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Late Quaternaryaggradation ratesand stratigraphic
architectureof the southern Po Plain, Italy
Luigi Bruno,* Alessandro Amorosi,* Paolo Severi† and Bianca Costagli*

*Department of Biology, Earth and Environmental Sciences, University of Bologna, Bologna, Italy
†Geological, Seismic and Soil Survey, Regione Emilia-Romagna, Bologna, Italy

ABSTRACT

The Po River Basin, where accumulation and preservation of thick sedimentary packages are 
enhanced by high rates of tectonic subsidence, represents an ideal site to assess the relations between 
vertical changes in stratigraphic architecture and sediment accumulation rates. Based on a large 
stratigraphic database, a markedly contrasting stratigraphy of Late Pleistocene and Holocene depo- 
sits is reconstructed from the subsurface of the modern alluvial and coastal plains. Laterally 
extensive fluvial channel bodies and related pedogenically modified muds of latest Pleistocene age are 
uncon formably overlain by Holocene overbank fines, grading seaward into paralic and nearshore 
facies associations. In the interfluvial areas, a stiff paleosol, dating at about 12.5–10 cal ky BP, marks 
the Pleistocene–Holocene boundary. Across this paleosol, aggradation rates (ARs) from 16 
radiocarbon dated cores invariably show a sharp increase, from 0.1–0.9 mm year 1 to 0.9–2.9 mm 
year 1. Com paratively lower Pleistocene values are inferred to reflect fluvial activity under a low 
accommodation (lowstand and early transgressive) regime, whereas higher ARs during the Holocene 
are related to increasing accommodation under late transgressive and highstand conditions. Holocene 
sediment accumulation patterns vary significantly from site to site, and do not exhibit common 
trends. Very high accumulation rates (20–60 mm year 1) are indicated by fluvial channel or 
progradational delta facies, suggesting that extremely variable spatial distribution of Holocene ARs 
was primarily con trolled by autogenic processes, such as fluvial channel avulsion or delta lobe 
switching. Contrasting AR between uppermost Pleistocene and Holocene deposits also are reported 
from the interfluves of several coeval, alluvial coastal plain systems worldwide, suggesting a key 
control by allogenic pro cesses. Sediment accumulation curves from adjacent incised valley fills 
show, instead, variable shapes as a function of the complex mechanisms of valley formation and 
filling.

Blum et al., 1994; Blum & Aslan, 2006) and from north- 
ern Europe (Busschers et al., 2005; Vis & Kasse, 2009) 
outline the stratigraphic architecture of Late Pleistocene 
paleovalleys, developed during Marine Isotope Stages 
(MISs) 4 to 2, as composed of: (i) basal, amalgamated 
channel fills (see Blum et al., 2013; for a review), which 
result from degradation, lateral migration and subordinate 
aggradation during sea level fall and subsequent low stand; 
and (ii) upper, nonamalgamated valley fills, reflecting 
multiple episodes of aggradation during sea level rise and 
highstand. Adjacent to the paleovalley systems, large 
interfluvial sectors remained unfed and subaerially 
exposed for thousands of years, giving rise to extensive soil 
development (Van Wagoner et al., 1990). Sedimentation 
started again in these areas during the Holocene, after 
complete valley filling.
In subsiding basins, where depositional architecture 

records prolonged phases of net aggradation punctuated 
by shorter periods of fluvial incision and/or lateral migra- 
tion of channels, the late Quaternary stratigraphy exhibits 
a similar glacial/interglacial bipartition (Chen et al., 2004; 
Choi & Kim, 2006), with higher preservation of

INTRODUCTION

The contrast between Late Pleistocene and Holocene 
facies architecture is a basic motif of the late Quaternary 
stratigraphy of several coastal and alluvial systems world 
wide (Amos & Knoll, 1987; Blum & T€ornqvist, 2000; 
Blum & Aslan, 2006). Late Pleistocene (glacial) deposits 
differ substantially from their Holocene (interglacial) 
counterparts in a batch of parameters including facies dis- 
tribution and mode of sediment accumulation and preser- 
vation (Allen & Posamentier, 1993; Hori et al., 2002; 
Sarkar et al., 2009; Tanabe et al., 2013; Dung et al., 
2014; Yoo et al., 2014). Although these parameters may 
vary in distinct ways, as a function of tectonic setting 
(Posamentier et al., 1988) and regional position within 
the basin (Zaitlin et al., 1994), the Late Pleistocene/
Holocene dichotomy remains a widely recognized trait.

