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ABSTRACT
We investigate how Einstein rings and magnified arcs are affected by small-mass dark-matter
haloes placed along the line of sight to gravitational lens systems. By comparing the gravi-
tational signature of line-of-sight haloes with that of substructures within the lensing galaxy,
we derive a mass–redshift relation that allows us to rescale the detection threshold (i.e. low-
est detectable mass) for substructures to a detection threshold for line-of-sight haloes at any
redshift. We then quantify the line-of-sight contribution to the total number density of low-
mass objects that can be detected through strong gravitational lensing. Finally, we assess the
degeneracy between substructures and line-of-sight haloes of different mass and redshift to
provide a statistical interpretation of current and future detections, with the aim of distin-
guishing between cold dark matter and warm dark matter. We find that line-of-sight haloes
statistically dominate with respect to substructures, by an amount that strongly depends on
the source and lens redshifts, and on the chosen dark-matter model. Substructures represent
about 30 percent of the total number of perturbers for low lens and source redshifts (as for the
SLACS lenses), but less than 10 per cent for high-redshift systems. We also find that for data
with high enough signal-to-noise ratio and angular resolution, the non-linear effects arising
from a double-lens-plane configuration are such that one is able to observationally recover the
line-of-sight halo redshift with an absolute error precision of 0.15 at the 68 per cent confidence
level.

Key words: gravitational lensing: strong – galaxies: general – galaxies: haloes – dark matter –
large-scale structure of Universe – cosmology: theory.

1 I N T RO D U C T I O N

Strong gravitational lensing is a powerful tool to measure the total
projected mass distribution of structures in the Universe from galaxy
clusters (Limousin et al. 2016; Meneghetti et al. 2016) to small
subgalactic scales (e.g. Keeton 2003; Vegetti & Koopmans 2009).
Gravitational lensing depends not only on the properties of the
system acting as a main lens, but also on the mass distribution
integrated along the line of sight between the observer and the
background source (Bartelmann & Schneider 2001; Bartelmann
2010). Understanding the contribution from the latter is, therefore,
of primary importance for better constraining the matter density
distribution within the Universe down to small scales.

Given the increasing resolution of the observational data, probing
the line-of-sight contribution is becoming more and more relevant

� E-mail: gdespali@gmail.com

and a number of recent papers have addressed this problem, mainly
on galaxy cluster scale systems (e.g. Birrer et al. 2016; McCully
et al. 2017). At subgalactic scales, a significant effort has been
made over the years to understand the line-of-sight contribution to
the flux-ratio anomalies observed in gravitationally lensed quasars
(e.g. Metcalf & Amara 2012; Xu et al. 2012, 2015). In particular,
Metcalf (2005) has shown that flux-ratio anomalies may be pre-
dominantly due to low-mass dark-matter haloes along the line of
sight, as opposed to subhaloes in the host halo of the main lens; the
impact of line-of-sight structures on flux-ratio anomalies has then
been investigated also in Inoue & Takahashi (2012), Inoue (2016),
and Inoue et al. (2016).

The aim of this paper is to investigate the gravitational lensing ef-
fect of line-of-sight haloes on the surface brightness distribution of
gravitationally lensed arcs and Einstein rings, and to quantify their
contribution to the total number of detectable objects. Our goal
is also to provide a statistical interpretation for current (Vegetti
et al. 2010, 2012; Hezaveh et al. 2016) and possible future
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Table 1. Summary of the main mass definitions and notations used throughout this paper. In general, the superscript indicates the
assumed density profile.

Summary of mass definitions

MPJ
tot Total mass of PJ profile (equation 8)

Mlow Detection threshold (i.e. lowest detectable mass) derived from observations, under the assumption that perturbers
are PJ subhaloes located on the plane of the host lens; for our purposes, it can be considered equivalent to MPJ

tot
MNFW

vir Virial mass of NFW haloes, adopted for line-of-sight haloes, and where the virial overdensity is defined
following Bryan & Norman (1998)

MSUB SUBFIND subhalo mass
MNFW

sub Virial mass of the NFW profile that best fits the deflection angle of simulated subhaloes

detections of low-mass haloes. In particular, we use simulated mock
data to explore the relative lensing signal of line-of-sight haloes and
substructures within the lens halo itself as a function of redshift,
mass, and density profile. We focus on foreground and background
line-of-sight haloes without including the effect of subhaloes in
these main haloes. These only add a minor contribution to the total
line-of-sight signal. We adopt a general approach with the aim of
obtaining results that are valid for a wide range of realistic strong
lensing observations and we compare our results with those from
Li et al. (2016a), who carried out a similar analysis for a specific
lensing configuration.

In this work, we show that the line-of-sight contribution is of
particular relevance when trying to distinguish between different
dark-matter models for four main reasons: (i) since low-mass sub-
structures are the surviving cores of accreted progenitors (Gao et al.
2004; van den Bosch, Tormen & Giocoli 2005; Giocoli, Tormen &
van den Bosch 2008), their number and abundance are strongly af-
fected by tidal processes. In contrast low-mass line-of-sight haloes
are unaffected by such processes and so provide a more robust
constraint on the mass function of dark-matter haloes and so on
models that predict a strong suppression of low-mass structures
(e.g. warm dark matter; WDM). Detecting even a single low-mass
foreground host halo could put tight constraints on the mass of a
potential WDM particle; (ii) the number of detectable line-of-sight
haloes is typically larger than the number of detectable substruc-
tures (see Section 3), hence failing to detect a significant number
of small-mass structures, even with small samples of lens galaxies,
could potentially rule out dark-matter models that predict a steeply
rising halo mass function (e.g cold dark matter; CDM); (iii) the
lensing effect of a foreground line-of-sight halo is larger than the
lensing effect of a substructure of the same mass, therefore for a
given signal-to-noise ratio for the lensed images and a given angular
resolution of the observations, line-of-sight structures allow one to
probe the dark-matter mass function down to lower masses, where
differences between dark-matter models are larger (Viel et al. 2005;
Lovell et al. 2014); and(iv) finally, the combination of points (ii)
and (iii) implies that smaller samples of lenses are required to set
constraints on the nature of dark matter that are as tight as those
derived when considering the substructure contribution only.

In order to derive constraints on the (sub)halo mass function
by comparing observations of gravitational lensing with theoreti-
cal predictions, it is important to understand the mass and density
distribution of the observed structures and to adopt a common def-
inition for all of the relevant quantities. For example, while to a
good approximation isolated dark-matter haloes follow NFW den-
sity profiles (Navarro, Frenk & White 1996) that can be character-
ized by their virial mass and mass-dependent concentration, sub-
haloes are identified in numerical simulations as secondary density
peaks within the main halo, their density profiles are poorly repre-

sented by the NFW formula and their mass is (typically) defined
as the bound mass within the tidal radius. Moreover, the lensing
signal of substructures has often been modelled using Pseudo–Jaffe
(PJ) profiles, which are truncated singular isothermal profiles and
are a poor approximation both to simulated subhalo density pro-
files and to the NFW formula. Discrepancies in the mass definition
and the assumed density profiles of (sub)haloes can result in in-
correct prediction of their lensing properties. In this paper, we will
extensively discuss how observed and simulated lensing masses for
substructures and field haloes should be compared and converted
into each other on the basis of their lensing effects in order to avoid
biased conclusions. For clarity, Table 1 lists all the mass definitions
adopted in this paper.

We separate our analysis in two parts: first, we quantify the ex-
pected contribution of line-of-sight haloes and substructures to the
lensing signal and their relative importance for constraining the na-
ture of dark matter; we then show that, once a perturbation in the
lensing signal is detected, the full lens modelling of high-resolution
data can put more stringent constraints on the position and redshift
of the perturber than are obtained from analytical arguments. In par-
ticular, we structure this paper as follows: in Section 2, we describe
the analytical models that we employ and our method for generat-
ing mock data sets; then in Section 3, we derive the mass–redshift
relation that allows us to compare the effect of substructures with
that of line-of-sight haloes at different redshifts and with different
density profiles. We use these analytical relations for two purposes:
(i) to convert the lowest detectable substructure mass to a lowest de-
tectable field halo mass, as a function of redshift; and (ii) to correctly
integrate the line-of-sight mass function by considering only those
haloes that would have a detectable lensing effect. In Section 5,
we model our mock data sets using the lensing code of Vegetti &
Koopmans (2009) to quantify the degeneracies in the mass–redshift
space and to test the limits of the analytical approach derived in
the previous section. This allows us to statistically interpret indi-
vidual detections from observations and to quantify the probability
that these arise from a line-of-sight halo. Finally, in Section 6, we
conclude by summarizing our results.

2 MO C K DATA

In this section, we describe the mock gravitational lenses used for
our simulations.

2.1 Input lens and source models

In order to test the general validity of our results, we consider
several mock data sets. These are characterized by different angular
resolutions, signal-to-noise ratios, background source morphologies
and lens-source alignments, as well as by perturbers located at
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Table 2. Properties of the gravitational lens systems considered in this
paper (see also Fig. 1). For the first lens, we use a Gaussian source with an
SIS/SIE analytical lens model with different combinations of axial ratio (q)
and external shear strength (�), while in the other cases, both the source and
the SIE lens models are based on the lens modelling of real observations.
For each lens system, we also quote the lens and source redshifts zl and zs

and the number of pixels Npix on the plane of the lens used to quantify the
lensing effect of different perturbers.

Name Lens models
zl zs q �

√
Npix

Analytical SIS/SIE 0.20 1.00 1/0.8/0.6 0/0.26/0.3 512
JVAS B1938+666 0.88 2.06 0.82 0.04 165
SLACS J0252+0039 0.28 0.98 0.94 0.01 64
SLACS J0946+1006 0.22 0.61 0.96 0.05 81
BOSS J0918+5104 0.58 2.40 0.65 0.25 120
BOSS J1110+3649 0.73 2.50 0.86 0.02 90
BOSS J1226+5457 0.50 2.60 0.97 0.15 110

different redshifts. More details on the lens systems considered
here are given in Table 2.

In our simplest model, the source has a Gaussian light profile and,
to avoid any influence from asymmetry, the main lens has a singu-
lar isothermal sphere (SIS) mass profile with no external shear and
the lens and source are perfectly aligned (complete Einstein ring).
We use this toy model as a reference, in particular, to compare our
results with those of Li et al. (2016a). We then modify this model
by adding ellipticity and external shear in order to systematically
test the effect of these components. The other lens models are based
on real observations; this means that the lens models include both
ellipticity and external shear, and the source models are not regular,
but are based on actual lensed galaxy surface brightness distribu-
tions. In particular, we base our mock data on: (i) two systems from
the SLACS survey (Bolton et al. 2006), which have already been

used for the analysis of substructure by Vegetti et al. (2010, 2014)
and Despali & Vegetti (2017); (ii) three systems are taken from a
sample of z ∼ 2.5 lensed Lyman alpha emitting galaxies (Shu et al.
2016a,b); and (iii) one system from the SHARP survey (Lagattuta
et al. 2012) that Vegetti et al. (2012) used to detect a 1.9 × 108 M�
substructure.

