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Combining Unsupervised Muscle Co-Contraction Estimation
with Bio-Feedback allows Augmented Kinesthetic Teaching

Roberto Meattini1, Davide Chiaravalli1, Luigi Biagiotti2, Gianluca Palli1 and Claudio Melchiorri1

Abstract—Nowadays, an increasingly diversification of prod-
ucts and production lines would largely benefit from intuitive
and multimodal robot teaching strategies. The present article
proposes an augmented kinesthetic teaching system, which is
based on surface electromyographic (sEMG) measurements from
the operator forearm. Specifically, sEMG signals are used for
minimal-training unsupervised estimation of forearm’s muscles
co-contraction level. In this way, also exploiting a vibrotactile
bio-feedback, we evaluate the ability of operators in stiffening
their hand – during kinesthetic teaching – in order to modulate
the estimated level of muscle co-contraction to (i) match target
levels and (ii) command the opening/closing of a gripper, i.e.
in exploiting their sEMG signals for effective augmented robot
kinesthetic teaching tasks. Experiments were carried out involv-
ing ten subjects in two different kind of experimental sessions, in
order to test both co-contraction modulation abilities, and actual
usage of the co-contraction for programming robot functionalities
during kinesthetic teaching. The obtained results provide positive
outcomes on the intuitiveness and effectiveness of the proposed
system and approach, paving the way to a new generation of
advanced teaching by demonstration interfaces.

Index Terms—Physical Human-Robot Interaction, Learning
from Demonstration, Human-Centered Automation.

I. INTRODUCTION
Collaborative robots are recently gaining a central role in

an increasing number of scenarios, ranging from industrial
to service robotics. One of the most diffused goals with
collaborative robots, consists in demonstrating the required
behaviour for the execution of a given task by means of
kinesthetic teaching. Indeed, since in kinesthetic demonstration
the robot’s links are physically guided by the operator, the
problem of having kinematic dissimilarities between teacher
and robot is greatly mitigated with respect to the other
class of programming by demonstration approaches known
with the name of observational demonstration, in which the
operator teaches motions to the robot by directly performing
the motions herself [1], [2], [3], [4]. For this reason, kinesthetic
teaching is often a desirable approach in numerous industrial
use cases. However, while extensive investigation has been
dedicated to robot demonstration paradigms, kinethetic teach-
ing shows limitations related to its usability for robot pro-
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gramming with respect to the wide spectrum of functionalities
offered by modern collaborative robots [2]. With increasing
diversification of industrial production lines, there is a growing
necessity for alternative, wearable human-robot interfaces that
can be exploited during physical robot demonstration. The
goal is to have an augmented kinesthetic teaching, in such a
way to provide with the capacity of bidirectional information
exchange with the robot during the manual trajectory guidance.

In literature, several works have investigated a variety of
interaction strategies end interface modalities to communicate
information from operators to robots. A possible approach
regards the tracking of human kinematic parameters by means
of motion capture systems. The usage of vision systems has
been explored for gestures [5], postures [6] and gaze [7]
recognition based interaction modalities. Other works inves-
tigated human-robot communication channels using interfaces
based on haptic devices [8], such as handles equipped with
force sensors placed on the robot for the measurement of
human grips [9]. However, these types of interaction methods
require external/obtrusive setups. Additionally, some of them
do not allow free-hand operations, which instead is essential
to the aim of realizing an augmented kinesthetic teaching
systems. In recent years, human-robot interaction has largely
benefited from wearable devices for the measurements of
human biological signals. In particular, voluntary human motor
intentions have been shown to be detectable from surface
electromyography (sEMG) [10]. For these reason, we claim
that online extraction of information from sEMG signals rep-
resents a valuable interaction modality for allowing augmented
kinesthetic teaching, which is the aspect at the core of the
present work. Other works in literature have already explored
the usage of sEMG measurements as an advanced human-
robot interaction modality. In [11], operator’s hand gestures
are recognized from sEMG signals. Other relevant studies have
used real-time sEMG to estimate human arm impedance and
transfer it to a remote robot [12]. Several works used sEMG for
rehabilitative and assistive robotic applications —e.g. see [13],
[14]. Differently from previous studies, with the contribution
of this work we want to exploit sEMG during robot’s end-
effector physical guidance, focusing both on system integration
and interpretation of sEMG signals leveraging on unsuper-
vised learning. Importantly, we consider the human ability
of simultaneously activating antagonistic forearm’s muscles
by stiffening the hand during the execution of both static
postures and dynamic motions [15]. This aspect is particularly
suitable to realize augmented kinesthetic teaching, since the
increase of co-contraction (i.e. stiffening the hand) can be
generated without changes in the forces/motions of the human
limbs. Therefore, this means that the operator – within the
specific considered task of physically teaching a robot end-
effector trajectory – can fully exploit the generation of human
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net forces/motions for the physical robot guidance, while the
augmented teaching information is produced by means of
sEMG-measured muscle co-contraction. This is not possible,
for example, if the augmented teaching information is provided
just by means of a button on the robot, since it would
require a specific pressure level by the operator, which can be
difficult (or even impossible) to be produced while performing
kinesthetic teaching. Furthermore, the usage of a button would
require the operator to constantly keep her hand exactly on a
predefined location, which can result incompatible with some
human forces/motions necessary to physically guide the robot.

