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Aggregation models on hypergraphs

Diego Albericia, Pierluigi Contuccia, Emanuele Mingionea, Marco Molari a,1,∗

aDipartimento di Matematica, University of Bologna, Piazza di Porta San Donato 5, 40126

Bologna, Italy

Abstract

Following a newly introduced approach by Rasetti and Merelli we investigate the
possibility to extract topological information about the space where interacting
systems are modelled. From the statistical datum of their observable quantities,
like the correlation functions, we show how to reconstruct the activities of their
constitutive parts which embed the topological information. The procedure
is implemented on a class of polymer models on hypergraphs with hard-core
interactions. We show that the model fulfils a set of iterative relations for the
partition function that generalise those introduced by Heilmann and Lieb for the
monomer-dimer case. After translating those relations into structural identities
for the correlation functions we use them to test the precision and the robustness
of the inverse problem. Finally the possible presence of a further interaction of
peer-to-peer type is considered and a criterion to discover it is identified.

Keywords: Networks, hypergraphs, inverse problem, complex systems

1. Introduction and Results

In a recent paper [1] a new perspective for the general problem of data anal-
ysis, in the context of Big Data and Complex Systems, has been advanced. By
probing the data space encoded as a set of correlation functions, the informa-
tion content of a phenomenological setting is embedded into a field theory of

data based on an underlying topological space. This idea is deeply rooted into
concepts that have originated from theoretical physics. General Relativity, to
mention one of the examples, is the gravitational field theory that describes the
motion of particles through space-time where their dynamics is fully determined
by the underlying curvature.
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We propose here a very simplified realisation of that program that capitalises
on the equivalence of field theories with classical statistical mechanics [2, 3, 4]
with the purpose of testing it using the inverse problem approach. The models
we consider are hard-core interacting polymer systems on high-dimensional net-
works (hypergraphs). The choice of this class of models is due to the diversity
and richness of the phenomena they describe that span from Physics [5], Biology
[6], Computer Science [7, 8, 9], and Social Sciences [10]. We have in mind, in
particular, applications in the the socio-technical setting of novel communica-
tion systems where groups of people are present in chambers like those of the
messaging systems, voip conference calls etc. From a mathematical point of
view those are aggregation models of particles that cannot occupy at the same
time more than one state (hard-core constraint): in the specific example of the
messaging systems an individual is either silent, the monomer state, in a two
body conversation, the dimer state, in a three body conversation state called
trimer and so on. While the old style phone calls were well described by a stan-
dard monomer-dimer model the novel technologies allow for the contemporary
presence of multiple individuals in the same virtual room thus requiring higher
order objects like hypergraphs for the underlying space and polymers for the
fields that represent their state.

In our model the configurations of the system are determined by the occu-
pation number on the elements of the hypergraph (vertices, edges and faces)
that takes only two values 0 and 1. We limit the analysis to the rank three case
(conversation with maximum three bodies in the mentioned example) but the
generalisation to higher ranks is straightforward. The model is assigned by a set
of positive weights, the activities, associated to each hyperedge. These weights
describe the strength of connections and identify the topology of the hypergraph
trough, for instance, the persistent topology methods developed in [11, 12], in
[13, 14] and used in [15]. A threshold for the activities could be decided, and
the hyperedges below this threshold deleted from the original hypergraph. In-
stead of studying the topology at an arbitrary threshold, the persistent topology
approach consists in exploring the whole filtration of hypergraphs obtained by
varying the threshold. Quoting [1], “this filtration process identifies those topo-
logical features which persist over a significant parameter range, qualifying them
as candidates to be considered as signal, while those that have short-lived fea-
tures can be assumed to characterize noise”. Afterwards this topological signal
can be used to compare and classify different datasets.

Our first result is of rigorous mathematical nature: the identification of an
iterative relation for the partition function of the model which generalises the
Heilmann-Lieb identity [16]. While this relation is introduced in a hypergraph
theoretical setting we show that it implies a set of identities directly expressible
in terms of the correlation functions of the associated probability measure. They
act as a constitutive family of equations for the model that we use in our test
and turn out to be an essential tool toward an efficient control of the inverse
problem, i.e. the basic question: from a (full or partial) set of the correlation
functions can we recover the value of the activities for all the hyperedges?