For each lens system, we consider a so-called smooth model,
that is, without any substructure or line-of-sight halo, and several
perturbed models, where substructures and line-of-sight haloes with
different masses, redshifts, and density profiles are included (see
Section 2.2 for details). Mock images that were created using the
smooth models alone are shown in Fig. 1. In the next sections, we
provide further details on the properties of the perturbers.

2.2 Inclusion of haloes along the line of sight

In order to include only those line-of-sight haloes that can effectively
perturb the lensed images, we consider a line-of-sight volume that is
a double cone with a base of 1.5 times the Einstein radius of the main
lens (see Fig. 2). Within this cone, we sample the whole redshift
range between the observer and the source, thus considering both
foreground and background perturbers. The line-of-sight haloes are
modelled as NFW profiles, while for the substructures we consider
both NFW and PJ profiles; the latter are often used to model real
data sets (e.g. Dalal & Kochanek 2002; Vegetti et al. 2014; Hezaveh
et al. 2016). Moreover, it is well known that isolated dark-matter
haloes and subhaloes do not have the same profiles, since the latter
have been subjected to tidal interactions with the main halo after
infall and may have been stripped of significant amounts of mass
(Hayashi et al. 2003; Giocoli et al. 2008). Here, we are interested
in (sub)haloes that do not have a bright stellar component and we
assume the highest possible subhalo mass to be � 1010 M�. The
minimum mass is chosen in such a way as to include line-of-sight
haloes that are relevant for substructure detections, which in this

Figure 1. The gravitational lens systems and the projected positions for the perturbers. For each lens system, we create several mock data sets with perturbers
located at the projected positions indicated by the circles. In the first row, we have an SIS analytical lens model with a Gaussian source, one mock data set
based on JVAS B1938+666 (SHARP; Keck adaptive optics) and two on the SLACS systems J0252+0039 and J0946+1006 (HST); the mock data sets on the
second row are based on the HST-observed BOSS lenses J0918+5104, J1110+3649, and J1226+5457. The lens properties are listed in Table 2.

MNRAS 475, 5424–5442 (2018)



Line-of-sight in substructure lensing 5427

Figure 2. A simple sketch of the method we used to create our mock data;
subhaloes and line-of-sight haloes are placed so that their lensing effect lies
in the same projected position on the plane of the main lens; the grey region
gives an example of the line-of-sight volume that is taken into account.

case is PJ-like haloes down to MPJ
tot = 106 M�. Both limits are set

in terms of the total mass of the PJ profile in the plane of the host
lens. Following the conversion between the PJ and NFW profile
masses at different redshift (see Section 3.5), we set the relevant
range for the NFW profile masses to lie between 105 and 1011 M�.

In the perturbed models, substructures have projected positions
as marked by the numbered circles in Fig. 1. As we want to perform
a one-to-one comparison between the local lensing effects of the
two different populations, the 2D position of the line-of-sight haloes
is corrected with redshift in such a way that they affect the lensed
images at the same position as substructures within the lens would.
This means that the line-of-sight halo should always lie on the
same line of sight, as sketched in Fig. 2. In particular, we use the
factor β [see Section 3 and equation (14) for a definition] to rescale
the position of any perturber behind the lens. For each perturbed
model, we only consider the presence of one perturber at a time;
this is justified by the fact that we are interested in quantifying
the relative lensing effect of substructures and line-of-sight haloes
rather than their global effect on the data.

We now summarize the main features of the mass profiles consid-
ered here, and the basic equations used to calculate their deflection
angles.

2.3 NFW profile

The NFW density profile is defined as,

ρ(r) = ρs

r
rs

(
1 + r

rs

)2 , (1)

where ρ(r) is the density as a function of radius r, the scale radius
is given by rs, and ρs is the density normalization. The NFW profile
can also be defined in terms of the halo virial mass Mvir (i.e. the
mass within the radius that encloses a virial overdensity �vir, defined
following Bryan & Norman 1998), and a concentration related to
the scale radius through rs = rvir/cvir.

Throughout this paper, we adopt the concentration–mass relation
by Duffy et al. (2008) to relate halo concentration to virial mass
and redshift, and we ignore the presence of scatter, meaning that
we assign a deterministic value of the concentration for each com-
bination of mass and redshift. In Appendix A, we demonstrate that
for the main purposes of this paper, a different choice for the mass–
concentration relation or allowing for some scatter around the mean
value introduces only second-order effects. When modelling sub-
haloes as having NFW density profiles, we assume that they follow
the same concentration–mass relation as host haloes. We discuss
the validity and the implications of this assumption in Section 3.6.

Starting from the dimensionless form of the lens equation, where
x = θ/θ s (with θ s being the angular scale associated with rs), the
deflection angle can be written as,

α(x) = 4ks

x
h(x), (2)

where

h(x) = ln
x

2
+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2√
x2−1

arctan
√

x−1
x+1 if (x > 1)

2√
1−x2

arctanh
√

1−x
x+1 if (x < 1)

1 if (x = 1)

(3)

and

ks = ρsrs

	c
, 	c = c2Ds

4πGDlDls
. (4)

Here, 	c is the critical surface mass density, and Dl, Ds, and Dls

are the angular diameter distances from the observer to the lens, the
observer to the source, and the lens to the source, respectively.

2.4 PJ profile

The PJ profile is defined as

ρ(r) = ρ0r
4
t

r2
(
r2 + r2

t

) , (5)

and corresponds to the convergence

κ(R) = κ0rt

[
R−1 − (

R2 + r2
t

)−1/2
]
, (6)

where rt is the truncation radius, ρ0 is the density normalization,
and the convergence normalization is κ0 = πρ0rt/	c.

The profile deflection angle as a function of the substructure
projected position is expressed as

α(R) = α0
rt + R −

√
r2

t + R2

R
, (7)

where α0 = 2rtκ0Ds/(DlDls). Then, the total mass – obtained by
integrating out to infinity – can be written as

MPJ
tot = 2π	cr

2
t κ0. (8)

Generally, the truncation radius is assumed to be well approximated
by the substructure tidal radius

rt � rtidal = r

(
MPJ

tot

ξM(< r)

)1/3

, (9)

which, for a singular isothermal host lens, reduces to

rt = r

√
πκ0

2ξκ0,L
. (10)

Here, the impact parameter ξ depends on the assumptions made on
the satellite orbit (it is typically set equal to 3 for the assumption of
circular orbits), κ0, L is the convergence normalization of the main
lens, and M( < r) is the mass of the host halo enclosed within the
radius, r, which is equal to the distance of the subhalo from the
centre of the host halo. Thus, the truncation of the profile depends
on the redshift (via 	c) and mass of the host lens galaxy, and its
3D position relative to the centre of the host. However, in a real
situation, this distance is not known and one can only measure
the 2D distance R projected on the plane of the host. Therefore,
one generally assumes that the substructure is located on the plane
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of the host lens, that is, r = R. Throughout this paper, when we
refer to a perturber with a PJ profile, we always make use of this
assumption. We discuss this issue and its implications in more detail
in Appendix B.

Finally, as the normalization of the PJ profile for a subhalo de-
pends on the mass of the main halo it is embedded in, it would not
be meaningful to define a virial mass or virial radius for this profile
in the same way as is the case for the NFW profile. In Section 3.5,
we investigate how to compare the NFW equivalent virial mass and
the PJ total mass on the basis of their lensing effects.

3 A M O D E L F O R L I N E - O F - S I G H T H A L O E S

The aim of this section is to understand how to quantify the line-
of-sight contribution to the total number of detectable objects (i.e.
substructures plus line-of-sight haloes) for different lens-source red-
shift configurations.

Both contributions can be quantified by integrating the relative
mass function from the lowest detectable mass to the highest possi-
ble dark (sub)halo mass. Vegetti et al. (2014) have defined the lowest
detectable substructure mass as the mass that can be detected with a
statistical significance of 10σ . We refer to their paper for a detailed
discussion on how this mass is determined. What is important to
know for the purpose of this paper is that this detection limit is
derived for substructures with a PJ profile located on the plane of
the host lens. In principle, following the same approach as used by
Vegetti et al. (2014), one could derive the detection limit for any
choice of the perturber mass–density profile and redshift. However,
this can be computationally expensive. The aim of this section is
therefore to derive simple analytic relations that allow one to rescale
a given detection limit, by comparing the relative lensing effect of
substructures and line-of-sight haloes with different redshift and
mass–density profiles. Given a certain detection limit Mlow(z = zL)
for substructures in the lens, calculated under the assumption that
the perturber is a PJ subhalo in the plane of the host lens, our aim
here is to derive analytical relations to convert this mass into an
effective Mlow(z) that we can use for the integration limit for the
(sub)halo mass function.

First, we investigate how the detection limit would change with
redshift for perturbers with an NFW profile and then, to reproduce
what is done in the modelling of actual data, we assume that this
limit has been derived for substructures with a PJ profile. In partic-
ular, we investigate how to compare the lensing effect of these two
density profiles and we discuss whether they are good model for the
(sub)haloes.

3.1 Lensing effect

Most previous studies on the effect of line-of-sight haloes on grav-
itationally lensed images have focused mainly on multiply imaged
quasars (e.g. Chen, Kravtsov & Keeton 2003; Metcalf 2005; Xu
et al. 2012). Therefore, the relative gravitational lensing effect of
substructures and line-of-sight haloes has been quantified in terms
of local changes to the lensing magnification. In this paper, we focus
instead on Einstein rings and magnified arcs.

As demonstrated by Koopmans (2005), perturbations to the lens-
ing potential locally affect the observed surface brightness distri-
bution with a strength that can be expressed as the inner product
of the gradient of the background source surface brightness distri-
bution (∇s; evaluated in the source plane) dotted with the gradient
of the potential perturbation due to (sub)structures (∇δψ ; eval-
uated in the image plane), such that, ∇ I = −∇s · ∇δψ . Since

the (sub)structure deflection angle is related to its potential as
δα = ∇δψ , for a given background source brightness distribution,
we quantify the relative gravitational effect of substructures and
line-of-sight haloes in terms of their deflection angles. In particular,
for a substructure of a given mass and projected position relative
to the main lensing galaxy, at each redshift 0 ≤ z ≤ zS we look
for the line-of-sight halo mass that, at the same projected position,
minimizes the following deflection angle residuals

dα =
⎛
⎝ 1

Npix

Npix∑
i=1

(�αLOS − �αsub)2

⎞
⎠

1/2

, (11)

where �αi is the difference in the deflection angle between the
perturbed and the smooth model, and dα is the average over the
pixels on the lens plane. The number of pixels, Npix, is kept constant
for each mock system.