In this work we propose an augmented kinesthetic teaching
system that uses – in addition with respect to traditional
kinesthetic teaching – information extracted from forearm
sEMG signals. The latter are used to estimate the operator’s
voluntarily modulation of hand muscles co-contraction during
physical robot guidance. Specifically, our estimation is based
on a fast unsupervised calibration session, that requires a
small amount of sEMG data without any labelling operation
(Sec. II-C.) Furthermore, we provide the operator with a
bio-feedback of the actual modulated level of co-contraction.
More specifically, in this study, the ability of operators to
modulate the estimated level of co-contraction to (i) provide
target levels and (ii) control the opening/closing of a gripper
is tested. In literature, several feedback modalities have been
studied —e.g. visual or auditory stimuli [16], haptic displays
[17]. Other types of feedback are based on wearable devices,
among which the vibrotactile feedback sees a wide spectrum
of uses. Applications can be found in studies related to remote
robot control or collision awareness [18]. In the present work,
we use a vibrotactile kind of bio-feedback because (i) it
requires minimal attention from the operator with respect to
auditory or visual channels, (ii) is unobtrusive and (iii) can
be implemented with very small vibrotactile motors wearable
on the human body. We tested the proposed system on a
simplified setup reproducing the scenario of robotic teaching
for wiring of industrial switchgear equipments. Ten subjects
were involved in the experiments, and asked to teach the end-
effector trajectory of a 7-DoF collaborative robot, while simul-
taneously modulating the sEMG-estimated co-contraction ex-
ploiting different vibrotactile bio-feedback modalities. In such
a way, the trajectory is memorized by the robotic manipulator
and then repeated for the execution of: (i) grasping of cable
extremities, (ii) connecting of cable connectors into switchgear
components and (iii) routing of the cable through a cable
channel. The reported results show that the proposed system
enables intuitive and effective augmented kinesthetic teaching
(Sec. III-B), and paves the way for further developments in
the field of advanced programming of collaborative robots.

II. MATERIALS AND METHODS
A. General Framework Overview

The Kinesthetic Robot Teaching area is the human-robot
interface zone in which the physical interaction takes place.
This is highlighted in Fig. 1 by a discontinued arrow between
the human and robot, denoting the physical guidance of the
collaborative manipulator. In the Augmenting Robot Teaching
area, an interface with the operator’s neuro-motor information
is realized by means of biological measurements. Specifically,
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Fig. 1. Conceptual scheme of the proposed augmented kinesthetic teaching.

Fig. 2. (a) The augmented kinesthetic teaching setup of the present work. (b)
gForcePRO sEMG armband. (c) Groove vibration motor. (d) ATI 6-axis force
sensor. (e) SCHUNK parallel gripper. (f) Franka Emika Panda collaborative
robot.
in our framework we consider a wearable sensing device
measuring the sEMG activity from the operator’s forearm.
The sEMG signals are then exploited to estimate the muscles
co-contraction level. Such estimation is a continuous and
real-time interaction modality at the operator’s disposal for
augmenting the kinesthetic robot teaching. In our framework
we make the operator aware of the current co-contraction level.
This is realized as conceptually illustrated in the Bio-Feedback
area of Fig. 1, which is a part of the Augmenting Robot
Teaching area.

