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SECANT VARIETIES OF THE VARIETIES OF REDUCIBLE
HYPERSURFACES IN Pn

M.V. CATALISANO, A.V. GERAMITA∗, A. GIMIGLIANO, B. HARBOURNE, J. MIGLIORE,
U. NAGEL, AND Y.S. SHIN

In fond memory of A.V. Geramita, 1942–2016

Abstract. Given the space V = P(d+n−1
n−1 )−1 of forms of degree d in n variables, and

given an integer ` > 1 and a partition λ of d = d1 + · · · + dr, it is in general an open
problem to obtain the dimensions of the (`−1)-secant varieties σ`(Xn−1,λ) for the subvariety
Xn−1,λ ⊂ V of hypersurfaces whose defining forms have a factorization into forms of degrees
d1, . . . , dr. Modifying a method from intersection theory, we relate this problem to the study
of the Weak Lefschetz Property for a class of graded algebras, based on which we give a
conjectural formula for the dimension of σ`(Xn−1,λ) for any choice of parameters n, ` and
λ. This conjecture gives a unifying framework subsuming all known results. Moreover, we
unconditionally prove the formula in many cases, considerably extending previous results,
as a consequence of which we verify many special cases of previously posed conjectures for
dimensions of secant varieties of Segre varieties. In the special case of a partition with two
parts (i.e., r = 2), we also relate this problem to a conjecture by Fröberg on the Hilbert
function of an ideal generated by general forms.
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1. Introduction

Let S = k[x1, . . . , xn] =
⊕

i≥0[S]i, where k is an algebraically closed field of characteristic
zero. In 1954 Mammana [31] introduced the variety of reducible plane curves. He was seeking
to generalize work of C. Segre [39] (for conics), N. Spampinato [41] (for plane cubics) and G.
Bordiga [7] (for plane quartics) as well as other works mentioned in his ample bibliography.

Here we generalize the idea further. Let λ = [d1, . . . , dr] be a partition of d =
∑r

i=1 di,
which we will write as λ ` d, where d1 ≥ d2 ≥ · · · ≥ dr ≥ 1 and r ≥ 2.

Consider the variety Xn−1,λ ⊂ P([S]d) = PN−1 of λ-reducible forms, where N =
(
d+n−1
n−1

)
.

That is,
Xn−1,λ = {[F ] ∈ PN−1 | F = F1 · · ·Fr for some 0 6= Fi ∈ [S]di}.

The object of this paper is to study the dimension of the (` − 1)-secant variety of Xn−1,λ,
which we denote by σ`(Xn−1,λ). So σ`(Xn−1,λ) is the closure of the union of the linear spans
of all subsets of ` distinct points of Xn−1,λ. We will give a new approach to this problem.

We have

dimXn−1,λ =
r∑
i=1

(
di + n− 1

n− 1

)
− r.

Since all forms in two variables are products of linear forms, we always assume n ≥ 3,
d ≥ r ≥ 2, and ` ≥ 2. We can (and will) view a general point of Xn−1,λ as the product of
general forms in S of degrees d1, . . . , dr respectively.

Since, as it is easy to see, no hyperplane contains Xn−1,λ, ` ≤ N general points of Xn−1,λ
span a linear space of dimension `− 1 (i.e., a secant (`− 1)-plane), so by a simple parameter
count we have dim σ`(Xn−1,λ) ≤ ` · dimXn−1,λ + ` − 1. But it is possible that σ`(Xn−1,λ)
fills its ambient space PN−1; this clearly happens, for instance, if ` ≥ N . We combine the
two possibilities to obtain an upper bound for the actual dimension of σ`(Xn−1λ), typically
referred to as the expected dimension:

exp.dim σ`(Xn−1,λ) = min

{(
d+ n− 1

n− 1

)
− 1, ` · dimXn−1,λ + `− 1

}
.

The defect, δ`, is the expected dimension minus the actual dimension. When this is positive,
we say that σ`(Xn−1,λ) is defective. An important part of our work will be to identify when
σ`(Xn−1,λ) is defective and to compute the defect.

Secant and join varieties of the Veronese, Segre and Grassmann varieties have been exten-
sively studied. The recent intense activity in studying these varieties has certainly benefited
from the numerous fascinating applications in Communication Theory, Complexity Theory
and Algebraic Statistics as well as from the connections to classical problems in Projective
Geometry and Commutative Algebra. (For a partial view of these applications consider the
following references and their bibliographies: [2], [3], [8], [12], [13], [17], [29], [37], [44], [46].)

However, very little is known about the secant varieties of the varieties of reducible hyper-
surfaces. Here also there are useful applications in the study of vector bundles on surfaces
and connections to the classical Noether-Severi-Lefschetz Theorem for general hypersurfaces
in projective space (see [9] [15], [36]).

The first significant results about the secant varieties of λ-reducible forms were obtained
by Arrondo and Bernardi in [5] for the special partition λ = [1, . . . , 1] (they refer to Xn−1,λ
for this particular λ as the variety of split or completely decomposable forms). They find
the dimensions of secant varieties in this case for a very restricted, but infinite, family of
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examples. This was followed by work of Shin [42] who found the dimension of the secant
line variety to the varieties of split plane curves of every degree.

This latter result was further generalized by Abo [1], again for split curves, to a determi-
nation of the dimensions of all the higher secant varieties. Abo also dealt with some cases
of split surfaces in P3 and split cubic hypersurfaces in Pn, for any n.

In all the cases considered, the secant varieties have the expected dimension. Arrondo
and Bernardi have speculated that the secant varieties for split hypersurfaces always have
the expected dimension. We verify this for σ`(Xn−1,λ) (λ = [1, . . . , 1] ` d) as long as 2` ≤ n,
which strengthens [5, Proposition 1.8]. We also note that their speculation is a special case
of our Conjecture 1.3 (a).

The parameters for this work are n ≥ 3, ` ≥ 2 and any partition λ = [d1, . . . , dr] with
r ≥ 2 positive parts. All previous results assume d1 = 1 (i.e., the split variety case [1, 5, 42])
or n = 3 [14], or r = 2 [6, 9]. We extend all of this previous work significantly. See, for
example, Theorem 1.2, as an immediate consequence of which we obtain complete answers
in many new cases, including each of the following: for all n � 0 (in fact n ≥ 2`), fixing
any ` and an arbitrary partition λ; for all ` � 0 (in fact ` ≥

(
s+n−1
n−1

)
), fixing any n and

d2 ≥ · · · ≥ dr ≥ 1, where s = d2 + · · ·+ dr; and for all d1 � 0 (in fact d1 ≥ (s− 1)(n− 1)),
fixing any n and d2 ≥ · · · ≥ dr ≥ 1, and any ` not in the interval (n

2
, n). We also propose

a conjecture (see Conjecture 1.1), which, if true, gives a complete answer in all remaining
cases and which has led us to many of our results.

All approaches to finding the dimension of the secant varieties to a given variety X ⊂ Pn−1
begin with Terracini’s Lemma, including ours. These all require a good understanding of the
tangent space to X at a general point. Successful applications of Terracini’s Lemma begin by
identifying this tangent space as a graded piece of some relatively nice ideal (which we will
call the tangent space ideal). To apply Terracini’s Lemma, one then needs a way to deal with
the sum of tangent space ideals at a finite set of general points of X. For the Veronese, Segre
and Grassmann varieties, the quotient by this ideal sum in the appropriate polynomial ring
typically is artinian. The standard method for dealing with the sum of such ideals (which,
per se, have no geometric content) is to pass, using Macaulay duality, to a consideration of
the intersection of the perps of the tangent space ideals (see. e.g. the discussion in [22]).
In the classical cases considered above, one obtains a union of special 1-dimensional ideals
corresponding to zero dimensional projective schemes. One then uses geometric methods to
get information about the union of the schemes defined by the perps of the tangent space
ideals.

This clever use of Macaulay duality had its first notable success with the work of Alexander
and Hirschowitz, who completed (after almost one hundred years) the solution of Waring’s
Problem for general forms (see [3]). Other work in this direction for these classical varieties
can be found in [9], [13], [12], [2], [27].

In the case of the varieties of reducible hypersurfaces, the method described above no
longer works. In this case, the tangent space ideals already define very nice schemes of
dimension ≥ 0, namely arithmetically Cohen-Macaulay codimension 2 subschemes of Pn,
and their Macaulay duals are artinian! Thus, one is forced to deal with the sum of the
tangent space ideals, i.e., with the intersection of the codimension 2 schemes defined by the
tangent space ideals at general points.
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This is the novelty of our approach: to deal with this intersection we use a version of the
so-called diagonal trick from intersection theory, and we show how the so-called Lefschetz
properties come in to play in order to study improper intersections.

As we describe in detail, finding this dimension amounts to viewing the intersection of the
aforementioned codimension two subschemes in Pn as the result of consecutive hyperplane
sections of their join in Pn`−1, where the hyperplanes cut out the diagonal. The dimension of
the secant variety can then be read off from the Hilbert function in degree d of the coordinate
ring of the intersection of such schemes, although “intersection” must be suitably interpreted
in the artinian situation. Algebraically, we are interested in the Hilbert function in degree d
of S/(IP1 + · · ·+IP`

) (the IPi
being the tangent space ideals at general points; see Proposition

2.6), but the geometric notions from intersection theory and hyperplane sections guide our
approach.

A key to our method is the observation that we can replace the hyperplanes cutting out
the diagonal by truly general hyperplanes. This allows us to compute the dimension of
the secant variety σ`(Xn−1,λ) in the case where the subschemes meet properly, which occurs
precisely when 2` ≤ n. In the case of an improper intersection of the tangent spaces, i.e.
2` > n, we conjecture that the general hyperplanes induce multiplication maps that all have
maximal rank. For a single hyperplane such behavior has been dubbed the Weak Lefschetz
Property in [24]. Assuming this conjectured property of the hyperplane sections, we obtain
a formula for the dimension of the secant variety, which is surprisingly uniform. This single
formula proposes the dimension for any choice of n, ` and λ. We will establish it in some
cases. It is a conjecture in the rest, but we know of no cases of known results with which it
does not agree.

To be more precise, for 0 ≤ j ≤ d and every given `, n and partition λ of d, we define
integers aj(`, n, λ) by an explicit formula (see Definition 5.9). Our formula for the dimension
of the secant varieties is the following, which we state as a conjecture so that it can be
applied for all n, ` and λ, in addition to the many cases which we prove below.

Conjecture 1.1. Let λ = [d1, . . . , dr] be a partition of d with r ≥ 2 parts. Then:

(a) The secant variety σ`(Xn−1,λ) fills its ambient space if and only if there is some
integer j with s = d2 + · · ·+ dr ≤ j ≤ d such that aj(`, n, λ) ≤ 0.

(b) If σ`(Xn−1,λ) does not fill its ambient space, then it has dimension

dimσ`(Xn−1,λ) = ` · dimXn−1,λ + `− 1

−
∑̀
k=2

(−1)k
(
`

k

)(
d1 − (k − 1)(d2 + · · ·+ dr) + n− 1

n− 1

)

−
(
`

2

)(
2d2 − d+ n− 1

n− 1

)
− `(`− 1)

(
d1 + d2 − d+ n− 1

n− 1

)
.

The fact that this conjecture is a consequence of the indicated Lefschetz property is shown
in Theorem 5.11. Throughout this paper we use the convention that a binomial coefficient(
a
b

)
is zero if a < 0. Thus, for example, the last and the penultimate term in the above

dimension formula are zero if r ≥ 3. (A heuristic approach to the formula in Conjecture
1.1(b) can be found in Remark 3.15.)

Although stated differently, previous results imply that Conjecture 1.1 is true if n = 3
and λ = [1, . . . , 1] (see [1]), or if n = 3, λ is arbitrary, and ` = 2 (see [14]). Here, we prove
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this conjecture in further cases, most of which are summarized in the following theorem.
Note that part (b)(i) of the following result was proved in [9, Theorem 5.1] using different
language.

Theorem 1.2. Let λ = [d1, . . . , dr] be a partition of d = d1 + s into r ≥ 2 parts, where
s = d2 + · · ·+ dr. Then Conjecture 1.1 is true in the following cases:

(a) ` ≤ n
2

or ` ≥
(
s+n−1
n−1

)
;

(b) r = 2 and either
(i) ` ≤ n+1

2
, or

(ii) λ = [d− 1, 1], or
(iii) n = 3; and

(c) r ≥ 3 and n ≤ ` ≤ 1 + d1+n−1
s

.

We prove Theorem 1.2(a) in Remark 5.12(ii) and Proposition 5.13(c). See Theorem 6.8
for parts (b)(i, iii), Theorem 6.11 for part (b)(ii), and Corollary 5.15 for part (c).

We also show that if ` = n+1
2

(Proposition 5.16) or r = 2 (Proposition 6.6), then the
number predicted by Conjecture 1.1 is at least an upper bound for dim σ`(Xn−1,λ).

Notice that the dimension formula in Conjecture 1.1 involves a series of comparisons,
checking whether aj(`, n, λ) > 0 for all j = s, s + 1, . . . , d. Accordingly, it is worthwhile to
point out more explicitly some of the consequences it suggests. Again, the following is stated
as a conjecture even though in the different settings of the above theorem these results are
proven.

Conjecture 1.3. Let λ = [d1, . . . , dr] be a partition of d with r ≥ 2 parts. Then:

(a) If d1 < d2 + · · ·+ dr (and thus r ≥ 3), then σ`(Xn−1,λ) is not defective.
(b) If d1 ≥ d2 + · · ·+ dr, then the secant variety σ`(Xn−1,λ) is defective if and only if it

does not fill its ambient space.

This conjecture highlights the role of the “partition dividing hyperplane” d1 = d2+ · · ·+dr
in the space of partitions with r positive parts, as introduced in [14] and discussed here in
Remark 3.14. Of course, Conjecture 1.3 might be true even if the more specific formulation
given in Conjecture 1.1 is not. Moreover, while Conjecture 1.1 implies most of Conjecture
1.3, it is not yet clear that Conjecture 1.1 implies all of Conjecture 1.3; see Proposition 5.13
and Remark 5.14. In particular, notice that Conjecture 1.3(a) is an immediate consequence
of Conjecture 1.1, but we can show that Conjecture 1.3(b) follows from Conjecture 1.1 only
in certain cases (see Proposition 5.13).

Our results on defectiveness show unconditionally:

Theorem 1.4. Let λ = [d1, . . . , dr] be a partition of d with r ≥ 2 parts and let s = d2+· · ·+dr.
Then:

(a) If d1 < s (and hence r ≥ 3) and 2` ≤ n, then σ`(Xn−1,λ) is not defective.
(b) If d1 ≥ s and 2` ≤ n, then σ`(Xn−1,λ) is defective if and only if it does not fill its

ambient space.
(c) If ` ≥ n and d1 ≥ (n−1)(s−1), then σ`(Xn−1,λ) always fills its ambient space, while

if 2` ≤ n, then σ`(Xn−1,λ) fills its ambient space if and only if one of the following
conditions is satisfied:
(i) n = 4, ` = 2, and λ ∈ {[1, 1], [2, 1], [1, 1, 1]} or

(ii) n = 2` ≥ 6 and λ = [1, 1].
5



We give the proof near the end of Section 5.
We use our results in the case r = 2 to study the variety of reducible forms of degree d in

n variables

Xn−1,d =

b d
2
c⋃

k=1

Xn−1,[d−k,k].

We show that
dimXn−1,d = dimXn−1,[d−1,1]

and that all other irreducible components of Xn−1,d have dimension that is smaller than the
dimension of Xn−1,[d−1,1]. Thus, one can hope that Xn−1,[d−1,1] determines the dimension of
the secant variety of Xn−1,d. Indeed, we establish:

Theorem 1.5. If 2` ≤ n, then

dimσ`(Xn−1,d) = dim σ`(Xn−1,[d−1,1]).

Moreover, σ`(Xn−1,d) is defective if and only it it does not fill its ambient space.

We prove this result in Section 7 as a consequence of Theorem 7.4.
Note that the dimension of σ`(Xn−1,[d−1,1]) is known for all `, n and d (see Theorem 6.11 or

[6, Proposition 4.4]). Thus, we know exactly when σ`(Xn−1,[d−1,1]) is defective (see Theorem
7.4). We suspect that dimσ`(Xn−1,d) = dim σ`(Xn−1,[d−1,1]) is true for all n and `.

