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Background
As the epicenter of Coronavirus disease 2019 (COVID-19) and emerging severe acute 
respiratory syndrome (SARS) caused by novel Coronavirus (2019-nCoV) spread is mak-
ing its way across the world, global healthcare finds itself facing tremendous challenges. 
According to the World Health Organization (WHO) situation report (91st), updated on 
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preventive and therapeutic interventions are urgently needed. It must be said that, 
until now, there are no existing vaccines for coronaviruses. To promptly and rapidly 
respond to pandemic events, the application of in silico trials can be used for design-
ing and testing medicines against SARS-CoV-2 and speed-up the vaccine discovery 
pipeline, predicting any therapeutic failure and minimizing undesired effects.

Results:  We present an in silico platform that showed to be in very good agreement 
with the latest literature in predicting SARS-CoV-2 dynamics and related immune 
system host response. Moreover, it has been used to predict the outcome of one of the 
latest suggested approach to design an effective vaccine, based on monoclonal anti-
body. Universal Immune System Simulator (UISS) in silico platform is potentially ready 
to be used as an in silico trial platform to predict the outcome of vaccination strategy 
against SARS-CoV-2.

Conclusions:  In silico trials are showing to be powerful weapons in predicting 
immune responses of potential candidate vaccines. Here, UISS has been extended to 
be used as an in silico trial platform to speed-up and drive the discovery pipeline of 
vaccine against SARS-CoV-2.

Keywords:  Agent-based model, Human monoclonal antibodies, In silico trials, SARS-
CoV-2, Vaccines

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies 
to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Russo et al. BMC Bioinformatics 2020, 21(Suppl 17):527
https://doi.org/10.1186/s12859-020-03872-0

*Correspondence:   
racitigi@unict.it; francesco.
pappalardo@unict.it 
1 Department of Drug 
Sciences, University 
of Catania, 95125 Catania, 
Italy
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03872-0&domain=pdf


Page 2 of 16Russo et al. BMC Bioinformatics 2020, 21(Suppl 17):527

20 April 2020, there have been globally 72,846 confirmed cases of 2019-nCoV and 5296 
cases of death caused by the virus itself [1].

2019-nCoV (also referred to as SARS-CoV-2 or HCoV-19) [2], is the seventh corona-
virus known to infect humans along with SARS-CoV, MERS-CoV, HKU1, NL63, OC43 
and 229E [3]. While these last four coronaviruses are associated with mild symptoms, 
SARS-CoV, MERS-CoV and SARS-CoV-2 can cause severe acute respiratory syndrome 
[4], especially in elderlies, of which men, and those individuals with comorbidities and 
immunocompromised conditions [5]). Although it is similar to SARS-CoV, SARS-CoV-2 
has an improved ability for pathogenicity [6]. In particular, latest evidences during the 
ongoing pandemic reveal that patients affected by SARS-CoV-2 can progress their clini-
cal picture from fever, cough, ageusia and anosmia, sore throat, breathlessness, fatigue, 
or malaise to pneumonia, acute respiratory distress syndrome (ARDS) and multi organ 
dysfunction illness [7]. Significantly, in most critically ill patients, SARS-CoV-2 infection 
is also associated with a severe clinical inflammatory picture based on a serious cytokine 
storm that is mainly characterized by elevated plasma concentrations of interleukins 
6 (IL-6) [8]. In this scenario, it seems that IL-6 owns an important driving role on the 
cytokine storm, leading to lung damage and reduced survival [9].

Recently, a growing body of evidence has demonstrated a plethora of symptoms related 
to COVID-19 infection, ranging from cardiovascular to neurological clinical manifesta-
tions, and a different severity in young and adult patients as well as in fragile patients, 
including diabetic, cancer and immunodeficient patients [10–12].

To get a grip on this outbreak and flatten the curve of infection, a specific therapeutic 
intervention to prevent the severity of the disease is urgently needed to reduce morbid-
ity and mortality because, until now, there are no existing vaccines for coronaviruses.

The ideal profile for a targeted SARS-CoV-2 vaccine must address the need of vacci-
nating human population, with particular regard of those individuals classified as at high 
risk, comprising, for example, frontline healthcare workers, individuals over the age of 
60 and those that show debilitating chronic diseases.