B. Augmented Kinesthetic Teaching Setup
1) Wearable sEMG Sensing and Signal Processing: In this

work, eight sEMG channels were acquired from the operator’s
forearm muscles. The signal acquisition was performed by
means of the gForcePro commercial wearable sEMG armband
(see Fig. 2(b)), by OYMotion1. The armband was placed in
proximity of the Flexor Digitorum Superficialis and Extensor
Digitorum Communis muscles, because these are the predom-
inant muscles producing antagonistic flexion and extension
actions in the hand [19]. Raw sEMG data were acquired
from the armband at 1 kHz and streamed to a PC exploiting
the embedded Bluetooth interface. A processing chain is
implemented for each sEMG channels, composed by [13] (i) a
50 Hz notch filter for powerline interference cancellation, (ii)
a 20 Hz highpass filter for baseline noise reduction, and (iii)
the root mean square (RMS) value of the signal was computed
over a 200ms running window.

2) Wearable Vibrotactile Bracelet: The operator was pro-
vided with a skin stimulation produced by means of a vibration

1http://www.oymotion.com/
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motor. In particular, a Grove vibration motor – by Seeed
Technology Co.2 – was embedded within a wearable bracelet
applicable on the upper arm (see Fig. 2(a)-(c).) The vibration
motor was controlled via a Seeeduino V4.2 board2, (Fig. 2(a).)
The motor vibration intensity could be modulated according
to a range of integer values from 100 to 255.

3) Collaborative Robot System and Control: As robotic
manipulator we used the Panda robot, a 7-DoF manipulator
recently commercialized by Franka Emika GmbH3 (Fig. 2(f).)
The Panda robot was equipped with a parallel gripper end-
effector from SCHUNK GmbH & Co.4, see Fig. 2(e). Fur-
thermore, a 6-axis force sensor (ATI Industrial Automation5,
see Fig. 2(d)) was placed at the base on the end-effector by
means of a custom 3D-printed intermediate flange.

The kinesthetic teaching required for the manipulator to
provide a low impedance interface between the user and the
controlled arm. To this purpose a force control loop was
implemented. Let’s consider the Franka Emika Panda dynamic
model, described by [20]

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + JT (q)~Fh (1)

where M(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n

the Coriolis matrix, g(q) ∈ Rn the gravitational term. JT (q)
represent the manipulator Jacobian and q ∈ Rn is the joint
vector. The respose of the system is determined by the external
action imposed by the user ~Fh and the control vector τ charac-
terized by three actions: the Coriolis and gravity compensation
Ĉ(q, q̇)+ ĝ(q) ∈ Rn, the orientation control τo and the friction
compensation τr

τ = Ĉ(q, q̇) + ĝ(q) + τo + τr (2)

The non-linear dynamics compensation allowed for easy
reconfiguration and guidance of the arm according to the user
specific task. Its estimation is provided in real-time from the
Franka Emika Panda internal controller.
The orientation control action imposed a fixed orientation
to the robot tool for the task. In particular the end effector
approach direction was kept perpendicular to the horizontal
plane. This choice allowed a simplified control scenario aimed
at abstracting the user from the motion control of the arm with
respect to the task under execution. An impedance dynamics,
controlled in real-time and adjusted according to the user
sensibility, was considered:

τo = JT
r (−Kseo −KdJr q̇). (3)

The matrices Ks and Kd represent the stiffness and damping
gain matrix respectively, eo the orientation error and Jr the
rotational Jacobian.
The friction compensation implemented a correction to un-
modelled friction effects exploiting the filtered measurements
of the 6-axis force sensor mounted on the end effector.

τr = JT (FtTres) (4)

The low pass filter Ft allowed to reject high frequency
vibrations induced by the motors and by the elasticity of the

2https://www.seeedstudio.com/
3https://www.franka.de/
4https://schunk.com/
5https://www.ati-ia.com/

gripper structure whereas the measured torque Tres provided
a real-time estimation of the occurring frictional effects.

C. sEMG-driven Co-Contraction Estimation
and Vibrotactile Bio-Feedback

1) Generative Model of Antagonistic Muscle Activations:
We are interested in exploiting the sEMG measurements from
the gForcePRO armband described in the previous subsection,
in order to estimate the level of hand muscles co-contraction.
Let us consider the RMS value of the online 8-channel sEMG
acquisition E(t) ∈ R8×1. This multidimensional biological
signal can be seen, at each time instant, as the product of a
muscular synergy matrix M ∈ R8×n and the neural drives
U(t) ∈ Rn×1 [21], where n = 2 denotes the number
of muscular antagonistic activations that generate the hand
stiffening. Then, the sEMG activity E(t) can be expressed
as:

E(t) =MU(t), (5)

in which M and U(t) are unknown, whereas E(t) is available
from the gForcePRO sEMG armband. In other words, in
considering eq. (5) we use the concept of muscle synergies
to model the sEMG activity as the modulation of supraspinal
neural drives – i.e. the matrix U(t) in eq. (5) – through the
muscular synergistic weights – i.e. the matrix M in eq. (5)
(refer to [21] for details.) Recalling that we are interested in
extracting the level of co-contraction related to the stiffening
of the hand, we exploit the concept of human antagonistic
actuation [22], according to which the stiffening of human
joints is realized by two antagonistic muscle activations.
Following this concept, it is then possible to consider two hand
flexion and extension antagonistic actions, corresponding to
two groups of antagonistic muscles that generate the sEMG
activity. In this relation, we also consider two neural drives
for each antagonistic action. We can therefore write the the
unknown matrices M and U(t) in eq. (5) as

M =
[
sext sflex

]
, U(t) =

[
uext(t)
uflex(t)

]
, (6)

where sext, sflex ∈ R8×1 are the extension and flexion compo-
nents of the muscular synergy matrix and uext(t), uflex(t) ∈ R
are the extension and flexion components of the neural drives.
Equations (6) and (5) represent the sEMG generative model of
the hand antagonistic muscle activations. Since U in eq. (6)
represents the neural drives that activate the hand extension
and flexion groups of antagonistic muscles, its components can
be considered for the estimation of the level of co-contraction
(i.e. the simultaneous activation of muscular antagonistic ac-
tions), as reported in the following.

2) Offline Muscular Synergy Matrix Estimation: In order
to online compute the operator’s co-contraction level during
kinethetic teaching tasks, first of all it is necessary to estimate
the muscular synergy matrix introduced in the generative
model of the previous subsection. This is addressed offline
by performing a fast calibration session as explained in the
following. The operator is asked to execute a simple mo-
tion, consisting in closing and opening her hand (i.e. flexion
and extension finger motions) two times with minimal hand
stiffening, followed by two additional closing and opening
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motions while stiffening the hand as much as possible –i.e.
at a subjective maximum acceptable level (see Fig. 3.) During
the execution of these four closing and opening hand motions,
the sEMG signals are recorded and collected in a matrix
Eoffline ∈ R8×d, corresponding to the d data samples of muscle
activity during the calibration session. In this way a recoding
containing sEMG information produced by antagonistic flex-
ion/extension activation is obtained for minimal and maximal
hand stiffening in different opening/closing configurations. A
block scheme of the calibration session is shown in the top
part of Fig. 3.

Therefore, recalling eqs. (6) and (5), Eoffline can be consid-
ered as given by the expression

Eoffline =MUoffline, (7)
with

M =
[
sext sflex

]
, Uoffline =

[
uText
uTflex

]
, (8)

where Uoffline ∈ R2×d is the matrix of the offline neural
drives. Note that the extension and flexion components uext,
uflex ∈ Rd×1 are not a function of time in this case. Taking
into account (7), M and Uoffline are computed by applying to
Eoffline the unsupervised factorization algorithm Non-negative
Matrix Factorization (NMF)6. In this way, M is now available
for being used during the online co-contraction estimation as
explained in the next subsection. Note that the usage of NMF
allows to weight the sEMG channels without the necessity
of a precise positioning of the sensors on the forearm, and
to avoid empirical procedures. Differently, Uoffline is used only
offline in order to compute the scaling parameters kext and kflex
for the online neural drives uext(t) and uflex(t), respectively,
according to

kext =

∑
i∈S uexti

dS
, kflex =

∑
i∈S uflexi

dS
, (9)

where uexti and uflexi are the i-th sample of uext and uflex, and
S is the set denoting the dS samples only related to the part
of the hand opening/closing calibration motion executed by
stiffening the hand (refer also to Fig. 3.) Incidentally, note that
maximum and minimum co-contraction levels are not related
necessarily to the open and close hand configurations only.

3) Online Co-Contraction Estimation and Bio-Feedback:
Once the calibration session is concluded, the muscular syn-
ergy matrix is available for the online co-contraction level
estimation (see the bottom part of Fig. 3.) It is therefore
possible to compute its pseudo-inverse M+ to online estimate
the neural drives as

U(t) =M+E(t). (10)

Subsequently, using the scaling parameters obtained in the cal-
ibration session as described in (9), the antagonistic activations
are derived as:

aext(t) = uext(t)/kext , aflex(t) = uflex(t)/kflex, (11)

6Given a nonnegative matrix A ∈ Rm×n (a matrix whose elements are all
non negative), the product WH is called nonnegative matrix factorization of A
if nonnegative matrices W ∈ Rm×k and H ∈ Rk×n, with k < min(m,n),
are found such that the functional f(W,H) = 1

2
‖A−WH‖2F is minimized

[23].