Studies from fluvial systems along the Gulf of Mexico 
coastal plain (Autin et al., 1991; Blum & Valastro, 1994;
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forced regressive and lowstand deposits (Blum & T€orn 
qvist, 2000). At these locations, the Late Pleistocene 
stratigraphy consists of aggradationally stacked, amalga- 
mated channel belt sand bodies (Blum et al., 2013), later- 
ally correlative to pedogenized floodplain muds, whereas 
Holocene deposits are composed of predominant flood 
plain muds grading basinward into coastal and shallow 
marine facies associations. This is the case of the Po Plain, 
in northern Italy, where due to ongoing subsidence, 100 
kyr depositional cycles may attain thickness of about 100 
m (Amorosi et al., 2004). These depositional cycles have a 
typical glacial/interglacial signature, as revealed by the 
rhythmic alternation of laterally extensive channel belts 
formed under glacial conditions and floodplain dominated 
successions invariably associated with forest expansions 
(Amorosi et al., 2008b).

Vertical variations in the degree of interconnectedness 
and lateral extension of fluvial channel facies have also 
been used in pre Quaternary analogues to bracket deposi- 
tional cycles composed of a basal, low accommodation 
systems tract (Olsen et al., 1995; Martinsen et al., 1999; 
Boyd et al., 2000; Zaitlin et al., 2002; Leckie et al., 2004; 
Ramaekers & Catuneanu, 2004; Labourdette & Jones, 
2007; Hajek et al., 2010) or degradational (Currie, 1997), 
and an overlying, high accomodation or aggradational 
systems tract (Legarreta & Uliana, 1998). Although tran- 
sition from low to high sediment accumulation rates 
within each cycle is a widely accepted concept, changes in 
aggradation rates (ARs) have rarely been quantified. A 
recently published study on ancient fluvial systems, which 
investigated the variation in ARs over time periods of 105–
107 years (Colombera et al., 2015), argued that inferring 
low accommodation vs. high accommodation settings 
based on the degree of fluvial channel amalgamation is not 
substantiated by calculated ARs. As large intervals of time 
are likely related to highly discontinuous patterns of 
sedimentation, prolonged periods of nondeposition should 
be taken into account in the calculation of sedimentation 
rates (Sadler, 1981). Under this perspective, late 
Quaternary successions are best suited to this pur pose. 
The robust absolute chronology commonly associated 
with high resolution stratigraphic investigations of late 
Quaternary deposits (e.g. Fontana et al., 2008; Tanabe et 
al., 2015) is ideal for identifying periods of nondeposition 
and for estimating their duration.

Several accumulation curves have been constructed for 
late Quaternary successions (Pandarinath et al., 2001; 
Tanabe et al., 2003; Molodkov & Bitinas, 2006; Donnici 
et al., 2012; Zhang et al., 2012). Most studies on this sub- 
ject, however, either have dealt with restricted areas/sin- 
gle cores (Lamoreaux et al., 2009; Tanabe et al., 2013; 
Leroy et al., 2014), or have focused on relatively short 
time periods (Wallinga et al., 2010).
A rapidly subsiding basin, such as the Po Basin (Carmi 
nati & Di Donato, 1999; Carminati & Martinelli, 2002), 
characterized by high sediment preservation potential, is 
an ideal site to estimate temporal variations in sediment 
accumulation. Like several late Quaternary successions

from alluvial and coastal systems worldwide, the subsur- 
face of the southern Po Plain is characterized by a striking 
contrast between Late Pleistocene and Holocene facies 
architecture. The general aim of this research is to verify if 
this abrupt change in stratigraphic architecture at the 
Pleistocene/Holocene transition was accompanied by a 
similar sharp change in ARs. Particularly, we intend to 
ascertain the extent to which low base level conditions can 
be responsible for low AR, even in continuously sub- 
siding areas, such as the Po Plain. To this purpose, we cal- 
culated AR from 22 radiocarbon dated cores and we 
discussed the contribution of global and local factors to 
sediment accumulation. To unravel the role of base level 
variations on facies architecture and ARs, we compared 
our results from other coeval alluvial and coastal systems 
worldwide. For AR interpretation, we separated paleoval- 
ley systems from their adjacent interfluves. In order to 
establish changes in ARs as a function of increasing 
accommodation in different depositional settings, we 
focused on the Holocene stratigraphic succession of the 
southern Po Plain (Fig. 1), for which a conspicuous num- 
ber of radiocarbon dates is available.