As another application we consider Segre varieties. We show that results on secant varieties
to Xn−1,λ imply non-defectivity of secant varieties to a Segre variety (see Theorem 8.4).

In Section 2 we recall the basic facts about the variety of reducible hypersurfaces and how
Terracini’s lemma is applied. We consider the coordinate ring of the join, which is arithmeti-
cally Cohen-Macaulay of codimension 2` in Pn`−1, with known minimal free resolution and
Hilbert function. We discuss how the algebra that determines the dimension of σ`(Xn−1,λ) is
obtained by successive hyperplane sections (i.e. reduction by general linear forms). As long
as these linear forms are regular elements, the intersection is proper and in Section 3 we give
formulas for the dimension and defect. (As an aside, we point out that the varieties Xn−1,λ
are not generally arithmetically Cohen-Macaulay. For example, by direct computation they
are not for n = 3 and λ either [1, 1, 1] or [1, 2], but we do not know about their secant
varieties.)

In Section 4 we summarize our results in the case ` = 2, i.e. for the secant line variety.
Proper intersection corresponds to n ≥ 4. For the remaining case, n = 3, we recall the results
of [14]. This gives us a bridge from the proper intersections to the improper intersections
and gives the idea of how the Lefschetz property is applied in general.

In Section 5 we work out, in general, the connection between the computation of the
dimension for arbitrarily large `, corresponding to improper intersections, and the study of
Lefschetz Properties. Indeed, based on experiments, we conjecture that the coordinate ring
of a certain join variety has enough Lefschetz elements if 2` > n (see Conjecture 5.8). If this
conjecture is true, then Conjecture 1.1 follows (see Theorem 5.11). However, Conjecture 1.1
is weaker than the conjecture on the existence of enough Lefschetz elements.

In Section 6 we focus on the case r = 2. We show that Conjecture 1.1 is a consequence
of Fröberg’s Conjecture on the Hilbert function of ideals generated by generic forms. In
Section 7 we study the variety of reducible forms. We conclude in Section 8 by showing how
our results imply cases of conjectures raised in [2] about defectivity of Segre Varieties.
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2. Intersections and the Dimension of Secant Varieties

After recalling some background and introducing our notation, we lay out our method
for computing the desired dimension of a secant variety. It is inspired by a technique from
intersection theory. The method will be applied in later sections, where we treat the case of
proper and improper intersections separately and carry out the needed computations.

Notation 2.1. Let S = k[x1, . . . , xn] =
⊕

i≥0[S]i be the standard graded polynomial ring,
where k is an algebraically closed field of characteristic zero. Let λ = [d1, d2, . . . , dr] be a
partition of d into r ≥ 2 parts, i.e., λ ` d, di ∈ N, d1 ≥ d2 ≥ · · · ≥ dr > 0 and

∑r
i=1 di = d.

If we set N =
(
d+n−1
n−1

)
then the variety of reducible forms in [S]d of type λ (or the variety

of reducible hypersurfaces in Pn−1 of type λ) is, as noted above:

Xn−1,λ := {[F ] ∈ P([S]d) = PN−1 | F = F1 · · ·Fr, degFi = di} .
The map ([F1], . . . , [Fr]) 7→ [F ] = [F1 · · ·Fr] induces a finite morphism

(2.1) P([S]d1)× · · · × P([S]dr) −→ Xn−1,λ,

and so we have

(2.2) dimXn−1,λ =
[ r∑
i=1

(
di + n− 1

n− 1

)]
− r.

As discussed above, given a positive integer ` ≤ N , the variety σ`(Xn−1,λ) is the subvariety
of PN−1 consisting of the closure of the union of secant P`−1’s to Xn−1,λ; for ` ≥ N , σ`(Xn−1,λ)
is simply PN−1. Following the classical terminology, σ2(Xn−1,λ) is called the secant line variety
of Xn−1,λ and σ3(Xn−1,λ) the secant plane variety of Xn−1,λ.

Our main interest in this paper is the calculation of the dimensions of the varieties
σ`(Xn−1,λ).

Remark 2.2. Notice that for n = 2 the question is a triviality since every hypersurface of
degree d in P1 is reducible of type λ = [1, 1, . . . , 1] ` d. Thus, we assume throughout n ≥ 3.

The fundamental tool for the calculation of dimensions of secant varieties is the following
celebrated result [45].

Proposition 2.3 (Terracini’s Lemma). Let P1, . . . , P` be general points on Xn−1,λ and let
TPi

be the (projectivized) tangent space to Xn−1,λ at the point Pi.

The dimension of σ`(Xn−1,λ) is the dimension of the linear span of
⋃`
i=1 TPi

.

As mentioned above, we have the following definitions.

Definition 2.4. The expected dimension of σ`(Xn−1,λ), written exp. dim(σ`(Xn−1,λ)), is

min{N − 1, ` · dimXn−1, λ + (`− 1)}.
The defect of σ`(Xn−1,λ) is

δ` = exp. dim(σ`(Xn−1,λ))− dim(σ`(Xn−1,λ)) ≥ 0.

We say that σ`(Xn−1,λ) is defective if δ` > 0.
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Remark 2.5. Thus σ`(Xn−1,λ) is defective if and only if dim σ`(Xn−1,λ) < N − 1 and
dimσ`(Xn−1,λ) < `(dim(Xn−1,λ)) + (`− 1). We will see that in some cases it will be easier to
write an expression for δ` than it will be to show that it is positive.

Clearly, to be able to effectively use Terracini’s Lemma it is essential to have a good
understanding of the tangent spaces to Xn−1,λ at general (hence smooth) points. We do that
now.

Let P = [F ] ∈ Xn−1,λ be a general point. Then F = F1 · · ·Fr where the Fi are irreducible
forms of degree di in S. Let Gi = F/Fi, and so degGi = d− di. Consider the ideal IP ⊂ S,
where IP = (G1, . . . , Gr).

Proposition 2.6. In the notation of the preceding paragraph, we have

TP = P
(

[IP ]d

)
.

Proof. This proposition is well known and proofs can be found in several places (see e.g. [9]
Prop. 3.2). �

We refer to the variety in Pn−1 defined by IP as the variety determining the (general)
tangent space to Xn−1,λ.

As an immediate corollary of Propositions 2.3 and 2.6 we have the following:

Corollary 2.7. Let P1, . . . , P` be ` general points of Xn−1,λ and I = IP1 + · · ·+ IP`
. Then

dim(σ`(Xn−1,λ)) = dimk [I]d − 1.

This means that dim(σ`(Xn−1,λ)) is determined by the Hilbert function in degree d of the
ring S/(IP1 + · · ·+ IP`

), which, when σ` does not fill its ambient space, is the coordinate ring
of the intersection of ` varieties, in Pn−1, determining tangent spaces to Xn−1,λ.

Remark 2.8. Let P1, . . . , P` be general points on Xn−1,λ. Suppose that

N − 1 ≤ ` dimXn−1,λ + (`− 1);

i.e., the expected dimension of Xn−1,λ is N − 1. Then

σ`
(
Xn−1,λ

)
is defective ⇔ dimk[S/(IP1 + · · ·+ IP`

)]d > 0.

In this case, δ` = dimk[S/(IP1 + · · ·+ IP`
)]d.

Now that we have seen the ideal that enters into the use of Terracini’s Lemma, it remains
to give a nicer description of the ideal IP determining the tangent space at the point P .

Proposition 2.9. Let P be a general point of Xn−1,λ, P = [F1 · · ·Fr] where degFi = di. Put
F = F1 · · ·Fr. Then we have

IP = (F/F1, . . . , F/Fr) =
⋂

1≤i<j≤r

(Fi, Fj).

Proof. The first equality is given in Proposition 2.6. The second equality is well known (see
for example [35], Thm. 2.3). �
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Thus the ideal IP , for a general point P ∈ Xn−1,λ, is of codimension 2 in S and is a
finite intersection of interrelated codimension 2 complete intersection ideals. Such ideals
(and their generalization to the situation where the complete intersection ideals have higher
codimension) have been studied in several papers for many different reasons (see e.g. [19],
[20], [21] and [10]).

We now derive the graded minimal free resolution of the ideal IP .

Lemma 2.10. Let R = k[Y1, . . . , Yr], M = Y1 · · ·Yr, Mi = M/Yi, where r ≥ 2. If I =

(M1, . . . ,Mr) then I =
⋂

1≤i<j≤r

(Yi, Yj) and the minimal graded free resolution of I is

0→ Rr−1(−r) A→ Rr(−(r − 1))→ R→ R/I → 0.

Proof. Consider the matrix A, defined by

At =


Y1 −Y2 0 · · · 0
Y1 0 −Y3 · · · 0
...

...
...

...
...

Y1 0 0 · · · −Yr


(r−1)×r .

The ideal generated by the maximal minors of A is I. It has codimension 2 in R. Thus, the
claim follows from the Hilbert-Burch theorem. �

Remark 2.11. Let R = k[Y1, . . . , Yr] be as above and let S = k[x1, . . . , xn]. Let F1, . . . , Fr
be general homogeneous polynomials in S of degrees d1, . . . , dr respectively. Let F =

∏r
i=1 Fi,

degF = d =
∑r

i=1 di and Gi = F/Fi, degGi = d− di, for 1 ≤ i ≤ r. Let

ϕ : R→ S

be defined by ϕ(Yi) = Fi. Then, with I as in Lemma 2.10, ϕ(I) = (G1, . . . , Gr) =⋂
1≤i<j≤r(Fi, Fj) = J .

By the generality in the choice of the Fi, J is Cohen-Macaulay of codimension 2 (see
Proposition 2.9) and its Hilbert-Burch matrix has transpose

F1 −F2 0 · · · 0
F1 0 −F3 · · · 0
...

...
...

...
...

F1 0 0 · · · −Fr


(r−1)×r .

The minimal free graded resolution of S/J is

(2.3) 0→ Sr−1(−d)→
r⊕
i=1

S(−(d− di))→ S → S/J → 0.

It is a simple consequence of this resolution that the artinian reduction of S/J is level with
socle degree d− 2 and Cohen-Macaulay type (r − 1). �

Remark 2.12. Observe that J is the ideal IP for the point P = [F ] on Xn−1,λ if we assume
d1 ≥ d2 ≥ · · · ≥ dr. In this paper the main goal is to consider sums of such ideals, i.e.
ideals of the form (G1, . . . , Gr) arising from general forms of prescribed degrees as described
above, and to compute the dimension of the component in degree d. The fact that they
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correspond to general points on Xn−1,λ is not needed for most of our computations. Thus,
to emphasize the focus on the ideals rather than the points, we will write I(1) + · · ·+ I(`) in
place of IP1 + · · ·+ IP`

when the geometric context is not needed, and retain the latter only
when the geometry is important (e.g., Remark 3.15).

Remark 2.13. Let us recall a few results about the Hilbert series of a standard graded ring.
Let A = ⊕∞i=0[A]i. The Hilbert series of A is the formal power series

HS(A) =
∞∑
i=0

(dim[A]i)t
i.

It is a simple matter to show the following two facts, which we will use often in what
follows:

(a) If L is a linear non-zerodivisor in A then

HS(A/LA) = (1− t)HS(A).

(b) HS(k[x1, . . . , xn]) =
1

(1− t)n
and HS(k[x1, . . . , xn](−a)) =

ta

(1− t)n
.

Of course (b) is a simple consequence of (a).
(c) We can apply these observations to the minimal free resolution (2.3) in Remark 2.11

in order to conclude that

(2.4) HS(S/J) =
1

(1− t)n
[
1−

r∑
i=1

td−di + (r − 1)td
]
.

(d) If A and B are graded k-algebras, then

HS(A⊗k B) = HS(A) ·HS(B).

Consider a partition λ = [d1, . . . , dr], λ ` d. In the polynomial ring k[x1, . . . , xn] choose
general homogeneous forms F1, . . . , Fr of degrees d1, . . . , dr and, as in Remark 2.11, let
F =

∏r
i=1 Fi, Gi = F/Fi and I = (G1, . . . , Gr) =

⋂
1≤i<j≤r(Fi, Fj).

Inasmuch as we are interested in the secant variety σ`(Xn−1,λ) we form ` sets of general
polynomials as above in k[x1, . . . , xn]. Call the elements of the j-th set

{Fj,1, . . . , Fj,r},
where degFj,k = dk. As in Remark 2.11, for 1 ≤ j ≤ ` form Mj =

∏r
i=1 Fj,i, and Gj,1, . . . , Gj,r

where Gj,k = Mj/Fj,k.
Set

I(j) = (Gj,1, . . . , Gj,r) =
⋂

1≤i<k≤r

(Fj,i.Fj,k), 1 ≤ j ≤ `.

Notice that each of the quotients S/I(j) has the same Hilbert function and minimal free
resolution as that of S/J given in Remark 2.11. Furthermore, each ideal I(j) defines a
variety determining the tangent space to Xn−1,λ at the point Pj = [Fj1Fj2 · · ·Fjr].

We can perform the same construction as above, but this time choosing each set of r general
polynomials in different polynomial rings, i.e., consider {Fj,1, . . . , Fj,r} as polynomials in the
ring k[xj,1, . . . , xj,n]. We can form the sum of these ideals (extended) in

T = k[x1,1, . . . , x1,n, . . . , x`,1, . . . , x`,n] ,
10



setting Ĩ = I
(e)
(1) + · · ·+ I

(e)
(`) (i.e., the sum of the extended ideals).

Theorem 2.14. The ring

B = T/Ĩ ∼= S/I(1) ⊗k · · · ⊗k S/I(`)

is Cohen-Macaulay of dimension `(n − 2). Its minimal graded free resolution over T is the
tensor product (over k) of the minimal graded free resolutions of S/I(j) over S for 1 ≤ j ≤ `.

Proof. This is a consequence of the Künneth formulas. See [33, Lemma 3.5] and its proof. �

Note that B is the coordinate ring of the join of ` varieties, each of which has codimension
2 in Pn−1, so their join is in Pn`−1. The so-called diagonal trick gives

S/(I(1) + · · ·+ I(`)) ∼= B/∆B,

where the diagonal ∆ is generated by the (` − 1)n linear forms x1,j − xi,j with 1 < i ≤ `
and 1 ≤ j ≤ n. Observe that the saturation of I(1) + · · ·+ I(`) defines the intersection of the
indicated varieties in Pn−1, provided this intersection is not empty.

A key to our approach is the fact that replacing the linear forms generating the diago-
nal by truly general linear forms gives a quotient ring with the same Hilbert function as
S/(I(1) + · · · + I(`)). To illustrate the idea, fix a polynomial ring R in m variables, and let
L ∈ R be a general linear form. Since we have a surjection R → R/(L), if {F1, . . . , Ft} is
a set of general forms in R of degrees d1, . . . , dt, then the restriction, {F̄1 . . . , F̄t}, to R/(L)
can be viewed again as a set of general forms of degrees d1, . . . , dt in m − 1 variables. Fur-
thermore, given a prescribed construction of an ideal in m variables using general forms of
prescribed degrees, the restriction to R/(L) of this ideal can be viewed as an application of
the same construction to an ideal of general forms of the same degrees but in m−1 variables.

In our setting, if [IP ]d = [(G1, . . . , Gr)]d is the vector space determining the tangent space
to Xn−1,λ at a general point P (see Proposition 2.6), then [ĪP ]d = [(Ḡ1, . . . , Ḡr)]d is the degree
d component of an ideal that determines the tangent space at a general point of the variety
Xn−2,λ. The analogous statement also holds for an ideal of the form IP1 + · · ·+ IP`

.
Returning to the above notation, let L be a set of (` − 1)n general linear forms in T .

Then we have the following useful observation.

Lemma 2.15. The algebras S/(I(1) + · · · + I(`)) and B/LB ∼= T/(L , Ĩ) have the same
Hilbert series. I.e.

HS(S/(I(1) + · · ·+ I(`))) = HS(B/LB) .