Fig. 3. sEMG-driven co-contraction estimation and bio-feedback.

and, finally, the online co-contraction level γ(t) is computed
according to

γ(t) = min(aext(t), aflex(t)). (12)

Then, in order to provide the bio-feedback to the user, the
co-contraction level needs to be mapped in the input range of
values of the wearable vibrotactile motor. This specific step is
described in detail in the next section.

III. EXPERIMENT

A. Experimental Task and Protocol Description
1) Subjects: For the evaluation of the co-contraction aug-

mented teaching, we engaged 10 healthy participants (1 fe-
male, age: 25, and 9 males, age: 30.5 ± 4 – right handed:
8 sbjs., left handed: 2 sbjs.) They will be here referred to
as S1, S2, ..., S10. The subjects had no previous experience
with the setup and sEMG-measured co-contraction before the
experiment. The experiment was performed in accordance
with the Declaration of Helsinki and all participants were
thoroughly informed about the experimental protocol and were
asked to sign an informed consent form.

2) Cable Routing and Connection Baseline Task: The ex-
perimental protocol was designed exploiting a specific cable
routing and connection task, using a simplified switchgear
setup visible in Fig. 4 and described at the beginning of this
section. Looking at the Fig. 4(c), the subjects were required
to: (i) pick up the first cable extremity from the cable storage
location T1; (ii) carry the cable in order to insert the cable
connector into the connection T2; (iii) move to T3 in order
to pick up the second cable extremity; (iv) carry the cable
realizing a routing through the cable channel situated between
the locations T4 and T5; and, finally, (v) move to T6 in order to
perform the final insertion of the connector into the switchgear
component.

On this basis, each subject was asked to perform specific
co-contraction modulations with vibrotactile bio-feedback.
This was performed according to two different sessions of
augmented kinesthetic teaching evaluation (each one per-
formed one time by each subjects): (i) modulation of the
co-contraction according to target reference bands, receiving
a continuous bio-feeedback, and (ii) modulation of the co-
contraction in order to activate the gripper opening, receiv-
ing a threshold-enabled bio-feedback. During the augmented
kinesthetic teaching, the subjects were specifically instructed
to use the hand with sEMG sensors for guiding the robot (they
were also allowed to use both hands.) After that the calibration
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phase was completed and before of each experimental session,
the subjects performed a practice session of 10 minutes in
order to freely familiarize with the system, without instructions
provided by the experimenter.

3) Reference Band Co-Contraction Modulation: In this first
session, the subjects had to modulate the co-contraction in or-
der to match predefined reference bands. In particular, the co-
contraction level had to be modulated within target reference
bands at instructed locations and/or during specific actions
while physical guiding of the robot end-effector, according
to the previously described cable routing and connection
baseline task. In detail, two reference bands were defined: (i)
a lower reference band, between the values 0.5 and 0.6 of the
(normalized) co-contraction level, and (ii) a higher reference
band, between the values 0.8 and 0.9 of the (normalized)
co-contraction level. Specifically, the subject where required
to match the higher reference band during the cable picking
at T1, cable insertion at T2, cable picking at T3 and cable
insertion at T6 (i.e. during six actions/locations of the baseline
task.) Differently, the lower reference band was asked to be
matched during the cable routing between T4 and T5 inside
the cable channel. For the remaining operations during the
baseline task (i.e. moving from T1 to T2, from T3 to T4
and from T5 to T6), the subjects were asked to generate the
minimum possible co-contraction. Importantly, the vibrotactile
bio-feedback signal β(t) provided to the subjects a stimulation
intensity proportional to the error between the current co-
contraction value and the target reference band, that is:

β(t) =


(rmax − rmin)

einf(t)

binf
+ rmin, if γ(t) < binf

0, if binf ≤ γ(t) ≤ bsup

(rmax − rmin)
esup(t)

bsup
+ rmin, if γ(t) > bsup

(13)
where rmax and rmin are the maximum and minimum values of
the vibrotactile motor input range, γ(t) is the co-contraction
level introduced in (12), einf = |γ(t)−binf|, esup = |γ(t)−bsup|
and binf, bsup are the lower and upper limit of the reference
bands. In particular, the latter were set as binf = 0.5, bsup = 0.6
for the lower reference band, and binf = 0.8, bsup = 0.9 for the
higher reference band by the experimenter during the exper-
imental sessions (the subscripts inf and sup stay for “inferior”
and “superior”.) According to (13), the subjects felt a bio-
feedback vibration proportional to the error between the actual
co-contraction and the target reference band. Therefore, they
were asked to bring the vibrotactile stimulation to zero during
the kinethetic teaching of the cable routing and connection
task, when instructed by the experimental protocol described
above. The opening and closing of the parallel gripper were
instructed by the subjects using a simple vocal command.

4) Gripper Activation Co-Contraction Modulation: In this
second session, the subjects were asked to use the co-
contraction to activate the opening of the parallel gripper.
In particular, if the (normalized) co-contraction level was
modulated above an activation threshold of 0.5, the gripper
open, otherwise it remained closed (i.e. a normally closed
gripper functioning was adopted.) Consequently, the subjects
had to activated the gripper opening during the cable picking

Fig. 4. Simplified switchgear setup.
at T1, cable releasing after the insertion at T2, cable picking
at T3 and, finally, cable releasing after the insertion at T6 (i.e.
during four actions/locations of the baseline task.) At the same
time, it was important that the gripper remained closed during
the cable routing/transportation phases, that is when moving
between the locations T1 to T2, T2 to T3 and T3 to T6. In
this augmented kinesthetic teaching scenario, the vibrotactile
bio-feedback signal β(t) was also modulated according to the
same activation threshold, described by

β(t) =

(rmax − rmin)
ethr(t)

bthr
+ rmin, if γ(t) > bthr

0, if γ(t) ≤ bthr

(14)

where ethr = |γ(t) − bthr|, bthr is the threshold value for the
activation of the gripper opening and the remaining notation
has been already introduced in (13). In particular, the theshold
was set as bthr = 0.5, in accordance to the experimental
protocol specified above.

B. Results
1) Reference Band Co-Contraction Modulation: First of

all, we report in Fig. 5 the end-effector trajectories taught to
the robot by the different subjects, projected in the x − y
plane for clarity of visualization. In particular, in Fig. 5, the
task locations T1—T6 previously introduced are highlighted
with red circles. As expected, it is possible to observe that
all subjects performed similar trajectory teachings. We then
report the results specifically concerning the modulation of
the co-contraction level according to the reference bands. In
particular, the results for a single subjects are reported in
Fig. 6, whereas aggregated results over the ten subjects are
given in in Fig. 7. Fig. 6 shows the behaviour presented by
the subject S1. Specifically, it is possible to observe that the
subject successfully modulated the co-contraction level during
the kinesthetic teaching of the robot. In particular, the higher
reference band (red dashed lines in Fig. 6) was matched in the
gray-coloured zones related to the task locations T1, T2, T3,
T4-to-T5 and T6 as requested by the instructed experimental
protocol (see in Fig. 4), presenting only small oscillations
around the requested target. Also the lower reference band
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Fig. 5. Robot trajectories for the reference band experiment.
Fig. 6. Co-contraction modulation for the subject S1 during the reference bands experiment.

Fig. 7. Aggregated results over the subjects for the reference bands experiment.
Fig. 8. Boxplot for the reference bands exper-
iment. “*” indicates statistical significance.

Fig. 9. Robot trajectories for the gripper activation experi-
ment. Fig. 10. Co-contraction modulation for the subject S1 during the gripper activation experiment.

Fig. 11. Aggregated results over the subjects for the gripper activation experiment. Fig. 12. Boxplot for the gripper activation ex-
periment. “*” indicates statistical significance.