Recently, specific findings about the genome sequencing of SARS-CoV-2 in different 
countries where cases of infection were registered, revealed its relative intrinsic genomic 
variability, its virus dynamics and the related host response mechanisms, unveiling 
interesting knowledge useful for the formulation of innovative strategies for preventive 
vaccination.

Specifically, SARS-CoV-2 sequencing along with its relative intrinsic genomic vari-
ability [13], the presence of minority variants generated during SARS-CoV-2 replica-
tion [14], the involved cellular factors that favors SARS-CoV-2 cell entry [15], the timing 
in which viral load peaks (during the first week of illness), its gradual decline (over the 
second week) and the increasing of both IgG and IgM antibodies (around day 10 after 
symptom onset) represent some of the relevant insights so far delineated and considered 
by research community about SARS-CoV-2 virus [16].

Even though these findings are having several practice consequences and suggest valu-
able conclusions, SARS-CoV-2 dynamics has not been yet fully understood. Informa-
tion about which parts of SARS-CoV-2 sequence are recognized by the human immune 
system is still limited and scarcely available. Such knowledge would be of immediate 
relevance and great help for the design of new vaccines, facilitating the evaluation of 
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potential immunogenic candidates, as well as monitoring the virus mutation events that 
would be transmitted through the human population.

Currently, there are at least 42 vaccine candidates around the world under develop-
ment and evaluation at different stages against COVID-19 [17], also accordingly from 
what reported by WHO through its continuously undergoing landscapes documents 
concerning the COVID-19 candidate vaccines. These promising vaccine candidates deal 
with several vaccine technologies based on recombinant protein subunits [18], nucleic 
acids [19], non-replicating and replicating viral vectors [20, 21], protein constructs 
[22], virus-like particles [23], live-attenuated virus strains [24], inactivated virus [17], or 
human monoclonal antibodies (mAbs) [25]. Very recently, it has been shows that DTP 
vaccinations could protect against COVID-19 through potential cross-reactive immu-
nity [26].

Today, challenges of continuing development of solutions for COVID-19 pandemic 
are a mandatory need. As never before, the application of modeling and simulation can 
actively design better vaccine prototypes, support decision making, decrease experi-
mental costs and time, and eventually improve success rates of the trials. To this aim, in 
silico trials (ISTs) for design and testing medicines [27–29] can accelerate and speed-up 
the vaccine discovery pipeline, predicting any therapeutic failure and minimizing unde-
sired effects.

Beyond traditional modeling techniques or applications, Agent-Based Models (ABMs) 
represent a paradigm that can cover the entire spectrum of the vaccine development 
process [30], especially for the quantification and prediction of the humoral and cellular 
response of a specific candidate vaccine as well as its efficacy [31].

The simulation platform we use from 15 years, named Universal Immune System Sim-
ulator (UISS), is based on agent-based methodology, which is able to brilliantly simulate 
each single entity of the immune system (and consequently its dynamics), along with 
the significant immune responses induced by a specific pathogen or stimulus. Recently, 
UISS provided different success stories in immunology field as it is most widely reported 
in the literature [32–35].

As the actual diagnostic strategies based on RT-qPCR [36] often fail in diagnose cor-
rectly COVID-19 patients (including also asymptomatic or false-negative ones) [37], in 
silico trials applied to the development of an effective vaccine are desirable.

We chose to analyze, within the wide landscape of potential candidate vaccines against 
SARS-CoV-2, a specific cross-neutralizing antibody that Wang et al. [38] suggest to be 
promising in targeting and binding a communal conserved epitope of SARS-CoV-2 and 
SARS-CoV on the spike receptor binding domain [39], through an independent mecha-
nism of receptor binding inhibition.

As a case study, here we report a first application of UISS in silico platform to pro-
vide predictions of the efficacy of a potential therapy against COVID-19 based on a mAb 
strategy intervention like the one proposed by Wang et al.