In the simple case of two lenses at the same redshift, both the
lensing potential and the deflection angle can be written as the linear
sum of the individual contributions of the two lenses, and the lens
equation is written as,

u = x − [α1(x) + α2(x)] , (12)

where u and x are the true and observed positions of the source,
respectively, and αi(x) is the deflection angle of the ith lens at
the x position on the lens plane. When two lenses are sufficiently
separated along the line-of-sight for their caustics to be distinct, a
recursive lens equation is required instead (Schneider 1992),

u = x − α1(x) − α2 [x − βα1(x)] , (13)

where the factor

β = D12Dos

Do2D1s
(14)

encodes the redshift difference in terms of the distance ratio for
z2 ≥ z1; β vanishes if the two lenses have the same redshift and
approaches unity for redshifts close to the observer or the source.
The squared brackets following α2 in equation (13) contain its
arguments and indicates that the position at which α2 is evaluated
depends on the deflection angle of the foreground lens.

When comparing the lensing effect of a given substructure with
line-of-sight haloes via equation (11), we first order the lenses in
redshift and then apply equation (13). As shown by McCully et al.
(2017), since the deflection angle of the foreground lens enters the
argument of the deflection angle of the background lens, non-linear
lensing effects are introduced when the mass of the former is large
enough. However, the masses of our perturbers are much smaller
than the mass of the main lens, by 3–7 orders of magnitude, and
thus when the perturber is in the foreground its effect on the main
lens is small, while the opposite holds when the perturber is in the
background and its deflection angle is influenced by the presence
of the main lens.

The exact width of the image plane varies from one mock data
set to another, and ranges from 1.6 arcsec for the SHARP lens, to
3–4 arcsec for the SLACS and Hubble Space Telescope (HST)
lenses, to about 8 arcsec for the idealized model using an SIS lens,
and a Gaussian source.

3.2 Deflection angles at different redshifts

Before investigating the effects due to the double-lens–plane cou-
pling, we want to study how the lensing properties of haloes with an
NFW profile evolve as a function of redshift. To this end, we choose
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Figure 3. A measure of relative difference in the deflection angle using
equation (15) in the z–log (M) plane, for NFW haloes at different redshifts.
The white dot marks the reference case used for the comparison: the grey
scale shows the value of Dr of all other combinations with respect to the
reference case (Mref = 107M� at zref = 0.2), while the white solid line
shows the minimum of the residuals at each redshift. The coloured contours
enclose the points for which the value of Dr is within 0.1, 0.5, and 1 – as
marked on the colour bar.

a lens with an NFW profile that has a virial mass of Mref = 107 M�
and a redshift of zref = 0.2 as a reference point. Then, at each red-
shift in the considered range we find the virial mass of the NFW
lens that minimizes the value of

Dr =
√∑

i(αi − αi,ref )2∑
i(αi,ref )2

(15)

where α is the deflection angle of an NFW lens at a certain redshift
0 < z < zS and αref is the deflection angle of the reference case.
Note that here we force the NFW haloes at each redshift to follow
our reference concentration–mass relation. Also, here we only com-
pare the deflection angles of individual NFW profiles, without the
contribution of a main halo. We will introduce a host galaxy and the
double-plane lensing in the next section. For this analytical com-
parison, we calculate the deflection angle in a region of 5 arcsec2,
which includes a total of 5122 pixels, and we calculate the average
relative difference in this region. This is large enough to enclose the
scales that are relevant for the lensing signal of the masses consid-
ered here, since it is substantially larger than the region in which
the deflection angle is close to its maximum value.

The results are presented in Fig. 3. As expected from geometrical
arguments, for a given mass and a fixed source redshift zS, the de-
flection angle decreases with increasing redshift. Therefore, given a
certain (zref, Mref), a similar deflection angle may result from lower
masses at lower redshifts or higher masses at higher redshifts. The
curve that best fits the minimum of Dr at each redshift (white solid
line) marks a clear distinction between the combinations that gen-
erate a stronger or weaker deflection. This will become important
for the rescaling of the sensitivity function, as we will discuss in
more detail in the next sections.

We find that these results do not depend on the specific choice
of Mref, with the dotted black curve simply rescaling vertically with
Mref. We will show in Section 3.4 how to rescale z and zref in order
to be able to compare different systems. We also find that our results
are not significantly affected by our choice of mass–concentration
relation. The figure shows that forcing the concentration of the

perturber to lie on the considered model (Duffy et al. 2008) – for
which Dr would be exactly zero – is not significant except close to
z = 0 or z = zs. A more detailed discussion on the impact of the
concentration–mass relation can be found in Appendix A.

3.3 Double-lens–plane coupling with a simple lens

We now want to quantify the effect of the coupling between two
lens planes and how much the results of the previous section and
Fig. 3 are affected by the main lens properties, such as ellipticity
and the presence of an external shear. In order to do so, we quantify
the difference in the deflection angle (i.e. equation 11) by taking
into account the contribution of the main lens and by considering
the recursive lens equation (13). We assume line-of-sight haloes
to be described by an NFW profile; at this stage we also model
substructures with NFW profiles that have the same concentration–
mass–redshift relation as the line-of-sight haloes, and we refer to
Section 3.6 for an extended discussion on the implication of this
choice. We will discuss how to compare NFW lenses with substruc-
tures modelled as PJ profiles in Section 3.5.

We assume that the main lens is located at zl = 0.2 and that it
is perfectly aligned with the background source (the first model in
Table 2). After first modelling the main lens as an SIS, we add
additional complexity in the form of ellipticity (i.e. the main lens
is a singular isothermal ellipsoid, SIE) and external shear �. The
external shear contributes to the deflection angle as

αshear = �(cos(2�θ )x + sin(2�θ )y,

sin(2�θ )x − cos(2�θ )y), (16)

where �θ is the shear position angle, (x, y) are the positions on the
image plane relative to the centre of the main lens, and � is the
shear strength.

For a substructure of given projected position, we look for the
line-of-sight halo mass that minimizes equation (11) at each possible
redshift. To allow for a direct comparison, line-of-sight haloes are
placed in such a way that they perturb the lensed images at the same
projected position as substructures in the lens.

Fig. 4 shows the mass–redshift relation for different positions
of the perturber and different choices of ellipticity and external
shear strength. The black curve shows the best fit derived from
Fig. 3. We find that for an SIS lens with no external shear, the
results are consistent with those derived in the previous section at
the 5 per cent level and do not significantly depend on the position
of the perturber, in agreement with Li et al. (2016a). For a per-
fectly symmetric case, the non-linear effects arising from a double-
lens–plane configuration are therefore not significant. Instead, as
we increase the main lens ellipticity and the strength of the exter-
nal shear, we find stronger deviations from the symmetric and the
single-lens–plane cases in a way that depends on the perturber po-
sition. In particular, as expected from equation (13), the deviations
are stronger for background line-of-sight objects as the deflection
of the main lens enters the calculation of the background perturber
deflection angle.

3.4 Realistic lenses

We now generalize the results of Section 3.3 by considering more
realistic lens configurations. Since each lens system among current
and future observations has a different combinations of lens and
source redshift, in order to combine the results we use the following
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Figure 4. The mass–redshift relation for all of the considered variations
of our toy mock data set and for a perturber with an NFW profile located
at three different positions (1)–(3), corresponding to the circled numbers
in Fig. 1. The blue symbols represent the different line-of-sight projected
positions in the SIE model that fall exactly on the Einstein radius of the main
lens, or with a certain offset (following the numbers from Fig. 1). The red
and green symbols show the mass–redshift relation for different choices of
axial ratio for the main lens (q) and/or external shear (�). The lower panel
shows the residuals for all the cases, with respect to the black curve in the
upper panel.

rescaled quantities: y = log (M/Mref) (where Mref is the virial mass
of the substructure in the lens) and

x =

⎧⎪⎨
⎪⎩

z
zl

− 1, if (z < zl)
z−zl
zs−zl

, if (z > zl)

0, if (z = zl)

(17)

so that x = −1 corresponds to the observer and x = 1 corresponds to
the source redshift. As can be seen from Fig. 5, this rescaling allows
us to plot all of the redshift combinations in the same parameter
space, and thus obtain a general mass–redshift relation (black solid
line) which is given by,

y = 0.41x + 0.57x2 + 0.9x3. (18)

The best-fitting parameters are obtained by performing a least-
squares fit to the data points coming from the whole sample of
lenses and positions. The main panel of Fig. 5 shows the points
corresponding to all of the considered positions (numbered cir-
cles in Fig. 1) and lenses (listed in Table 2), together with the
best-fitting curve from equation (18). The lower panels show the
difference between the points and the best-fitting mass–redshift re-
lation of equation (18), as well as the scatter among the different
systems.

We see that the analytical fit approximates the simulated data
reasonably well. When the main lens model includes a large external
shear (as in the case of the mock data based on BOSS J0918+5104
or the SIS+shear case), the linearity is broken and larger deviations
arise. In practice, we find that the best-fitting mass–redshift relation
has a scatter that changes with redshift. The scatter is dominated by
the assumptions made on the mass–concentration relation for those
line-of-sight haloes that are in the foreground (see Appendix A),
while for haloes in the background, the scatter mainly arises from the
ellipticity and external shear contribution. For a fixed concentration–

Figure 5. The top panel shows the rescaled mass–redshift relation, derived
by fitting all of the mock lens systems, for an NFW profile line-of-sight
perturber. The black line shows the rescaled fit from equation (18), while
the coloured points represent the different mock lenses used in this paper.
The middle panel shows the difference with respect to the best fit, calculated
as �log (M/Mref = log (M/Mref − log (Mfit/Mref). The lower panel shows
the scatter of the distribution of points from the middle panel around the
mean; the value calculated in each redshift bin is shown by the black dots,
and the black line shows the best-fitting relation for the scatter, as given in
equation (19).

mass relation, the scatter among the models we consider is well
described by the following relation,

σ (x) = 0.03 + 0.117x + 0.174x2, (19)

where x is defined as in equation (17).

3.5 Comparison between different profiles

Contrary to the previous sections and Li et al. (2016a), we now
allow the substructures and the line-of-sight haloes to have different
mass–density profiles (in particular NFW and PJ – see Section 2
for a description of the models). Taking into account the possible
differences in the mass and density profile definitions is crucial
to interpret correctly the line-of-sight contribution. Failing to do
so may result in very different (and incorrect) predictions for the
number of detectable line-of-sight perturbers, as we will show in
the next sections.