Stratigraphic architecture of the Po Basin Fill
The Po Plain is a foreland basin bounded by two moun- 
tain chains, the Southern Alps to the north and the Apen- 
nines to the south (Fig. 1a), showing opposite direction of 
tectonic transport. The external fronts of these two thrust 
belts are buried beneath the modern alluvial plain (Boc- 
caletti et al., 2011). South of the Po River, the Po Basin 
appears as a wedge top basin fragmented by a series of 
north verging blind thrusts and folds (Fig. 1b). Some of 
these structures (e.g. Mirandola anticline) are tectonically 
active, as testified by the May 2012 seismic events (Anzi 
dei et al., 2012; Galli et al., 2012; Carannante et al., 2015). 
The stratigraphic succession consists of slightly deformed 
Pliocene deep marine units grading upsection into nearly 
undeformed Quaternary shallow marine and continental 
deposits (Ricci Lucchi, 1986). Due to high
subsidence rates (up to 2.5 mm year 1 over the last
1.43 Ma; Carminati & Di Donato, 1999), the Po Basin fill
locally exceeds 8 km in thickness (Maesano et al., 2015).
Long term subsidence is lower (0.5–1.0 mm year 1)
close to the buried anticlines, where the Plio Quaternary 
succession is just a few hundred metres thick.
The topmost portion of the Po Basin fill has been studied 
in great detail over the last decades, based on facies 

analysis and stratigraphic correlation of core data. Strati- 
graphic studies from the modern coastal plain (Bondesan 
et al., 1995; Amorosi et al., 1999a, b, 2003, 2008a; Stefani 
& Vincenzi, 2005; Dinelli et al., 2013) and from the 
Alpine (Fontana et al., 2014) and Apenninic (Amorosi 
et al., 2014) basin margins explored depositional cyclicity 
on a variety of time scales, from 105 years (Amorosi et al., 
2004, 2008b) to 103 years (Amorosi et al., 2005, 2014; 
Scarponi et al., 2013). Comprehensive stratigraphic 
investigations of ca. 150 m long cores from the SE Po
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Plain (Amorosi et al., 1999a, 2004) enabled identification 
of a cyclic alternation of alluvial sediments, mostly depos- 

ited during (lowstand) glacial periods, with coastal to shal- 

low marine facies, reflecting sea leve! rise and highstand 

during the following interglacials. Partictùarly, two 

wedge shaped coastal and shallow marine bodies identi- 

fied around 125-100 m and <30 m depth were assigned 

to MIS Se and the present interglacial (MIS 1), respec- 

tively on the basis of pollen curves and radiometric data. 

Alternating phases of sea leve! fall and rise between MIS 

Sd and MIS 2 resulted in a 70 m thick succession of allu- 

via! facies punctuated by subaerial unconformities and 

transgressive coastal deposits (Amorosi et al., 1999a). 
The most recent stratigraphic unconformity is associated 

with a characteristic paleosol formed in response to the 

Younger Dryas (YD) cold event (Amorosi et al., 1999b). 

This surface of subaerial exposure, locally named Caranto 

(Mozzi et al., 2003), has been detected throughout the 
northern Adriatic coastline. The Holocene transgressive 

regressive wedge that unconformably overlies the YD 

paleosol (Fig. 2) is composed of two major units (Amorosi 

et al., 1999b, 2003): (i) a lower, thin succession of coastal 
plain and littoral facies, with distinctive retrogradational 

stacking pattern (transgressive systems tract); and (ii) an 

upper interval dominated by progradational (deltaic and 

strandplain) facies associations (highstand systems tract). 

NE 

Fig. l. (a) The Po Plain, with location of 

the seismic and stratigraphic profiles of 

Figs lb and 2 (modified from Burrato 

et al., 2003). (b) Interpretation ofa deep 

seismic profile transversal to the Apen- 
nini e margin (from Regione Emilia 

Romagna & Eni Agip, 1998, locati on on 

Fig. la), with identificati on of the major 

blind thrusts (red lines), and the main 

stratigraphic unconformities (lines from 

A to F) within the Po Ba5in fili (coloured 

area). 

The maximum flooding surface (MFS) has been dated to 
about 7.5 cal ky BP. 

At more proximal locations, the Po Basin fili consists 

entirely of nonmarine deposits. Close to the Apenninic 

chain and beneath the Po River, the alluvial facies are 

cyclically organized into laterally extensive channel belt 

sand bodies of glacial age alternating with mud 

dominated, interglacial successions (Amorosi et al., 
2008b). On the interfluves, the fluvial channel belts are 

replaced by coeva!, overconsolidated floodplain muds 

(Amorosi et al., 2014). Closely spaced, weakly developed 
paleosols brack eting time intervals of severa! 

thousand years, are interbedded with thin overbank 

strata (Amorosi et al., 2014). The youngest phase ofsoil 
development is dated to about 12.5-10 cal ky BP and 

coincides with the formation ofthe YD paleosol 

(Amorosi et al., 2014). These pedoge nized Late 
Pleistocene muds grade upsection into poorly drained 

Holocene floodplain deposits alternating with more 

immature and laterally discontinuous paleosols (Fig. 

