(−s, T ),
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where s is the point class and T is the curve class. Again, we have adjusted the sign in the
point contribution ZX . Extracting the coefficient of T (which corresponds to picking out the
contribution of the reduced curve class) and multiplying by −s−1 (so that the (−s)n coefficient
is In+1(X, [C0]) = Qn

C0
on the DT side) yields an identity

DTC0/X(−s) = ZX(−s) · PTC0/X(−s), (4.2)

where

PTC0/X(−s) =
∑
n�0

(−1)n
[
Symn C0

]
vir

· sn

= (1 + L− 1
2 s)−(L+1)

= (1 − L− 1
2 s + L−1s2 − · · · )L+1.

On the other hand,

DTC0/X(−s) =
∑
n�0

(−1)n
[
Qn

C0

]
vir

· sn = QC0/X(−s),

and the latter equals

ZX\C0(−s) · Fcrv(−s)L+1
� = ZX(−s) · Fcrv(−s)L+1

�
Z0(−s)L+1

by Corollary 4.1 and Proposition 4.3. It follows that

Fcrv(−s)L+1
� = Z0(−s)L+1 · (1 − L− 1

2 s + L−1s2 − · · · )L+1, (4.3)

=
(
Z0(−s) · (1 − L− 1

2 s + L−1s2 − · · · )
)L+1

.

We shall need the following:

Lemma 4.5. There is an identity

Fcrv(−s) = Z0(−s) · (1 + L− 1
2 s)−1 ∈ MC � s � .

In particular, Fcrv(−s) is effective.

Proof. Since Z0(−s) · (1 − L− 1
2 s + L−1s2 − · · · ) is effective, we have(

Z0(−s) · (1 − L− 1
2 s + L−1s2 − · · · )

)L+1

=
(
Z0(−s) · (1 − L− 1

2 s + L−1s2 − · · · )
)L+1

�
.

Since L + 1 is invertible in K(StaffC ), by Lemma 1.11 and (4.3) we deduce the lemma. �

Corollary 4.6. There is an equality of motives

Ωn
crv =

⎧⎨⎩−L− 1
2 − L− 3

2 if n = 1

(−1)nL− 3
2

L
n
2 − L−n

2

L
1
2 − L− 1

2
otherwise.

In particular, Ωn
crv is effective.

Proof. From Lemma 4.5 and the equations(
1 + L− 1

2 s
)−1 = Exp

(
−L− 1

2 s
)
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Z0(−s) = Exp

⎛⎝∑
n�1

L− 3
2

L
n
2 − L−n

2

L
1
2 − L− 1

2
(−s)n

⎞⎠,

we deduce that

Fcrv(−s) = Exp (P ),

where

P =

⎛⎝∑
n�1

L− 3
2

L
n
2 − L−n

2

L
1
2 − L− 1

2
(−s)n

⎞⎠− L− 1
2 s.

Since P is effective, �Exp(P ) = Exp(P ). On the other hand, by definition we have the equality
Fcrv(−s) = �Exp(

∑
Ωn

crvs
n). The result then follows by injectivity of �Exp. �

Corollary 4.1 can now be restated as follows:

Theorem 4.7. The absolute virtual motives of L ⊂ A3 and C0 ⊂ X are given by

QL/A3(−t) = ZA3\L(−t) · Fcrv(−t)L

QC0/X(−t) = ZX\C0(−t) · Fcrv(−t)L+1.

Proof. Combining (4.1) with Lemma 4.5, we get Fcrv(−t)L+1 = Fcrv(−t)L+1
� . �

5.2. Proof of Theorems B and C

Proof of Theorem B. By (3.11), there is an equality∑
n�0

(−1)n
[
Qn

L

hc
A3−−−→ Symn(A3)

]
vir

= �Exp∪

⎛⎝∑
n�1

(
Ωn

pt �
[
A3 \ L ΔnuL−−−−→ Symn(A3)

]
+ Ωn

crv �
[
L

ΔnιL−−−→ Symn(A3)
])⎞⎠.