In this section, we derive a relation that allows one to map the
NFW virial mass into the PJ total mass in terms of their relative
lensing effect at the same redshift. Here, the NFW profile follows
the same concentration–mass relation as line-of-sight haloes (see
Section 3.6 for a discussion on this matter) and the properties of the
PJ profile are calculated under the assumption that the subhalo is
located exactly on the plane of the host lens.
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Given that in all cases the projected position of the perturber
needs to be close to the Einstein radius of the main lens, i.e. close
to the lensed images, in order to be detected, there is no significant
dependence on the projected position. Nevertheless, for a given
total mass MPJ

tot, the PJ truncation radius still depends on the mass
and the redshift of the host lens, through its Einstein radius. We
used all the lenses and perturber positions from Table 2 to derive a
PJ–NFW mass conversion and test its dependence on the properties
of the system. Thus, for each lens and perturber position, we use
the equations from Section 2.4 to calculate rt for a set of total
perturber masses and then we compare its deflection angle with
that of NFW profiles via equation (11). In general, we find that the
corresponding ‘best-fitting’ NFW virial mass for each PJ total mass
can be calculated from the mean relation,

log(Mvir) = 1.07(±0.1) × log
(
MPJ

tot

) + 0.1(±0.15), (20)

implying that the NFW virial mass must be between half and one
order of magnitude larger than the PJ total mass. For the correspond-
ing masses, the deflection angles are similar at r � 3rt (this value
would be slightly different for a different choice of zl and zs). These
results parallel those of Minor, Kaplinghat & Li (2016, , see also
Appendix B). The uncertainty on the intercept represents the scatter
between the considered lens systems and reflects the fact that the PJ
tidal radius depends on the mass and redshift of the host lens and
the redshift of the source. In what follows, we use the mean relation
for simplicity. The uncertainty on the slope is related instead to the
redshift evolution of the concentration–mass relation.

For comparison, the dashed curves in Fig. 6 represent the NFW
profiles for these corresponding masses, showing how the enclosed
mass at 3rt is the same for the two profiles. This relation would be
slightly different for another choice of concentration–mass relation.
We can now combine equations (18) and (20), using the latter to
rescale the zero-point of the former and obtain a more general
mass–redshift relation,

log Mvir(z) = (
0.41x + 0.57x2 + 0.9x3

)
+ (

1.07 log
(
MPJ

tot

) + 0.1
)
. (21)

Since this relation is equivalent to equation (18), modulo a vertical
translation, it has the same intrinsic scatter. It is clear from Fig. 6 that
NFW profiles which follow the field concentration–mass relation
are in general not a good fit to PJ models, since both the inner
and the outer slopes are different. A better fit can be obtained
by letting the NFW parameters rs and ρs vary freely; however,
this results in extremely small values for the former and extremely
high values for the latter. While this would mimic the PJ profile,
it would complicate the comparison between PJ-derived limits on
substructure mass and NFW-based limits for line-of-sight haloes.
We will show in Section 5 that the mass correspondence given by
equation (20) is also well recovered by gravitational lens analysis
of mock observations in which a PJ (NFW) perturber is modelled
using a NFW (PJ) profile.

3.6 The effective subhalo mass function

So far, we have been focusing on two definitions of mass, based on
the NFW and the PJ mass–density profiles, respectively. However,
the abundance of subhaloes derived from numerical simulations is
based on yet another mass definition.

Subhaloes are identified in the simulations we analyse using SUB-
FIND (Springel et al. 2001, 2008) which locates locally overdense
and self-bound regions in the density field of the host halo. The

Figure 6. Examples of PJ and NFW masses that give the most similar lens-
ing effect. We show the density profile, the convergence, and the deflection
angle as a function of radius, for two PJ- (solid lines) and NFW- (dashed
lines) profile masses; the corresponding log (M) are indicated in the legend
of the bottom panel and are represented by the same colour and the PJ
truncation radii are marked by the vertical lines of the same colour. The
NFW halo that gives the most similar effect to a certain PJ subhalo has
the same projected mass density within the PJ truncation radius rt and the
same deflection angle α at � 3rt. This also corresponds to the distance from
the centre at which the PJ enclosed mass profile flattens, thus the enclosed
mass starts approaching the total mass. The profiles are calculated for (zL,
zS) = (0.2, 1), but the outcome is similar as a function of redshift. The
coloured bands for the NFW masses in the two lower panels show the result
for NFW masses that are a factor 0.5 larger/smaller.

radius within which such subhaloes are overdense is very close to
their tidal radius. Moreover, the properties of their density profile
depends on their distance from the host centre due to stripping.
Thus, there is no reason to believe a priori that a simulated sub-
halo of a given mass will produce the same lensing effect as a PJ
subhalo (calculated under the assumptions quoted in Section 2.4)
of the same nominal mass, or as an NFW subhalo with this mass
lying on the adopted concentration–mass relation. Similarly to what
we have done in the previous section for the comparison between
PJ subhaloes and NFW line-of-sight haloes, we need to make sure
that, for a given Mlow, we know where to cut the simulated subhalo
mass function on the basis of the lensing effect of the subhaloes. In
other words, we need to rescale the subhalo mass function into an
effective one, defined in terms of an NFW profile virial mass, rather
than the subhalo mass MSUB derived from the subhalo finder.

To this end, we use the sample of early-type-galaxies-host haloes
with virial masses of 1013 M� that were selected from the Illustris
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Figure 7. The virial NFW mass MNFW
sub obtained by fitting the deflection

angle of simulated subhaloes with that of NFW profiles, as a function of
the original SUBFIND mass MSUB. The points are colour-coded depending on
their distance from the centre (in units of the virial radius) of the main halo.

simulation by Despali & Vegetti (2017), and we consider all sub-
haloes with masses MSUB > 109 h−1 M� in the dark-matter-only
run. We fit the deflection angle of each simulated subhalo with that
of an NFW profile, and then use the NFW best-fitting parameters to
evaluate the corresponding subhalo virial mass. Unlike the previous
sections, here we leave the NFW parameters free to vary and do not
impose any priors on the mass–concentration relation. Typically,
the density profile of subhaloes – and thus their deflection angle –
is well described by an NFW profile within a radius comparable to
rmax – defined as the radius at which the circular velocity curve of
an NFW profile reaches its maximum value – while at larger radii
the profile is truncated.

Fig. 7 shows the inferred virial NFW masses (hereafter MNFW
sub )

with respect to the original SUBFIND masses for host haloes at z = 0.2;
the points are colour-coded according to the subhalo distance from
the centre of the host halo. The black dashed line shows the best-
fitting linear relation between the two,

log
(
MNFW

sub

) = log(MSUB) + 0.6. (22)

A more precise fitting function is obtained when the dependence
on the distance from the centre of the host halo is included, and is
found to be,

log
(
MNFW

sub

) = log(MSUB) + 0.51 − 0.3 log(r/rvir). (23)

Fig. 8 shows the original SUBFIND subhalo mass function (black
solid line), together with the new mass function derived from the
NFW fitting (green dashed line). If we neglect the dependence on
the distance from the host centre, we find the effective subhalo
mass function to have the same slope as the original mass function
(α = −0.9), but a larger value for the normalization: this is shown
by the red dot–dashed line in Fig. 8. It is important to notice that,
due to this increase in the normalization, the number of detectable
subhaloes is larger than one would derive from the original self-
bound mass function, and thus also larger than what was estimated
by Li et al. (2016a).

It is worth noting that the inferred concentration–mass relation
of subhaloes differs from the one of haloes in the field, that we
have assumed for line-of-sight systems; the concentrations are on
average higher and are weakly dependent on the subhalo distance
from the host centre, with higher concentrations in the innermost

Figure 8. The rescaled subhalo mass function. The black solid line shows
the SUBFIND subhalo mass function for 1013 M� haloes at z = 0.2. The
green dashed line represents the new NFW virial masses inferred from the
best-fitting NFW profile for each subhalo (coloured dots in Fig. 7), while
the red dot–dashed line shows the mass function derived from rescaling the
subhalo masses, following the best-fitting relation given by equation (23),
and indicated as a dashed line in Fig. 7. In all cases, the best-fitting slope is
consistent with α = −0.9.

regions due to the tidal truncation (as already discussed among
others by by Hayashi et al. 2003; Springel et al. 2008; Moliné et al.
2017). Nevertheless, we find that (i) neglecting the difference in the
concentration–mass relation between subhaloes and field haloes
leads to an uncertainty in the inferred mass which is of order of
20 per cent for 109 M� perturbers, and decreases with mass to �
5 per cent at 106 − 7 M� (see Appendix B). This translates into a
shift in the total subhalo counts below 10 per cent; (ii) neglecting
changes in the concentration with the distance from the host centre
translates into even smaller differences in the total subhalo count, to
within 3 per cent. For these reasons, in what follows we will assume
that haloes and subhaloes with the same NFW masses have the same
lensing properties so that the PJ masses can be rescaled in the same
way for both, following equation (20). In this way, we can use the
same mass limit (given by equation 21) for both the subhalo and the
line-of-sight halo mass function. We plan to study in more detail
the lensing effects and subhalo properties as a function of distance
from halo centre in a future paper, employing higher resolution
simulations. Moreover, due to the limitation in the resolution of the
observational data we are comparing with, the scales corresponding
to rmax or the PJ truncation radius rt are poorly resolved for low-
mass subhaloes. With future higher resolution observational data, it
may be possible to fully discriminate between the effect of different
concentrations for small-scale lensing perturbers.

4 QUA N T I F Y I N G T H E L I N E - O F - S I G H T
C O N T R I BU T I O N

In this section, we combine all of the results we obtained so far in
order to quantify the line-of-sight contribution to the total number of
detectable small-mass perturbers. As mentioned earlier, the line-of-
sight and substructure contributions can be calculated by integrat-
ing the halo and subhalo mass functions from the lowest detectable
mass Mlow (which is set by the observational sensitivity and angular
resolution) to the highest possible mass for a dark clump. Here,
we use equation (20) to convert the integration limit Mlow = MPJ

tot

into an effective NFW mass, and then we use equation (18)
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to evolve the latter with redshift, and thus obtain an effective Mlow(z)
for line-of-sight haloes (as already pointed out by Li et al. 2016b).
In Section 4.1, we show how to integrate the (sub)halo mass func-
tion and give some examples of the total number of detectable
(sub)haloes for specific combinations of lens and source redshift.
To this end, we assume that the detection limit Mlow is the same
in every pixel. Then, in Section 4.2, we show what is the effect
of taking into account the full sensitivity function, focusing on the
particular case of SLACS J0946+1006. The sensitivity function
maps (see Vegetti et al. 2014) provide the minimum mass that can
be detected for each pixel of a given system: at each position on the
sky Mlow can be different depending on the surface brightness of
the lensed arc and other properties of the observed system.