2). 

METHODS 

This work is based on the Regione Emilia Romagna 

stratigraphic database, which includes cores recovered as 
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part of the Geological Mapping Project of ltaly to scale 
I : 50.000. Additional stratigraphic data were derived 
from piezocone tests (CPTU) and sedimentological 
descri ptions of well cuttings. Cores and CPTU were used 
for detailed facies characterization, with specific attention 
to the identification of paleosols. CPTU interpretation 
was based on Amorosi & Marchi ( 1999). Well data, 
con- taining simple lithologic information (grave!, sand, 
day), were used to define geometries and lateral extent 
of sedimentary bodies interpretable as channel 
deposits, after calibration with nearby core descriptions. 

Radiocarbon dates from 22 selected cores (Fig. 3) and 
from previously published papers (Amorosi et al., 2005, 
2008a, 2014, 2015; Scarponi et al., 2013) were used to ca! 
ctùate sediment accunnùation rates in the southern Po 

Plain during the last 40 ky. Conventional 14C ages were 
calibrated using OxCal 4.2 (Bronk Ramsey, 2009) with 
the IntCal 13 curve (Reimer et al., 2013). Aggradation 
rates between two radiocarbon dated samples were 
calculated taking into account the lcr ranges, using the 
follow ing formula: 

ARmax[mm year 1] = .1y[m] * 1000/(T21crmax

- TI 1 crmin) [year]

ARmin = .1y * 1000/(T21crmin -Tl1crmax) 

Fig. 3. Study area with location ofthe 
age depth diagrams ofFigs 4 (red circles) 
and 6 (blue circles) and the stratigraphic 
logs of Figs 5 and 7 (black dots). 1: 
Boundary between the MIS 4 2 Po chan- 
nel belt (sector 1) and the coeva! inter-
fluve (sector 2), 2: Adriatic shoreline 
during the Holocene maximum marine 
ingression (from Amorosi et al., 2008c), 
3: culminations of the main buried thrust 
(modified after Boccaletti et al., 2011; 4: 
trace of the cross section of Fig. 5. 

where .1y is the thickness of the stratigraphic interval 
between ages T2 and TI, with T2 > TI. 

Aggradation rates were represented through age/depth 
diagrams, into which the mean values between ARmax and 
ARmin were depicted. Compaction effects were not taken 
into account (see discussion below). The chronologic 
framework for the Holocene succession was refined using 
archaeologically dated paleosols (Bruno et al., 2013) and 
14C calibrated racemization dates (Scarponi et al., 2013).

For comparison, we also selected 1 O sites from the 
existing literature for which detailed stratigraphic infor- 

mation and chronometric data based on 14C and optically 
stimtùated luminescence were available. In order to obtain 
continuous sediment accumtùation curves, we excluded 
uplifting areas, where Late Pleistocene and Holocene 
units crop out as terraced deposits, from our analysis. 

Late Quatemary aggradation rates from the 
southern Po Plain 

Based on Late Pleistocene stratigraphic architecture, the 
southern Po Basin can be subdivided into two main sec- 
tors (Fig. 3). Sector 1, extending for about 20 km south of 
the modem Po River, consists of aggradationally stacked 
channel belt sand bodies supplied by the Po River during 
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MIS 4 to MIS 2. Sector 2, between sector 1 and the Apen 
ninic margin, mostly acted as a wide interfluve during the 
last 40 ky. In this area, the mud prone Late Pleistocene 
succession includes thin floodplain units bounded by 
weakly developed paleosols, with minor fluvial bodies 
related to the Apenninic drainage (Amorosi et al., 2014). 
In order to investigate sediment accunnùation trends dur- 
ing the last 40 ky, we selected 16 cores from sector 2,  
where the Pleistocene/Holocene boundary is  marked by 
the YD paleosol. In the age/depth diagrams ofFig. 4, we 
plotted the two most significant key stratigraphic surfaces 
(the YD paleosol and the MFS) to highlight the 
relationships between stratigraphic architecture and ARs. 