Proof. Each ideal I(j) ⊂ S corresponds to a choice of a general point on Xn−1,λ. Thus, it is
generated by the r products of r− 1 distinct forms that are created using r general forms of
degrees d1, d2, . . . , dr in variables x1, x2, . . . , xn (see Proposition 2.9). The same is true for

the summand I
(e)
(j) of Ĩ, although these forms are in a new set of variables. Since the linear

forms in L are general, the residue classes of the forms defining I
(e)
(j) modulo L are again

general forms in S. It follows that the image I
(e)
(j) of I

(e)
(j) in T/L T ' S also corresponds to a

general point on Xn−1,λ. Thus, the ideals I(1) + · · ·+ I(`) and I
(e)
(1) + · · ·+ I

(e)
(`) have the same

Hilbert function and hence the same Hilbert series. �
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Remark 2.16. Lemma 2.15 is, in a sense, the key to the results in this paper. In combination
with Corollary 2.7 it shows that computing the dimension of σ`(Xn−1,λ), for arbitrary n, ` and
λ, is equivalent to finding the coefficient of td in the Hilbert series of B/LB. We emphasize
here that the only requirement for the linear forms in L is that they be general. We do
not need them to be regular elements. The next section will handle the case where they are
regular elements, and subsequent sections deal with the case where some of the linear forms
are not regular elements.

For our discussion of dimk[B/LB]d and more generally the Hilbert series of B/LB, it is
helpful to consider two cases. We refer to them as proper and improper intersections.

Consider varieties V1, . . . , Vs ⊂ Pn−1. Then their intersection is defined by the saturation
of IV1 + · · ·+ IVs and satisfies

codim(IV1 + · · ·+ IVs) ≤ codim IV1 + · · ·+ codim IVs .

Abusing notation slightly (in the case where codim(IV1 + · · ·+ IVs) = n, i.e., the intersection
is the empty set), we say that the varieties V1, . . . , Vs ⊂ Pn−1 intersect properly if

codim(IV1 + · · ·+ IVs) = codim IV1 + · · ·+ codim IVs .

Otherwise, they intersect improperly.
In particular, this means that, fixing n and the partition λ, if the intersection of the

varieties V (I(1)), . . . , V (I(`)) is the empty set for some ` = `0, then these varieties intersect
improperly for all ` > `0.

We close this section with a fact we will have opportunities to apply later. We can
partially order partitions of an integer d > 0 as follows. Given partitions λ1 = [d1, . . . , dp]
and λ2 = [e1, . . . , eq] of the same integer d > 0, write λ1 ≥ λ2 if for each i ≥ 0 we have∑

j≤i dj ≥
∑

j≤i ej (where we regard dj and ej as being 0 if j is out of range). Write λ1 > λ2
if λ1 ≥ λ2 but

∑
j≤i dj >

∑
j≤i ej for some i. So, for example, if q > p, then either λ1 and λ2

are incomparable (as happens with λ1 = [4, 3, 1] and λ2 = [5, 1, 1, 1]) or λ1 > λ2 (as happens
with λ1 = [5, 2, 1] and λ2 = [5, 1, 1, 1]).

Lemma 2.17. Let λ1 = [d1, . . . , dp] and λ2 = [e1, . . . , eq] be partitions of the same integer d
with λ1 > λ2. If n ≥ 3, then dimXn−1,λ1 > dimXn−1,λ2.

Proof. Let u be the least i such that di > ei. (There must be such an i since di ≤ ei for all
i implies

∑
j≤i dj ≤

∑
j≤i ej for all i.) Note that if u > 1, then eu−1 = du−1 ≥ du > eu and∑

j≤u dj >
∑

j≤u ej.

Next, let v be the least i > u such that
∑

j≤i dj =
∑

j≤i ej. (There must be such an i

since both sums eventually are equal to d.) Note that if v < q, then ev > ev+1. This is
because if v < q, then (by definition of v and the fact that

∑
j≤u dj >

∑
j≤u ej) we have∑

j≤v−1 dj >
∑

j≤v−1 ej, but
∑

j≤v dj =
∑

j≤v ej, so ev > dv, and
∑

j≤v+1 dj ≥
∑

j≤v+1 ej, so
dv ≥ dv+1 ≥ ev+1.

Now let λ3 = [f1, . . . , fr] where fu = eu + 1, fv = ev− 1, and otherwise fj = ej. Then fj is
nondecreasing since ej is and either u = 1 or fu−1 = eu−1 ≥ eu + 1 = fu, and either v = q or
fv = ev − 1 ≥ ev+1 = fv+1. Moreover,

∑
j≤i dj ≥

∑
j≤i fj ≥

∑
j≤i ej is true for all i. It holds

for i < u since fj = ej = dj in this range. It holds for u ≤ i < v since
∑

j≤i dj >
∑

j≤i ej but

1 +
∑

j≤i ej =
∑

j≤i fj in this range. And it holds for i ≥ v, since
∑

j≤i ej =
∑

j≤i fj in this
range.
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Thus λ1 ≥ λ3 > λ2, so it suffices by induction to show dimXn−1,λ3 > dimXn−1,λ2 . Writing
each fj in terms of ej, this is equivalent to showing

(
eu+1+n−1

n−1

)
+
(
ev−1+n−1

n−1

)
− 2 >

(
eu+n−1
n−1

)
+(

ev+n−1
n−1

)
− 2. This in turn is equivalent to(

eu+1+n−2
n−2

)
=
(
eu+n−1
n−2

)
=
(
eu+n
n−1

)
−
(
eu+n−1
n−1

)
>
(
ev+n−1
n−1

)
−
(
ev−1+n−1

n−1

)
=
(
ev−1+n−1

n−2

)
=
(
ev+n−2
n−2

)
,

which is true because
(
j+n−2
n−2

)
is a strictly increasing function of j ≥ 0 if n− 2 ≥ 1. �

We now have:

Corollary 2.18. Let λ = [d1, . . . , dr] be any partition of d with r ≥ 2, and let λ2 =
[d1, 1, . . . , 1] also be a partition of d. Assume n ≥ 3. If λ is neither λ2 nor [d − 1, 1],
then

dimXn−1,λ2 < dimXn−1,λ < dimXn−1,[d−1,1].

Proof. This follows from Lemma 2.17 and the fact that λ2 < λ < [d− 1, 1]. �

Notice that a result analogous to Lemma 2.17 is not true for the lexicographic order. For
example, λ1 = [5, 4, 1, 1, 1, 1] > [5, 3, 3, 2] = λ2 in the lexicographic order, but dimX2,λ1 =
42 < 43 = dimX2,λ2 . Observe that λ1 and λ2 are not comparable in the partial order used
in Lemma 2.17.

3. Proper Intersections

In this section we focus on the case where the varieties determining tangent spaces to
Xn−1,λ at ` general points meet properly. Our main result is Theorem 3.5. The case of
improper intersections is the subject of a later section.

We first show that the ` varieties determining tangent spaces intersect properly if ` is
small enough.

Proposition 3.1. Assume 2` ≤ n. Then:

(a) The (`− 1)n general linear forms in L are a B-regular sequence.
(b) The varieties defined by I(1), . . . , I(`) intersect properly, that is,

codim(I(1) + · · ·+ I(`)) = 2`.

Proof. By Theorem 2.14, the algebra B is Cohen-Macaulay of dimension `(n − 2). The
assumption on ` guarantees (`− 1)n ≤ `(n− 2). Hence L is a regular sequence and B/LB
has dimension n− 2`. Now Lemma 2.15 gives codim(I(1) + · · ·+ I(`)) = 2`. �

Remark 3.2. If ` ≤ n
2
, then the minimal free graded resolution of S/(I(1) + · · · + I(`)) has

the same graded Betti numbers as the minimal free graded resolution of T/Ĩ since forming
a quotient by factoring with a regular sequence does not change the graded Betti numbers
of the resolution modules.

Remark 3.3. Using the isomorphism of graded modules (see Theorem 2.14)

T/Ĩ ∼= S/I(1) ⊗k · · · ⊗k S/I(`),

it follows that HS(T/Ĩ) = (HS(S/J))`, where J is as given in Remark 2.11.
13



Furthermore, if 2` ≤ n, Proposition 3.1(a), Remark 2.13(d), and Lemma 2.15 give

HS(S/(I(1) + · · ·+ I(`))) = (1− t)n(`−1) ·HS(T/Ĩ)
= (1− t)n(`−1) · [HS(S/J)]`.

Putting this together with Equation (2.4) in Remark 2.13 we obtain

HS(k[x1, . . . , xn]/(I(1) + · · ·+ I(`))) =
1

(1− t)n

[
1−

r∑
i=1

td−di + (r − 1)td

]`
.

Rewriting this last expression we have, if 2` ≤ n, that

HS(I(1) + · · ·+ I(`)) =
1

(1− t)n
− 1

(1− t)n

[
1−

r∑
i=1

td−di + (r − 1)td

]`
.

If we now put together Corollary 2.7 and Remark 3.3 we obtain:

Theorem 3.4. Let λ ` d, λ = [d1, . . . , dr] and suppose that 2` ≤ n. Put

A = k[x1, . . . , xn]/(I(1) + · · ·+ I(`)).

Then

HS(A) =
1

(1− t)n

[
1−

r∑
i=1

td−di + (r − 1)td

]`
.

Moreover, if ad denotes the coefficient of td in HS(A), then

dimσ`(Xn−1,λ) =

(
d+ n− 1

n− 1

)
− ad − 1.

We now compute the coefficient ad, which gives the main result of this section. Although
it is not obvious that the right-hand side of the formula for dimσ`(Xn−1,λ) given in Theorem

3.5 is less than or equal to
(
d+n−1
n−1

)
− 1, this follows from the fact that the right-hand side is(

d+n−1
n−1

)
− ad − 1, since ad = dimk[A]d.

Theorem 3.5. Let λ ` d, λ = [d1, . . . , dr] with r ≥ 2. If 2` ≤ n then:

dimσ`(Xn−1,λ) = ` · dimXn−1,λ + `− 1

−
∑̀
k=2

(−1)k
(
`

k

)(
d1 − (k − 1)(d2 + · · ·+ dr) + n− 1

n− 1

)
−
(
`

2

)(
2d2 − d+ n− 1

n− 1

)
− `(`− 1)

(
d1 + d2 − d+ n− 1

n− 1

)
.

Moreover, σ`(Xn−1,λ) fills its ambient space if and only if one of the following conditions
is satisfied:

(i) n = 4, ` = 2, and λ ∈ {[1, 1], [2, 1], [1, 1, 1]} or
(ii) n = 2` ≥ 6 and λ = [1, 1].
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Proof. Let P1, . . . , P` be general points on Xn−1,λ and set

A = k[x1, . . . , xn]/(IP1 + · · ·+ IP`
).

Then we have seen in Theorem 3.4 that

(3.1) HS(A) =
1

(1− t)n

[
1−

r∑
i=1

td−di + (r − 1)td

]`
.

Observing that

2(d− d1) + (d− d2) ≥ 2d2 + (d1 + d3 + · · ·+ dr) > d,

we get[
1−

r∑
i=1

td−di + (r − 1)td

]`
=

[
1−

r∑
i=1

td−di

]`
+ (r − 1)` · td + · · ·

= 1− `
r∑
i=1

td−di +
∑̀
k=2

(−1)k
(
`

k

)
· tk(d−d1)

+`(`− 1) · td−d1+d−d2 +

(
`

2

)
· t2(d−d2) + (r − 1)` · td + · · ·

where only the terms whose exponent of t are potentially at most d have been written out.
Using also

1

(1− t)n
=
∑
j≥0

(
j + n− 1

j

)
· tj,

we get from Equation (3.1)

HS(A) =

[
1−

r∑
i=1

td−di + (r − 1)td

]`
·

[∑
j≥0

(
j + n− 1

j

)
· tj
]
.

The coefficient of td in HS(A) is

dimk[A]d =

(
d+ n− 1

n− 1

)
− `

r∑
i=1

(
di + n− 1

n− 1

)
+ (r − 1)`

+
∑̀
k=2

(−1)k
(
`

k

)(
d1 − (k − 1)(d2 + · · ·+ dr) + n− 1

n− 1

)

+

(
`

2

)(
2d2 − d+ n− 1

n− 1

)
+ `(`− 1)

(
d1 + d2 − d+ n− 1

n− 1

)
.
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This gives

dimσ`(Xn−1,λ) = −1 + dimk[I(1) + · · ·+ I(`))]d

= −1 + `
r∑
i=1

(
di + n− 1

n− 1

)
− (r − 1)`

−
∑̀
k=2

(−1)k
(
`

k

)(
d1 − (k − 1)(d2 + · · ·+ dr) + n− 1

n− 1

)
−
(
`

2

)(
2d2 − d+ n− 1

n− 1

)
− `(`− 1)

(
d1 + d2 − d+ n− 1

n− 1

)
.

Then using Formula (2.2), we get

dimσ`(Xn−1,λ) = ` · dimXn−1,λ + (`− 1)

−
∑̀
k=2

(−1)k
(
`

k

)(
d1 − (k − 1)(d2 + · · ·+ dr) + n− 1

n− 1

)
−
(
`

2

)(
2d2 − d+ n− 1

n− 1

)
− `(`− 1)

(
d1 + d2 − d+ n− 1

n− 1

)
,

as claimed.
It remains to show the characterization, for 2` ≤ n, of when σ`(Xn−1,λ) fills its ambient

space.
This clearly occurs if and only if [A]d = 0. If 2` < n, then [A]d cannot be zero because A

is not artinian as dimA = n− 2`.
Let n = 2`. In this case we can write

HS(A) =

[
1

(1− t)2`

(
1−

r∑
i=1

td−di + (r − 1)td

)]`
.

Remark 2.11 implies that the artinian reduction of S/J is level of socle degree d− 2. Hence,
each factor

1

(1− t)2

(
1−

r∑
i=1

td−di + (r − 1)td

)
is a polynomial of degree d − 2. It follows that HS(A) is a polynomial of degree `(d − 2).
Since A is artinian, this shows that [A]d = 0 if and only if `(d− 2) < d. This is equivalent to

d < 2 +
2

`− 1
.

If ` = 2 (hence n = 4), then we can have d = 2 or 3 and so λ can be [1, 1], [2, 1] or [1, 1, 1].
If ` > 2 then we must have d = 2 and λ = [1, 1]. �

Remark 3.6. Note that dimσ`(Xn−1,λ) < N −1 < `(dimk(Xn−1,λ))+ `−1 can occur (where

N =
(
d+n−1
n−1

)
), as happens, for example, when n = 4, λ = [2, 2] and ` = 2. Thus, when

σ`(Xn−1,λ) does not fill its ambient space, the defect in Theorem 3.5 need not be given by∑`
k=2(−1)k

(
`
k

)(
d1−(k−1)(d2+···+dr)+n−1

n−1

)
+
(
`
2

)(
2d2−d+n−1

n−1

)
+ `(`− 1)

(
d1+d2−d+n−1

n−1

)
.
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In general one must use∑`
k=2(−1)k

(
`
k

)(
d1−(k−1)(d2+···+dr)+n−1

n−1

)
+
(
`
2

)(
2d2−d+n−1

n−1

)
+ `(`− 1)

(
d1+d2−d+n−1

n−1

)
− ε,

where ε = max(0, `(dimk(Xn−1,λ)) + `− 1− (N − 1)).

Remark 3.7. Observe that the last term in the formula of Theorem 3.5 is zero if and only
if r ≥ 3 and that the penultimate term is zero unless r = 2 and d1 = d2.

Remark 3.8. There is an interesting way to interpret the formula in Theorem 3.5.
Let I ⊂ S be an ideal generated by ` general forms of degree s = d2 + · · · + dr, where

` ≤ n. Let Syz be the module of first syzygies of I , i.e., the sequence

0 −→ Syz −→ S(−s)` −→ I −→ 0

is exact.
From the Koszul complex we obtain the following resolution of Syz,

(3.2) 0→ S(−`s)(
`
`) → · · · → S(−3s)(

`
3) → S(−2s)(

`
2) → Syz→ 0

and so

(3.3) dimk[Syz]d =
∑̀
k=2

(−1)k−1
(
`

k

)(
d− ks+ n− 1

n− 1

)
.

Using Remark 3.8 and Theorem 3.5 we get

Corollary 3.9. Let 2` ≤ n and λ = [d1, . . . , dr] ` d. Let I ⊂ S be an ideal generated by `
general forms of degree s = d2 + · · ·+ dr and let Syz be the first syzygy module of I .

Then

dimσ`(Xn−1,λ) = ` dimXn−1,λ + (`− 1)− dimk[Syz]d

−
(
`

2

)(
2d2 − d+ n− 1

n− 1

)
− `(`− 1)

(
d1 + d2 − d+ n− 1

n− 1

)
.