Plugging in the results of Corollaries 4.6 and 4.4, we deduce∑
n�0

(−1)n
[
Qn

L

hc
A3−−−→ Symn(A3)

]
vir

= �Exp∪

(∑
n�1

(
Ωn

BBS �
[
A3 \ L ΔnuL−−−−→ Symn(A3)

]

+ Ωn
BBS �

[
L

ΔnιL−−−→ Symn(A3)
])

− L− 1
2
[
L

Δ1ιL−−−→ Sym1(A3)
])

= Exp∪

(∑
n�2

(
Ωn

BBS �
[
A3 Δn−−→ Symn(A3)

])

− L− 1
2
[
L

Δ1ιL−−−→ Sym1(A3)
]
− L− 3

2
[
A3 Δ1−−→ Sym1(A3)

])
,
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where the removal of the ‘�’ comes from the effectiveness statements in Corollaries 4.6
and 4.4. �

Guided by Theorem 4.7, we can now define a virtual motive for an arbitrary Quot scheme
Qn

C .

Definition 4.8. Let Y be a smooth 3-fold. For a smooth curve C ⊂ Y , we define classes
[Qn

C ]vir ∈ MC by the identity∑
n�0

[
Qn

C

]
vir

(−t)n = ZY \C(−t) · Fcrv(−t)[C].

We also define

QC/Y (t) =
∑
n�0

[
Qn

C

]
vir

· tn.

At this point, it is not yet clear that [Qn
C ]vir is a virtual motive for Qn

C , but we incorporate
this in the proof of Theorem C from the introduction:

Theorem 4.9. For all n � 0, there is an equality of motives

[
Qn

C

]
vir

=
n∑

j=0

[
Hilbn−j Y

]
vir

·
[
Symj C

]
vir

.

In other words, we have a product decomposition

QC/Y (t) = ZY (t) · ZC(t),

where for a smooth variety X of dimension at most 3, ZX(t) denotes the motivic partition
function of the Hilbert scheme of points of X.

Proof. Combining the power structure with Lemma 4.5, we find

QC/Y (−t) = ZY \C(−t) · Fcrv(−t)[C]

= Z0(−t)[Y ]−[C] · Z0(−t)[C] ·
(
1 + L− 1

2 t
)−[C]

= ZY (−t) · ZC(−t).

In particular, the classes [Qn
C ]vir are virtual motives, because

χQC/Y (t) = χZY (t) · χZC(t) = M(−t)χ(Y ) · (1 + t)−χ(C)

and this equals
∑

n χ̃(Qn
C)tn by [32, Proposition 5.1]. �

The proof of Theorem C is complete.

5.2.1. Equivalent formulations. Using the power structure on MC and the explicit formulas
for ZX(t) available from [3, Section 4], we find an identity

QC/Y (t) =

( ∞∏
m=1

m−1∏
k=0

(
1 − Lk−1−m

2 tm
)−[Y ]

)
·
(
1 − L− 1

2 t
)−[C]

.
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Another equivalent way to express the same identity is via motivic exponentials. If t is the
variable used in the definition of motivic exponential (cf. Section 1.5.1), then

QC/Y (−t) = Exp

(
−t[Y ]vir(

1 + L
1
2 t
)(

1 + L− 1
2 t
) − t[C]vir

)

= Exp
(
−t[Y ]vir Exp(−t[P1]vir) − t[C]vir

)
.

5.3. Local Donaldson–Thomas invariants

Let Y be a projective Calabi–Yau 3-fold, and let C ⊂ Y be a smooth curve of genus g. Recall
the C-local DT invariants

DTn
C =

∫
Qn

C

νI dχ

defined by restricting the Behrend function of the Hilbert scheme I = I1−g+n(Y, [C]) to its
closed subset |Qn

C | ⊂ I. The BPS number ng,C of C ⊂ Y is the integer

ng,C = νI1−g(Y,[C])(IC) ∈ Z.

Theorem 4.9 immediately implies the following:

Corollary 4.10. Let Y be a projective Calabi–Yau 3-fold, C ⊂ Y a smooth curve with
BPS number ng,C = 1. Then

χ[Qn
C ]vir = DTn

C .

Proof. The main result of [31] proves that

DTn
C = ng,C · χ̃(Qn

C).

By the proof of Theorem 4.9, we know that [Qn
C ]vir is a virtual motive, so the result follows. �

When C is infinitesimally rigid in Y , that is, H0(C,NC/Y ) = 0, the integer DTn
C is the degree

of the virtual fundamental class

[Qn
C ]vir ∈ A0(Qn

C),

naturally defined (by restriction) on the connected component

Qn
C ⊂ I1−g+n(Y, [C]).

So, by Corollary 4.10, the class [Qn
C ]vir ∈ MC can be seen as a motivic Donaldson–Thomas

invariant.