4.1 Integrating the mass function

To calculate the number of detectable line-of-sight haloes, we inte-
grate the CDM halo mass function as,

Nhaloes =
Npix∑
i=1

��i

∫ zS

0

∫ MNFW
max

MNFW
low (z,xi,yi)

n(m, z)dm
dV

d�dz
dz, (24)

where we use the Sheth & Tormen (1999) halo mass function
parametrization and the best-fitting parameters appropriate for the
Planck cosmology as calculated by Despali et al. (2016). Here,
n(m, z)dm is the number of haloes per comoving volume in the
mass range m, m + dm. We integrate the halo mass function in a
double cone volume (as sketched in Fig. 2) in order to take into
account only those line-of-sight structures that may have an effect
on the lens plane, with ��i being the solid angle corresponding to
each pixel i. We exclude from the integration the volume within the
virial radius of the host lens. We then obtain the total number of
line-of-sight haloes per arcsec2 by dividing by the considered area
in the lens plane.

As discussed above, the lower integration limit MNFW
low (z, xi, yi)

depends on redshift and is derived from the observational Mlow using
equation (21) and can vary from pixel to pixel. Since the sensitivity
function (i.e. the lowest detectable mass as a function of position)
is different for each observed system, in this section we assume a
constant limit MNFW

low (z, xi, yi) = MNFW
low (z), and in the next section,

we will give an example of the impact of varying Mlow for each
pixel. The upper integration limit MNFW

max is set equal to 1011(1010)
M� for NFW (PJ) profiles. Increasing MNFW

max does not significantly
change our results, due to the exponential cut-off at the high-mass
regime of the halo mass function.

The number of detectable line-of-sight haloes calculated from
equation (24) has to be compared with the number of detectable
subhaloes, that is, those which have a mass above the detection limit
Mlow. In order to derive the latter, we consider the subhalo mass
function of 1013 M� host haloes, as parametrized by Despali &
Vegetti (2017) and rescaled as in Section 3.6 (see also equation 23).
It has been shown using simulations that the projected number
density of subhaloes is roughly constant with the distance from the
centre (Xu et al. 2015; Despali & Vegetti 2017) for each bin in mass
and thus in order to calculate the number of detectable subhaloes
we proceed as follows: we first integrate this rescaled subhalo mass
function within the host halo virial radius [using the mass function
parameters for the dark-matter-only case from Despali & Vegetti
(2017)], and then calculate the number density of subhaloes per
arcsec−2 by dividing the total number of detectable subhaloes by
the corresponding solid angle used for the integration.

Since in WDM models, the initial power spectrum is suppressed
below a certain scale, the WDM halo mass function can be derived
from the CDM one using the relation (Schneider et al. 2012; Lovell
et al. 2014),

n(M)WDM =
(

1 + Mcut

M

)β

n(M)CDM, (25)

where Mcut is the mass associated with the scale at which the WDM
matter power spectrum is suppressed by 50 per cent, relative to the
CDM power spectrum. For a 3.3 keV thermal relic WDM model,
we have Mcut = 1.3 × 108 M� and β = −1.3. The same relation
holds for the subhalo mass function (Lovell et al. 2014).

We remind the reader that we assume a Duffy et al. (2008)
concentration–mass relation, with the best-fitting parameters
for virial masses. We do not account for differences in the
concentration–mass relation between the CDM and WDM mod-
els; as shown by Ludlow et al. (2016), the concentration of WDM
haloes differs from the CDM case only at low masses (with the
exact scale, depending on the WDM particle mass), where the num-
ber of structures is also strongly suppressed; finally, lowering the
concentration of small-mass objects would reduce even further the
number of detectable (sub)haloes, and hence increase the difference
between the two dark-matter models. We also stress that we do not
consider the effect of baryons and we use the mass function taken
from dark-matter-only simulations; as shown by Despali & Vegetti
(2017), the presence of baryons affects the number of subhaloes in a
way that strongly depends on the feedback implementation (see also
Schaller et al. 2015; Fiacconi et al. 2016). The predicted number of
subhaloes reported in this paper should therefore be interpreted as
an upper limit.

In Fig. 9, we show the mass function of line-of-sight haloes in-
tegrated over redshift, for two different choices of lens and source
redshifts (these correspond to the lowest and highest zl in our sam-
ple) together with the corresponding subhalo mass functions, in
order to allow for a direct comparison. In each panel, we consider a
mass Mlow = MPJ

tot = (106, 108) M�, which corresponds to the min-
imum PJ subhalo mass that can be detected. Using equation (21),
we exclude from the line-of-sight mass function all of the structures
that cannot be detected. The resulting perturber mass functions are
calculated as

dN

d log Md�
=

∫ zmax

0
n(M, z)

dV

d�dz
(26)

and are shown in all panels by the dashed and dotted lines. In this
case, zmax is the maximum redshift at which a certain mass can
be detected, calculated by inverting equation (21). In this way, we
calculate the total number density of (sub)haloes that can be detected
for each bin in mass. The black and red lines correspond to these
CDM and WDM integrated mass functions respectively; the subhalo
mass function is shown in blue (yellow) for the CDM (WDM) case.
We find that, increasing the lowest detectable substructure mass
Mlow produces a drastic cut in the number of observable line-of-sight
haloes, especially for the CDM case. For a given Mlow(z = zL), the
redshift-dependent cut for line-of-sight haloes has a larger impact
on the number density of background than foreground line-of-sight
haloes, since the lowest detectable mass increases rapidly in the
background and the halo mass function has an exponential cut-off
at the high-mass end.

If instead of using equation (21), which is a median relation for
all lens configurations considered in this paper, we were to use the
actual relation derived for each specific case (as presented in Fig. 5),
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Figure 9. The projected number density of line-of-sight haloes and subhaloes for SLACS J0946+1006 (left) and JVAS B1938+666 (right). In each panel,
we consider a mass Mlow = MPJ

tot = (106, 108) M�, which corresponds to the minimum subhalo mass that can be detected under the PJ assumption. Using
equation (21), we exclude from the line-of-sight mass function all of the structures that cannot be detected; the resulting effective perturber mass functions are
shown in all panels by the dashed and dotted lines. The black and red lines represent the CDM and WDM line-of-sight mass functions, respectively. The blue
(yellow) circles show the two values of Mlow at which one should cut the subhalo mass function for the CDM (WDM) case, for the rescaled mass function and
limits obtained in Section 3.6.

Figure 10. The total number of projected line-of-sight structures per unit of arcsec−2, for a lowest detectable mass of 108 M� (left) and 106 M� (middle),
and for each combination of lens (x-axis) and source (y-axis) redshift. The upper panels show the results for the CDM case, while the lower panels show the
WDM case; we consider Mlow = MPJ

tot = 108, 106 M� (left-hand and middle panels) and we apply the redshift-dependent cut from equation (21) in order to
calculate Mlow(z) for the line-of-sight haloes. The location in the zL–zS plane for all of the lenses considered in this paper are marked by the white circles. The
colour bars display the same range, both for CDM and WDM models, for each column; in the left-hand and middle panels the colour scale shows nLOS in
arcsec−2. The fraction of detectable subhaloes with respect to the total number of line-of-sight perturbers (nSUB/nLOS) is shown in the right-hand panels for
Mlow = 106 M�. As can be seen from Fig. 11 and from the values reported in Table 3, the distribution of nSUB/nLOS would be very similar for Mlow = 108

M�.

the derived number density of detectable line-of-sight haloes would
differ at the 4 per cent level at most.

The left-hand and central panels of Fig. 10 (see also Table 3)
show the expected total projected number density of effective line-
of-sight haloes nLOS for different combinations of lens and source
redshift, for two values of Mlow; nLOS is expressed by the colour
scale, which is the same for CDM and WDM cases, for the same

Mlow. We notice how the two dark-matter models give a similar num-
ber of predicted detectable line-of-sight haloes for Mlow = 108 M�,
but how the difference becomes striking for high sensitivity (cor-
responding to lower values of Mlow, especially when the lens and
source are at high redshifts. The same conclusion can be drawn by
looking at the fraction of perturbers in subhaloes (Fig. 10, right-
hand panels), which is also different between CDM and WDM
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Table 3. The expected projected number density of subhaloes and line-of-sight haloes (per arcsec−2). We
count all of the (sub)haloes more massive than Mlow (expressed as the lowest detectable PJ subhalo on the plane
of the lens): the lower detectable subhalo mass is listed in the third column, while the corresponding value for
the line-of-sight halo is calculated from equation (21). We show the results for the dark-matter-only subhalo
mass function. For a WDM model, we choose the 3.3 keV thermal relic dark-matter model. A generalized
version of these results, spanning a wide range of both source and lens redshift, is shown in Fig. 10 .

zl zs Mlow[M�](zl) nsub(CDM) nlos(CDM) nsub (WDM) nlos(WDM)

0.2 1 106 0.67 1.85 0.065 0.209
107 0.066 0.21 0.033 0.105
108 0.0063 0.021 0.006 0.02

0.2 0.6 106 0.67 1.31 0.065 0.14
107 0.066 0.15 0.033 0.073
108 0.0063 0.016 0.006 0.014

0.58 2.403 106 3.22 22.81 0.309 2.384
107 0.318 2.56 0.157 1.235
108 0.030 0.271 0.029 0.243

0.881 2.059 106 5.95 46.33 0.571 4.482
107 0.587 5.28 0.29 2.41
108 0.0558 0.57 0.054 0.499

Figure 11. The ratio of effective perturbers nSUB/nLOS as a function of
Mlow, for the cases of SLACS J0946+1006 (black) and JVAS B1938+666
(blue), both for CDM (solid lines) and WDM (dashed lines) models.

models, and again decreases with increasing redshift of the lens
and source. The number of lenses and (non-)detections needed to
discriminate between different dark-matter models varies with red-
shift and would become smaller at high redshift, where the expected
number of projected perturbers is larger.

One might be led to think that the value of nSUB/nLOS should
be independent of Mlow. However, this is not the case since the
mass functions of the line-of-sight haloes and the subhaloes have
different exponential cut-offs at the high-mass end. In Fig. 11, we
show how this ratio changes with Mlow for the cases of SLACS
J0946+1006 and JVAS B1938+666. The fact that the ratio is not
constant indicates the importance of taking into account the vari-
ation of the lowest detectable mass from pixel to pixel. This also
demonstrates the importance of increasing the angular resolution of
the observational data and the discriminating power that this would
bring.

From this analysis, we find that the detection in the lens system
SLACS J9046+1006 by Vegetti et al. (2010, MPJ

tot � 109 M�) is a

true substructure with a likelihood of about 30 percent, and a line-
of-sight halo with a likelihood of about 70 per cent. In general, the
SLACS lenses probe a region of the zL–zS plane in which the line-
of-sight contribution is relatively limited (especially for foreground
objects), since the average lens and source redshift of the sample
are zL � 0.2 and zS � 0.6, respectively. Instead, the higher redshift
detection in the lens system JVAS B1938+666 by Vegetti et al.
(2012, MPJ

tot � 108 M�) has a lower chance (below 10 per cent) of
being a subhalo, and is most probably a foreground line-of-sight
halo. This is also the case for the lens system SDP.81, where a
substructure of mass MPJ

tot � 109M� has been detected by Hezaveh
et al. (2016).