Methods
UISS, an in silico platform for the human immune system simulation

Agent-Based Models (ABMs) belong to the class of mechanistic models, a family of 
models that, differently from data-driven models, uses a description of the underlying 
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mechanisms of a given phenomenon to reproduce it. Such a description is usually 
based on different observational data, previous knowledge and/or hypotheses, and is 
usually aggregated and rationalized into a conceptual map (i.e., a flow chart and/or a 
schematic disease model) that reassumes the cascade of events of the phenomenon 
under investigation. The conceptual map is then translated into mathematical/com-
putational terms and then executed by computers to observe, in silico, the evolution 
of the phenomenon over time. Besides ABMs, other modeling techniques based on 
the mechanistic approach can be used. Among these, we recall, for example, ordinary 
and partial differential equations [40–42] and Petri nets [43, 44].

As the name suggests, agent-based models are based on the paradigm of ‘agents’, 
autonomous entities that behave individually according to established rules. Such 
entities can be heterogeneous in nature, and are usually represented on a simulation 
space where they are free to move, interact each-other and change their internal state 
as a consequence of interactions. From a computer science perspective, agents can 
be seen as stochastic finite-state machines, capable of assuming a limited number of 
discrete states. Using ABMs, the global evolution of the phenomena is observed by 
taking into account the sum of the individual behaviors of all agents, and sometimes 
unexpected “emergent” behaviors may be observed.

ABMs have been successfully applied in many research fields, from social sciences 
to ecology, from epidemiology to biology. In the field of immunology, we developed 
the Universal Immune System Simulator (UISS), an agent-based framework that has 
been extended through the last decades to simulate the behavior of the immune sys-
tem response when challenged against many diseases.

In UISS agents are used to describe cells and molecules of the immune system, as 
well as external actors that can destabilize (i.e., pathogens such as viruses and bacte-
ria) or restore (i.e. prophylactic and therapeutic treatments) the normal health of the 
host.

One of the main features of UISS is its ability to mimic the adaptive immune 
response mechanisms. Mammals have in fact developed an advanced immune sys-
tem machinery capable to specifically recognize pathogens in order to better react 
against them. This advanced response is based on the ability to exactly recognize for-
eign proteins (i.e., epitopes) on pathogens surface by means of receptors, through a 
key-to-lock mechanism. While an explicit implementation would be both unfeasible 
and partially inaccurate from a computational point of view, in UISS we mimic such a 
process through the use of binary strings. Binary strings are used for both represent-
ing epitopes and immune system cells’ receptors, and the probability that an immune 
system cell recognizes a pathogen is proportional to the Hamming distance (the 
number of mismatching bits) between the two strings involved into the interaction. 
Although this abstraction may seem binding, millions of interactions can be simu-
lated quickly on modern computers, making easier the reproduction of many features 
of the immune system such as memory, specificity, tolerance and homeostasis. For 
example, this abstraction demonstrated able to allow the selection of the best adju-
vant among a series of candidates for an influenza vaccine when properly coupled 
with results coming from existing binding prediction tools [32]. This suggests how 
such an abstraction is able to capture the complexity of the problem.
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Besides of receptors, UISS implements many other immune system mechanisms, as 
thymus selection, haematopoiesis, cell maturation, Hayflick limit, aging, immunological 
memory, antibody hyper-mutation, bystander effect, cell anergy, antigen processing and 
presentation [45, 46].

Up to now, UISS in silico platform has been successfully applied to the design and 
verification of novel treatments for many diseases in both preclinical and clinical envi-
ronments, including pathologies such as mammary carcinoma [47] and derived lung 
metastases [48], melanoma [49], atherosclerosis [50], multiple sclerosis [35] and influ-
enza [32].

More recently, UISS has been used as the centerpiece of the StriTuVaD H2020 pro-
ject with the aim to create an in silico trial for tuberculosis. In this context, observations 
from virtual patients will be coupled with results from a real clinical trial to obtain an in 
silico augmented clinical trial, with greater accuracy and more statistical power [34].

SARS‑CoV‑2 disease model

The SARS-CoV-2 disease model has been implemented in UISS computational frame-
work starting by identifying a question of interest. The question of interest describes 
the specific question, decision or concern that is being addressed with a computational 
model. In other words, the question of interest lays out the engineering question that is 
to be answered (at least in part) through a model. The next step is to define the context 
of use (CoU), which provides a detailed and complete explanation of how the computa-
tional model output will be used to answer the question of interest.