Remark 4.11. In [40, Example 5.7], one can find an example of a cohomological DT
invariant in the projective case. We are not aware of other explicit examples of motivic DT
invariants for projective Calabi–Yau 3-folds, in a setting where the moduli space parameterises
curves and points. Without a curve in the picture, there is the virtual motive [Hilbn Y ]vir

constructed in [3] for arbitrary 3-folds, and if Y is an open Calabi–Yau there are plenty of
examples, see, for instance, [8, 9, 20, 21, 23].

Remark 4.12. The formula QL/A3 = ZA3 · ZL was conjectured in the second author’s PhD
thesis [30], where the problem was reduced to proving a motivic identity (with no ‘virtualness’
left to deal with) involving essentially only the stack of finite length coherent sheaves over
A2. As it turned out, such an identity could in principle be checked by hand after performing
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a complete classification of finite length modules over the polynomial ring C[x, y], which is
known to be a wild problem. This classification was accomplished by Moschetti and the second
author in [22] for modules of length n � 4. As a consequence, the motivic wall-crossing formula
QL/A3 = ZA3 · ZL could be proven by hand up to order 4 using this classification.

6. Categorification

In this final section, we outline a programme for future work on a categorified DT/PT
correspondence. Just as, since any smooth threefold analytically locally looks like A3, one may
patch together the full cohomological understanding of the DT theory of degree 0 DT theory on
A3 obtained in [7] to try to understand the degree 0 cohomological DT theory of any Calabi–
Yau 3-fold (see [42, Section 3.1]), analytically locally, the inclusion of a smooth curve inside a
smooth Calabi–Yau 3-fold can be modelled by L ⊂ A3, and so the intention is that by proving
the conjectures below we can approach a cohomological version of the DT/PT correspondence.

6.1. Further directions I: categorification

By our Theorem A, the moduli space Qn
L arises as the critical locus of the function Tr(Wr)

on the moduli space N ◦◦
n . Shifting the associated virtual motives, we define the generating

function

Qsh
L/A3 =

∑
n�0

L−n
2
[
Qn

L
hcn−−→ Symn A3

]
vir

∈ MSym(A3).

Then by Theorem B, we can write

Qsh
L/A3 = Exp∪

(∑
n>0

Δn !

(
Ωsh

n �
[
A3 id−→ A3

]))
�∪ Exp∪

(
Δ1 !

(
L−1 �

[
L ↪→ A3

]))
, (5.1)

where

Ωsh
n = L−2(1 + L−1 + · · · + L1−n)

and Δn : A3 → Symn(A3) is, as ever, the inclusion of the small diagonal.
For the rest of this section, we will make free use of the language and foundational results

concerning monodromic mixed Hodge modules, see [36, 37] for background on mixed Hodge
modules, [17] for an introduction to monodromic mixed Hodge structures, and [10] for the
theory of monodromic mixed Hodge modules in cohomological Donaldson–Thomas theory. In
particular, we will use the same functor

φmon
Tr(Wr) : MHM(N ◦◦

n ) → MMHM(N ◦◦
n )

considered in [10, Section 2.1], following the discussion of a monodromic mixed Hodge structure
on vanishing cycle cohomology in [17, Section 7.4].

In what follows, for a space X, we write Q
X

for the constant complex of mixed Hodge
modules on X, which we think of as a complex of monodromic mixed Hodge modules by
endowing it with the trivial monodromy operator. Where the choice of space X is clear, we
may drop the subscript.

Given an element [Y
f−→ Z] ∈ Mμ̂

Z , where Z is a variety, pick n ∈ N such that the μ̂ action
on Y factors through the projection μ̂ → μn. Then we form the mapping torus

Y ×μn
Gm = (Y × Gm)/μn,

where μn acts via z · (y, z′) = (z · y, z−1z′). We define

f̃ : Y ×μn
Gm → Z × A1
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(y, z′) 
→ (f(y), z′n).