4.2 Rescaling of the sensitivity function

Here, we extend the result of the previous section to derive the total
number of detectable line-of-sight haloes for one of our mock data
sets and to demonstrate the role played by the sensitivity function
(i.e. the smallest detectable mass as a function of projected position
on the plane of the host lens). For this purpose, we choose the
mock data set based on SLACS J0946+1006, where a detection of
an MPJ

tot ∼ 109 M� subhalo was reported by Vegetti et al. (2010),
and for which, the full substructure sensitivity function map was
presented by Vegetti et al. (2014) (see also Fig. 12).

Using equation (21), we then derive the lowest detectable mass as
a function of redshift for each pixel within a region of interest on the
image plane. The expected number density of line-of-sight haloes
is then calculated following the procedure described in Section 4.1,
with a lower integration limit for the mass function that now not
only depends on the redshift, but also on the considered position
according to the rescaled sensitivity function. Finally, by integrating
the halo number density over the area of interest one can derive the
total number of expected detections.

In the case of SLACS J0946+1006, we derive the expected
projected number of detectable line-of-sight haloes and substruc-
tures to be (NLOS, CDM, NLOS, WDM) = (0.036, 0.035) and (Nsub, CDM,
Nsub, WDM) = (0.0095, 0.0090), respectively. On the other hand, if
we assume that the sensitivity is constant and equal to 2 × 108 M�
(which is the lowest possible value for J0946+1006) in all pixels,
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Figure 12. An example of the sensitivity function for the SLACS J0946+1006 lens. The central panel shows the lowest detectable NFW mass at the redshift
of the lens (z = zl = 0.222). Using equation (21), we rescale the minimum detectable mass to redshift z = 0.1 (left-hand panel) and z = 0.4 (right-hand panel).
The colour scale is the same in all panels. A detailed discussion about the sensitivity function in this case, and for the other SLACS lenses, is given by Vegetti
et al. (2014).

we derive (NLOS, CDM, NLOS, WDM) = (0.061, 0.053) and (Nsub, CDM,
Nsub, WDM) = (0.025, 0.023). This difference mainly arises because
when one considers a non-constant sensitivity function, Mlow is
relatively high in most pixels (at least for the realistic data sets con-
sidered here). This also results in predicted numbers that are quite
similar for CDM and WDM models. Much more striking differences
would arise for data with a higher sensitivity.

5 M A S S – R E D S H I F T D E G E N E R AC Y

In this section, we focus on the mass–redshift degeneracy between
line-of-sight haloes and substructures. In particular, we want to
quantify the probability that a detection, defined in terms of a sub-
structure of measured mass, arises instead from of a line-of-sight
halo with a different mass, redshift, and density profile. Our aim
is also to determine under which observational configurations the
non-linear effects arising from the double lens plane are such that
this degeneracy can be broken or alleviated.

Note that in this section we refer to (x, y) as the position on
the plane of the main lens where the perturber affects the lens
images. For a subhalo, this corresponds to its projected position
on this plane, while for the line-of-sight haloes the latter is related
to (x, y) via the deflection angle of the main lens at (x, y) and β

(equation 14).

5.1 Modelling mock gravitational lenses

Our analysis thus far has been based only on analytical models
and mock data, and to some extent did not account for any effects
related to the quality or modelling of actual observational data. In
reality, the modelling of observational data has to take into account
the signal-to-noise ratio of the images, the effect of the point spread
function (PSF), the degeneracy among the parameters of the main
lens and of the perturber, and the fact that the background source is
unknown and its modelled structure, which has to be inferred from
the data, can adjust to partly absorb the effects of the perturbers.

To this end, we use the lens modelling code by Vegetti & Koop-
mans (2009) to model the realistic lens systems presented in Sec-
tion 3. For each system, the free parameters of the model are the
main lens geometrical parameters (mass normalization κ0, position,
mass density flattening q, position angle θ and slope γ , and the exter-
nal shear strength � and position angle �θ ), the background source
surface brightness distribution and regularization, and the perturber
mass, projected position, and redshift. As in Section 3, line-of-sight

haloes have an NFW profile, while substructures can have either a
PJ or NFW profile.

In Fig. 13, we show an example of the parameter posterior prob-
ability distributions for BOSS J1110+3649, where the mock image
is created by adding a PJ model of a 109 M� subhalo at the co-
ordinates (x, y) = (0, 1.15), and is modelled by imposing that the
perturber is (i) a PJ subhalo (blue contours), (ii) an NFW subhalo
(grey contours), and (iii) an NFW line-of-sight halo, thus optimiz-
ing also for its redshift (red contours). The last three rows of Fig. 13
show the results for the mass and projected position of the perturber.
The true PJ mass is recovered for case (i), while we infer a higher
mass for cases (ii) and (iii), in agreement with the expected rescal-
ing between the NFW and PJ mass (see equation 20); all of the
models recover the true perturber position well, with an uncertainty
of 1–2 times the PSF full width at half-maximum (FWHM). The
uncertainty is intended as the error with respect to the input position
at the redshift of the lens, which correspond to the position of the
lensing effect; a line-of-sight halo could cause a lensing effect in
the same position on the image plane, even though its projected
position would be different (see Fig. 2 and equation 13). The con-
straints on the mass and redshift for case (iii) are shown in the inset;
here, the redshift of the lens and the NFW virial mass expected from
equation (20) are marked by the dotted lines. We see that there is ef-
fectively a degeneracy between the mass and redshift, as expected,
but it has a more complicated shape than what is found by compar-
ing the deflection angles: the black solid line shows the prediction
from equation (21). In particular, the uncertainty on the redshift is
�z � 0.15 at a 1σ level and it does not span the whole redshift
space between the observer and the source, meaning that not all
the configurations given by equations (18) and (21) are equivalent.
Nevertheless, if we force a particular z 
= zL for the NFW perturber,
the relation from equation (18) still approximates quite well the
recovered mass.

This happens because, using the image surface brightness, and
modelling the lens and source simultaneously adds an additional
level of information, with respect to the deflection angles alone,
allowing us to restrict the degeneracy range, especially for observa-
tions with a high angular resolution and a complex source surface
brightness distribution. This is demonstrated in Fig. 14, where we
show the parameter posterior probability distributions for the refer-
ence case of the SIS lens at z = 0.2; also in this case, a 109 M� PJ
subhalo has been added to the lens model and it is modelled as in
the case (iii). We see that in this simulation the mass and redshift
are highly correlated and that the 1σ contours span two order of
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Figure 13. An example of the parameter posterior probability distributions for the case of BOSS J1110+3649, where the mock image is created by adding a
PJ subhalo with a mass of 109 M� (in position 2 from Fig. 1). The coloured contours show the 1σ , 2σ , and 3σ levels for three different modelling choices,
where we impose that the perturber is (i) a PJ subhalo (blue), (ii) an NFW subhalo (grey), and (iii) an NFW line-of-sight halo (red), thus optimizing also for
its redshift. The true input value for the main lens parameters are shown by the vertical dotted lines, together with the input position on the lens plane (last two
columns) and the perturber mass. For this last, the vertical dotted line marks the PJ input mass, while the vertical dashed line the NFW mass predicted from
equation (20) for this case. The two last columns also show the width of the PSF FWHM for this case, in order to show that positions are well recovered. The
redshift degeneracy for this last case is shown in the small inset, with the true value redshift and the predicted NFW mass marked by the dotted lines; the solid
black line shows the predictions from equation (21). As it is easy to see, the true redshift and the predicted mass are not well recovered for this case, due to its
smooth surface brightness distribution and symmetry.

magnitude in mass; moreover, even if the true position is recovered
quite well by the peak of the distribution, the uncertainties are large,
spanning almost half of the image plane within 3σ . This is due to
the fact that the Einstein ring is perfectly symmetrical and the sur-
face brightness distribution is smooth. The width and the rounder

shape of the contours also explains why for this configuration of
lens and source, the results for different positions of the perturber
are equivalent (see Fig. 4).

Thus in general, the uncertainty on the mass and redshift de-
pends on the chosen position of the perturber and in particular
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Figure 14. The posterior probability distributions for the SIS mock lens.
We again insert a 109 M� PJ subhalo when creating the mock data and we
model it as an NFW line-of-sight halo. Here, we show only the probability
contours relative to the perturber mass, position, and redshift. The variations
in the main lens parameters with respect to the unperturbed model are very
small, due to the particularly symmetric configuration of the system. The
vertical dotted lines show the true position and redshift of the perturber; the
dashed line marks the predicted NFW mass. The black curve in the z − M
panel shows the predictions from equation (21) corresponding to the peak
of the posterior in mass.

the inferred quantities may be less precise for perturbers located
where the surface brightness or its gradient is lower: in Fig. 15,
we show the constraints derived by inserting a 109 M� PJ subhalo
at two different positions (1 and 2 from Fig. 1) again for the case
of J1110+3649, where the data signal-to-noise ratio and thus the
sensitivity to substructures is lower in position 1.

Finally, Fig. 16 shows the probability contours for different sub-
halo masses, all located in the same point, for a system based on
SLACS J0946+1006. The sensitivity function in the chosen pixel
sets the minimum detectable mass to be 4 × 108 M�; we see how
the contours are larger when the inserted PJ subhalo is only slightly
more massive than this limit (5 × 108 M�; grey contours), but
shrink for higher mass values, becoming more and more precise.

Even though we ran our lensing code on mock images for all
lenses, we only show a representative subset of contour plots. In
general, the redshift is well recovered mostly within 1σ and the
corresponding NFW virial mass is consistent with the expectations
from Section 3, even though its exact value depends on the exact
best-fitting redshift and on the image resolution.

In addition, from this analysis we have found that: (i) when
a PJ subhalo is modelled as such, we recover the input mass and
projected position with a precision of 0.2 dex and within �2 FWHM
of the PSF, respectively; (ii) when a PJ subhalo is modelled as an
NFW subhalo its recovered projected position is on average within
2×FWHM of the PSF from the input value, while its mass is, as
expected, larger than the input PJ mass. In particular, the latter
differs at most by 0.4 dex from what is expected from equation
(20); (iii) when a PJ subhalo is modelled as an NFW line-of-sight
halo, meaning that both the mass and redshift of the perturber are let

Figure 15. The posterior probability distributions for two different per-
turber positions, for the mock images based on BOSS J1110+3649 (po-
sitions 1 and 2 from Fig. 1). In both cases, the perturber is a 109M� PJ
subhalo at the redshift of the lens, as in Fig. 13. The vertical dotted lines
show the input position on the plane of the lens and the input redshift; given
that the true redshift (which corresponds to z = zl) is recovered, the recov-
ered positions are also on the lens plane. The black curve in the z − M panel
shows the prediction for the mass–redshift relation from equation (21) for
this particular case. Finally, the dashed black line indicates the predicted
NFW mass from equation (20).