Remark 3.10. It is immediate from Corollary 3.9 that if r ≥ 3 then

dimσ`(Xn−1,λ) = ` dimXn−1,λ + (`− 1)− dimk[Syz]d

and if r = 2 and d1 > d2 then

dimσ`(Xn−1,λ) = ` dimXn−1,λ + (`− 1)− dimk[Syz]d − `(`− 1).

We now discuss the defectivity of σ`(Xn−1,λ) if 2` ≤ n. We note that we state additional
results in the case ` = 2 without this restriction on n in Section 4.

For convenience, we consider the case r = 2 separately.

Theorem 3.11. Let r = 2 with ` ≤ n
2

and λ = [d1, d2]. Then σ`(Xn−1,λ) fills its ambient
space if and only if n = 2` and λ = [1, 1], or n = 4, ` = 2 and λ = [2, 1].

In all other cases, σ`(Xn−1,λ) is defective and the defect is

δ` =

{
2`(`− 1)− ε if d1 = d2, and

`(`− 1)− ε+ dimk[Syz]d if d1 > d2,

where an explicit formula for dimk[Syz]d is given in (3.3), and

ε = max{0, ` · dimk(Xn−1,λ) + `− 1− (N − 1)}.
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Proof. Theorem 3.5 implies the first claim, and that σ`(Xn−1,λ) does not fill its ambient space
in all other cases. Keeping Remark 3.6 in mind, we get δ` for the case that d1 = d2 from
Theorem 3.5, and from Remark 3.10 for the other case. �

Remark 3.12. The paper [9] solves the problem of determining when σ`(Xn−1,λ) fills its
ambient space in the case when r = 2 and 2` ≤ n+ 1, in quite different language. We should
point out, first, that their r is our ` and their n is our n−1. Most of the cases that they need
to consider satisfy 2` = n + 1, and so do not overlap with Theorem 3.11 (but see Theorem
6.8 (a)). Nevertheless, the second sentence of Theorem 3.11 follows from Theorem 5.1 of [9].
We included it above for reference and because it is such an easy consequence of our current
approach.

Theorem 3.13. Let λ ` d, λ = [d1, . . . , dr], where r ≥ 3. Assume 2` ≤ n.

(a) If d1 < d2 + · · ·+ dr, then

dimσ`(Xn−1,λ) = ` · dimXn−1,λ + (`− 1) ≤ N − 1

and σ`(Xn−1,λ) is not defective.
(b) If d1 ≥ d2 + · · ·+ dr, then σ`(Xn−1,λ) is defective, with defect

δ` = dimk[Syz]d − ε,
where dimk[Syz]d is given explicitly in (3.8) and ε is as given in Remark 3.6.

Proof. We begin with (a). The proof is immediate from Theorem 3.5 since, as partly noted
in Remark 3.7, all the summands in that formula vanish except for ` · dimXn−1,λ + (`− 1).

As for (b), Theorem 3.5 shows that σ`(Xn−1,λ) does not fill its ambient space. Thus, if
N − 1 ≤ `(dimXn−1,λ) + `− 1, then σ`(Xn−1,λ) is defective, and using Remarks 3.6 and 3.10
we see the defect is δ` = dimk[Syz]d − ε. Suppose now that N − 1 > `(dimXn−1,λ) + ` − 1,
so ε = 0 Hence, Remark 3.10 gives that the defect is

δ` = dimk[Syz]d = dimk[Syz]d − ε.
It remains to show that it is positive. However, Syz is a submodule of a free module,
and the generators of Syz have degree 2(d2 + · · · + dr) ≤ d (see (3.2)). We conclude that
dimk[Syz]d > 0, and so σ`(Xn−1,λ) again is defective. �

Remark 3.14. Theorems 3.11 and 3.13 give us our first view of the fact that the hyperplane
d1 = d2 + · · · + dr in Nr separates two very different kinds of behaviors with respect to
defectivity, when [d1, . . . , dr] = λ ` d is a partition of d into r ≥ 2 parts. This was observed
for n = 2 in [14], and it will recur frequently in this paper. As a result, we will follow [14] in
referring to this as the partition dividing hyperplane in Nr.

Remark 3.15. The formula for dimσ`(Xn−1,λ) given in Conjecture 1.1(b) and Theorem 3.5
comes from Corollary 2.7 after interpreting dimk[IP1 + · · ·+IP`

]d = dimk([IP1 ]d+ · · ·+[IP`
]d).

The simplest case occurs when the spaces [IPi
]d meet pair-wise in just 0. In that case

dimk([IP1 ]d + · · ·+ [IP`
]d) = dimk[IP1 ]d + · · ·+ dimk[IP`

]d = `(dimk[IP1 ]) = `(1 + dimXn−1,λ)
so dim σ`(Xn−1,λ) = `(dimXn−1,λ) + `− 1.

Often the pairs will not meet only in 0. To consider that case, we set i = {i1, . . . , ij} for
1 ≤ i1 < · · · < ij ≤ ` and say |i| = j. We then define Vi = ∩t∈i[IPt ]. For 1 ≤ u ≤ `, let
vu =

∑
|i|=u dimVi, so v1 = dimk[IP1 ]d + · · · + dimk[IP`

]d, v2 is the sum of the dimensions of
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the pair-wise intersections of the [IPi
]d, v3 is the sum of the triple intersections, and so on.

Inclusion-exclusion now gives dimk([IP1 ]d + · · ·+ [IP`
]d) =

∑
1≤u≤`(−1)u+1vu.

Let’s look at this in the case that λ is such that d1 ≥ s = d2 + d3 + · · · + dr; i.e. λ
is above the “partition dividing hyperplane” in Nr. This is an example for which it is not
possible that [IPi1

]d ∩ [IPi2
]d = 0 for i1 6= i2. To see this, say each Pj corresponds to the form

Fj,1Fj,2 · · ·Fj,r. Then IPi
∩ IPj

will, for every i, j ∈ {1, . . . , `}, i 6= j, contain all the products
of the type: Fi,2 · · ·Fi,rFj,2 · · ·Fj,rG, where G is any form of degree d − 2s = d1 − s. Thus

dimk[IPi1
]d∩ [IPi2

]d ≥
(
d−2s+n−1

n−1

)
for each pair i1 6= i2, so v2 ≥

(
`
2

)(
d−2s+n−1

n−1

)
. Moreover, when

r = 2, IPi
∩ IPj

will also contain the forms F1,iF2,j, for all i 6= j ∈ {1, . . . , `} so in this case

v2 ≥
(
`
2

)(
d−2s+n−1

n−1

)
+ `(`− 1). If r = 2 and d1 = d2, we also have F1,iF1,j in the intersection,

so v2 ≥
(
`
2

)(
d−2s+n−1

n−1

)
+ `(`− 1) +

(
`
2

)
.

Similarly, if d1 ≥ 2s, then dimk[IPi1
∩ IPi2

∩ IPi3
]d ≥

(
d−3s+n−1

n−1

)
, since

Fi1,2 · · ·Fi1,rFi2,2 · · ·Fi2,rFi3,2 · · ·Fi3,rH ∈ [IPi1
∩ IPi2

∩ IPi3
]d

for any H ∈ Sd−3s. Hence v3 ≥
(
`
3

)(
d−3s+n−1

n−1

)
. In the same way, if d1 ≥ ks, then vk ≥(

`
k

)(
d−ks+n−1

n−1

)
.

If the lower bounds on each vu above were to equal the corresponding vu, then dimk([IP1 ]d+
· · · + [IP`

]d) =
∑

1≤u≤`(−1)u+1vu becomes precisely the formula given in Conjecture 1.1(b)
and proved in a special case in Theorem 3.5. Of course, because cancellations may occur in
an alternating sum, it is possible for the formula in Conjecture 1.1(b) to hold even if some
of the lower bounds were to be strictly less than their corresponding vu.

4. The Secant Line Variety and Passage to Improper Intersections

A consequence of the work done up to this point is that if n ≥ 4 we have the following
result for the secant line variety of the variety of reducible forms of prescribed type:

Theorem 4.1. Assume ` = 2 and n ≥ 4. Then, for all partitions λ = [d1, . . . , dr] of d with
r ≥ 2:

(a)

dimσ2(Xn−1,λ) = 2 dimXn−1,λ + 1−
(
d1 − (d2 + · · ·+ dr) + n− 1

n− 1

)
−
(

2d2 − d+ n− 1

n− 1

)
− 2

(
d1 + d2 − d+ n− 1

n− 1

)
;

(b) σ2(Xn−1,λ) fills its ambient space if and only if λ ∈ {[1, 1], [2, 1], [1, 1, 1]} and n = 4;
(c) if σ2(Xn−1,λ) does not fill its ambient space, then σ2(Xn−1,λ) is not defective if and

only if d1 < d2 + · · ·+ dr; and
(d) if σ2(Xn−1,λ) is defective, then the defect is(
d1 − (d2 + · · ·+ dr) + n− 1

n− 1

)
+

(
2d2 − d+ n− 1

n− 1

)
+ 2

(
d1 + d2 − d+ n− 1

n− 1

)
− ε,

where ε is as given in Remark 3.6.

Proof. Parts (a) and (b) are immediate from Theorem 3.5. Theorem 1.4 gives part (c). Claim
(d) is a consequence of (a). �
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Notice that Theorem 4.1 assumes n ≥ 4, since ` = 2 but it relies on results that assume
n ≥ 2`. The main purpose of this section is to understand what is needed to pass beyond
the condition 2` ≤ n with our approach. We begin with a review of the main results of [14],
since that paper gives a careful analysis of the case ` = 2, n = 3 using entirely different
methods. Then we will see what would be needed in order to pass from the results of
the previous section to this case. Having the essential idea in hand, subsequent sections
of this paper will carry out the calculations. The main result is a single, explicit (albeit
complicated) conjectured formula for the dimension of the secant variety for any choice of
n, λ and ` (see Conjecture 1.1 and Theorem 5.11). In particular, the results of the previous
sections agree with this conjecture. We are then able to give many consequences, some
proven unconditionally, some conjectural.

So first we recall the results of [14], which in particular confirm the importance of the
“partition dividing hyperplane” mentioned in Remark 3.14. We will see that, in general,
the partitions “below” the hyperplane (i.e., those partitions for which d1 < d2 + · · · + dr)
behave quite differently from those “above” the hyperplane (i.e., those partitions for which
d1 ≥ d2 + · · · + dr). In fact, we expect this to be true in all cases (see Conjecture 1.3 and
Proposition 5.13).

Propositions 4.2 and 4.3 can be deduced easily from the results of [14]. We see that
the condition for defectivity when r ≥ 6 is straightforward, but there are exceptions when
2 ≤ r < 6.

Proposition 4.2. Let n = 3 with λ = [d1, . . . , dr] ` d a partition of d into r ≥ 6 parts and
s = d2 + · · ·+ dr. Set

p =
∑

2≤i<j≤r

didj.

(a) If d1 ≥ s , then σ2(X2,λ) is always defective, and the defect is

(4.1) min

{(
d1 − s+ 2

2

)
, 2p− 3s

}
.

(b) If d1 < s, then
dim (σ2(X2,λ)) = 2 dim(X2,λ) + 1,

and hence σ2(X2,λ) is not defective.

Proposition 4.3. Let n = 3 with λ = [d1, . . . , dr] ` d a partition of d into 2 ≤ r < 6 parts
and let s = d2 + · · ·+ dr.

(a) If r = 2, then the secant line variety fills its ambient space, and so it is never
defective.

(b) For the following partitions the secant variety σ2(X2,λ) fills its ambient space and so
the defect is zero:
• r = 3 and λ ∈ {[d1, d2, 1], [d1, 2, 2], [d1, 3, 2], [d1, 4, 2], [d1, 5, 2], [d1, 6, 2], [d1, 3, 3]};
• r = 4 and λ ∈ {[d1, 1, 1, 1], [d1, 2, 1, 1], [d1, 3, 1, 1], [d1, 4, 1, 1]};
• r = 5 and λ = [d1, 1, 1, 1, 1].

(c) Apart from the partitions described above, if d1 ≥ s and r ≥ 3, then σ2(X2,λ) is
always defective. In this case the defect is equal to (4.1) above.

(d) If d1 < s then σ2(X2,λ) is never defective. Apart from the partitions described in (b),
the secant line variety has dimension 2 dim(X2,λ) + 1.

20



Example 4.4. Consider λ = [2, 2, 2, 1]. This partition has d1 < s and so we are below the
partition dividing hyperplane. By Proposition 4.3(d), dim σ2(X2,λ) = 2 dimX2,λ + 1 and a
computation shows that 2 dimX2,λ + 1 = N − 1, hence σ2(X2,λ) fills its ambient space for
this example.

Remark 4.5. In case ` = 2, λ ` d, λ = [d1, . . . , dr], with d1 = s we can show that the
only time that σ2(X2,λ) is a hypersurface in its ambient space is when λ = [9, 7, 2], [5, 2, 2, 1]
and [7, 5, 1, 1]. It would be interesting to find the equations of these hypersurfaces. These
are all defective secant line varieties, and up to this point whenever we have been able to
find equations for such defective secant varieties they have been determinants. Is that the
situation in this case as well?

Now fix n = 3 and ` = 2. Then the codimension of σ2(X2,λ) is given by
dimk[S/(IP1 + IP2)]d (see Corollary 2.7). By Lemma 2.15 and Theorem 2.14, the latter

is equal to dimk[B/LB]d, where B = T/(I
(e)
(1) + I

(e)
(2)) and L ⊂ T is a regular sequence com-

prised of (` − 1)n = 3 general linear forms. By Remark 3.3, we know the Hilbert function
of B. Thus, the important question now is to determine the relation between the Hilbert
function of B and that of B/LB.

Since dimB = `(n − 2) = 2 (Theorem 2.14), the first two linear forms in L form a
B-regular sequence by Proposition 3.1. Say L = {L1, L2, L3} and L1, L2 form a regular
sequence. Thus we have to find the Hilbert function after reducing by one more general
linear form, L3. Let L ′ = {L1, L2} and let B′ = B/L ′B.

Note that there is an exact sequence

(4.2) B′(−1)
×L3−→ B′ → B′/L3B

′ → 0.

Thus, in order to determine the Hilbert function of B/LB ∼= B′/L3B
′ it is enough to

know that ×L3 has maximal rank at each degree. This is exactly what is provided by the
Weak Lefschetz Property, as described in the next section. It is the basis for the remaining
calculations and the general formulae that they give.

As an example, let us consider a case mentioned in Remark 4.5 and verify that if λ =
[9, 7, 2], and if the maximal rank property holds for B′, then our results of the previous
sections imply that σ2(X2,λ) is a hypersurface. Using Remark 3.3, we get for the Hilbert
series of B′

HS(B′) = (1− t)2 ·HS(B)

=
(1− t)6

(1− t)4
·HS(B)

=
1

(1− t)4
[
1− t16 − t11 − t9 + t18

]2
= 1 + 4t+ · · ·+ 634t17 + 635t18 + · · ·+ 4t32.

Thus,
h17 = dimk[B

′]17 = 634 and h18 = dimk[B
′]18 = 635.

Note that d = 18 in our example. If multiplication by L3 on B′ has maximal rank, we obtain
(see Sequence (4.2)) that for S = k[x1, x2, x3],

dimk[S/(IP1 + IP2)]d = dimk[B
′/L3B

′]d = max{hd − hd−1, 0} = 1.
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Since this is precisely the codimension of σ2(X2,λ), we see that under the hypothesis that
multiplication by L3 has maximal rank we obtain that indeed σ2(X2,λ) is a hypersurface in
its ambient space.

For arbitrary n and ` > n
2
, we will need that the maximal rank property holds sequentially,

using the right number of linear forms, until we arrive at n variables. In the following sections
we make use of this idea to give a general formula for the dimensions of the secant varieties
(see Theorem 5.11 and Conjecture 1.1), and as a consequence we describe the defective
cases, assuming that suitable maximal rank properties hold. In many cases we know for
different reasons that these maximal rank properties do hold, and in those cases we obtain
unconditional (not conjectural) formulas. Given the many special cases and the seemingly
disparate results covering them that have been found up to now, we were astonished to find a
simple unifying principle that produces a single conjectural formula for the exact dimension
of the secant variety for any given n, λ and `.