In this specific study, the question of interest is how potential prophylactic or thera-
peutic vaccines could cure COVID-19, building or stimulating an effective immune 
response against SARS-CoV-2 virus. UISS must then represent and reproduce the fun-
damental SARS-CoV-2—immune system competition and dynamics. To this end, we 
first selected all the players that have a role in the viral infection both at cellular and 
molecular scale and then we categorized all the interactions among entities that play a 
relevant role in this biological scenario. Finally compartment assumptions have to be 
done to let the entities move and interact each other. In our case, we considered the lung 
compartment that models the main organ target of the virus and the generic lymph node 
that allows immune system entities to be activated and selected. Figure 1 gives a detailed 
sketch on the main compartments, entities and interactions.

SARS-CoV-2 first entry is located in the upper respiratory tract. Then it proceeds to 
bronchial and finally to lungs in which it reaches its main cellular target i.e., the epi-
thelial lung cells (LEP) [2]. The virus is eventually captured by dendritic cells (DC) and 
macrophages (M).

DC are the main antigen processing cells of the immune system [51] that are able to 
present the peptides antigen complexed in both major histocompatibility class I and 
class II (MHC-I and MHC-II, respectively). If a DC encounters the native virus form, 
it can be able to process it and present its peptides complexed with MHC-II to CD4 
T cells for further actions. DC, upon virus activation, release interferon type A and B 
(IFN-A and IFN-B) and interleukin-12 (IL-12) that are important cytokines in fighting 
intracellular pathogens. Also, M are able to capture the native form of the SARS-CoV-2 
and, if properly activated by pro-inflammatory cytokines, be able to internally destroy it. 
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After their successful activation, macrophages release a pro-inflammatory cytokine that 
is tumor necrosis factor alpha (TNF-alpha).

A fraction of SARS-CoV-2 viruses reach LEP and through the envelope spike glyco-
protein binds to their cellular receptor, angiotensin-converting enzyme 2 (ACE2). Doing 
that, the viral RNA genome starts to be released into the cytoplasm and is translated 
into two polyproteins and structural proteins, after which the viral genome begins to 
replicate inside the cell [52].

Following the flux of the conceptual disease model represented in Fig. 1, after a certain 
amount of time (that we tuned with available data, as described in the next sections), 
new copies of the virus are released from the infected LEP that eventually dies. New 
released copies of functional SARS-CoV-2 infect new cells, spreading further the infec-
tion in the lungs.

When a cell is infected by a virus, it can be susceptible of different destinies. One of 
them is the shutting down of MHC-I expression to avoid immune system recognition 

Fig. 1  SARS-CoV-2 disease model implemented in UISS. Main compartments (lung, and lymph-nodes) 
are delimited with dashed lines. Peripheral blood compartment is seen as connecting duct, not explicitly 
represented. The starting point is the SARS-CoV-2 droplets entrance in the upper respiratory tract (not 
shown). Then, all the main infection dynamics is described. The immune system cascade is shown as it 
was implemented, based on the latest research results published in specialized literature. For each entity, 
the localization (i.e., the biological compartment in which the entities are present) and the status (i.e., the 
differentiation states that an entity can own) are defined. The results of the immune system mounting 
process is the killing of the infected lung epithelial cells by the cytotoxic T lymphocyte and the local release 
of both chemokine factors and cytokines. At the humoral level, specific IgM (first) and IgG (after) directed 
against SARS-CoV-2 virus are released by plasma B cells. Regulatory system is also involved in the process. 
If the immune system machinery works correctly, regulatory arm shutdowns excessive cytokines storm, 
avoiding the severe prognosis of COVID-19. All entities are allowed to move with a uniform probability 
between neighboring lattices in the grid with an equal diffusion coefficient (Brownian motion). If a 
chemokines gradient is present, then to mimic short-range chemotaxis effects, higher probabilities of being 
chosen are given to sites containing chemokines
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from specific CD8 T cells. In this case, a population of innate immunity cells, natural 
killer cells (NK) may identify them and proceed to kill them through specific actions. 
The other one is represented by a different MHC-I presentation on the cell surface, as 
the virus has modified the normal behavior of cell to let the host to make functioning 
virus copies. In this circumstance, (that we supposed to happen during SARS-CoV-2 
infection) cell MHC-I presentation is different from the normal case.