Set F = f̃!QY×μnGm
∈ Db(MHM(Z × A1)). By construction, the cohomology sheaves of this

direct image are locally constant along the fibres of the projection Z × A1 → Z, away from the
zero fibre. In particular, F is a bounded complex of monodromic mixed Hodge modules, and
so [F ] ∈ K0(MMHM(Z)). Sending [Y → Z] 
→ [F ] defines a group homomorphism

Ψ: Mμ̂
Z → K0(MMHM(Z)),

which is a λ-ring homomorphism in the event that Z is also a commutative monoid.
Now consider Ψ(Qsh

L/A3). This is the class of the complex of monodromic mixed Hodge
modules

FL/A3 :=
⊕
n

hcn! φ
mon
Tr(Wr)QN◦◦

n
⊗ (T1/2)−4n−2n2

, (5.2)

where T1/2 is a tensor square root of the complex of mixed Hodge structures Hc(A1,Q) — that
is, a half Tate twist, concentrated in cohomological degree 1. From (5.1), we deduce that

Ψ(Qsh
L/A3) = [FL/A3 ]

=

⎡⎣Sym

⎛⎝(Δ1 !Q
A1 ⊗ T−1) ⊕

⎛⎝⊕
n�1

Δn !Q
A3 ⊗

(−1−n⊕
i=−2

Ti

)⎞⎠⎞⎠⎤⎦. (5.3)

It follows as in [10, Proposition 3.5] from finiteness of the map ∪ : Sym(A3) × Sym(A3) →
Sym(A3) that the object in the square brackets on the right-hand side is pure, in the sense that
its ith cohomology is pure of weight i. From semisimplicity of the category of pure mixed Hodge
modules (proved by Saito, see above references), the following two statements are equivalent:

• the complex of monodromic mixed Hodge modules FL/A3 is pure;
• there is an isomorphism

FL/A3 ∼= Sym

⎛⎝(Δ1 !Q
A1 ⊗ T−1) ⊕

⎛⎝⊕
n�1

Δn !Q
A3 ⊗

(−1−n⊕
i=−2

Ti

)⎞⎠⎞⎠. (5.4)

Conjecture 5.1. The above two statements are true. In particular, there is an isomorphism
of Z-graded mixed Hodge structures

⊕
n�0

Hc(Qn
L, φ

mon
Tr(Wr)QN◦◦

n
) ⊗ T−2n−n2 ∼= Sym

⎛⎝⊕
n�1

(−n−1⊕
i=−2

Ti

)⎞⎠⊗ Sym(V ),

with n keeping track of the degree on both sides, and where V is a 1-dimensional pure weight
zero Hodge structure placed in degree 1. The Z-grading on the right-hand side comes from the
grading on the object we are taking the symmetric algebra of (that is, we ignore the fact that
Sym of any object acquires an extra Z-grading).

The isomorphism in (5.4) would categorify our Theorem B, and would lift it from a formula
to an isomorphism (that is, categorify it). Since it would take quite some time to even fill in
the requisite definitions for the above discussion, we leave this conjecture to future work.

6.2. Further directions II: A new CoHA module

We recall some very general theory regarding critical cohomological Hall algebras and
their representations.
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First, we fix a quiver Q and a potential W . The Euler form for Q is defined by

χQ : ZQ0 × ZQ0 → Z

(γ, γ′) 
→
∑
i∈Q0

γiγ
′
i −

∑
a∈Q1

γs(a)γ
′
t(a).

A stability condition ζ ∈ QQ0 is called generic if for any two non-zero dimension vectors of
the same slope, we have 〈γ, γ′〉 = 0. Recall that a quiver is called symmetric if for all vertices
i, j ∈ Q0, we have

#
{
a | s(a) = i, t(a) = j

}
= #

{
a | s(a) = j, t(a) = i

}
.

Note that the genericity condition is vacuous for symmetric quivers such as the three loop
quiver obtained by removing the framing from the quiver QBBS from Section 1.7, and the
quiver Qcon from Section 2.1.

Fix a generic stability condition ζ ∈ QQ0 and a slope θ ∈ (0,∞). We set Λζ
θ ⊂ NQ0 to be the

submonoid of dimension vectors of slope θ. Then as in [17] we endow the graded monodromic
mixed Hodge structure

Hζ
Q,W,θ :=

⊕
d∈Λζ

θ

H(rModζ
d(Q)/GLd, φ

mon
Tr(W )Q) ⊗ Tχ(d,d)/2 (5.5)

with the Hall algebra product arising from the stack of short exact sequences of right CQ-
modules. The multiplication respects the monodromic mixed Hodge structure on (5.5) —
in other words (5.5) is made into an algebra object in the tensor category of Λζ

θ-graded
monodromic mixed Hodge structures.