(green dashed lines in Fig. 6) was successfully achieved by the
co-contraction modulation during the cable routing through the
cable channel (gray-coloured zone related to the task locations
T4-to-T5.) Additionally, the co-contraction level was correctly
limited above the lower reference band (at possible minimum
level) during the movements between task locations (gray-
coloured zones T1-to-T2, T2-to-T3, T3-to-T4 and T5-to-T6.)
Differently, the white-coloured zones in Fig. 6 indicate the
transient part of the co-contraction modulation, that is the
parts in which the subject was approaching the task zones
where different reference bands were requested. We therefore

considered this parts differently, in order to evaluate subjects’
rise times in achieving the target bands, as reported in the
following of this section. In Fig. 7, the aggregated results
over the ten subjects for the reference bands experiment are
reported. The different data have been grouped by means of
boxplots related to the same zones highlighted in Fig. 6. From
the boxplots it is possible to see that all subjects matched the
co-contraction reference bands as instructed. Only small errors
can be observed around the targets. In particular, in Fig. 7,
by looking at the yellow line interpolating the median values
of the ten subjects’ co-contraction, it is clear that all subjects
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showed a behaviour totally similar to the one reported from the
subject S1 in Fig. 6. A maximum error of 0.12 and 0.18 was
reported for the higher and lower refrence bands, respectively
(without considering the transient zones.) A statistical analysis
has been performed on the data reported in Fig. 8, in which the
co-contraction modulations were further grouped according
to the different requested reference levels to be matched –
i.e., minimum, lower band, higher band. In particular, a one-
way repeated measures Analysis of Variance (ANOVA) was
conducted. The statistical significance was set to p < .001.
The Shapiro-Wilk test for normality check and Mauchly’s
test for sphericity check were preformed, reporting that the
ANOVA assumptions were not violated. The result of the
ANOVA revealed that the level of co-contraction modulated
by the subjects in case of minimum, lower band and higher
reference bands were all statistically significantly different,
F (2, 6) = 63.15 and p < .001. This means that all subjects
were actually able of producing significantly different levels
of the provided augmented teaching signal, as instructed.

2) Gripper Activation Co-Contraction Modulation: Fig. 10
reports the single subject results for this evaluation session
(subject S1.) In detail, the co-contraction level was brought
over the gripper activation threshold (red dashed lines in Fig.
10) in the gray-coloured zones related to the task locations
T1, T2, T3 and T6. This successfully allowed to teach to the
robot the required cable grasping and releasing actions. At the
same time, during gray-coloured zones in Fig. 10 related to the
movements between the task locations T1-to-T2, T2-to-T3 and
T3-to-T4-to-T5-to-T6, the co-contraction level was correctly
maintained under the gripper activation threshold (at possible
minimum level) preserving the cable from falling during the
routing and transportation phases. Also in Fig. 10, the white-
coloured zones indicate the transients, in which the subject
was approaching or leaving a task zones.

Also the aggregated results show a behaviour that is very
similar to the one reported for subject S1. This can be clearly
observed looking at the boxplot reported in Fig. 11. In Fig.
12, the co-contraction data were grouped in relation to the
request of a minimum co-contraction level or an activation
of the gripper. A one-way repeated measures ANOVA was
conducted. The statistical significance was set to p < .001.
ANOVA assumptions were verified by Shapiro-Wilk test for
normality and Mauchly’s test for sphericity. The result of
the ANOVA revealed that the co-contraction modulations in
case of a minimum level or a gripper activation level were
all statistically significantly different, F (1, 9) = 24.62 and
p < .001. The subjects were therefore able of modulating
significantly different levels of co-contraction in order to
teach the gripper opening/closing during the robot end-effector
physical guidance.

Lastly, Tab. I reports the results of a questionnaire quali-
tatively evaluating the outcomes Perceived Ease of Use (PE),
Perceived Usefulness (PU), Emotions (E) and Comfort (C).
The subjects rated seven statements (Tab. I) with regard to
the “reference band” and “gripper activation” experimental
sessions, on a Likert scale from 1 (entirely disagree) to 7
(entirely agree.) All the average scores computed over the
subjects were greater than 6, except for the statement C2

in which the score was no lower than 5 (see Tab. I). This
shows a preliminary, qualitative positive evaluation on the
overall system and aspects such as ease of modulating co-
contraction, general experience with this specific augmented
kinesthetic teaching, preference of co-contraction modulation
with respect to voice commands for the control of the gripper
and interpretability of the vibrotactile feedback (also in rela-
tion to the location on the upper arm.) The lower score for
statement C1 likely highlights that the ease of co-contraction
modulation change with duration, and future work will be
dedicated to deeper study the behaviour of muscle signals and
co-contraction modulation during longer muscle activations.

IV. DISCUSSION AND CONCLUSIONS

The major benefit of the proposed augmented kinesthetic
teaching paradigm is related to the fact that the augmented
teaching information can be provided by the operator inde-
pendently from the generation of human net forces/motions.
Conversely, a different method of providing augmented teach-
ing information such as using a button located on the robot
(as it is also provided by default in the Franka Panda robot)
would require specific force/pressure to the operator, with the
hand constrained in a predefined location.