This work provides a positive answer to the previous question together with
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the possible limitations and contains two conceptually different numerical meth-
ods which can be used to extract activities from the experimental correlations.
The first inversion method is based on the maximisation of the likelihood func-
tion and works through a recursive gradient-descent algorithm partially inspired
by the one used for the learning process in Boltzmann Machines [17]. We tested
its performance and found that it converges exponentially at a speed that does
not depend on the size of the hypergraph but is influenced by the magnitude of
the activities. In particular the convergence speed decreases at higher values of
the activities, as expected when reaching the full packing regime. The second
method is based on the maximisation of the pseudo-likelihood function when
additional experimental correlations are known. This has the advantage that it
can be applied in a much simpler manner since it provides an explicit expression
for the activities.

Finally we study the effects of the presence of a further interaction acting
among monomers in the hypergraph. In socio-technical systems this kind of
interaction generated by peer-to-peer effects is often very relevant. The extra
structure that comes with it is codified by another hypergraph built on the
same set of vertices which, in general, is different and independent from the
previous one. The two networks indeed can be seen as a bilayer structure like
those analysed in [18]. We concentrated on the problem of probing the presence
of such an interaction from the set of experimental correlations, and found
that the comparison between the two previously introduced inversion methods
provides a good test for the detection of the interaction. Moreover, in the
high interaction limit, we show how the same comparison can also be used to
numerically estimate the parameter magnitude.

2. The theoretical framework

Let H = V ∪K be a hypergraph of rank 3, that is a set of vertices V and
hyperedgesK where K = E∪F is an union of edges E and faces F (our notation
naturally generalises to arbitrary rank). On this topological space we consider
configurations of polymers, precisely monomers (single particles occupying a
vertex), dimers (2-particles occupying an edge), trimers (3-particles occupying
a face). Polymers display mutual hard-core interaction: no region of the space
can be touched by more than one polymer. At the same time we require all
the vertices of the hypergraph to be covered by either a monomer or one of the
vertices of a polymer. This last condition that we call filling, fully specifies the
ensemble and should not be confused with the full-packing one where monomers
are not allowed.

A suitable way to represent the allowed configurations is to introduce the
occupancy variables α =

(

αh

)

h∈H
∈ {0, 1}H with the hard-core filling condition

αv +
∑

e∈E:
e∋v

αe +
∑

f∈F :
f∋v

αf = 1, v ∈ V. (1)
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Notice that because of (1), for any vertex v ∈ V the quantity αv, that represents
the monomer occupancy of the vertex v, can always be expressed as a function
of the dimer and trimer occupancy variables. It is convenient to introduce the
admissibility characteristic function C : {0, 1}H → {0, 1} defined as

C(α) =

{

1 if (1) holds

0 otherwise
. (2)

To fully specify the model we introduce the polymer activity of each hyperedge,
that is a positive number that measures the propensity of the hyperedge to
be occupied by a corresponding polymer. One can show with an elementary
computation that the vertex activities can be reabsorbed into the remaining
parameters or factorised out of the partition function. We denote by ze, e ∈ E
the edge activities (or dimer activities) and by zf , f ∈ F the face activities (or
trimer activities). The topological and analytical data, namely H and z, fully
determine a probability measure associated to configurations:

µz(α) =
C(α)

∏

e∈E zαe
e

∏

f∈F z
αf

f

ZH(z)
, α ∈ {0, 1}H (3)

where ZH is the normalisation factor usually called partition function:

ZH(z) =
∑

α∈{0,1}H

C(α)
∏

e∈E

zαe
e

∏

f∈F

z
αf

f . (4)

We denote by 〈 · 〉 the average with respect to the probability measure (3).

Defining E(v) the set of edges with one vertex in v and F (v) the set of faces
with one vertex in v, one can prove that the following iterative relation holds:

ZH = ZH−v +
∑

e∈E(v)

ze ZH−e +
∑

f∈F (v)

zf ZH−f (5)

which generalises the Heilmann-Lieb relation for monomer-dimer systems [16,
19]. In equation (5), H − v denotes the hypergraph where the vertex v has
been removed together with the hyperedges in E(v) ∪ F (v); H − e stands for
H − v1 − v2 where e = {v1, v2}; H − f stands for H − v1 − v2 − v3 where
f = {v1, v2, v3}. Equation (5) can be easily proven by splitting the sum (4)
according to the three possible states of a given vertex v, indeed the three terms
on the right hand side of (5) correspond to sum over the configurations α where
v is occupied by a monomer (αv = 1), a dimer (αe = 1 for some e ∈ E(v)) or a
trimer (αf = 1 for some f ∈ F (v)) respectively.
The previous family of relations (5) for the partition function of the model
implies the following topological constraint relations for the correlation functions.
For every edge e = {i, j} and for every observable g that does not depend on
αe, αi and αj it holds:

〈αe g〉 = ze 〈αiαj g〉 . (6)
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Similarly, for every face f = {i, j, l} and for every observable g that does not
depend on αf , αi, αj and αl it holds:

〈αf g〉 = zf 〈αiαjαl g〉 . (7)

In particular for g ≡ 1 one obtains an explicit expression of the activities in
terms of correlations

ze =
〈αe〉

〈αiαj〉
, zf =

〈αf 〉

〈αiαjαl〉
. (8)

Equations (6) and (7) can be easily proven by observing that the admissible
configurations α such that αe = 1 are in one-to-one correspondence with the
admissible configurations α such that αi = αj = 1.

3. The inverse problem

In the last few years several new ideas and techniques have been developed
[20, 21, 22] for the inverse problem of the Ising model. We will discuss the inverse
problem for the class of hard-core polymer models introduced in the previous
section. The general task is to extract the parameters of a given theoretical
model from experimental measures on the observables. The problem clearly
displays different features according to the types of data that become available.
In this work we will focus on two experimental database settings. In the first
one the dataset is composed by the empirical densities of dimers and trimers,
while in the second one some empirical correlations for the monomers are also
included:

A) the empirical polymer densities, that is 〈αe〉exp for very edge e ∈ E and
〈αf 〉exp for every face f ∈ F ;

B) the previous empirical polymer densities plus the empirical monomer cor-

relations, that is 〈αiαj〉exp for every edge e = {i, j} ∈ E and 〈αiαjαl〉exp
for every face f = {i, j, l} ∈ F .

The symbol 〈 〉exp denotes the empirical average, that is ifM polymer configura-

tions α(1), . . . , α(M) are observed independently then 〈g〉exp ≡ 1
M

∑M

s=1 g(α
(s)) .

3.1. Maximum likelihood and maximum pseudo-likelihood approximations

We start by shortly recalling the application of the Maximum Likelihood and
the Maximum Pseudo-Likelihood Methods to our model. These methods are
used in the solution of the inverse problem, since they provide a rule to choose
the values of the model parameters that are best able to reproduce some empir-
ically observed features in the data. The general framework is the following: fix
the hypergraph H and assume the model is described by an unknown value of
the activities z to be determined. Consider a set of M observations of polymer

configurations ᾱ = {α(s)}s=1,...,M , where α(s) = (α
(s)
k )k∈K and α

(s)
k encodes
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the presence/absence of a polymer on the hyperedge k in the sth experimental
observation. Suppose that ᾱ is a set of independent observations sampled from
the same probability distribution µz, for a certain value of the activities z = z∗.

We use two standard methods that give an optimal value z∗ to fit the
dataset ᾱ: themaximum likelihood estimation (MLE) and themaximum pseudo-

likelihood estimation (MPLE). Let us briefly recall these methods.
The optimal estimate z∗ in the MLE sense maximizes the likelihood function

defined as

L(z; ᾱ) =

M
∏

s=1

µz(α
(s)) . (9)

Standard computations show that logL(z; ᾱ) is a concave function in the vari-
ables log z and it attains its maximum at the point z∗ satisfying the following
system of |K| equations:

〈αk〉z∗ = 〈αk〉exp , k ∈ K = E ∪ F , (10)

where as before 〈αk〉exp ≡ 1
M

∑M

s=1 α
(s)
k is the experimental average value of

the presence of a polymer in the hyperedge k. This approach naturally fits the
experimental situation of case A), where the available data is the set of empirical

polymer densities. Let us observe that the likelihood function L(z; ᾱ) is strictly
related to the Kullback-Leibler divergence of the measure µz from the empirical
measure µ∗, defined as

DKL(µz|µ
∗) =

∑

α

µ∗(α) log
µ∗(α)