Sediment accunnùation patterns in sector 2 exhibit a 
common trend, characterized by a distinctive, sharp 
increase in ARs across the Pleistocene/Holocene bound 
ary (Fig. 4). In partictùar, the Pleistocene ARs are inv 
ariably <O. 9 mm year 1, while mean Holocene values 
range between about 1 and 3 mm year 1

. Holocene 
aggradation was lowest (<1.5 mm year 1

) dose to the 
Apenninic margin (4e in Figs 3 and 4) and in proximity 
of the buried thrust fronts, where the thickness of the 
basin fili is minimum (4f and 4k in Figs 3 and 4). In 
contrast, maximum Holocene aggradation (2.4-2.9 mm 
year 1

) took piace in the most distai sectors of the 
plain ( 41, 4m and 4n in Figs 3 and 4). The density of 
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chronologic data along the individuai cores is generally 
insufficient to locate precisely the point at which the 
gradient of the curve changes. Given the influence of 
the stratigraphic position of dated samples on sedimen- 
tation rate estimates, the measured ARs should be 
regarded as an approximation of the Pleistocene and 
Holocene ARs.

In generai, significant changes in sediment accunnùa- 
tion rates are associated with the two surfaces that mark 
the major changes in stratigraphic architecture (Figs 4 
and 5), i.e. the YD paleosol (Figs 4a, c, d, e, f, g, I, m) and 
the MFS (Figs 4b, h, i, j, k, n). In contrast, no significant 
changes in ARs took piace between about 30 and I O ca! ky 
BP, an interval of time represented by a relatively thin 
(<I O m) sedimentary succession, with an abundance of 
pedogenized clays (Fig. 5). 

On top ofthe YD palaeosol, progressively younger ages 
(between 9.7 and 5.2 ca! ky BP) are recorded from distai 
to proximal locations (Fig. 5). Sediment accumtùation 
profiles above the YD paleosol display no specific trends 
(Fig. 6), and extremely variable AR values, between 0.02 

and 62 mm year 1, are reconstructed from the Holocene
succession. The comparison between sediment accumtùa- 
tion rates and the vertical stacking of facies (Fig. 7) 
shows that sedimentation rates varied significantly during 
the Holocene as a function of the different facies asso- 
ciations, the highest values being associated with late 
Holocene prodelta (up to 62 mm year 1), beach ridge 

(7-30 mm year 1), fluvial channel (>20 mm year 1) and
crevasse splay or channel (5-20 mm year 1) deposits
(Figs 6 and 7). The lowest ARs are associated with flood 

plain and paludai facies associations (<3 mm year 1),
with very low values from pedogenized clays 

(<I mm year 1). In more distai positions, the lowest sed 
imentation rates (<1.7 mm year 1) were measured in 
condensed offshore clays, dose to the maximum flooding 
zone (Figs 7d, e). 

Fig. 5. Stratigraphic cross section 

depicting contrasting facies architecture 

ofLate Pleistocene vs 1-Iolocene deposits, 

along with gradients of the Young er 

Dryas (YD) palaeosol and of the modem 

topographic surface. Section trace on 

Fig. 3. Facies associations (1 7) include 

fluvial channel (1), floodplain (2), poorly 

drained floodplain (3), swamp (4 ), lagoon 

(5), transgressive barrier, beach r idge (6) 

and prodelta (7) deposits. Key strati 

graphic surfaces include the maximum 

flooding surface (8), the Y ounger Dryas 

paleosol (9) and older paleosols (10). (11) 

Radiocarbon dates ( calibrated ky BP; 

a5terisk indicates projected dates), (12) 

racemization dates (Scarponi et al., 

2013). 

ISW 

3.8 

Changes in aggradation rates as a function of 
base-level fluctuations 

Aggradation on the interfluves 

Facies analysis and radiocarbon dates from 16 interfluve 
records of the southern Po Plain reveal consistent rela- 
tionships between late Q!1aternary stratigraphy and ARs.

The lowest ARs are observed in pedogenically modified 
muds dated at about 30-10 ca! ky BP, and reflect deposi- 
tion under low accommodation conditions (Wright & 
Marriott, 1993; McCarthy et al., 1999; Boyd et al., 2000; 
Plint et al., 2001; Zaitlin et al., 2002). During the Last 
Glacial Maximum, between 30 and 18 ca! ky BP, the 
Alpine glaciers expanded up to the valley outlets in the Po 
Plain (Fontana et al., 2014), feeding their related flu- 
vioglacial systems. The Northern Apennines, on the con- 
trary, were covered by few glaciers of limited extent, and 
vegetation was predominantly herbaceous (Amorosi et al., 