Furthermore, the proposed approach also open the possibil-
ity for future developments in which the muscle co-contraction
can be interpreted by the robotic system from a human intent
detection point of view, since humans modulate co-contraction
also in relation to the accuracy and velocity of their limb
motions.

In relation to the commands that the users can provide to
the robot, we would like to highlight that, with the proposed
approach, the augmented teaching information can be used
for communicating to the robot both continuous commands
(e.g. in order to teach the modulation of dynamic parameters
such as impedance, or geometric parameters such as for op-
timization of trajectories), or discrete commands by applying
thresholds to the co-contraction signal (as for the experiment
of controlling the activation of the gripper in this study.) On the
other hand, further studies need to be performed to investigate
the ability of the users in freely providing commands, that is
without the request of matching a target reference. To evaluate
this aspect, future experimentations will be dedicated to test
how accurately the users are able to autonomously distinguish
between different bio-feedback vibration levels, and specific
experimentation will be dedicated to this aspect in future work.

Finally, future work will also investigate the class of
kinesthetic teaching tasks for which the modulation of co-
contraction results as statistically significantly more challeng-
ing. If we are able to identify such “difficult” tasks, it can be
possible to limit the use of our method only to the part of
the kinesthetic teaching where the co-contraction is easier or,
alternatively, use the vibrotactile feedback itself to make the
user aware of the possibility of increased difficulty, such that
her can decide whether to perform the kinesthetic teaching
in a different manner, or with additional attention/mental
effort. Another possibility would also be to limit the co-
contraction modulation to a discrete set of commands (e.g.
on-off commands by means of low contraction vs. high co-
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TABLE I
QUALITATIVE EVALUATION OF USER EXPERIENCE. SCORES: LIKERT SCALE FROM 1 (ENTIRELY DISAGREE) TO 7 (ENTIRELY AGREE.)

Outcome type Questionnaire

”Reference
Band”

Average Score
(±Std. deviation)

”Gripper
Activation”

Average Score
(±Std. deviation)

Perceived
ease of use

PE1 It was easy to modulate the co-contraction during the kinesthetic teaching. 6±0.94 6±0.47
PE2 The provided vibrotactile feedback was easy to interpret to the aim of co-contraction modulation. 6.4±0.52 6.6±0.63

Perceived
usefulness

PU1 I think the system allows to modulate co-contraction for augmented kinesthetic teaching tasks. 6.2±0.63 6±0.81
PU2 I preferred controlling the gripper with co-contraction modulation than voice commands. n.a. 6±0.52

Emotions E1 I liked to modulate the co-contraction using the system during kinesthetic teaching. 6.2±0.63 6.4±0.52

Comfort C1 It was appropriate to have the vibrotactile feedback on the upper arm instead of the forearm. 6±0.52 6.2±0.63
C2 It was easy to modulate the co-contration regardless of the duration of the required regulation. 5.4±0.7 5.6±0.51

contraction levels) for the tasks in which a fine, continuous
modulation would be too challenging.

In conclusion, in this work, a human-robot interaction
system has been presented, with the aim of realizing an aug-
mented kinesthetic teaching for robot programming. In partic-
ular, the proposed approach was based on an estimation of the
forearm muscles co-contraction using sEMG measurements,
and a vibrotactile bio-feedback. Ten subjects were involved in
an experiment consisting in physical demonstrating the end-
effector trajectory of a 7-DoF collaborative manipulator, for
executing a cable routing and connection task on a simplified
switchgear setup. In this experimental scenario, two different
evaluation session were performed, in order to assess both the
ability of modulating the co-contraction according to target
references, and the ability of modulating the co-contraction
for programming the opening/closing of the robot gripper
while executing kinesthetic teaching. The results show that all
subjects were able to successfully modulate the co-contraction
matching target references, and intuitively teach robot grasping
actions. The results are supported by statistical significance.
The reported positive outcomes allow for future work and
developments. First of all, we will improve the co-contraction
estimation using multiple sEMG sensors in different arm
locations, and we will deepen the study about the actual role
of the vibrotactile feedback. Also deeper investigations about
the effect of physical robot guidance and muscle fatigue on
co-contraction estimation/modulation will be carried out. The
results obtained in the present pilot work provide positive
perspectives and can pave the way for a new generation of
advanced robot programming.
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