µz(α)
(11)

where µ∗(α) ≡ 1
M

∑M

s=1 δ(α = α(s)) . Precisely the following relation holds:

1

M
logL(z; ᾱ) = −DKL(µz|µ

∗) + C (12)

with C =
∑

α µ∗(α) log µ∗(α) .
Now let us consider the pseudo-likelihood instead of the likelihood. The

optimal estimate z∗ in the MPLE sense maximizes the pseudo-likelihood function

defined as

LP (z; ᾱ) =

M
∏

s=1

∏

k∈K

µz

(

α
(s)
k

∣

∣α
(s)
6=k

)

(13)

where, for a given sample s and hyperedge k, α
(s)
6=k encodes the experimental

observation of a polymer on all the hyperedges different from k. It is possible
to show that LP attains its maximum at the point z∗∗ explicitly defined by the
following |K| conditions:

〈αk〉exp = z∗∗k
〈

∏

v∈k

αv

〉

exp
, k ∈ K = E ∪ F (14)
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where α
(s)
v denotes the experimental observations of a monomer on the vertex v

in the sth trial and 〈
∏

v∈k αv〉exp ≡ 1
M

∑M

s=1

∏

v∈k α
(s)
v is the empirical monomer

correlation of the vertices in k. This time the set of equation naturally fits case
B), where the set of empirical monomer correlations is known.

3.2. The Kullback-Leibler method

In case A) the Maximum Likelihood Estimation (MLE) can be used. Let us
denote by µz and by 〈 〉z respectively the probability measure defined by (3) and
the associated expectation. As we previously proved, the MLE of the polymer
activities z∗ = (z∗k)k∈K satisfies the following set of |K| conditions

〈αe〉z∗ = 〈αe〉exp , e ∈ E

〈αf 〉z∗ = 〈αf 〉exp , f ∈ F .
(15)

The set of equations (15) determines implicitly the activities. We approach its
solution by means of a gradient descent algorithm since the Maximum Likelihood
function is a concave function. Precisely at step n + 1 (n ≥ 0) we update the

vector of polymer activities z(n) ≡
(

z
(n)
k

)

k∈K
as follows

z(n+1) = z(n) − η(n+1) ∇(z(n))
√

∑

k∈K

(

∂k(z(n))
)2

. (16)

The vector∇(z) ≡
(

∂k(z)
)

k∈K
is the gradient of the Kullback-Leibler divergence

DKL(µz |µ
∗), defined by:

∂k(z) = −
〈αk〉exp − 〈αk〉z

zk
(17)

and it gives to the update step ∆z(n+1) ≡ z(n+1) − z(n) the direction of the
gradient of the likelihood function, or equivalently the direction of minus the
Kullback-Leibler divergence gradient (see eq. (12)). The positive number η(n+1)

tunes the magnitude of the update steps ∆z(n+1). By fixing η(n) ≡ η, the speed
of convergence of relation (16) is linear, while it can be improved by introducing
an adaptive learning rate defined iteratively as:

η(n+1) = η(n) exp















γ

∑

k∈K ∆z
(n)
k ∆z

(n−1)
k

√

∑

k∈K

(

∆z
(n)
k

)2
√

∑

k∈K

(

∆z
(n−1)
k

)2















(18)

γ is a positive parameter to be chosen. The relation (18) is based on the scalar
product between two consequent updates of the activities. If it is positive, which

means that the last update steps ∆z
(n)
k , ∆z

(n−1)
k were performed along similar

directions, then the next update ∆z
(n+1)
k will have a greater magnitude. If it is

negative, which means that the last two updates were performed along opposite
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directions, then we are in proximity of the solution and a greater precision is
needed, so the magnitude of the next update step is diminished.

The recursion stops when the value of the activities z(nf ) is sufficiently close
to the exact MLE solution of the inverse problem z∗. In our case we used two
different stopping criteria. The first one can be used only when testing the
performance of the algorithm on a priori known models, since it requires the
knowledge of the exact values of the activities. In this case a value of precision
ǫf > 0 is chosen, and the recursion stops when the maximum relative error over
the set of activities is less than ǫf :

ǫ(nf ) = max
k∈K

∣

∣

∣

∣

∣

z∗k − z
(nf )
k

z∗k

∣

∣

∣

∣

∣

< ǫf . (19)

The second criterion can be applied when solving the inverse problem on ex-
perimental data, since it does not assume the knowledge of the exact value of
the activities. Again a final precision value ǫ̂f > 0 is chosen, and the recursion
stops as soon as the set of equations (15) is satisfied with precision of at least
ǫ̂f :

ǫ̂(nf ) = max
k∈K

| log〈αk〉z(nf ) − log〈αk〉exp| < ǫ̂f . (20)

In order to assess the reliability and stability of this method we performed
numerical tests on the speed of convergence of the algorithm (16) to the solution
of the equation (15) on random hypergraphs.