DC are able (through a mechanism known as “nibbling” process [53]) to cross present 
the antigen complexed with MHC-I proteins to let adaptive immune response to recog-
nize and kill virus infected cells. Activated and antigen presenting cells (both DC and/or 
M) migrate into the proximal lymph nodes to present their content to adaptive immune 
cells i.e., T cells and B cells. We implemented nibbling process in a specific UISS interac-
tion in which DC capture Ag from live cells through intimate cell contact, presenting in 
MHC class I complex to T cells for further actions.

Also, a portion of viruses could eventually migrate to the lymph nodes. Here, B cells 
can be activated by virus if specific immunoglobulin receptor in B cell surface binds 
to it. In this context, B cell is activated, and it immediately releases immunoglobulins 
of M class (IgM) that are the first antibody response that can be measured. Further, 
APC cells activate CD4 T cells (helper T cells, Th) that under the influence of specific 
cytokines released before, differentiate into helper T cell type 1 (Th1). Th1 migrate under 
chemokines gradient to the site of infection. There, they release interferon gamma (IFN-
G) that makes macrophages able to destroy captured viral particles and allow them to 
release IL-12 that promotes immune system activation against the virus. Th1 cells allow 
the differentiation and the iso-switching B cells into immunoglobulins class G (IgG) pro-
ducing plasma cells. IgG are specific antibodies that bind against virus receptors, even-
tually inhibiting its capacity to infect cells. MHC-I/peptides DC presenting cells are also 
able to activate CD8 cytotoxic T cells (Tc) to destroy SARS-CoV-2 infected cells and 
then eliminate the reservoir of infection.

Eventually, Tc migrate into the site of infection and recognize and kill infected LEP. 
Tc killed infected LEP release chemokines and interleukin 1 and 6 (IL-1 and IL-6). IL-1 
is the main cytokine that induces several systemic effects in the host, for example fever. 
IL-6 is a proinflammatory cytokine that can change the severity of COVID-19 disease 
as reported in very recent literature [54]. Our disease model takes good account of the 
cytokines storm in the prognosis of the severity of the disease.

Entities (both cellular and molecular) move and diffuse in a simulation space rep-
resented as a L X L lattice (L is set depending on the dimension of the compartment 
one intends to reproduce), with periodic boundary conditions. There is no correlation 
between entities residing on different sites at a fixed time as the interactions among cells 
and molecules take place within a lattice-site in a single time step.

All entities are allowed to move with a uniform probability between neighboring lat-
tices in the grid and with an equal diffusion coefficient (Brownian motion).

Results and discussion
Tuning and validation of SARS‑CoV‑2 disease model

Scientific knowledge about SARS-CoV-2 is still not complete and research contributions 
appear every day. Apart from this, we used all the available literature data to compare 
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the dynamics predicted by the UISS platform with all findings we were able to fetch. All 
the simulations we run represent the mean patient for the two different scenario we con-
sidered i.e., mild to moderate and the severe one. The mean patient was calculated from 
100 different in silico simulations.

The first task we accomplished with success was the evaluation of the replication 
kinetic of SARS-CoV-2. To this end, we set a first use case simulation considering a dig-
ital patient in which a virus challenge dose of 0.1 multiplicity of infection (MOI) was 
administered at day 0. Simulation space was 5 cubic millimeters of lung tissue, 5 cubic 
millimeters of lymph tissue and 5 µl of peripheral blood. Figure 2 (right panel) shows 
that peak viral titers are reached by 48 h post-inoculation. We also plotted IL-6 dynam-
ics: as reported in [9] the levels of IL-6 could be provide a prognosis on the severity of 
the infection.

We also measured cytopathic effects (CPE) on the lung compartment. CPE are defined 
as changes occurred in the infected cell that eventually lead its lysis or inability to repro-
duce. Figure 2 (left panel) highlights the dynamics of CPE: they started at day 3.5 and 
peak around day 5. After 21 days, the simulated digital patient almost recovers from the 
infections. These findings are in good agreement with actual literature [16, 55].