Figure 16. The posterior probability distributions for SLACS J0946+1006
(position 1). We see how the contours decrease in size and become more
precise as the mass of the perturber is increased. We stress that in this plot,
the whole range of x and y is approximately one half of the FWHM of the
PSF, so the positions are very well recovered in all cases. The minimum
detectable mass the pixel where the centre of the perturber was placed,
according to the sensitivity function, is 4 × 108 M�.
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free to vary, the recovered redshift and projected position at which it
affects the lensed images are within 0.15 and 2.5×FWHM from the
true values, respectively. The mass is within 0.6 dex from equation
(20). (iv) When an NFW (sub)halo is modelled as a PJ subhalo,
the results are consistent with the previous case, with a reversed
ordering in mass.

We stress that these are the largest uncertainties that we have
found for realistic lenses (thus excluding the SIS+Gaussian source
case), but as discussed above, the modelling errors decrease with
increasing data complexity, angular resolution, and sensitivity. In
all cases, we find that the main lens parameters and source regular-
ization adapt themselves to partly accommodate the presence of the
perturber and, when necessary, for the wrong choice of perturber
mass profile. These changes are at the 3 per cent level at most, with
the shear strength and the source regularization being the most sen-
sitive parameters. It should be kept in mind that these results are
valid for a fixed concentration–mass relation. Moreover, these re-
sults – and in particular the ability of the code of recovering masses
(PJ or the corresponding NFW) and position of the perturber with
this precision – are valid for perturber masses higher than the de-
tection threshold, defined from the sensitivity function as in Vegetti
et al. (2014).

5.2 Combining line-of-sight statistics with observational
constraints

In Section 4, we have shown how the substructure detection in
JVAS B1938+666 by Vegetti et al. (2012) is more likely produced
by a low-mass halo along the line of sight to the main lens. In this
section, we combine the results from Sections 3 and 4 with the
observational limit on the perturber magnitude (MV > −14.5 or
K′ > 28) derived by Vegetti et al. (2012) to set tighter constraints
on the range of allowed redshifts – under the assumption that the
perturber is not a subhalo within the main lens. In particular, we first
use equations (21) and (24) to calculate the redshift distribution of
possible line-of-sight haloes. Next, using abundance matching, we
exclude all those cases for which the perturbing halo is predicted
to host a galaxy brighter than the observational limit of K′ = 28.
In what follows, we consider only line-of-sight haloes and exclude
substructures from our calculations: thus, the virial volume of the
main lens is also excluded, meaning that no line-of-sight halo can
be located within the redshift range zl ± �z spanned by the virial
radius.

The upper panel of Fig. 17 shows the mass–redshift relation
(black curve) derived from equation (21), together with the mass–
redshift degeneracy (grey contours) derived for this particular per-
turber (i.e. PJ substructure with an MPJ

tot = 1.8 × 108 M� and
zL = 0.881) from the full lens modelling (see Section 5). We find that
using the latter the constrains are tighter because the detailed sur-
face brightness distribution provides additional constraining power.
The two middle panels show the corresponding limit on the stellar
mass and apparent magnitude (derived following the formalism by
Moster et al. 2010). The horizontal dashed line shows the magni-
tude upper limit set by the observational data. We can now exclude
from all possible perturbers, those objects that are predicted to be
brighter than K′ = 28 (most of the background objects and part
of the foreground population). The effect of this selection criterion
on the redshift probability distribution is shown in the lower panel.
Here, the grey dashed and the black solid lines show the redshift
posterior probability distribution derived from the lens modelling

Figure 17. The upper panel shows a comparison between the predicted
NFW mass as a function of redshift and that derived from the lens modelling
of a mock image based on the lens model of JVAS B1938+666. The black
curve shows the predicted threshold from equation (21), while the grey
contours (1σ and 3σ levels) show the result of the lens modelling. The upper
middle and lower middle panels show the stellar mass and corresponding
apparent magnitude (with uncertainty ±1 mag) associated with the perturber
NFW mass from the upper panel, calculated using abundance matching
arguments. The lower panel shows the redshift probability distribution of
the perturber from the lens model (grey dashed line), our analytical model
for the perturber mass as a function of redshift from equations (21) and (24)
(black solid line), and by combining our the model with the upper limit in
absolute magnitude (blue solid line). In these plots, the vertical dashed line
marks the redshift of the lens, while the dot–dashed line shows the redshift
recovered by the lens model.

and from our analytical analysis, respectively. In particular, the latter
was defined as,

P (z) = NLOS(z)

NLOS(tot)
, (27)

where NLOS(tot) is the total number of detectable line-of-sight
haloes, resulting from integrating the mass function (equation 24)
from z = 0 to zS, and from MNFW

low to MNFW
max , with MNFW

low derived
using equation (21). NLOS(z)dz is the total number of detectable
line-of-sight haloes in the redshift range z, z + dz. Finally, the
solid blue curve shows the result of combining both definitions of
P(z) with the observational limit on the magnitude. Thanks to the
inclusion of this last constraint, the redshift range can be further
restricted, though most of the constraining power comes from the
detailed modelling of the lensed images. In all cases, the proba-
bility peaks at or close to the redshift of the lens, meaning that the
most probable location for line-of-sight perturbers is roughly within
�z � 0.1 from zl – but outside the halo virial radius, within which
they would be considered subhaloes.
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6 C O N C L U S I O N S

In this paper, we have studied the relative gravitational lensing effect
of substructures and line-of-sight haloes on the surface brightness
distribution of strongly lensed arcs and Einstein rings. The main goal
was to quantify the relative contribution of haloes and subhaloes to
the total number of detectable objects, as well as to provide an
interpretation of detections in terms of these two populations. Our
results can be summarized as follows.

(i) Using a set of idealized and realistic lensing observations,
we have derived an analytic mass–redshift relation that allows us
to rescale the substructure detection threshold (i.e. the smallest de-
tectable substructure mass) into a line-of-sight detection threshold
as a function of redshift. For line-of-sight haloes in the foreground
with masses much smaller than the mass of the main lens, non-
linear effects arising from the double-lens–plane configuration are
essentially negligible, and the above expression provides a precise
way to quantify the abundance of detectable objects. For line-of-
sight haloes in the background of the main lens, this relation is
strictly valid only in an average sense, instead. In particular, we find
that departures from the average relations increase with increasing
asymmetries in the lensing systems, either due to ellipticity in the
main lens mass distribution or to the presence of a strong external
shear. This translates into a small underestimation of the total num-
ber density of detectable background line-of-sight haloes of ≤4 per
cent.

(ii) We have highlighted the role played by the perturber density
profile and in carrying out meaningful comparison of observations
and predictions. As PJ profiles are commonly used to describe
observed subhaloes, while modified NFW profiles best describe
simulated ones, we have derived an analytical relation that allows
one to map the PJ total mass into the NFW virial mass based
on their gravitational lensing effect. The NFW virial mass that
produces the most similar lensing effect to a certain PJ subhalo (at
the same redshift) is roughly one order of magnitude higher than
the PJ mass: failing to correctly take into account the effect of the
assumed density profile on the estimated mass can result in incorrect
prediction of the expected number of (sub) haloes.

(iii) We have shown that simulated subhaloes can be well de-
scribed by NFW haloes with a concentration–mass relation that is
weakly dependent on the distance from the host centre and that for
our purposes can be still approximated by the Duffy et al. (2008)
relation for virial masses below 109 M�. Assuming a distance-
independent concentration leads to a small overestimation on the
total number of detectable subhaloes of the order of 3 per cent.

(iv) By fitting NFW profiles to the simulated subhaloes, we have
derived an effective rescaled subhalo mass function. This results
in a shift of the original (SUBFIND-defined) mass function and a
consequent increase in its normalization.

By combining all of the above results, we find that line-of-sight
perturbers generally dominate in number with respect to subhaloes,
but that the ratio of the two depends strongly on the lens and source
redshift due to the form of equation (18), as may be inferred from
simple volume arguments. For a very low detection threshold, the
differences in the predicted number of detectable line-of-sight per-
turbers between the CDM and WDM models are particularly strik-
ing. This reflects the fact that the abundance of WDM haloes and
subhaloes is strongly suppressed relative to CDM at these masses.
Future higher resolution observations with, for example, the next
generation of Extremely Large Telescopes, should be able to dis-
criminate between different dark-matter models, ruling out some of

them. This ability is enhanced and made more robust by the fact that
the dominant perturbing structures are expected to be line-of-sight
haloes rather than substructures in the lenses. This kind of constrain
on WDM can then be compared with those coming from other stud-
ies, such as works including only substructures (Birrer, Amara &
Refregier 2017), focusing flux-ratio anomalies (Inoue et al. 2015),
or satellite counts (Lovell et al. 2016, 2017).

The other main goal of this paper was to quantify the degeneracy
between the redshift and the mass of detected perturbers. In order to
do so, we have used the lens modelling code by Vegetti & Koopmans
(2009) to analyse mock observations in which a perturber, which
may be either a subhalo or a line-of-sight halo, had been artificially
inserted and modelled either as a subhalo or a line-of-sight halo.
The main results from this analysis are the following.

(i) The mass–redshift relations derived from the deflection angle
residuals provide a reliable first-order estimate of the mass–redshift
degeneracy. However, while equations (18) and (21), and Fig. 5
suggested that at each redshift between the observer and the source,
all masses following the mass–redshift relation would be indistin-
guishable, we have found instead that the mass–redshift degeneracy
is restricted to a smaller redshift range that strongly depends on the
complexity and angular resolution of the data.

(ii) Independent of the assumed mass–density profile of the per-
turber, the inferred masses have a relative error of at most 0.6 dex
relative to the expectation from equations (18) and (21). The pro-
jected position of the perturber is recovered to within a few (typically
1–2) times the PSF FWHM and the redshift can be constrained with
an absolute error of at most �z � 0.15 at the 68 per cent confidence
level.

We can therefore conclude that the surface brightness distribution
of the lensed images contains more information than the deflection
angle, which helps to reduce the allowed parameter space, and thus
improve constraints.