In particular we made use of a class of random hypergraph which represents
the extension of the notion of Erdős-Rény random graph. This choice allows us
to test the performance of our algorithm over different topologies. Moreover,
real-world data is often constituted by many similar instances of the model,
whose topologies can be considered as extracted from some random distribution
(see [10] for instance).

We observed that the convergence of the algorithm is exponentially fast in
the number of iterations n (Figure 1). Moreover the distribution of the speed
of convergence does not seem to depend on the number of vertices N in the
random hypergraph (Figure 2). Anyway we stress the fact that the larger N is,
the longer it takes to compute each step of the algorithm, since the evaluation of
〈αk〉z(n) is more demanding. On the contrary the speed of convergence depends
on the intensity of the activities (Figure 3). In particular in the limit of large
polymer activity the exponential rate of convergence vanishes. This limit is
equivalent to the full-packing regime, in fact when polymer activities are high
the presence of monomers is repressed in favour of higher order particles.

Precisely, to obtain these results, we have generated data as follows:

1. A random hypergraph H = V ∪K over N vertices is generated by placing
each hyperedge independently. Each 2-edge is present with probability
p1 = 2c1/(N−1) and each 3-edge with probability p2 = 6c2/(N−1)(N−2).

2. An activity zk is assigned to each hyperedge k ∈ K. For simplicity when
generating the dataset we chose zk = z constant for all k ∈ K. Details of
this choice are specified in each case.
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3. All the possible monomer-dimer-trimer configurations α = (αk)k∈K on the
hypergraph are computed. We assign to each configuration its probability
and we evaluate the expectations 〈αk〉z .

The gradient descent algorithm was then applied, using as input parameters
〈αk〉exp = 〈αk〉z. Clearly, this choice entails that z solves eq. (15) and the

recursion converges to the value z∗ = z. We set z
(0)
k = 1 for all k ∈ K and

γ = 0.2. We used eq. (19) as stopping criterion setting ǫf = 10−10.
To conclude this subsection we notice that, according to step 1), our random

hypergraphs ensemble is defined by the probability distribution:

P (H) = p1
|E|H (1− p1)

(N2 )−|E|H p2
|F |H (1− p2)

(N3 )−|F |H . (21)

It is easy to show that this probability distribution can be derived from a
maximum entropy principle. In fact this is the probability distribution over
the set of hypergraphs with N vertices which maximises the entropy func-
tion S(H) = −

∑

H P (H) lnP (H) with a pair of ”soft” constraint, namely a
fixed average number of edges ē =

∑

H P (H)|E|H and average number of faces
f̄ =

∑

H P (H)|F |H . In particular the relation among the probabilities appear-
ing in ([? ])and those average quantities are given by:

p1 =
ē

(

N
2

) , p2 =
f̄

(

N
3

) , (22)

from which it follows that the constants c1 = ē/N , c2 = f̄ /N represent respec-
tively the average number of edges and faces per node in the hypergraph. This
random ensemble is the natural generalisation of the concept introduced in [23]
of exponential random simplicial complex to the case of hypergraphs (see also
[24, 25]).

3.3. The effects of an imitative perturbation

It is important to notice that in case B) the number of observables is two
times the number of degrees of freedom of the model defined by (3), since
the dataset contains the empirical polymer densities 〈αk〉exp and the empirical

monomer correlations 〈
∏

v∈k αv〉exp while the model is determined only by the
activities zk, k ∈ K.