1999b, 2004, 2008b; Vescovi et al., 2010). As the Apen- 
ninic catchments are largely composed of highly erodible 
rocks (Pini, 1999), the scarce vegetation cover strong! y 
enhanced erosi on and sediment delivery to the trunk ri v- 
ers (Simoni et al., 2013). These concurrent circumstances 
ensured a conspicuous sediment input to the river sys- 
tems. However, large part of this sediment by passed the 
Po Plain area, being delivered to the coeva! coastline about 
300 km seaward, at the northern edge ofthe Mid Adria tic 
depression (Correggiari et al., 1996; Trincardi & Correg- 
giari, 2000). The remaining portion accumtùated in large 
channel belt bodies in the centrai Po Basin and at the 
Apenninic margin (Fig. 2). No significant aggradation is 
recorded on the adjacent Apenninic interfluve (sector 2, 
Fig. 3), where a series of vertically stacked paleosols 
developed south of the Po channel belt (see type 2 uncon 
formity on Wright & Marriott, 1993). This implies that 
sedimentation was mostly restricted to low relief fluvial 
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incisions. Thin overbank layers between palaeosols 
(Fig. 5) testify to short lived phases of valley overfilling 
and floodplain aggradation that were possibly triggered by 
high frequency climate changes. Tectonic subsidence 
created space for sedimentation on the interfluves during 
lowstand. 

Deglaciation, between 18 and 10 cal ky BP, did not 
lead to significant changes in ARs in sector 2. During this 
period, glacial lakes formed at the edge of the major 
Alpine valleys, acting as traps for large sediment volumes 
fed by northern sources. Moreover, as the Lateglacial 
coastal system was 250 km far away from the modern 
position (Storms et al., 2008), the study area was too far 
from its coeval coastline to be affected by marine 
transgression. 

Around 1 O cal ky BP, the landward migrating shore 
line was about 50 km SE of the modem Po delta 
(Correggiari et al., 1996; Storms et al., 2008). At 
that time, coastal swamps developed onto the YD 
paleosol in the most distal portion of the Po Plain 
(Fig. 7e; Amorosi et al., 1999b, 2003). The abrupt facies 
change from pedo genized alluvial deposits to organic 
rich clays marks the sharp increase in ARs (Fig. 4). The 
backstepping of bar rier lagoon systems induced by sea 
leve! rise is testified by the progressi vely younger ages 
ofback barrier deposits covering the YD palaeosol at 
inland locations (Fig. 5). This tendency is observed only 
north of the buried Apen ninic front (Figs 3 and 5), 
and appears to be strongly influenced by the YD 

paleotopography. In par ticular, the youngest deposits 
overlying the YD paleosol are encoun tered above the 
buried anticlines, where the YD palaeosol has been 
uplifted (Figs 3 and 5). South of the buried anti- 
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clines, scattered ages show that the burial of the YD 

palaeosol occurred before 8 cal ky BP (Figs 3, 5 and 7a). 
The backstepping of the barrier lagoon systems onto 

the YD palaeosol (Fig. 5) progressively reduced the 
gradient of the plain. After marine transgression and 
further progradation the gradient of the plain was 
reduced down from 0.35o/

00 
(gradient of the YD paleosol 

in Fig. 5) to about 0.09o/
00 

The landward migration of 
the coastline 

• 

also drastically reduced the area available for sediment 
storing. This evolution affected the equilibrium profile of 
the Po Ri ver, restùting in decreased stream power and 
downstream transport rates, and thus in decreased 
capability to erode banks and create space for lateral 
storage of bed load (Blum & Tornqvist, 2000; 
Stouthamer & Berendsen, 2007). As a consequence, the 
Po River started to aggrade, piling its sediments on the 
channel bed and on the interfluves through overflow, 
crevassing and avtùsions (Correggiari et al., 2005). As the 
Po River represents a local base leve! for its tributaries, 
the Apenninic rivers aggraded in response to Po River 
aggradation. 

The latest Pleistocene-Holocene ARs from the Po 
Plain (Fig. 4) share significant similarities to sediment 
accumulation curves from coeva!, alluvial and coastal 
systems worldwide, as revealed by the sediment 
accumula tion patterns of Fig. 8, which are summarized 
from the literature. Stratigraphic architecture at these 
sites shows the typical Late Pleistocene/Holocene 
bipartition of interfluvial areas: Late Pleistocene 
pedogenized floodplain deposits overlain by poorly 
drained floodplain or coastal facies. Considerable 
analogies between the shapes of the AR profiles ofFigs 4 
and 8 strongly suggest that the gen eralized increase in 
ARs at the Pleistocene/Holocene 
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boundary was primarily controlled by allogenic factors 

(sea leve! rise). The interflu via! areas remained 

subaerially exposed (=low ARs) during the long phase 

of valley incision (sea leve! fall and lowstand) and during 

its filling (early transgression), with consequent paleosol 

develop ment (type I unconformity of Wright & 

Marriott, 1993; interfluve sequence boundary of 

McCarthy & Plint, 1998). Sedimentation started on 

the interfluves during the late stages of transgression 

(=high ARs), following complete valley filling 

(Posamentier et al., 1988; Van Wagoner et al., 1990; 

Foyle & Oertel, 1997; Green, 2009; Weschenfelder et al., 
2014). 