In a recent work, Liu et  al. [56] reported that mild cases were found to have an 
early viral clearance, with 90% of these patients repeatedly testing negative by day 
10 post-onset. At the same time, they found that all severe cases still tested positive 

Fig. 2  In silico SARS-CoV-2 viral dynamics and related CPE in a mild to moderate “mean in silico patient” 
scenario. In the left panel, one can observe the mild digital patient case in which a virus challenge dose of 
0.1 multiplicity of infection (MOI) was administered at day 0 (green line). Peak viral titers are reached by 48 h 
post-inoculation. IL-6 dynamics and its related plasma levels (fg/μL) are also shown in the inner panel (purple 
line). In the right one, the dynamics of CPE on the lung infected cells is measured: they started at day 3.5 and 
peak around day 5. After 21 days, the simulated digital patient almost recovers from the infection. One can 
notice how UISS is capable to simulate, accordingly to the recent literature, the early viral clearance by day 10 
post-onset in mild cases
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at or beyond day 10 post-onset. Moreover, severe cases tended to have a higher viral 
load both at the beginning and later. In contrast, mild cases had early viral clearance 
10 days post on-set. UISS was also able to reproduce this scenario. As one can see, 
Fig. 2 is in very good agreement for viral clearance.

We also were able to reproduce severe conditions acting on the immune system 
aging parameters obtaining results showed in Fig. 3. In this case, Fig. 3 (right panel) 
shows virus presence after day 10, until day 15, and its complete clearance about day 
19. Moreover, CPE are much more severe and the recover from infection was clearly 
delayed (left panel). IL-6 dynamics shows a much more prominent peak of values. 
This is in very good agreement with latest literature data, as explained before.

To validate the main immune system response of mild-to-moderate COVID-19 
patients, we used the results available in [57]. In this work, the authors report the 
kinetics of immune responses in terms of activated CD4 + T cells, CD8 + T cells, IgM 
and IgG antibodies, detected in blood before symptomatic recovery. As one can see 
from Fig. 4, the kinetics of activated Th1 cells (panel A), activated CD8 T cells (panel 
B) and the IgM and IgG (panel C) predicted by the simulator are in good agreement 
with their findings.

Fig. 3  In silico SARS-CoV-2 viral dynamics and related CPE in a “mean in silico patient” severe scenario. In the 
left panel, one can observe the severe digital patient case in which a virus challenge dose of 0.1 multiplicity 
of infection (MOI) was administered at day 0 (green line). Peak viral titers are reached by 48 h post-inoculation. 
In addition, it is wort to note that virus persists after day 10, until day 15, and its complete clearance is around 
day 19. In the inner panel (purple line), IL-6 dynamics and its related plasma levels (fg/μL) are shown. IL-6 
dynamics shows a much more prominent peak of values. This is in very good agreement with latest literature 
data, as explained within the manuscript. In the right panel, the dynamics of CPE on the lung infected cells 
is measured: in this case, CPE are much more severe and the recover from infection is clearly delayed. UISS is 
capable to simulate, accordingly to the recent literature, how the severe cases tend to have a higher viral load 
both at the beginning and later on
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UISS IST to predict mAb efficacy against SARS‑CoV‑2

UISS is an immune system simulation platform that was designed to be applied to 
several and different scenarios, especially to carry on in silico trials to predict the effi-
cacy of a specific prophylactic or therapeutic vaccine against a particular disease. In 
silico trials aim to strongly reduce the time to develop new effective therapeutics: this 
is particularly crucial in situation like the one we are facing with. As soon as a disease 
model incorporated into UISS is tuned and validated against available data, it can be 
used as an in silico lab to test new vaccines. In the previous section, we demonstrated 
that UISS-SARS-CoV-2 is able to reproduce and predict the main aspects of the viral 
infection.