In fact we will only consider the cohomological Hall algebra for which Q is symmetric, and
ζ = (0, . . . , 0) is the degenerate stability condition, with θ = 0. So we will drop ζ and θ from
the notation and just write HQ,W for the cohomological Hall algebra associated to Q and W .

Let Q ⊂ Qfr be an inclusion of quivers, with Q a full subquiver. We do not assume that Qfr

is symmetric. Let I ⊂ CQfr be the two-sided ideal generated by all paths in Qfr not contained
in Q. Then CQ ∼= CQfr/I, and we let q : CQfr → CQ be the induced surjection.

Let Wfr be a potential extending W , in the sense that qWfr = W . Let ζ ∈ QQfr,0 be a stability
condition extending the degenerate stability condition, that is, such that ζ|Q0 = 0. Let f ∈
NQfr,0\Q0 be a framing dimension vector. Define

N ζ
Qfr,f

:=
⊕

d∈NQ0

H(rModζ
(d,f)(Qfr)/GLd, φ

mon
Tr(Wfr)

Q) ⊗ TχQ(d,d)/2−χQfr ((d,0),(0,f)). (5.6)

Via the usual correspondences, it is standard to check that N ζ
Qfr,f

is a module for HQ,W .
Now we make this setup more specific. Let Q be the three loop quiver, obtained by removing

∞ and all arrows containing it from Qr. Considering the inclusion Q ⊂ QBBS, and setting
ζ∞ = −1 and f = 1, the module N ζ

Qfr,1
is precisely the vanishing cycle cohomology of Hilb(A3).

It was shown in version one of [10] that in fact this module is cyclic over the CoHA HQ,W .
For a more recent example of a geometrically motivated class of modules for this CoHA, that
falls under the general construction above, the reader may consult [28], where an action on
the space of spiked instantons is considered.

The purpose of this subsection is to add one more geometrically motivated example to the
list, namely, we consider the inclusion Q ⊂ Qr, the framing vector f = 1, and the stability
condition ζ∞ = −1. Then by Proposition 2.10, we obtain

N ζ
Qfr,f

=
⊕
n�0

H(Qn
L, φ

mon
Tr(Wr)QN◦◦

n
) ⊗ T−n−n2

, (5.7)
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that is, the module constructed for the above data is precisely the vanishing cycle cohomologies
of all of the quot schemes QL. Keeping track of the various Tate twists, (5.7) is the
hypercohomology of the Verdier dual of the monodromic mixed Hodge module

φmon
Tr(Wr)QN◦◦

n
⊗ T−2n−n2

considered in (5.2). According to the conjecture of the previous subsection, this module should
itself be isomorphic to the underlying graded mixed Hodge module of a symmetric algebra.
In fact by utilising the factorization sheaf structure implicit in our calculations in Section 3,
it is not hard to find a cocommutative coproduct on (5.7), and a candidate for a compatible
product, leading to our final conjecture:

Conjecture 5.2. The graded mixed Hodge structure N ζ
Qfr,f

is a universal enveloping alge-
bra.

The connection with Conjecture 5.1 is that by proving a version of Conjecture 5.2 over the
base Sym(A3), one would deduce the purity conjecture as in [7, Theorem A].

Remark 5.3. The above module N ζ
Qfr,1

is in fact the third in a natural sequence, the first
two elements of which will be well known to the reader. Firstly, we can remove the arrow
a′2 from Qr to obtain a new quiver Q′

r. The pullback of Tr(Wr) along the extension by zero
morphism

rModζ
(n,1)(Q

′
r)/GLn → rModζ

(n,1)(Qr)/GLn

is induced by the potential W ′
r = a′′1b

′′
1a

′′
2 − a′′2b

′′
1a

′′
1 − a′′2b

′
1a

′
1, and it is easy to check that there

is an isomorphism

H
(
rModζ

(n,1)(Q
′
r)/GLn, φ

mon
Tr(W ′

r)Q

)
⊗ T−n−n2 ∼= H(Hilbn

A2,Q) ⊗ T−n

with the usual cohomology of the Hilbert scheme for A2. Going further, we can remove the
arrow b′1, recovering the framed BBS quiver, with its usual potential, and the MacMahon
module provided by the (vanishing cycle) cohomology of Hilbn

A3. That the cohomology of
Hilbn

A2 finds itself sandwiched between the vanishing cycle cohomology of the Hilbert scheme
of A3 and the quot scheme Qn

L in this way is a mystery that we leave to future research to
understand properly.
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