Aggradation rates in incised valley systems 

Contrary to the interfluves, no consistent trends and more 

variable shapes characterize AR profiles associated to 
incised valley fills, as a function of their relati ve position 

in the paleovalley (Fig. 9). At the margin of the paleoval- 

leys (Fig. 9d, Aguzzi et al., 2007; Fig. 9f, Amorosi et al., 

2013; Tyrrhenian coast ofltaly), where buried fluvial 

terraces are commonly encountered, sediment 

accumulation rates rapidly increase at the boundary 

between fluvial ter raced deposits, exposed during 

further valley deepening, and overlying facies, 

deposited during later stages of transgression (about 

12 ca! ky BP, Fig. 10b). In these instances, low ARs 

associated to lowstand and early trans gressive deposits 

also reflect prolonged periods of nonde- 

pos1tton related to valley excavation. In contrast, AR 

profiles from areas dose to the valley axis (Figs 9b and 

!Oc) show relatively homogeneous values for the last
20 ky, because sediment continuously accunnùated since

the early phases of marine transgression. An increase in

AR at about 17 ca! ky BP is reconstructed from the age/

depth diagram of Figs 9b and !Oc (Echigo Plain, Japan,

Tanabe et al., 2013), where numerica! ages older than

30 ky are available. In this deeply incised valley, the gen

tle slope of the curve associated with the 35-17 k y time

interval is interpreted to reflect removal of older sediment

due to deepening of the valley, rather than nondeposition.

In generai, the onset of changes in ARs is progressively

older from the interfluves to the valley axis (Fig. 10), as a

function of the time transgressi ve filling of the valley.

Autogenic contro! on accumulation rates 

Previous studies on Holocene sedimentary successions 

have attested to the strict relationship between 

sedimentation rates and sedimentary facies, in both 

fluvial and del taic settings (Hori et al., 2002; Tornqvist 
& Bridge, 2002; Carvalho & Schulte, 2013). Consistent 

with these works, we found that Holocene AR in the 
alluvial portion of the plain systematically decrease 

with increasing distance from the fluvial channel axis. 

Partictùarly, ARs associated to floodplain and swamp 

deposits are an order of magni tude lower than fluvial 

channel and channel related facies 





Fig. 10. Schematic representation of 
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Age depth diagrams are from: (a) Rhine 

Meuse system, The Netherlands (Buss 
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(Aguzzi et al., 2007) and ( e) Echigo Plain, 

Japan (Tanabe et a/.,2013). 
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River in the 17th century. The importance of avtùsions in 
supplying sediment to aggrading floodplains has been 

widely discussed (see Blum et al., 2013; for a review). 
The primary necessary condition in setting up the poten- 
tial for avtùsion is the decrease in the gradient of the allu- 
vial plain (Stouthamer & Berendsen, 2007), which is 
induced in this case by sea leve! rise and by the conse- 
quent landward shifting ofthe Po delta distributary sys- 
tem. Avulsions and crevasses are enhanced during periods 
of high sediment supply that may be promoted by rapid 

climate change (Leeder et al., 1998; Blum & Tornqvist, 
2000; Vandenberghe, 2003; Bruno et al., 2015). These 
processes, however, are either focused on specific sites 

(Aslan et al., 2005), such as pre existing topographic lows 
between consecutive fluvial ridges or can be generated by 
locai subsidence. Avtùsions are also favoured by channel 
ridge superelevation, which is a function of the locai ratio 

between channel and floodplain ARs. In these instances, 

AR variations appear to be tùtimately controlled by auto- 

genie factors. Extremely low ARs, such as those measured 
on pedogenically modified floodplain clays, cotùd reflect 
periods of climate induced low sediment supply, or 
elevated distance from a channel ridge. 