5. Improper Intersections and Lefschetz properties

We now consider the case in which the ` varieties V (I(j)) (1 ≤ j ≤ `) that determine
tangent spaces at ` general points to Xn−1,λ intersect improperly. By Proposition 3.1(b), their
intersection is proper if 2` ≤ n. However, if 2` > n then we will see that the intersection is
improper, so in particular the diagonal trick from intersection theory becomes more difficult
to apply. To make up for this, we will use Lefschetz properties as formally introduced in [24]
in order to determine dimk[S/(I(1) + · · ·+ I(`))]d. Because we are dealing with general forms,
these properties are known in some cases, and we conjecture them in the remaining cases.

More precisely, we conjecture that a general artinian reduction of the coordinate ring of
the join of V (I(1)), . . . , V (I(`)) has enough Lefschetz elements (see Conjecture 5.8 below).

We continue to use the notation introduced above. In particular,

B = S/I(1) ⊗k · · · ⊗k S/I(`) ∼= T/Ĩ

is the coordinate ring of the join of V (I
(e)
(1)), . . . , V (I

(e)
(`) ) in P`n−1.

As above, let L be a set of (`− 1)n general linear forms in T . Let L ′ ⊂ L be a subset
consisting of min{`(n− 2), (`− 1)n} such forms. Thus,

L ′ =

{
L if ` ≤ n

2

$ L if ` > n
2

.

Then there is the following useful observation.

Proposition 5.1. If 2` ≥ n, then:

(a) The linear forms in L ′ form a B-regular sequence and dimB/L ′B = 0.
(b) codim(I(1) + · · · + I(`)) = n, and hence the varieties V (I(1)), . . . , V (I(`)) intersect

improperly if 2` > n.

Proof. By Theorem 2.14, B is Cohen-Macaulay of dimension `(n − 2). Hence, Claim (a)
follows by the generality of the linear forms in L ′.

Part (a) shows in particular that dimB/LB = 0. Hence Lemma 2.15 gives

codim(I(1) + · · ·+ I(`)) = n,

and we are done. �
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By Lemma 2.15, we are interested in the Hilbert function of B/LB. We know the Hilbert
function of B, and thus the Hilbert function of its general artinian reduction B/L ′B by
Proposition 5.1(a). However, if ` > n

2
, then L ′ 6= L .

Recall that a linear form L is a non-zerodivisor of a graded algebra A if the multiplication
by L on A is injective. If A 6= 0 is artinian, this cannot be true. However, one may hope
that this multiplication still has maximal rank. This has been codified in [24] as follows:

Definition 5.2. Let A = S/J be an artinian graded k-algebra. Then A is said to have the
Weak Lefschetz Property if, for each integer i, multiplication by a general linear form L ∈ A
from [A]i to [A]i+1 has maximal rank. In this case, the form L is called a Lefschetz element
of A.

We say A has the Strong Lefschetz Property if, for all i and e, multiplication by Le from
[A]i to [A]i+e has maximal rank.

The first systematic study of these properties in this generality was carried out in [24].
In particular, the Hilbert functions of algebras with either the Weak Lefschetz Property or
Strong Lefschetz Property were classified there, and a sharp bound was given on the possible
graded Betti numbers. Thus, the presence of these properties leads to strong restrictions on
the possible invariants. Many natural families of algebras are expected to have a Lefschetz
property. However, it is typically very difficult to establish this. We refer to [23] and [34] for
further information and results.

There is a useful numerical characterization of Lefschetz elements. To state it we need
some notation.

Definition 5.3. Let
∑

i≥0 ait
i be a formal power series, where ai ∈ Z. Then we define an

associated power series with non-negative coefficients by∣∣∣∣∣∑
i≥0

ait
i

∣∣∣∣∣
+

=
∑
i≥0

bit
i,

where

bi =

{
ai if aj > 0 for all j ≤ i

0 otherwise.

Lemma 5.4. Let A be a standard artinian graded algebra, and let L ∈ A be a linear form.
Then the following conditions are equivalent:

(a) L is a Lefschetz element of A.
(b) The Hilbert function of A/LA is given by

dimk[A/LA]i = max{0, dimk[A]i − dimk[A]i−1} for all integers i.

(c) The Hilbert series of A/LA is

HS(A/LA) = |(1− t) ·HS(A)|+ .

This is immediate from the definitions.
It is natural to ask if an algebra has the Weak Lefschetz Property repeatedly, using more

than one linear form. This notion was first introduced by Iarrobino (according to the intro-
duction of [25]) and formalized in [25] and [16].
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Definition 5.5. An artinian standard graded k-algebra A is said to have the k-Weak Lef-
schetz Property (denoted k-WLP) if either k = 0, or k > 0 and there are linear forms
L1, . . . , Lk ∈ A such that Li is a Lefschetz element of A/(L1, . . . , Li−1)A for all i = 1, . . . , k.
In this case, {L1, . . . , Lk} is called a k-Lefschetz set of A.

By definition, every artinian algebra has the 0-WLP. Moreover, if an algebra A has the
k-WLP, then a set of k general linear forms is a k-Lefschetz set of A. Since all quotients
of polynomial rings of at most two variables have the Weak Lefschetz Property by [24], the
conditions (n− 2)-WLP and n-WLP are equivalent for quotients of S.

Using Lemma 5.4, the above property can be restated as follows.

Lemma 5.6. An artinian standard graded algebra A has the k-WLP if and only if there are
linear forms L1, . . . , Lk ∈ A such that

HS(A/(L1, . . . , Li)A) =
∣∣(1− t)i ·HS(A)

∣∣+ for all i ≤ k.

Proof. This follows by combining Lemma 5.4 and [18, Lemma 4]. �

We now want to use these concepts to determine the dimension of secant varieties σ`(Xn−1,λ),
using B/LB. Since the linear forms in L are general, it is reasonable to ask if, in the case
where ` > n

2
, the linear forms in L \L ′ form a Lefschetz set of the general artinian reduction

B/L ′B. We illustrate the usefulness of this property.

Example 5.7. Consider the case n = 4, ` = 3, and λ = [3, 2, 2], so d = 7. Then Remark 3.3
gives

HS(B) =
(1− t4 − 2t5 + 2t7)3

(1− t)12
.

Since |L ′| = 6, Proposition 3.1 implies

HS(B/L ′B) =
(1− t4 − 2t5 + 2t7)3

(1− t)6

= 8t15 + 48t14 + 144t13 + 292t12 + 456t11 + 588t10 + 646t9 + 612t8

+ 504t7 + 363t6 + 228t5 + 123t4 + 56t3 + 21t2 + 6t+ 1

=
15∑
i=0

cit
i

Note that the passage from B to C = B/L ′B corresponds to intersecting the join of
V (IP1), V (IP2), and V (IP3) properly with a linear subspace of codimension three. However,
C is artinian, and thus any further hyperplane sections correspond to improper intersections.

We have checked by computer that C has the 2-WLP, so let L1, L2 be a 2-Lefschetz set.
Then, we may assume that L = L ′ ∪ {L1, L2}, and Lemma 2.15 gives

HS(A) = HS(B/LB) = HS(C/(L1, L2)C) =
∣∣(1− t)2 ·HS(C)

∣∣+ .
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We compute this in two steps. First, we get

HS(C/L1C) =
∑
i≥0

max{0, ci − ci−1}ti

= 34t9 + 108t8 + 141t7 + 135t6 + 105t5 + 67t4 + 35t3 + 15t2 + 5t+ 1

=
9∑
i=0

bit
i.

Thus, we obtain

HS(A) = HS(C/(L1, L2)C) =
∑
i≥0

max{0, bi − bi−1}ti

= 6t7 + 30t6 + 38t5 + 32t4 + 20t3 + 10t2 + 4t+ 1.

In particular, the secant variety σ3(X3,λ) has codimension dimk[A]d = 6 in its ambient space.
Hence, σ3(X3,λ) is non-defective of dimension 113 and does not fill its ambient space.

Computer experiments suggest that a similar analysis can always be carried out. Thus,
we conjecture:

Conjecture 5.8 (WLP-Conjecture). The algebra B/L ′B has the k-WLP for k = max{0, 2`−
n}.

Notice that, by definition, the WLP-Conjecture is true if ` ≤ n
2
.

In Section 6 we will see that in the case r = 2 this conjecture is closely related to a
well-known conjecture by Fröberg, lending additional evidence to the WLP-Conjecture.

Here we show that if true, the WLP-Conjecture allows us to extend Theorem 3.5 to ` with
2` > n. In order to express this we need more notation.

Definition 5.9. Let λ = [d1, . . . , dr] ` d be a partition with r ≥ 2 , and let ` and n be
positive integers. For j = 0, . . . , d, define integers aj = aj(`, n, λ) by

aj =

(
j + n− 1

n− 1

)
− `

r∑
i=1

(
j + di − d+ n− 1

n− 1

)
+ (r − 1)`

(
j

d

)

+
∑̀
k=2

(−1)k
(
`

k

)(
j − k(d− d1) + n− 1

n− 1

)

+

(
`

2

)(
j + 2d2 − 2d+ n− 1

n− 1

)
+ `(`− 1)

(
j + d1 + d2 − 2d+ n− 1

n− 1

)
.

Observe that aj(`, n, λ) > 0 if 0 ≤ j < s = d2 + · · ·+ dr as, for example,
(
j+di−d+n−1

n−1

)
= 0

in this case.
Now we explain the meaning of the numbers aj(`, n, λ).

Theorem 5.10. Assume that the WLP-Conjecture is true for some `, n, and λ. Let P1, . . . , P`
be general points on Xn−1,λ, and set A = S/(IP1 + · · ·+IP`

). If i ≤ d is a non-negative integer
then

dimk[A]i =

{
0 if aj ≤ 0 for some j with 0 ≤ j ≤ i

ai > 0 otherwise.
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In particular, if aj(`, n, λ) > 0 for all j = 0, . . . , i− 1 and ai(`, n, λ) ≥ 0, then

ai(`, n, λ) = dimk[A]i.

Proof. To simplify notation set aj = aj(`, n, λ).
First consider the case where 2` ≤ n. Then the proof of Theorem 3.5 gives, for all i ≤ d,

dimk[A]i = ai,

and so the conclusion holds without the hypothesis that aj > 0 for j < i. Note that, in this
case, aj ≥ 0 for all j ≤ i.

Now assume that 2` > n. We have seen in Remark 3.3 that

HS(B) = [HS(S/IP1)]
`

=
1

(1− t)`n

[
1−

r∑
i=1

td−di + (r − 1)td

]`
.

Since the elements of L ′ provide a regular sequence in B of length `(n− 2) by Proposition
5.1, we get

HS(B/L ′B) =
1

(1− t)2`

[
1−

r∑
i=1

td−di + (r − 1)td

]`
.

Hence Lemmas 2.15 and 5.6 together with the WLP-Conjecture give

(5.1) HS(A) =

∣∣∣∣∣∣ 1

(1− t)n

[
1−

r∑
i=1

td−di + (r − 1)td

]` ∣∣∣∣∣∣
+

.

Define integers bj by ∑
j≥0

bjt
j =

1

(1− t)n

[
1−

r∑
i=1

td−di + (r − 1)td

]`
.

Then computations as in the proof of Theorem 3.5 provide for j ≤ d,

bj =

(
j + n− 1

n− 1

)
− `

r∑
i=1

(
j + di − d+ n− 1

n− 1

)
+ (r − 1)`

(
j

d

)

+
∑̀
k=2

(−1)k
(
`

k

)(
j − k(d− d1) + n− 1

n− 1

)

+

(
`

2

)(
j + 2d2 − 2d+ n− 1

n− 1

)
+ `(`− 1)

(
j + d1 + d2 − 2d+ n− 1

n− 1

)
= aj.

Thus, we conclude for all non-negative integers i ≤ d

dimk[A]i =

{
0 if aj ≤ 0 for some j with 0 ≤ j ≤ i

ai > 0 otherwise.

�
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Notice that when 2` < n the intersection of the varieties determining tangent spaces
to Xn−1,λ is non-empty, and the aj(`, n, λ) give its Hilbert function. When 2` = n, the
intersection of the varieties determining tangent spaces to Xn−1,λ becomes empty, but this
is still a proper intersection and so the methods of Section 3 continue to apply and result
in the values given by the aj(`, n, λ). As soon as 2` > n, however, this intersection remains
empty but becomes improper. Nevertheless, the aj(`, n, λ) ≥ 0 essentially provide the Hilbert
function of the “algebraic intersection,” i.e. give the Hilbert function of S/(IP1 + · · ·+ IP`

),
as formalized in the previous result.

We now have the following extension of Theorem 3.5:

Theorem 5.11. Let λ = [d1, . . . , dr] ` d be a partition with r ≥ 2. Assume that the WLP-
Conjecture is true for some ` and n. Then:

(a) The secant variety σ`(Xn−1,λ) does not fill its ambient space if and only if

aj(`, n, λ) > 0 for all j = 0, . . . , d.

(b) If σ`(Xn−1,λ) does not fill its ambient space, then it has dimension

dimσ`(Xn−1,λ) = ` · dimXn−1,λ + `− 1

−
∑̀
k=2

(−1)k
(
`

k

)(
d1 − (k − 1)(d2 + · · ·+ dr) + n− 1

n− 1

)

−
(
`

2

)(
2d2 − d+ n− 1

n− 1

)
− `(`− 1)

(
d1 + d2 − d+ n− 1

n− 1

)
Proof. Using Theorem 5.10 and

dimσ`(Xn−1,λ) =

(
d+ n− 1

n− 1

)
− 1− dimk[A]d,

this follows from a computation as in the end of the proof of Theorem 3.5. �

Remark 5.12. (i) The argument in the proof of Theorem 5.10 shows more generally that the
WLP-Conjecture allows us to determine the Hilbert function of the ring A in every degree.
However, for finding the dimension of σ`(Xn−1,λ), it is enough to know this Hilbert function
in degree d only. Thus, even if the WLP-conjecture is not true, it is possible that Conjecture
1.1 is correct.

(ii) As noted above, the WLP-Conjecture is true if 2` ≤ n. Hence, Theorem 5.11 shows
Conjecture 1.1 is true if 2` ≤ n, thus proving Theorem 1.2(a). We will establish further
instances of Conjecture 1.1 in Section 6.

(iii) Complete results for the dimension of σ`(Xn−1,λ) have been previously obtained only
if n = 3, λ = [1, . . . , 1] in [1], or n = 3, ` = 2 in [14]. Both results confirm Conjecture
1.1. Moreover, if λ = [1, . . . , 1] and d ≥ 3, then σ`(Xn−1,λ) is not defective, as predicted in
Conjecture 1.3. The case λ = [1, 1] is covered by Theorem 1.2. The case ` = 2 was discussed
in Section 4.

Thus, Conjecture 1.1 presents a unified formula for dimσ`(Xn−1,λ) in all cases. It is
consistent with all the known results that we have checked.

We explore some consequences of our main conjecture, Conjecture 1.1.
27



As we show in our next result, Conjecture 1.3(a) is an immediate consequence of Conjecture
1.1 and thus holds in the many cases for which we establish Conjecture 1.1. The situation
for Conjecture 1.3(b) is more complicated. For certain choices of the parameters n, ` and
λ, our next result shows that Conjecture 1.3(b) is true while for some others it shows that
Conjecture 1.1 implies Conjecture 1.3(b). In the remaining cases, for each d2 ≥ · · · ≥ dr > 0
and ` ≥ n, it shows that there are at most finitely many cases, namely s = d2 + · · · + dr ≤
d1 < (n− 1)(s− 1), for which we do not know either that Conjecture 1.3(b) is true or that
Conjecture 1.1 implies Conjecture 1.3(b). For these cases we have run numerical tests based
on Proposition 5.13, as discussed in more detail below, which support our expectation that
Conjecture 1.1 implies Conjecture 1.3(b) in these cases also.

Proposition 5.13. As usual, let n ≥ 3, r ≥ 2, N =
(
n+d−1
n−1

)
and λ = [d1, . . . , dr], where

d = d1 + s and s = d2 + · · ·+ dr.

(a) Assume d1 < s (and thus r ≥ 3)). Then Conjecture 1.1 implies Conjecture 1.3(a)
(i.e., that σ`(Xn−1,λ) is not defective).