As a working example, here we show how the platform can be immediately used to 
predict the efficacy of a human monoclonal antibody that neutralizes SARS-CoV-2 
developed by Wang et al. [38]. In this work the authors suppose that the developed 
antibody (named 47D11) neutralizes SARS-CoV-2 through a yet unknown mecha-
nism that is different from receptor binding interference. Hence, in implementing 
the mechanism of action of 47D11 into UISS computational framework we used the 
alternative mechanisms of coronavirus neutralization by receptor-binding domain 
(RBD) targeting antibodies that have been reported, including spike inactivation 
through antibody-induced destabilization of its prefusion structure, which Wang 

a b c

Fig. 4  Cellular and humoral response mounted by the host immune system against SARS-CoV-2. Panel A 
shows the dynamics of CD4 + T cells, subtype 1 (Th1). Th1 are primed by dendritic cells that present the viral 
particles complexed with MHC-II of the host. Th1 cells help the activation of B cells, eventually favoring their 
iso-type switching to IgG producing plasma cell. B cells dynamics is depicted in panel B. Antigen activated B 
cells initially releases IgM; then, after interacting with Th1 and their released pro-inflammatory cytokines, they 
start to release specific IgG directed against SARS-CoV-2 virus
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et al. indicated also applicable for 47D11. We then modeled the receptor interaction 
to trigger irreversible conformational changes in coronavirus spike proteins enabling 
membrane fusion, as described in [58].

The validation in silico trial consists in simulating the in vitro experiment conducted 
by Wang et al. where they showed that the monoclonal antibody was effective in con-
trasting SARS-CoV-2 to infect the target cells. To mimic the in vitro system that is an 
isolated system, we disabled both the lung and the lymph node compartments and we 
turned off all the immune system interactions in UISS. We then injected virus particles 
in the peripheral blood compartment of the simulator along with different concentra-
tions of mAb. Only LEP-SARS-CoV-2 interaction has been allowed to happen. Figure 5 
shows the obtained results.

As one can envisage from the figure, we reproduced with great accuracy the in vitro 
results reported by Wang et al. In particular, the computational framework was able to 
correctly predict the efficacy of 47D11 mAb simulating its mechanism of action that 
induces the entering of the virus inside LEP.

The most effective concentration is 10 μg/ml. This step makes the simulation platform 
ready for usage as a in silico trial to predict now the effects of a mAb therapy. For this 
purpose, we designed two kind of in silico experiments. The first one dealt with mAb 
vaccination strategy used to prevent the onset of infection. The second one involved 
mAb as interventional drug to treat already infected hosts.

mAb as a preventive vaccine

Figure 6 depicts the dynamics of LEP while we injected the 47D11 mAb at day 1 at a 
concentration of 10 μg/ml. Subsequently, we injected SARS-CoV-2 virus particles at day 
7 (panel A), day 14 (panel B), month 1 (panel C), month 3 (panel D), month 6 (panel E) 
and after 1 year (panel F). Solid lines refer to the no-treated digital patient while dashed 
lines refer to mAb treated one. Blue lines depict actively infected LEP while red lines 
represent LEP to show the CPE.

Fig. 5  Antibody-mediated neutralization of SARS-CoV-2 infection on simulated lung epithelial cells. 10 ng/ml 
revealed the best concentration to obtain maximum clearance of the virus
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Panel A of Fig. 6 clearly demonstrates that if a patient enters in contact with the virus 
just after 7  days post vaccination, he is fully protected from the infection: as one can 
see, SARS-CoV-2 actively infected values of LEP are low. This is also true if a potential 
subject is being infected after 2 weeks (panel B), 1 month (panel C) or 3 months (panel 
D) after vaccination. Things change for the other two cases i.e., panel E (subject infected 
after 6 months) or panel F (subject infected after 1 year). In this circumstance, the com-
putational framework predicts that the mAb vaccination is practically ineffective in pro-
tecting the onset of the disease.

A second injection of the mAb is suggested around month 4 to extend the protection 
of the host for 1 year.

mAb as a therapeutic vaccine

The second experiment we designed is to use our in silico trial platform to predict the 
efficacy of a mAb-based vaccine in therapeutic settings.

We envisaged both mild-moderate case (the same digital patient type shown in Fig. 2) 
and severe case (the same digital patient shown in Fig. 3). For both cases, we adminis-
tered the mAb vaccine 1 day and 2 days after the onset of infection.