As we stated in section 3.1, a possible way to deal with this overdetermined
case is to consider the Maximum Pseudo-Likelihood Estimation (MPLE). This
method can be seen as an approximation of the MLE where the joint distribution
is replaced with a suitable conditional probability: we look at the probability
to observe an occupied hyperedge conditionally on the states of all the others.
As we showed in eq. (14) the MPLE of the activities z∗∗ satisfies the following
set of |K| conditions

〈αe〉exp = z∗∗e 〈αiαj〉exp , e = {i, j} ∈ E

〈αf 〉exp = z∗∗f 〈αiαjαl〉exp , f = {i, j, l} ∈ F .
(23)
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n

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

ǫ

Figure 1: Relative error of the gradient descent algorithm: (Colour online) ǫ(n) =

|z
(n)
k

− zk|/zk versus number of iterations n (red curve, linear-log scale). The convergence is

exponentially fast in the number of iterations: to test this hypothesis we performed a linear
fit (blue line) according to the relation log ǫ(n) = −An+ B. We chose a random hypergraph
with N = 15, c1 = c2 = 1 and zk = 0.5 for all k ∈ K. The fit is performed on the data after
removing the initial 20% of iterations.

6 8 10 12 14 16 18 20

N

0.12

0.14

0.16

0.18

0.20

A

Figure 2: Exponential rate of convergence A of the gradient descent algorithm

versus number of vertices N , according to the fit log ǫ(n) = −An + B. (Colour online)
The number of vertices ranges from 5 to 20. The distribution of the velocity of convergence

does not seem to depend on the number of vertices. Anyway we stress the fact that the larger

N is, the longer it takes to compute each step of the algorithm. For each value of N we
performed 60 trials (samples) on different random hypergraphs, taking always c1 = c2 = 1
and zk = 0.5 for all k ∈ K. The red dots represent the mean values of A for each set of
trials with the same value of N . To test the accuracy of the exponential fit we computed the
correlation coefficient R: its average value and standard deviation over these 960 tests are
R = −0.945 ± 0.023.
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z

0.00
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0.10
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0.20

A

Figure 3: Exponential rate of convergence A of the gradient descent algorithm

versus polymer activity z (log-linear scale), according to the fit log ǫ(n) = −An+B. The
activity is the same for each hyperedge (zk = z ∀k ∈ K) and takes values z = 10h, h =
−1,−0.9, . . . , 1, excluding h = 0 which is by default the starting point of our algorithm. The

distribution of the rate of convergence depends on the intensity of the activity : it is constant
for z ≤ 10−0.2, then for 10−0.1 ≤ z ≤ 100.6 it splits in two regions, and for z ≥ 100.6 only the
slower region survives and the rate of convergence decreases to zero. For each value of z we
performed 40 trials on different random hypergraphs, taking always N = 20, c1 = c2 = 1. The
underlying hypothesis of exponential convergence is supported by the correlation coefficient
R = −0.968 ± 0.028 over these 800 tests.

We observe two important features: the analogy between (23) and the exact
relations (8) and the fact that these relations provide an explicit form for the
activities.

Another way to exploit the additional information given by the empirical
monomer correlations is to modify the model defined in (3) by introducing a
new family of parameters J = (Jk)k∈K that tune the monomer correlations:

µz,J(α) =
C(α)

∏

k∈K zαk exp
(

∑

k∈K Jk
∏

v∈k αv

)

ZH(z, J)
, α ∈ {0, 1}H . (24)

We denote by 〈·〉z,J the average with respect to this probability measure. While
this fact could appear as a mere technical device, it has instead a deep phe-
nomenological meaning: the monomers can indeed directly interact beyond the
hard-core repulsion, a situation largely expected in socio-technical systems due
to the peer-to-peer effect among individuals. In other words in the experiments
the presence of a coupling J between monomers cannot be excluded a priori.
For this reason in this second part of our work we have generated the empirical

polymer densities and empirical monomer correlations according to a perturbed
distribution µz,J .