(b) Now assume d1 ≥ s.
(i) If 2` ≤ n, then Conjecture 1.3(b) is true (i.e., either σ`(Xn−1,λ) fills its ambient

space, PN−1, or it is defective).
(ii) If n

2
< ` ≤ n, then Conjecture 1.1 implies Conjecture 1.3(b).

(iii) If d1 < 2s, then Conjecture 1.1 implies Conjecture 1.3(b).
(iv) If n ≤ ` and (n − 1)(s − 1) ≤ d1, then σ`(Xn−1,λ) fills its ambient space (and

hence Conjecture 1.3(b) is true).
(c) If ` ≥

(
s+n−1
n−1

)
, then Conjecture 1.1 is true and σ`(Xn−1,λ) fills its ambient space

(hence Conjecture 1.3 is true).
(d) If ` ≥

(
s+n−1
n−1

)
/t, where t is the number of occurrences of d1 in λ, then Conjecture 1.1

implies that σ`(Xn−1,λ) fills its ambient space (and hence, for such `, if Conjecture 1.1
is true, then so is Conjecture 1.3.)

Proof. (a) The assumptions imply that the second and third lines of the formula in Conjecture
1.1(b) are zero, so

dimσ`(Xn−1,λ) = ` · dimXn−1,λ + `− 1 = min

{(
d+ n− 1

n− 1

)
− 1, ` · dimXn−1,λ + `− 1

}
,

which is the expected dimension.
(b)(i) This follows from Theorem 3.5.
(b)(ii) By definition, σ`(Xn−1,λ) is not defective if it fills its ambient space, PN−1, so assume

σ`(Xn−1,λ) does not fill its ambient space. Then dimσ`(Xn−1,λ) < N−1 and Conjecture 1.1(b)
gives

dimσ`(Xn−1,λ) = ` · dimXn−1,λ + `− 1

−
∑̀
k=2

(−1)k
(
`

k

)(
d1 − (k − 1)s+ n− 1

n− 1

)
−
(
`

2

)(
2d2 − d+ n− 1

n− 1

)
− `(`− 1)

(
d1 + d2 − d+ n− 1

n− 1

)
.

(5.2)
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Let Syz be the first syzygy module of a complete intersection in S that is generated by ` ≤ n
forms of degree d− d1 = d2 + . . .+ dr. We observed in Remark 3.8 that∑̀

k=2

(−1)k
(
`

k

)(
d1 − (k − 1)s+ n− 1

n− 1

)
= dimk[Syz]d.

Hence we get

dimσ`(Xn−1,λ) ≤ ` · dimXn−1,λ + `− 1− dimk[Syz]d.

The Koszul resolution shows that the initial degree of Syz is 2(d− d1). Since Syz is torsion
free, it follows that [Syz]d 6= 0 if and only if d ≥ 2(d− d1), which is equivalent to

d1 ≥ d− d1 = s.

Therefore our assumption gives

dimσ`(Xn−1,λ) < ` · dimXn−1,λ + `− 1,

so dim σ`(Xn−1,λ) < exp.dim σ`(Xn−1,λ), and we are done.
(b)(iii) As in the proof of (b)(ii), if σ`(Xn−1,λ) does not fill its ambient space (and so

dimσ`(Xn−1,λ) < N − 1) we must show that it is defective. Put

g =
∑̀
j=2

(−1)j
(
`

j

)(
d1 − (j − 1)s+ n− 1

n− 1

)
.

If s ≤ d1 < 2s, then g > 0. Thus, the summation in display (5.2) is positive, but it
is subtracted so we have dimσ`(Xn−1,λ) < ` · dimXn−1,λ + ` − 1, and hence σ`(Xn−1,λ) is
defective. Thus in the presence of the restriction on d1, Conjecture 1.1 implies Conjecture
1.3(b).

(b)(iv) To see that σ`(Xn−1,λ) fills its ambient space for d1 ≥ (n− 1)(s− 1) and ` ≥ n, it
is enough to do so for ` = n. Take ` general points Pj on Xn−1,λ. Each ideal IPj

contains a
minimal generator of degree d − d1 = s. Thus, by genericity, the ideal I = IP1 + · · · + IP`

contains a complete intersection generated by n forms of degree s. The socle degree of
this complete intersection is n(s − 1). Thus [R/I]d = 0 if d1 + s = d > n(s − 1); i.e., if
d1 ≥ (n− 1)(s− 1). It follows that for these ` and d1 we get that Conjecture 1.3(b) is true.

(c) Note that as = as(`, n, λ) =
(
s+n−1
n−1

)
− t`, hence as ≤ 0 for ` ≥

(
s+n−1
n−1

)
/t, and so also

for ` ≥
(
s+n−1
n−1

)
. So with the latter hypothesis, to prove Conjecture 1.1 we must show that

σ`(Xn−1,λ) fills its ambient space. Notice that [S]s has a basis consisting of monomials, hence
a basis of forms each of which factors as a product of forms of degrees d2, . . . , dr. Thus we
can find points P1, . . . , P` for which I = IP1 + · · ·+ IP`

spans [S]s, so also in degree d we have
[I]d = [S]d. The same is then true for a general choice of ` points, and so σ`(Xn−1,λ) indeed
fills its ambient space. But then for these `, all parts of Conjecture 1.3 are automatically
true as well.

(d) Finally, assume that ` ≥
(
s+n−1
n−1

)
/t. Since as ≤ 0, Conjecture 1.1 would imply that

σ`(Xn−1,λ) fills its ambient space and so Conjecture 1.3 would hold. (We also note that the
bound ` ≥

(
s+n−1
n−1

)
/t is sharp, since σ`(Xn−1,λ) does not always fill its ambient space for

` <
(
s+n−1
n−1

)
/t, as we see for σ`(Xn−1,[1,1]) by Theorem 1.4(c).) �
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Remark 5.14. Proposition 5.13 is the basis for numerical tests that support our belief that
all of the cases left open do in fact follow from Conjecture 1.1. In these cases, we have n < `
and 2s ≤ d1 < (n − 1)(s − 1). As noted above, Conjecture 1.1 predicts: If σ`(Xn−1,λ) does
not fill its ambient space, then

dimσ`(Xn−1,λ) = ` · dimXn−1,λ + `− 1− g

−
(
`

2

)(
2d2 − d+ n− 1

n− 1

)
− `(`− 1)

(
d1 + d2 − d+ n− 1

n− 1

)
.

Thus, Conjecture 1.3(b) follows if g > 0.
We have used Macaulay2 [30] to check for all cases satisfying the above restrictions with

n, `, s ≤ 60 that Conjecture 1.1 implies Conjecture 1.3(b). There were 57,345,933 such
cases. Note that typically for each s and d1, there are many possible partitions of d =
d1 + s; thus for each of the 57,345,933 cases for which g ≤ 0, we merely checked that
` dim(Xn−1,[d1,1,...,1]) + ` ≥ N , and hence by Proposition 5.13(b)(iii) we see that Conjecture
1.1 implies Conjecture 1.3(b) for each case when λ = [d1, 1, . . . , 1]. But by Corollary 2.18 this
means Conjecture 1.1 implies Conjecture 1.3(b) also for all other partitions λ of d = d1 + s
for each of these 57,345,933 cases.

Corollary 5.15. Let 3 ≤ n ≤ ` ≤ 1 + d1+n−1
s

with λ = [d1, . . . , dr] ` d, r ≥ 3, and
s = d2 + · · ·+ dr. Then Conjecture 1.1 is true for such n, ` and λ.

Proof. Conjecture 1.1(a) asserts that σ`(Xn−1,λ) fills its ambient space if and only if aj(`, n, λ)
is not positive for some integer j with s ≤ j ≤ d, while Conjecture 1.1(b) applies only
when σ`(Xn−1,λ) does not fill its ambient space. Since d1 ≥ (n − 1)(s − 1) is equivalent to
1 + d1+n−1

s
≥ n, Proposition 5.13 implies σ`(Xn−1,λ) fills its ambient space. Thus Conjecture

1.1 is true if we show ad(`, n, λ) ≤ 0.
Recall the identity ∑̀

k=2

(−1)k
(
`

k

)(
d− ks+ n− 1

n− 1

)
= 0.

(See formula 10.13 of http://www.math.wvu.edu/~gould/Vol.4.PDF, where n, k, r, y, x in
10.13 become, respectively, our `, j, n − 1, d + n − 1 and −s, so the assumption n > r in
10.13 becomes ` > n− 1 and is thus satisfied. We also note that 10.13 does not assume that(
a
b

)
= 0 when a < 0, but our assumption ` ≤ 1 + d1+n−1

s
is equivalent to d− `s+ n− 1 ≥ 0.

This ensures that d − js + n − 1 ≥ 0 hence the convention used in 10.13 agrees with our
convention that

(
d−js+n−1

n−1

)
= 0 when d− js+ n− 1 < n− 1.)

Using the identity above, we have∑̀
j=2

(−1)j
(
`

j

)(
d− js+ n− 1

n− 1

)
= −

(
d+ n− 1

n− 1

)
+ `

(
d1 + n− 1

n− 1

)
,

and substituting this into the expression for ad(`, n, λ) given in Definition 5.9 we obtain

ad(`, n, λ) = −`
∑
i>1

((
di + n− 1

n− 1

)
− 1

)
< 0.

�
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We are now ready to prove one of the main results of the paper, as mentioned in the
introduction.

Proof of Theorem 1.4. Part (a) follows from Theorem 3.13(a). Part (b) follows from The-
orem 3.11 and Theorem 3.13(b). Part (c) follows from Proposition 5.13(iv) and Theorem
3.5. �

We conclude this section with a case where we can show that the prediction of Conjec-
ture 1.1 is at least an upper bound.

Proposition 5.16. If 2` = n + 1, then the dimension of σ`(Xn−1,λ) is at most the number
predicted in Conjecture 1.1.

Proof. Using the above notation, put A′ = B/L ′. Let L ∈ A′ be a general linear element.
Notice that the assumption on ` gives |L | = |L ′|+ 1. Thus, we get

(5.3) HS(A) = HS(B/LB) = HS(A′/LA′) ≥ |(1− t)HS(A′)|+ ,
which means that the comparison is true coefficientwise.

If aj(`, n, λ) ≤ 0 for some non-negative j ≤ d, then Conjecture 1.1 says that σ`(Xn−1,λ)
fills its ambient space, and so the estimate follows.

Otherwise, Equation (5.3) implies

dimk[A]d ≥ ad(`, n, λ),

which gives

dimσ`(Xn−1,λ) =

(
d+ n− 1

n− 1

)
− 1− dimk[A]d ≤

(
d+ n− 1

n− 1

)
− 1− ad(`, n, λ).

Since, the right-hand side is the formula for dimσ`(Xn−1,λ) that is predicted by Conjecture
1.1, this completes the argument. �

Remark 5.17. Consider an arbitrary graded k-algebra, and let L1, L2 ∈ [A]1 be two general
elements. Then it is not necessarily true that

HS(A/(L1, L2) ≥
∣∣(1− t)2 ·HS(A′)

∣∣+ .
Thus, the above argument cannot be easily extended to show that Conjecture 1.1 gives an
upper bound for dimσ`(Xn−1,λ) for all ` ≥ n+1

2
. Note however that in the following section

we will prove that Conjecture 1.1 does give an upper bound if r = 2 by using a different
approach.

6. Forms with two factors and Fröberg’s Conjecture

In this section we focus on the case r = 2, that is, we consider secant varieties to the
varieties whose general point corresponds to a product of two irreducible polynomials. We
begin by recalling that the dimension of secant varieties, in case r = 2, is related to a famous
conjecture of Fröberg (see [9]). We systematically relate this conjecture to our approach in
the previous section. In particular, we will see that Fröberg’s Conjecture and the WLP-
Conjecture lead to the same prediction for the dimension of the secant variety in the case
r = 2. This allows us to establish further instances of Conjecture 1.1.

Fröberg’s Conjecture concerns the Hilbert function of an ideal generated by generic forms.
More precisely, it says:
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Conjecture 6.1 (Fröberg’s Conjecture [18]). Let J ⊂ S = k[x1, . . . , xn] be an ideal generated
by s generic forms of degrees e1, . . . , es in S. Then the Hilbert series of S/J is

HS(S/J) =

∣∣∣∣∏s
i=1(1− tei)
(1− t)n

∣∣∣∣+ .
There is an equivalent version of Fröberg’s Conjecture that gives a recursion to predict

the Hilbert function of such an algebra.

Conjecture 6.2 (Fröberg’s Conjecture, recursive version). Let J ⊂ S = k[x1, . . . , xn] be an
ideal that is generated by generic forms, and let f ∈ S be a generic form of degree e. Then,
for all integers j,

dimk[S/(J, f)]j = max{0, dimk[S/J ]j − dimk[S/J ]j−e}.

Comparing the latter version with Definition 5.2 shows that S/J has the Weak Lefschetz
Property if the above is true and e = 1. We refer to [32, Proposition 2.1] for further results
on the relation between Fröberg’s conjecture and the Lefschetz properties. Here we need
only the following observation.

Proposition 6.3. Assume Fröberg’s Conjecture is true for polynomial rings in up to n
variables. If J ⊂ S = k[x1, . . . , xn] is an ideal that is generated by at least n generic forms,
then S/J has the n-WLP.

Proof. Let L ∈ S be a generic linear form. Then, as noted above, L is a Lefschetz element for
S/J . Since S/(J, L) is isomorphic to a quotient of a polynomial ring in n−1 variables modulo
an ideal generated by generic forms in these (n − 1) variables, we can use this argument n
times. �

Since each quotient of a polynomial ring in at most two variables has the Weak Lefschetz
Property by [24], the properties n-WLP and (n− 2)-WLP are equivalent if n ≥ 2.

We now relate this to the secant varieties of Xn−1,λ, where λ is a partition with two parts.
In this case, we simplify notation and write λ = [d− k, k], where 1 ≤ k ≤ d

2
.

Our starting point for the case r = 2 is the following observation.

Lemma 6.4. If λ = [d− k, k], then

dimσ`(Xn−1,λ) = −1 + dimk[I]d,

where I ⊂ S is an ideal generated by ` generic forms of degree d− k and ` generic forms of
degree k.

Proof. This follows from Corollary 2.7 and Proposition 2.9. �

In the case r = 2, the definition of the integers aj(`, n, λ) becomes somewhat simpler.

Remark 6.5. Assume λ = [d− k, k], where 1 ≤ k ≤ d
2
. Then

aj(`, n, λ) =

(
j + n− 1

n− 1

)
− `
[(
j + k − d+ n− 1

n− 1

)
+

(
j − k + n− 1

n− 1

)]
+
∑̀
i=2

(−1)i
(
`

i

)(
j − ik + n− 1

n− 1

)
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if 0 ≤ j < d, and

ad(`, n, λ) =

(
d+ n− 1

n− 1

)
− `
[(
k + n− 1

n− 1

)
+

(
d− k + n− 1

n− 1

)]
+
∑̀
i=2

(−1)i
(
`

i

)(
d− ik + n− 1

n− 1

)
+

(
`

2

)(
2k − d+ n− 1

n− 1

)
+ `2.

Observe that the penultimate term is zero, unless k = d
2
.

Lemma 6.4 allows us to relate Fröberg’s Conjecture to our work in the previous sections.

Proposition 6.6. Let λ = [d − k, k] be a partition with two parts. Then, for each ` ≥ 2
and each n ≥ 3, the value for the dimension of the secant variety in Conjecture 1.1 gives an
upper bound for the dimension of σ`(Xn−1,λ). Moreover, if Fröberg’s Conjecture is true for
S, then, for all ` ≥ 2, the variety σ`(Xn−1,λ) has the dimension predicted in Conjecture 1.1.

Proof. If ` ≤ n
2
, Conjecture 1.1 is true by Theorem 3.5. Thus, we may assume 2` > n.

With I as in Lemma 6.4, we have

dimσ`(Xn−1,λ) =

(
d+ n− 1

n− 1

)
− 1− dimk[S/I]d.

The value predicted for dimσ`(Xn−1,λ) by Conjecture 1.1 comes, by Theorem 5.10, from the
value of dimk[S/I]d predicted by the WLP-Conjecture 5.8. Thus it is enough to derive from
Fröberg’s Conjecture 6.1 the same value for dimk[S/I]d as given by Conjecture 5.8, and to
show that this value is a lower bound for the actual value.