To summarize, the contribution from small-mass haloes along
the line of sight is important for three reasons. (i) As the lensing
effect depends on the redshift of the perturber, line-of-sight haloes
that are located at a lower redshift than the lens produce larger per-
turbations of the lensed images than substructures of the same mass
inside the lens–galaxy halo, meaning that the detection threshold
is effectively lower for foreground objects. (ii) The number of de-
tectable line-of-sight haloes is generally larger than the number of
detectable subhaloes, the ratio between the two depending on the
redshift of the lens and the smallest detectable mass. The line-of-
sight population is thus an important contribution that significantly
boosts the number of observable small-mass haloes and therefore
tightens constraints on the dark-matter mass function. (iii) Line-of-
sight haloes are significantly less affected by baryonic processes
than subhaloes, since they do not experience significant mass loss
due to tidal interactions. Since, in addition, they are expected in
larger number, they lead to more robust and more stringent con-
straints on the properties of dark matter.
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Schneider A., Smith R. E., Macciò A. V., Moore B., 2012, MNRAS, 424,

684
Sheth R. K., Tormen G., 1999, MNRAS, 308, 119
Shu Y., et al., 2016a, ApJ, 824, 86
Shu Y., et al., 2016b, ApJ, 833, 264

Springel V., White S. D. M., Tormen G., Kauffmann G., 2001, MNRAS,
328, 726

Springel V., et al., 2008, MNRAS, 391, 1685
van den Bosch F. C., Tormen G., Giocoli C., 2005, MNRAS, 359, 1029
Vegetti S., Koopmans L. V. E., 2009, MNRAS, 392, 945
Vegetti S., Koopmans L. V. E., Bolton A., Treu T., Gavazzi R., 2010,

MNRAS, 408, 1969
Vegetti S., Lagattuta D. J., McKean J. P., Auger M. W., Fassnacht C. D.,

Koopmans, 2012, Nature, 481, 341
Vegetti S., Koopmans L. V. E., Auger M. W., Treu T., Bolton A. S., 2014,

MNRAS, 442, 2017
Viel M., Lesgourgues J., Haehnelt M. G., Matarrese S., Riotto A., 2005,

Phys. Rev. D, 71, 063534
Xu D. D., Mao S., Cooper A. P., Gao L., Frenk C. S., Angulo R. E., Helly

J., 2012, MNRAS, 421, 2553
Xu D., Sluse D., Gao L., Wang J., Frenk C., Mao S., Schneider P., Springel

V., 2015, MNRAS, 447, 3189
Zhang Y., Yang X., Faltenbacher A., Springel V., Lin W., Wang H., 2009,

ApJ, 706, 747
Zhao D. H., Jing Y. P., Mo H. J., Bnörner G., 2009, ApJ, 707, 354

A P P E N D I X A : M A S S - C O N C E N T R AT I O N
R E L AT I O N

In Fig. A1, we plot the relative difference in the best-fitting curve de-
rived using the mass–concentration relations by Duffy et al. (2008),
Meneghetti et al. (2014), and Zhao et al. (2009), computing the latter
both for the CDM and different WDM cases (dashed and dot–dashed
lines). In particular, to model the effect of WDM within the Zhao
et al. (2009) mass–concentration relation, we proceed as follows:
(i) we modify the CDM initial power spectrum of our reference
cosmology generated by CAMB (Lewis, Challinor & Lasenby 2000)
to the corresponding WDM mass as presented by Bode, Ostriker
& Turok (2001), (ii) we compute the corresponding mass variances
σ (M) (Lacey & Cole 1993; Sheth & Tormen 1999; Despali et al.
2016), (iii) we adopt the Giocoli, Tormen & Sheth (2012b) mass
accretion history model to recover the time t0.04 at which the main
halo progenitor assembled 4 per cent of its mass needed by the
Zhang et al. (2009) concentration-mass model. The WDM trend is
opposite to the CDM one, because in WDM models the concentra-
tion peaks at intermediate masses and decreases both at the high-
and low-mass end, behaving similarly to the WDM power spectrum
(Ludlow et al. 2016). The contours show the effect of choosing
a concentration 1σ or 2σ away from the average concentration.
We find differences that are generally within the 10 per cent level,
and they become larger only towards z = 0, where the number of
line-of-sight haloes is very small. Hence, it can be concluded that

Figure A1. The influence of the concentration–mass relation on the dif-
ference in the deflection angles shown in Fig. 3, both in CDM and WDM
cases. We estimate the scatter that would be induced by using a different
concentration–mass relation, comparing the models of Duffy et al. (2008),
Meneghetti et al. (2014), and Zhao et al. (2009).

MNRAS 475, 5424–5442 (2018)

http://dx.doi.org/10.1088/0264-9381/27/23/233001
http://dx.doi.org/10.1016/S0370-1573(00)00082-X
http://dx.doi.org/10.1088/1475-7516/2017/05/037
http://dx.doi.org/10.1086/321541
http://dx.doi.org/10.1086/498884
http://dx.doi.org/10.1086/305262
http://dx.doi.org/10.1086/375639
http://dx.doi.org/10.1086/340303
http://dx.doi.org/10.1093/mnras/stx966
http://dx.doi.org/10.1093/mnras/stv2842
http://dx.doi.org/10.1111/j.1745-3933.2008.00537.x
http://dx.doi.org/10.3847/0004-637X/824/2/144
http://dx.doi.org/10.1111/j.1365-2966.2004.08360.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13182.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20594.x
http://dx.doi.org/10.1086/345788
http://dx.doi.org/10.3847/0004-637X/823/1/37
http://dx.doi.org/10.1093/mnras/stw1270
http://dx.doi.org/10.1111/j.1365-2966.2012.21915.x
http://dx.doi.org/10.1093/mnras/stv194
http://dx.doi.org/10.1093/mnras/stw168
http://dx.doi.org/10.1086/345717
http://dx.doi.org/10.1111/j.1365-2966.2005.09523.x
http://dx.doi.org/10.1093/mnras/262.3.627
http://dx.doi.org/10.1111/j.1365-2966.2012.21406.x
http://dx.doi.org/10.1086/309179
http://dx.doi.org/10.1093/mnras/stt2431
http://dx.doi.org/10.1093/mnras/stw1317
http://dx.doi.org/10.1093/mnras/stx654
http://dx.doi.org/10.1093/mnras/stw1046
http://dx.doi.org/10.3847/1538-4357/836/1/141
http://dx.doi.org/10.1088/0004-637X/797/1/34
http://dx.doi.org/10.1086/431574
http://dx.doi.org/10.1111/j.1365-2966.2011.19982.x
http://dx.doi.org/10.1088/0004-637X/710/2/903
http://dx.doi.org/10.1086/177173
http://dx.doi.org/10.1093/mnras/stv1067
http://dx.doi.org/10.1111/j.1365-2966.2012.21252.x
http://dx.doi.org/10.1046/j.1365-8711.1999.02692.x
http://dx.doi.org/10.3847/0004-637X/824/2/86
http://dx.doi.org/10.3847/1538-4357/833/2/264
http://dx.doi.org/10.1046/j.1365-8711.2001.04912.x
http://dx.doi.org/10.1111/j.1365-2966.2008.14066.x
http://dx.doi.org/10.1111/j.1365-2966.2005.08964.x
http://dx.doi.org/10.1111/j.1365-2966.2008.14005.x
http://dx.doi.org/10.1111/j.1365-2966.2010.16865.x
http://dx.doi.org/10.1038/nature10669
http://dx.doi.org/10.1093/mnras/stu943
http://dx.doi.org/10.1103/PhysRevD.71.063534
http://dx.doi.org/10.1111/j.1365-2966.2012.20484.x
http://dx.doi.org/10.1093/mnras/stu2673
http://dx.doi.org/10.1088/0004-637X/706/1/747
http://dx.doi.org/10.1088/0004-637X/707/1/354


5442 G. Despali et al.

the specific choice of mass–concentration relation is of secondary
importance.

APPENDIX B: DEPROJECTION EFFECTS

As detailed in Section 2.4, the full shape of the PJ profile depends
both on its total mass MPJ

tot and its truncation radius rt, which in turns
depends on the unknown 3D distance of the subhalo from the host
centre. From a substructure-lensing modelling point of view, one
generally assumes that the total mass and the projected distance of
the substructure are free parameters of the model. For a given value
of MPJ

tot and R, one then derives the corresponding truncation radius
under the assumption that the substructure is located on the plane
of the host lens, that is, r = R. In practice, this implies that the value
inferred for the substructure mass is the lowest possible allowed by
the data. The lack of knowledge on r is then taken into account,
via statistical arguments, in the form of a systematic error on the
inferred mass (Vegetti et al. 2012, 2014). This, however, requires
assumptions on the (controversial) substructure spatial distribution
to be made.

In this paper, we make use of realistic data sets to quantify the
error on the inferred total mass that arises from the r = R assumption.
To this end, we create a set of mock data with substructures of
different total mass and different 3D distances from the centre and
model them using the lens modelling code of Vegetti & Koopmans
(2009), under the assumption that r = R. A similar analysis has been
recently carried out by Minor et al. (2016), however, unlike the latter,
we do not enforce the profiles to have the same perturbation scale
on the plane of the host. We find that the r = R assumption leads
to a maximum error on the inferred total mass of � 85 per cent for
a subhalo located at the halo virial radius; this is consistent with
Minor et al. (2016) who find that a lensing perturbation of the same
scale can be produced by a 109 M� subhalo that is located on the
lens plane at the Einstein radius (d � 7.4 kpc) or by a 8.7 × 109 M�
subhalo at d � 100 kpc; note that when Minor et al. (2016) model
the latter as a subhalo on the lens plane they recover a mass of �
1.7 × 109 M�, resulting in a 79 per cent error on the mass estimate
due to the deprojection. In general, we find that a subhalo with a
mass MPJ

tot that is located at distance r > R, leads to an inferred mass
Minf at r = R given by,

Minf/M
PJ
tot = 1 − 0.3 log(rt,inf/rt,sub) � 1 − 0.3 log(r). (B1)

As discussed by Minor et al. (2016), one could obtain a more precise
mass measurement by modelling the substructure in terms of their
robust mass, that is, the mass within the distance from the subhalo
centre to the lens system critical curve along the direction where the
magnification is perturbed the most by the presence of the subhalo
divided by the slope α of the main lens density profile. This robust
radius is larger than the subhalo Einstein radius, it depends on the
slope of the main lens mass–density profile and is generally be-
tween one and two times the PJ truncation radius; within this scale
the enclosed subhalo projected mass can be robustly inferred, even
if the subhalo assumed density profile and tidal radius are inaccu-
rate. In practice, however, this mass definition depends on the slope
of the lens mass–density profile, which is not known a priori and is
degenerate with the inferred size of the background source. More-
over, this complicates the comparison with the predicted subhalo
mass function from numerical simulations. Alternatively, one could
include the 3D distance as a free parameter of the model, though at
present it is not clear whether the data contains enough information
to constrain it.

What we have shown in this paper is that by using an NFW
profile, one can safely ignore deprojection effects, as the subhalo
concentration depends only weakly on the distance from the host
centre. We compared the lensing effect of subhaloes with different
concentrations. Using mock data sets in which the subhaloes have
a distance-dependent concentration and by modelling them with
an NFW profile with a constant Duffy et al. (2008) concentration
relation, we find errors on the inferred mass and projected posi-
tion, respectively, within 20 per cent and 3–4 pixels for perturbers
of mass 109 M�. Given that the difference in the concentration–
mass relation decreases with mass, the errors on the inferred mass
are within 10 per cent for 108 M� and around 5 per cent for
106 − 7 M�.
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