The following extension of the Heilmann-Lieb identity for the partition func-
tion of the measure (24) holds:

11



ZH = Z∗
H−v +

∑

k∈K
k∋v

zk ZH−k , v ∈ V (25)

where in the partition function Z∗
H−v a monomer activity eJu∼v :=

∏

k∈K, k∋u,v e
Jk

is introduced on every vertex u which was connected to v. We call hypertree a
hypergraph H such that, after having removed the edges included in some face,
its line graph is a tree. On hypertrees the relation (25) provides the following
useful estimate:

〈αk〉z,J
〈
∏

v∈k αv〉z,J
=

zk
∏

h∈K,
|h∩k|>0

eJh
θk , k ∈ K (26)

where the term θk goes to 1 as zp e
−Jp vanishes for every polymer p ∈ K at

distance 1 from k, and even better:

1 ≤ θk ≤
∏

v∈V,
v∼k

(

1 +
∑

p∈K,
p∋v, |p∩k|=0

zp
∏

q∈K,
q∋v, |q∩k|=0

e−Jq

)

. (27)

As said before, we have generated data 〈αk〉exp, 〈
∏

v∈k αv〉exp according to
the distribution (24) in the presence of an interaction J 6= 0: the quantities
〈αk〉z,J and 〈

∏

v∈k αv〉z,J have been computed exactly on random hypergraphs,
following a procedure analogous to Section 3.2. Starting from these data we
have computed the MLE and MPLE as if the interaction was not present. We
guessed that while the two resulting estimates z∗ and z∗∗ of the activities agree
in case J = 0, they may differ when J 6= 0, and thus they may be used to probe
the presence of an interaction. To make this guess more precise, we performed
the following test, which could be applied also to real data.

• The gradient descent algorithm (16) is executed using as input 〈αk〉exp =
〈αk〉z,J . If the algorithm converges, its limit is a vector of activities z∗

such that:
〈αk〉z∗ = 〈αk〉z,J , k ∈ K . (28)

We set z
(0)
k = 1 and γ = 0.2. We used eq. (20) as stopping criterion

setting ǫ̂f = 10−5, together with a bound for the number of iterations
that stops the recursion at n = 5000 even if the precision ǫ̂f has not been
reached yet.

• The closed inversion formula (23) is applied, as if the coupling potential
was not present:

z∗∗k =
〈αk〉z,J

〈
∏

v∈k αv〉z,J
, k ∈ K . (29)

• We study the parameter

δ =
1

|K|

∑

k∈K

(

log z∗∗k − log z∗k
)

. (30)

12



For zero coupling potential δ is close to zero, since both z∗∗k and z∗k equal
the true value of the activity zk (up to the precision of the gradient descent
algorithm).

We observed that δ, together with the final precision ǫ̂, can indeed be used
as a test-parameter to understand whether the real system obeys a pure hard-
core interaction or there are other types of non-negligible interactions. In fact
it allows to distinguish between the following three regimes (Fig. 4):

• For J < 0 the gradient descent algorithm is not guaranteed to converge in
the prescribed number of iterations since the precision ǫ̂ ranges from 10−5

to 100. The value of δ is negative and its modulus grows linearly with J .

• For 0 < J < J0 the convergence of the gradient descent method is attained.
The parameter δ is close to zero, positive, and shows a non-monotonic
behaviour in J .

• For J > J0 the convergence of the gradient descent method becomes
abruptly poor and for J sufficiently large ǫ̂ is larger that 101. δ is positive
and exhibits a large variance over different random hypergraphs.

When J is positive and sufficiently large, we propose a method to estimate its
value. Compare the relations (26) for the measure µz,J with the exact relations
(8) for the measure µz. It becomes clear that if the experimental parameter ρk ≡
log

(

〈αk〉exp/〈
∏

v∈k αv〉exp
)

shows a correlation with the number of hyperedges
intersecting k, νk ≡ Card{h ∈ K, |h ∩ k| > 0}, then the system presents other
interactions beyond the hard-core one. In particular in the case of constant J
and z, the equation (26) gives

ρk(z, J) ≈ log z − J νk , k ∈ K (31)

when J Card{q ∈ K, q ∋ v, |q∩k| = 0} is sufficiently large with respect to log zp,
for all hyperedges p intersecting k and all vertices v neighbouring k. Therefore
J and z can be found by performing a linear fit between ρk and νk (Fig. 5).