Using our earlier notation, observe that B/L ′B ∼= U/J , where U is a polynomial ring in
2` variables and J is a complete intersection generated by ` general forms of degree k and `
general forms of degree d− k. Hence the Hilbert series of U/J is

HS(U/J) =
(1− td−k)`(1− tk)`

(1− t)2`
.

Lemma 2.15 shows that S/I is isomorphic to B/LB, which is obtained from U/J by quo-
tienting by (2`− n) general linear forms. Hence [18, Theorem] gives

HS(S/I) ≥
∣∣∣∣(1− td−k)`(1− tk)`(1− t)2`−n(1− t)2`

∣∣∣∣+ =

∣∣∣∣(1− td−k)`(1− tk)`(1− t)n

∣∣∣∣+ ,
the right hand side of which is exactly the Hilbert series of S/I as predicted by Fröberg’s
Conjecture 6.1. Moreover, the WLP-Conjecture 5.8 predicts this same Hilbert series for S/I
(see Equation (5.1)), and hence equality holds if Fröberg’s Conjecture does. �

Remark 6.7. Notice that in Proposition 6.6 we assumed the correctness of Fröberg’s Con-
jecture only for ideals in S. If we assume more, namely that this conjecture is true for all
ideals in max{n, 2`} variables, then Proposition 6.3 shows that B/L ′B has the (2` − n)-
Weak Lefschetz Property. Hence, in this case Theorem 5.11 immediately gives the conclusion
of the above proposition.

We are ready to establish new instances where Conjecture 1.1 holds.

Theorem 6.8. Conjecture 1.1 is true if r = 2 and
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(a) 2` ≤ n+ 1 or
(b) n = 3 or
(c) λ = [1, 1], that is, d = 2.

Proof. We use Proposition 6.6. Fröberg’s Conjecture is true for forms in at most three
variables by a result of Anick [4]. This gives (b). The conjecture also holds for ideals
generated by general linear forms, and thus (c) follows.

Turning to (a), by Theorem 3.5 it suffices to consider the case where 2` = n + 1. Then
I is generated by n + 1 general forms in n variables. For such ideals Fröberg’s Conjecture
is true because complete intersections of general forms have the Strong Lefschetz Property
(see [43, 47, 38, 40] or [26]). �

Remark 6.9. With some work, part (a) of Theorem 6.8 can be shown to be equivalent to
Theorem 5.1 of [9]. There, however, all the cases where σ`(Xn−1,λ) fills its ambient space are
enumerated.

We now begin working out more explicit formulas for some particular partitions as conse-
quences of Proposition 6.6. First we consider balanced partitions.

Theorem 6.10. Consider a balanced partition λ = [d
2
, d
2
] and fix n ≥ 3. Assume that

Fröberg’s Conjecture holds for the polynomial ring S = k[x1, . . . , xn]. Put

`0 =
1

2

(d
2

+ n− 1

n− 1

)
+

1

2
−

√[(
d
2

+ n− 1

n− 1

)
+

1

2

]2
− 2

(
d+ n− 1

n− 1

)  .
Then

dimσ`(Xn−1,[ d
2
, d
2
]) =

` · dimXn−1,λ + `− 1− 2`(`− 1) <
(
d+n−1
n−1

)
− 1 if 2 ≤ ` < `0(

d+n−1
n−1

)
− 1 if `0 ≤ `.

In particular, the secant variety σ`(Xn−1,λ) is defective if and only if it does not fill its ambient
space. Furthermore, the defect is

δ` =


2`(`− 1) if 2 ≤ ` ≤

(
d+n−1
n−1

)
2
( d

2
+n−1
n−1

)
− 1

(
d+n−1
n−1

)
− 1− dimσ`(Xn−1,[ d

2
, d
2
]) if

(
d+n−1
n−1

)
2
( d

2
+n−1
n−1

)
− 1

< ` < `0.

Proof. Put N =
(
d+n−1
n−1

)
and recall that

dimXn−1,λ = 2 ·
(
d
2

+ n− 1

n− 1

)
− 2.

Thus, the expected dimension of σ`(Xn−1,λ) is

exp.dim σ`(Xn−1,λ) = min{N − 1, ` · dimXn−1,λ + (`− 1)}

= min

{
N − 1 , 2` ·

(
d
2

+ n− 1

n− 1

)
− `− 1

}
.
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In particular,

(6.1) exp.dim σ`(Xn−1,λ) = ` · dimXn−1,λ + (`− 1) if and only if 2 ≤ ` ≤ N

2
( d

2
+n−1
n−1

)
− 1

.

We now will consider various ranges for the value of ` and use Lemma 6.4. For the partition
λ, the ideal I is generated by 2` general forms of degree d

2
. Instead of applying Proposition

6.6 directly, it is more convenient to use the recursive approach (see Conjecture 6.2).
Assume first 2 ≤ ` < n

2
. Then Theorem 3.5 gives that σ`(Xn−1,λ) does not fill its ambient

space and has dimension

dimσ`(Xn−1,λ) = ` · dimXn−1,λ + (`− 1)− 2

(
`

2

)
− `(`− 1)

= ` · dimXn−1,λ + (`− 1)− 2`(`− 1).

This proves the statement if ` < n
2
.

Assume now n
2
≤ `. In order to simplify notation, set k = d

2
and t = 2`− n ≥ 0.

In this range of `, S/I is artinian and

dimk[S/I]k = max

{
0,

(
k + n− 1

n− 1

)
− 2`

}
.

Hence [S/I]k = 0 if 2` ≥
(
k+n−1
n−1

)
, which implies [S/I]d = 0. It follows that σ`(Xn−1,λ) fills

PN−1 for such `.
We are left to consider ` such that n

2
≤ ` < 1

2

(
k+n−1
n−1

)
. Notice that this forces k ≥ 2, that

is, d ≥ 4.
For i = 0, 1, . . . , t = 2`− n, let

ai = ideal generated by n+ i general forms of degree k.

Observe that a0 is a complete intersection and I = at. Notice that, for all i,

dimk[S/ai]k =

(
k + n− 1

n− 1

)
− n− i = dimk[S/a0]k − i.

The minimal free resolution of S/a0 has the form

· · · → S(−d)(
n
2) → S(−k)n → S → S/a0 → 0,

where we only display the terms that are non-trivial in degree d. This shows

dimk[S/a0]d = N − n ·
(
k + n− 1

n− 1

)
+

(
n

2

)
.

Fröberg’s Conjecture 6.2 predicts, for all i,

dimk[S/ai+1]d = max{dimk[S/ai]d − dimk[S/ai]k, 0}.
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Hence, we get

dimk[S/I]d = max

{
0, dimk[S/a0]d − t · dimk[S/a0]k +

(
t

2

)}
= max

{
0 ,

[
N − n ·

(
k + n− 1

n− 1

)
+

(
n

2

)]
− t
[(
k + n− 1

n− 1

)
− n

]
+

(
t

2

)}
= max

{
0 , N − 2` ·

(
k + n− 1

n− 1

)
+

(
n

2

)
+ tn+

(
t

2

)}
= max

{
0 , N − 2` ·

(
k + n− 1

n− 1

)
+ 2`2 − `

}
.

It follows that

dimσ`(Xn−1,λ) = min

{
N − 1 , 2`

(
k + n− 1

n− 1

)
+ `− 1− 2`2

}
(note that we subtracted 1 from the dimension of the component of the ideal). Therefore,
for ` < 1

2

(
k+n−1
n−1

)
, the variety σ`(Xn−1,λ) fills PN−1 if and only if

N ≤ 2`

(
k + n− 1

n− 1

)
+ `− 2`2,

which means

` ≥ 1

2

(k + n− 1

n− 1

)
+

1

2
− 1

2

√[(
k + n− 1

n− 1

)
+

1

2

]2
− 2N

 = `0.

An induction on n ≥ 2 shows that the radicand is at least 1
4
, which also implies⌈

1

2

(
k + n− 1

n− 1

)⌉
≥ `0.

We conclude that σ`(Xn−1,λ) fills its ambient space if and only if ` ≥ `0 and that

dimσ`(Xn−1,λ) = 2`

(
k + n− 1

n− 1

)
+ `− 1− 2`2

= ` · dimXn−1,λ + `− 1− 2`(`− 1)

if n
2
≤ ` ≤ `0. This concludes finding the dimension of σ`(Xn−1,λ). Combining the result

with Observation (6.1) proves the assertion on the defect. �

Second, we consider the most unbalanced partition of d into two parts. Notice that the
following result is true unconditionally. Since the partition [1, 1] has been dealt with in the
previous result (see Theorem 6.8), there is no harm in assuming d ≥ 3 in the next statement.
The fact that σ`(Xn−1,[d−1,1]) fills its ambient space if and only if ` ≥ `0 was shown in [9,
Proposition 5.6]. The dimension of σ`(Xn−1,[d−1,1]) can also be found in [6, Proposition 4.4].
We give a new proof of these facts using our methods.

Note that, in the following theorem, the formula for dim(Xn−1,[d−1,1]) is simply the spe-
cialization of the formula of Conjecture 1.1 to the case at hand.

36



Theorem 6.11. Assume λ = [d− 1, 1], where d ≥ 3. Put

`0 = min

{
` ≥ n

2
| ` ∈ Z and

(
d− `+ n− 1

d

)
≤ `(n− `)

}
.

Then `0 ≤ n− 1 and

dimσ`(Xn−1,[d−1,1]) =

{(
d+n−1
n−1

)
−
(
d+n−`−1

d

)
+ `(n− `)− 1 <

(
d+n−1
n−1

)
− 1 if 2 ≤ ` < `0(

d+n−1
n−1

)
− 1 if `0 ≤ `.

Moreover, the secant variety σ`(Xn−1,λ) is defective if and only if it does not fill its ambient
space. In this case, the defect is

δ` =



(
d+n−`−1

d

)
+ ` ·

(
d+n−2
n−1

)
−
(
d+n−1
n−1

)
+ `2 ≥ `2 if 2 ≤ ` ≤

(
d+n−1
n−1

)(
d+n−2
n−1

)
+ n

(
d+n−1
n−1

)
− 1− dimσ`(Xn−1,[ d

2
, d
2
]) if

(
d+n−1
n−1

)(
d+n−2
n−1

)
+ n

< ` < `0.

Proof. Again we use Lemma 6.4. This time the ideal I = I(1) + · · · + I(`) contains ` generic
linear forms. Thus, I = (x1, . . . , xn) if ` ≥ n, and we are done in this case. If ` < n, then we
get

A = S/I ∼= k[x1, . . . , xn−`]/(G1, . . . , G`),

where each Gj is a generic form of degree d− 1 in T = k[x1, . . . , xn−`]. It follows that

dimσ`(Xn−1,λ)

= −1 + dimk[I]d

= −1 + dimk[S]d − dimk[A]d

= −1 + dimk[S]d − dimk[T ]d + dimk[(G1, . . . , G`)]d

= −1 +

(
d+ n− 1

n− 1

)
−
(
d+ n− `− 1

d

)
+ min

{(
d+ n− `− 1

d

)
, `(n− `)

}
= −1 +

(
d+ n− 1

n− 1

)
−max

{
0,

(
d+ n− `− 1

d

)
− `(n− `)

}
.

In order to see the penultimate equality consider the graded minimal free resolution of
(G1, . . . , G`). Its beginning is of the form

· · · → F → T `(−d+ 1)→ (G1, . . . , G`)→ 0,

where F is a graded free T -module. It follows that to compute dimk[(G1, . . . , G`)]d it is
enough to know the number of linearly independent linear syzygies of the ideal (G1, . . . , G`).
Since the forms Gj are generic this number is the least possible by the main result in [28],
and the dimension formula follows. It shows that σ`(Xn−1,λ) fills its ambient space if and
only if (

d+ n− `− 1

d

)
≤ `(n− `).

If ` = n − 1, this is true. Hence, the number `0 is well defined and satisfies `0 ≤ n − 1.
Furthermore, if σ`(Xn−1,λ) fills its ambient space, then so does σ`+1(Xn−1,λ). This completes
the argument for finding the dimension of σ`(Xn−1,λ).

37



It remains to discuss the defect of σ`(Xn−1,λ). Note that

dimXn−1,λ =

(
d+ n− 2

n− 1

)
+ n− 1,

and so the expected dimension of σ`(Xn−1,λ) is

exp.dim σ`(Xn−1,λ) = min

{(
d+ n− 1

n− 1

)
− 1, ` ·

(
d+ n− 2

d− 1

)
+ `n− 1.

}
.

We need to show that σ`(Xn−1,λ) is defective if and only if 2 ≤ ` < `0 < n. Since for such `
the variety σ`(Xn−1,λ) does not fill its ambient space, this is equivalent to proving

` ·
(
d+ n− 2

d− 1

)
+ `n− 1 >

(
d+ n− 1

n− 1

)
−
(
d+ n− `− 1

d

)
+ `(n− `)− 1,

that is,

(6.2)

(
d+ n− `− 1

d

)
−
(
d+ n− 1

n− 1

)
+ ` ·

(
d+ n− 2

d− 1

)
> −`2.

Notice that(
d+ n− `− 1

d

)
−
(
d+ n− 1

n− 1

)
+ ` ·

(
d+ n− 2

d− 1

)
=
∑̀
j=2

(−1)j
(
`

j

)(
d− j + n− 1

n− 1

)
= dimk[Syz]d,

where Syz is the first syzygy module of a complete intersection in S that is generated by
` < n linear forms (see Remark 3.8). This shows that the left-hand side in Inequality (6.2)
is non-negative, and hence establishes that this inequality is true.

In order to determine the positive defect, it is enough to observe that

exp.dim σ`(Xn−1,λ) ≤
(
d+ n− 1

n− 1

)
− 1

if and only if

` ≤
(
d+n−1
n−1

)(
d+n−2
n−1

)
+ n

.

This concludes the calculation of the defect. �

Since we discussed the case ` = 2 in Section 4, we illustrate the last result in the case
` = 3.

Corollary 6.12. Consider the secant plane variety σ3(Xn−1,[d−1,1]).

(a) σ3(Xn−1,[d−1,1]) fills its ambient space if and only if
(i) n ∈ {3, 4} and d ≥ 2, or
(ii) n = 5 and d ∈ {2, 3, 4, 5}, or

(iii) n = 6 and d = 2.
(b) In all other cases σ3(Xn−1,[d−1,1]) is defective with dimension

dimσ3(Xn−1,[d−1,1]) =


6n− 16 if d = 2(
d+ n− 1

n− 1

)
−
(
d+ n− 4

d

)
+ 3n− 10 if d ≥ 3.
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Proof. Consider first d = 2. Then we can apply Theorem 6.10. However, it is easier to argue
directly. In this case, the ideal I in Lemma 6.4 is generated by 2` = 6 linear forms. Hence
[I]2 = [S]2 if and only if n ≤ 6. If n ≥ 7, then we get

dimσ3(Xn−1,([1,1]) = dimk[I]2 − 1 =

(
n+ 1

2

)
−
(
n− 5

2

)
− 1

= 6n− 16.

Moreover, σ2(Xn−1,[1,1]) is defective if it does not fill its ambient space by Theorem 6.10.
Assume now d ≥ 3. Then Theorem 6.11 shows that σ3(Xn−1,[d−1,1]) fills its ambient space

if and only if
n

2
≤ `0 ≤ 3.

Furthermore, σ3(Xn−1,[d−1,1]) does not fill its ambient space if n ≥ 6 by Theorem 3.5. Hence,
it remains to consider the cases n ∈ {3, 4, 5}.

If n = 5, this forces `0 = 3, which means

d+ 1 ≤ 6 and

(
d+ 2

2

)
> 6,

that is, d ∈ {3, 4, 5}.
Since `0 ≤ n − 1, we get `0 ≤ 3 if n ≤ 4, and thus σ3(Xn−1,([1,1]) fills its ambient space.

This shows Part (a). Claim (b) follows by Theorem 6.11. �

7. The variety of reducible forms

Every reducible form of degree d in n variables corresponds to a point of the variety

Xn−1,d =

b d
2
c⋃

k=1

Xn−1,[d−k,k].

(Notice that this holds even for reducible forms with more than two factors.)
Thus, we call Xn−1,d the variety of reducible forms of degree d in n variables. In this

section we study its secant varieties. This is based on the results on the secant varieties of
the various Xn−1,[d−k,k], where k varies between 1 and bd

2
c.