Figure 7 shows different behavior for both mild-moderate case (panel A, mAb injected 
1 day after the onset of infection, and panel B, mAb injected 2 days after the onset of 
infection) and severe case (panels C, mAb injected 1 day after the onset of infection, and 
panel D, mAb injected 2 days after the onset of infection). As Fig. 7 depicts, mAb vaccine 
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Fig. 6  In silico trial of 47D11 to predict preventive efficacy. The overall prediction dynamics of LEP at the 
injection time of 47D11 mAb (day 1) at a concentration of 10 ng/ml after different SARS-CoV-2 challenge in 
time (a–f) is depicted. Specifically, one can observe the exposures at virus particles at day 7 (a), day 14 (b), 
month 1 (c), month 3 (d), month 6 (e) and after 1 year (f). Solid lines refer to the no-treated digital patient 
while dashed lines refer to mAb treated one. Blue lines depict actively infected LEP while red lines represent 
LEP to show the CPE. Panel A highlights that if a patient enters in contact with the virus just after 7 days 
post vaccination, he is fully protected from the infection (SARS-CoV-2 actively infected values of LEP are 
low). This is also true if a potential subject is being infected after 2 weeks (b), 1 month (c) or 3 months (d) 
after vaccination. Oppositely, in e (subject infected after 6 months) and f (subject infected after 1 year) mAb 
vaccination is practically ineffective in protecting the onset of the disease
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is effective in preventing or strongly limiting the CPE. If the mAb vaccine is injected 
after 2 days, it is not able to protect the LPE of the host to be infected by the virus and 
consequently from COVID-19 pathology.

Conclusions
In this paper, we present an in silico platform that was demonstrated able to reproduce 
the main dynamics of SARS-CoV-2 virus and the elicited host immune response against 
it.

The disease model was implemented inside UISS computational framework, an in sil-
ico trial platform that has been applied to several biological scenario. UISS shows that 
the simulated SARS-CoV-2 dynamics is in very good agreement with the one described 
in the latest literature; also, the immune system response predicted by UISS against the 
virus mirrored the one observed in state of the art research data.

This validation step entitled UISS-SARS-CoV-2 to be used as a in silico lab to test 
the efficacy of potential vaccines for COVID-19, knowing a priori their mechanism of 
action. Hence, we set an in silico trial to test a recent vaccination strategy based on the 
employment of monoclonal antibodies directed against a specific target protein of the 
virus. The simulator is in good agreement in predicting the in vitro experiment outcome 
performed by the inventors of 47D11 mAb.

Finally, we designed two experimental settings to predict the efficacy of mAb vaccina-
tion when used in both preventive and therapeutic cases. We predicted that mAb is an 
effective therapy when used as a preventive vaccine (granting up 1-year protection when 
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Fig. 7  In silico trial of 47D11 to predict therapeutic efficacy. Different behaviors for both mild-moderate case 
(a, b) and severe case (c, d) are shown. In a mAb is injected 1 day after the onset of infection. In b mAb is 
injected 2 days after the onset of infection. In c mAb is injected 1 day after the onset of infection. In d mAb 
is injected 2 days after the onset of infection. Blue lines depict actively infected LEP while red lines represent 
LEP to show the CPE. As one can notice, mAb vaccine is effective in preventing or strongly limiting the CPE 
only by 2 days of the infection
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injected with two times schedule). Moreover, we envisaged that 47D11 mAb if effective 
only if administered in a very stringent time-frame if employed as a therapeutic strategy.

UISS-SARS-CoV-2 could potentially be used also to predict the effects of other kind of 
therapeutic strategies. However, it is designed to be focused on immune system machin-
ery. This is not preventing to test antivirals compounds or other strategies that directly 
affect the virus dynamics or, in some way, stimulates the immune system to react in a 
more powerful way.

The web interface to access the simulator is freely available at https​://combi​ne.dmi.
unict​.it/UISS-COVID​19. Users can register or alternatively can access anonymously. 
UISS is implemented in ANSI C and it is supported on all platforms.

Availability and requirements

Project name UISS-COVID19.
Project home page https​://combi​ne.dmi.unict​.it/UISS-COVID​19/.
Operating system(s) Platform independent.
Programming language: C and Python
Other requirements: none
Any restrictions to use by non-academics: not applicable.
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