4. Conclusions and Outlooks

With the purpose to investigate the possibility to discover topological in-
formation from the data space we introduced in this work a model in which
polymers are deposited on the hyperedges of an hypergraph with a probabil-
ity determined according to the hyperedges activities. The idea underlying the
model is that simple graphs are no longer able to account for the structure of
many modern socio-technical systems, such as those of virtual messaging sys-
tems or voip calls. In these systems the communications do not occur only
between pairs of users, but may involve larger groups [26]. We believe that this
context may give rise to new interesting behaviours, where topology plays a
crucial role.
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Figure 4: Tests for the presence of imitative interaction. (Colour online) On top:

Parameter δ = 1
|K|

∑

k∈K(log z∗∗
k

− log z∗
k
) evaluated through the use of both the analytic

inversion formula and the gradient descent method, as if the imitative interaction was not
present, versus imitative potential J . A value δ < 0 reveals that J < 0. On the other hand,

the order of magnitude of δ and its variance grow abruptly when J crosses a positive critical

value. On bottom: Precision ǫ̂ = maxk∈K | log〈αk〉z∗ − log〈αk〉z,J | of the gradient descent
algorithm built as if the imitative interaction was not present, versus imitative potential J
(linear-log scale). The convergence is always reached for J close to 0, while it is never reached

for J larger than a critical value. The polymer activity and the imitative potential are the
same for each hyper-edge: zk = z, Jk = J ∀ k ∈ K. For each value of J we performed 20 trials
on different random hypergraphs, taking always N = 20, c1 = c2 = 1 and z = 0.5 (blue),
z = 1 (red), z = 2 (green).
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Figure 5: Estimate of the imitative potential J. (Colour online) On top: parameter
ρk = log〈αk〉/〈

∏

v∈k αv〉 versus νk = Card{h ∈ K | |h ∩ k| > 0} for every hyperedge k in a
random hypergraph (blue dots). The polymer activity and the coupling are the same for each
hyperedge: zk = z, Jk = J ∀ k ∈ K. The test is performed on a random hypergraph taking
N = 25, c1 = c2 = 1, z = 1 and different values of J : J = 0.023, J = 0.3684, J = 0.5296.
The relation between ρk and νk is linear for J sufficiently large: a linear fit (red line) is
performed according to the relation ρk = −ανk + β. The reliability of this fit is tested by

plotting the correlation coefficient R versus J . On bottom: relative errors σJ =
∣

∣

∣

α−J
J

∣

∣

∣

(red)

and σz =
∣

∣

∣

β−log z

log z

∣

∣

∣

(blue), versus J . According to the relation (31), the slope of the fit α is

used as an estimate of the coupling J, when J is sufficiently large.
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With these possible applications in mind we tackled the inverse problem.
After finding an extension of the Heilmann-Lieb relations that fits the higher-
dimensional case, we introduced the Maximum Likelihood Estimation (MLE)
and the Maximum Pseudo-Likelihood Estimation (MPLE) solutions of the in-
verse problem. While the latter constitutes a more rough estimate but has an
explicit form in terms of experimental quantities, the former provides a more
precise but implicit solution, which can nonetheless be numerically evaluated by
the gradient descent algorithm we proposed. We found that by introducing a
variable update step size the algorithm converges with exponential precision in
the number of steps. However we stress that the time it takes to compute each
step of the algorithm grows with the size of the hypergraph, since all the ad-
missible configurations have to be computed exactly. A possible solution to this
problem could be to evaluate average quantities through Markov chain Monte
Carlo sampling. We tested the algorithm on simple instances for different values
of the parameters, and found that while the exponential convergence does not
seem to be influenced by the number of vertices in the hypergraphs, it does
depend on the values of the activities. A further analysis of this dependence
could be performed, for example with respect to the variance of the activity
distribution.

We then considered the presence of an interaction between the monomers in
the configurations. The meaning of this interactions can be understood by think-
ing to the social-technical systems that our model describes where monomer
interaction is the direct peer-to-peer effect that people share in real life, outside
the chat room. We found that a comparison between the MLE and the MPLE
solution of the inverse problem can be used to detect the presence of such an
interaction. The same comparison can moreover lead to the estimation of the
interaction magnitude in the “strong interaction” regime.

The next step and most natural continuation of this work would be the ap-
plication of such a model on real-world data. By testing the model on data we
could verify whether it is able to accurately describe the behaviour of users in
virtual messaging services and what type of predictive ability it comes with.
For instance, this could be done by measuring the Kullback-Leibler distance
between the experimental probability distribution and the probability distribu-
tion resulting from the Maximum Likelihood Estimation. In case the model is
accurate it would allow us to measure of user activities in chat rooms, and even
determine whether the system is subject to peer-to-peer monomer interactions.
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