Remark 7.1. The variety Xn−1,d is irreducible if and only if d = 2. In this case Xn−1,2 =
Xn−1,[1,1] and

dimσ`(Xn−1,2) =

{
2`(n− `) + `− 1 if 2` < n(
n+1
2

)
− 1 if 2` ≥ n.

Moreover, σ`(Xn−1,2) is defective if and only if 2 ≤ ` < n
2
. In this case, the defect is given

by Theorem 6.10.

We begin by determining the dimension of Xn−1,d. The next result is an immediate con-
sequence of Corollary 2.18.

Proposition 7.2. For all d ≥ 2 and n ≥ 3,

dimXn−1,d = dimXn−1,[d−1,1] =

(
d+ n− 2

n− 1

)
+ n− 1.
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Corollary 2.18 also gives that Xn−1,[d−1,1] is the unique irreducible component of Xn−1,d
that has the same dimension as Xn−1,d.

As we noted above, Xn−1,d is not irreducible as soon as d > 2. Thus, in order to calculate
the dimension of σ`(Xn−1,d) one must also consider the (embedded) `-joins of the irreducible
components of Xn−1,d.

Recall that if X1, · · · ,X` are irreducible varieties in Pm (not necessarily distinct), then the
embedded join of X1, · · · ,X`, denoted

J(X1, · · · ,X`)

is the Zariski closure of the union of all the linear spaces 〈P1, . . . , P`〉 ⊂ Pm where Pi ∈ Xi.
If all the Xi = X then this is nothing other than σ`(X). Furthermore, for any (possibly
reducible) variety X ⊂ Pm, the parameter count mentioned in the introduction gives

dimσ`(X) ≤ min{m, ` · dimX + `− 1},
and the right-hand side is called the expected dimension of σ`(X).

The following Lemma shows that if X1, · · · ,X` are any ` irreducible components of Xn−1,d
and 2` ≤ n, then

dimσ`(Xn−1,[d−1,1]) ≥ dim J(X1, · · · ,X`).

Lemma 7.3. Consider integers k1, k2, . . . , k` ∈ {1, . . . , bd2c}, where d ≥ 2. Let I ⊂ S =
k[x1, . . . , xn] be an ideal generated by 2` general forms of degrees k1, k2, . . . , k`, d − k1, d −
k2, . . . , d− k`. Let J ⊂ S be an ideal generated by ` general linear forms and ` general forms
of degree d− 1. If 2` ≤ n, then, for all integers j,

dimk[S/I]j ≥ dimk[S/J ]j.

Moreover, if ki > 1 for some i ∈ {1, . . . , `}, then there is some j such that this is a strict
inequality.

Proof. Consider first the case, where n = 2`. If n = 2, then

dimk[S/J ]j =

{
1 if 0 ≤ j ≤ d− 2

0 otherwise,

and the claim follows in this case. Using Hilbert series, this observation can be expressed as

(7.1)
1

(1− t)2
(1− tk)(1− td−k) ≥ 1

(1− t)2
(1− t)(1− td−1) whenever 1 ≤ k ≤ d

2
.

Let now n ≥ 4. Then the Hilbert series of S/I and S/J are

HS(S/I) =
∏̀
i=1

(1− tki)(1− td−ki)
(1− t)2

and

HS(S/J) =
∏̀
i=1

(1− t)(1− td−1)
(1− t)2

.

Thus, Inequality (7.1) gives
HS(S/I) ≥ HS(S/J),

as desired.
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Finally, assume n > 2`. Then

HS(S/I) =
1

(1− t)n−2`
·
∏̀
i=1

(1− tki)(1− td−ki)
(1− t)2

≥ 1

(1− t)n−2`
·
∏̀
i=1

(1− t)(1− td−1)
(1− t)2

= HS(S/J),

where the estimate follows from the case n = 2` and the fact that the coefficients in the
power series expansion of 1

(1−t)n−2` are all non-negative. �

We are ready for the main result of this section.

Theorem 7.4. Assume 2` ≤ n. Then

dimσ`(Xn−1,d) = dim σ`(Xn−1,[d−1,1]).

Moreover:

(a) The variety σ`(Xn−1,d) fills its ambient space if and only if
(i) 2` = n and d = 2; or

(ii) ` = 2, n = 4, and d = 3.
(b) If σ`(Xn−1,d) does not fill its ambient space, then its dimension is

dimσ`(Xn−1,d) =

(
d+ n− 1

n− 1

)
−
(
d+ n− `− 1

d

)
+ `(n− `)− 1,

and σ`(Xn−1,d) is defective.

Proof. Let P1, . . . , P` ∈ Xn−1,d be points such that each Pi is a general point on some com-
ponent, say Xn−1,[d−ki,ki], of Xn−1,d. Then Terracini’s Lemma gives (as in Corollary 2.7)

dim(σ`(Xn−1,d)) = max
{

dimk [IP1 + · · ·+ IP`
]d − 1 | k1, k2, . . . , k` ∈

{
1, . . . ,

⌊
d
2

⌋}}
.

Using the notation of Lemma 7.3, this implies

dim(σ`(Xn−1,d)) = dimk[J ]d − 1 = dim(σ`(Xn−1,[d−1,1])),

as desired.
Part (a) is now a consequence of the second part of Theorem 3.5. We claim that part (b)

follows from Theorem 6.11. Indeed, if ` < `0 then Theorem 6.11 gives the desired dimension.
If `0 ≤ ` then Theorem 6.11 yields that σ`(Xn−1,[d−1,1]) fills its ambient space. �

Remark 7.5. Lemma 7.3 also implies that

dimσ`(Xn−1,[d−k,k]) ≤ dimσ`(Xn−1,[d−1,1]) if 2 ≤ k ≤ d

2
,

provided ` ≤ n
2
. We conjecture that this bound is true without the latter restriction. Notice

that we have an upper bound for dimσ`(Xn−1,[d−k,k]) by Proposition 6.6 and that we know
dimσ`(Xn−1,[d−1,1]) by Theorem 6.11. This reduces this conjecture to a comparison of two
numbers. However, we have been unable to establish the needed estimate.

By Theorem 6.11, we know exactly when the secant variety σ`(Xn−1,[d−1,1]) fills its ambient
space. This gives:

41



Theorem 7.6. The secant variety σ`(Xn−1,d) fills its ambient space if ` ≥ `0, where

`0 = min

{
` ≥ n

2
| ` ∈ Z and

(
d− `+ n− 1

d

)
≤ `(n− `)

}
.

In particular, σ`(Xn−1,d) fills its ambient space if ` ≥ n− 1.

Proof. Notice that
dimσ`(Xn−1,d) ≥ dimσ`(Xn−1,[d−1,1]).

Thus, the claim follows from Theorem 6.11 if d ≥ 3. If d = 2, then `0 = dn
2
e, and we conclude

by Remark 7.1. �

Proof of Theorem 1.5. Combine Theorems 7.4 and 7.6. �

Remark 7.7. If 2` > n, then Theorems 7.4 and 7.6 do not rule out the possibility that
σ`(Xn−1,d) fills its ambient space even when σ`(Xn−1,[d−1,1]) does not. However, we do not
expect this ever happening. In fact, we suspect that the following extension of Theorem 7.4
is true:

dimσ`(Xn−1,d) = dim σ`(Xn−1,[d−1,1]),

for all `, n and d. If so, then, by Theorem 6.11, the converse of Theorem 7.6 is true and
σ`(Xn−1,d) is defective whenever it does not fill its ambient space.

8. Application to secant varieties of Segre varieties

The paper [2] by Abo, Ottaviani and Peterson classifies all Segre varieties X such that the
`-secant variety is defective for some ` < 7 and it raises some questions as to conjecturally
what happens in general. Our results verify certain cases of these conjectures.

We first recall some terminology from [2] and a related result from [11]. Assume 2 ≤ nr ≤
. . . ≤ n1 (this is consistent with our ordering convention, but it is the reverse of what [2]
does). Say that (n1, . . . , nr) is balanced if n1 − 1 ≤ Πr

i=2ni −
∑r

i=2(ni − 1) and unbalanced
otherwise. Using this terminology, [11] proves that with respect to the Segre embedding of
X = Pn1−1 × · · · × Pnr−1 in projective space, X has a defective `-secant variety for some
` if (n1, . . . , nr) is unbalanced. This result, [11, Proposition 3.3], was paraphrased in [2]
essentially as follows (see [2, Lemma 4.1]):

Proposition 8.1. With respect to the Segre embedding of X = Pn1−1 × · · · × Pnr−1 in
projective space, σ`(X) is defective for ` satisfying

Πr
i=2ni −

r∑
i=2

(ni − 1) < ` < min{Πr
i=2ni, n1}.

By a Segre variety X being unbalanced [2] means X = Pn1−1×· · ·×Pnr−1 where (n1, . . . , nr)
is unbalanced. With these definitions, [2, Question 6.6] then asks:

Question 8.2. Is it true for a Segre variety X such that σ`(X) is defective for some `, that
either:

1. X is unbalanced; or
2. X = P2 × Pn−1 × Pn−1 with n odd; or
3. X = P2 × P3 × P3; or
4. X = P1 × P1 × Pn−1 × Pn−1?
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The conjecture in [2] is that the answer is yes; to rephrase:

Conjecture 8.3. Let X be a balanced Segre variety but not any of those listed in items 2, 3
or 4 of Question 8.2. Then σ`(X) is not defective for all ` ≥ 2.

Our results verify this in various cases, as we now explain.
It is useful to reconsider the morphism (2.1). Let X = Pn1−1 × · · · × Pnr−1. The points

of the Segre embedding of X in PN−1, where N = Πini, are exactly those of the form
[. . . , ai11ai22 · · · airr, . . .], where (a1j, . . . , anjj) ∈ Pnj−1. We can regard [. . . , ai11ai22 · · · airr, . . .]
as the multi-homogeneous polynomial

F (. . . , xij, . . .) =
∑

ai11ai22 · · · airrxi11xi22 · · · xirr
= Πr

j=1(a1jx1j + · · ·+ anjjxnjj) ∈ k[. . . , xij, . . .]

of multi-degree (1r) = (1, . . . , 1), where the variables xij are indexed by 1 ≤ i ≤ nj with

1 ≤ j ≤ r and k[Pnj−1] = k[x1j, . . . , xnjj]. Now suppose that nj =
(
dj+n−1
n−1

)
for each j, where

d1 ≥ d2 ≥ · · · ≥ dr and d = d1 + · · ·+ dr. Regarding the coordinate variables xij of Pnj−1 as
an enumeration of the monomials Mij ∈ k[x1, . . . , xn] of degree dj for each j, we get a map

F 7→ F ∈ k[x1, . . . , xn],

where F is the degree d singly homogeneous polynomial F (. . . ,Mij, . . .) obtained by substi-
tuting Mij into xij. Note that the map is actually a linear homomorphism

: (k[. . . , xij, . . .])(1,...,1) → (k[x1, . . . , xn])d.

The projectivizations of (k[. . . , xij, . . .])(1,...,1) and (k[x1, . . . , xn])d are PN−1 and P(d+n−1
n−1 )−1,

respectively. The restriction of to the affine cone corresponding to the Segre embedding
of X in PN−1 is just the surjective morphism induced on affine cones by the morphism (2.1)
of X to Xn−1,λ for λ = [d1, . . . , dr].

Since : (k[. . . , xij, . . .])(1,...,1) → (k[x1, . . . , xn])d is linear, it maps the affine cone of the
`-secant variety of X to the affine cone of the `-secant variety of Xn−1,λ. If σ`(Xn−1,λ) is
not defective, let us say that the `-secant variety σ`(Xn−1,λ) of Xn−1,λ does not overly fill
its ambient space if dimσ`(Xn−1,λ) = ` · dimXn−1,λ + ` − 1. Also, given the partition λ =

[d1, . . . , dr], let Xn−1,λ denote the Segre embedding of Pn1−1×· · ·×Pnr−1, where ni =
(
di+n−1
n−1

)
.

We thus have:

Theorem 8.4. If σ`(Xn−1,λ) is not defective and does not overly fill its ambient space, then
σ`(Xn−1,λ) is not defective.

Proof. Assume σ`(Xn−1,λ) does not overly fill its ambient space. If σ`(Xn−1,λ) were defective,
then dimσ`(Xn−1,λ) < ` · dimXn−1,λ + ` − 1 = ` · dimXn−1,λ + ` − 1. Since σ`(Xn−1,λ)
does not overly fill its ambient space, we have ` · dimXn−1,λ + ` − 1 = dimσ`(Xn−1,λ) and
hence dimσ`(Xn−1,λ) < dimσ`(Xn−1,λ). But : (k[. . . , xij, . . .])(1,...,1) → (k[x1, . . . , xn])d
maps the affine cone of σ`(Xn−1,λ) onto the affine cone of σ`(Xn−1,λ), so we must have
dimσ`(Xn−1,λ) ≥ dimσ`(Xn−1,λ), hence σ`(Xn−1,λ) cannot be defective. �

As an example, we have the following corollary which verifies Conjecture 8.3 in a range
of cases. Although this particular consequence is known (see [11, Proposition 2.3]), our
approach is new.

43



Corollary 8.5. Let 1 ≤ dr ≤ · · · ≤ d1 < d2 + · · · + dr, 3 ≤ r and 4 ≤ 2` ≤ n be integers
with ni =

(
di+n−1
n−1

)
and a = n1 · · ·nr. If X is the Segre embedding of Pn1−1 × · · · × Pnr−1 in

Pa−1, then σ`(X) is not defective. Moreover, X is balanced for d2 = · · · = dr � 0.

Proof. By Theorem 3.13, σ`(Xn−1,λ) is not defective for λ = [d1, . . . , dr] and does not overly
fill its ambient space, hence by Theorem 8.4, σ`(X) is not defective. Now we just need to

check that X is balanced when d2 = · · · = dr � 0. Since
(
d1+n−1
n−1

)
<
(
d2(r−1)+n−1

n−1

)
, it suffices

to show that
(
d2(r−1)+n−1

n−1

)
≤
(
d2+n−1
n−1

)r−1− (r− 1)
(
d2+n−1
n−1

)
. But

(
d2(r−1)+n−1

n−1

)
is a polynomial

in d2 of degree n − 1 while
(
d2+n−1
n−1

)r−1 − (r − 1)
(
d2+n−1
n−1

)
is a polynomial in d2 of degree

(r − 1)(n− 1), hence the inequality must hold for d2 � 0. �

9. Further questions and comments

In this section we pose some natural questions arising from our work.
It is clear from the previous sections that the major algebraic question left open in the

paper is the extent to which sums of at least two generic tangent space ideals to the varieties
of reducible hypersurfaces have enough Lefschetz elements (see Conjecture 5.8). One should
note that less information than the full Weak Lefschetz Property is needed to establish the
conjectured dimension of secant varieties to varieties of reducible forms. This allowed us to
use results by Hochster and Laksov [28], Anick [4], and a theorem on complete intersections
(see [43, 47, 38, 40] or [26]) in the proofs of Theorems 6.11 and 6.8, respectively. It would
be very interesting to have new instances where (partial) Weak Lefschetz Properties are
established.

As we have observed earlier in the paper, each variety of reducible hypersurfaces is a finite
projection of a Segre embedding of a product of projective spaces. Are there more geometric
conclusions (than those we have found in Section 8) that we can draw about the secant
varieties of the Segre embedding from the more abundant information we have for the secant
varieties of the varieties of reducible hypersurfaces?

Another question is if any of the secant varieties of the varieties of reducible forms are
arithmetically Cohen-Macaulay, apart from the trivial cases in which those secant varieties
are themselves hypersurfaces in their ambient space.

Again, apart from some very small examples, we do not have equations for the varieties of
reducible hypersurfaces, much less for their secant varieties (even in cases where we know the
latter are hypersurfaces in their ambient spaces (see Remark 4.5)). It would be interesting to
have some intrinsic equations for these varieties or a bound on the degrees of their equations.

Mammana [31] gives a formula for the degree of the variety of reducible plane curves but
we have no generalization of that formula for varieties of reducible hypersurfaces beyond the
case of plane curves. More generally, one would like to have a formula for the degree of
the secant varieties of these varieties. This is not known even for varieties of plane curves,
except in the most trivial of cases. It would even be interesting to know the degree when
the variety is a hypersurface in its ambient space.
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