The role of autogenic processes is increasingly domi- 
nant in the late Holocene succession of the Po Plain. 
Owing to increased accommodation with continuing rela- 
tive sea leve! rise, late transgressive units were character 

ized by systematically higher ARs (>2 mm year 1
) than

those associated with underlying, lowstand deposits (gen- 

erally < 0.5 mm year 1
), consistent with a predomi- 

nantly allogenic contro!. On the other hand, highstand 
sedimentation rates are highly variable, between almost O 

and 60 mm year 1
. This remarkable variabili ty reflects 

the complex mechanisms of alluvial plain formation and 
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coastal/ delta progradation. At time of maximum marine 
ingression, about 7.5 ca! ky BP, the Adriatic coast was 
about 25 km inland ofthe present day shoreline (Amorosi 

et al., 2008c; Fig. 3). Radiocarbon dates from the most 
distai locations (Fig. 6h, i) testify to prolonged condensa- 
tion around the time of maximum marine ingression 

(Scarponi et al., 2013), which preceded the onset of pro- 
grading delta lobes. At the base ofthick prodelta mud sue- 
cessions, sedimentation rates rapidly switch from almost 

zero to > 50 mm year 1
• The sharp increase in sedimenta- 

tion rates in core 205S9 (Fig. 6h and 7d), dated to about 
2 cal ky BP, marks the activation of the Po di Primaro 
delta lobe (Stefani & Vincenzi, 2005). The increase in sed- 
imentation rates around 600 cal yr BP in Core l (Figs 6i 
and 7e) reflects the onset of the modern Po delta, follow 
ing the Ficarolo avulsion (1152 AD), through which the 
Po River was shifted north, towards its present position 

(Amorosi et al., 2008a). In these contexts, changes in ARs 
measured on vertical profiles are largely controlled by 
patterns of delta progradation and delta lobe switching. 

Sediment cmnpacti&n and the Sadler effict 

Through a set of 16 sediment accumulation profiles from 
the southern Po Plain, we demonstrate that sediment 
accunnùation rates during the Late Pleistocene were 
invariably lower than mean Holocene ARs. However, 
inverse proportionality between AR and the age of the 
deposits could have been enhanced by compaction of 
older sediments or artificially induced by the Sadler effect 
(Sadler, 1981 ). 

We consider the effects of sediment compaction negli- 
gible compared to the depth of our investigation (40 m). 
Specifically, pedogenically modified Late Pleistocene 



(1) Low AR (<0.9 mm year 1) were reconstructed from

Late Pleistocene pedogenically modified clays and

associated floodplain deposits, whereas Holocene ARs

exhibit invariably higher values (1–3 mm year 1).

The abrupt increase in ARs is observed close to the 
Late Pleistocene–Holocene boundary (YD palaeosol). 
Above this stratigraphic unconformity, the deposi- 
tional architecture is characterized by widespread 
development of poorly drained floodplain and coastal 
facies associations.

(2) The contrast between Late Pleistocene and Holocene

ARs appears to be controlled mostly by base level vari

ations and by the consequent modifications in basin

topography (i.e. gradient and extent of the area avail- 
able for sedimentation). The most substantial changes in 
ARs and facies architecture are dated around 10 cal ky BP 
(late stages of transgression), when landward migrating 
barrier lagoon systems were a few tens of kilometres off 
the modern shoreline, and wide coastal swamps 
developed in large parts the study area. The impact of 
other controlling factors on ARs, such as changes in the 
rates of sediment production and tecton- ics, appears to 
be subordinate or of local significance.

(3) The central role of late Quaternary base level variations 
in controlling sediment accumulation rates is sub- 
stantiated by the comparison with data from the 
interfluves of other coeval, alluvial and coastal systems 
worldwide, where the transition from Late Pleistocene 
(lowstand) to Holocene (transgressive) facies architec- 
ture is associated with abruptly increasing ARs. Mark 
edly different AR profiles are observed in incised valley 
systems as a function of the mechanisms of valley for 
mation and filling. Particularly, increasing ARs at the 
base of transgressive deposits show progressively older 
ages moving from the interfluves to the valley axis.

(4) The significant spatial variability in Holocene ARs in the 
southern Po Plain suggests that, following maximum 
marine ingression, sediment accumulation pat terns were 
strongly influenced by autogenic processes, the highest 
sedimentation rates being recorded by delta 
progradation and fluvial channel aggradation. 

This work highlights the strong potential of late Qua- 
ternary successions as ideal targets to assess the relation- 
ships between facies architecture and sediment 
accumulation patterns. A high resolution stratigraphic and 
chronologic control, with specific emphasis on quan- 
tification of major depositional hiatuses, is crucial for a 
correct interpretation of AR variations through time.
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