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ANALYSIS OF THE RATIONAL KRYLOV SUBSPACE
PROJECTION METHOD FOR LARGE-SCALE ALGEBRAIC

RICCATI EQUATIONS∗
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Abstract. In the numerical solution of the algebraic Riccati equation A∗X +XA−XBB∗X +
C∗C = 0, where A is large, sparse, and stable, and B, C have low rank, projection methods have
recently emerged as a possible alternative to the more established Newton–Kleinman iteration. In
spite of convincing numerical experiments, a systematic matrix analysis of this class of methods
is still lacking. We derive new relations for the approximate solution, the residual, and the error
matrices, giving new insights into the role of the matrix A−BB∗X and of its approximations in the
numerical procedure. In the context of linear-quadratic regulator problems, we show that the Riccati
approximate solution is related to the optimal value of the reduced cost functional, thus completely
justifying the projection method from a model order reduction point of view. Finally, the new results
provide theoretical ground for recently proposed modifications of projection methods onto rational
Krylov subspaces.

Key words. Riccati equation, rational Krylov, reduced order modeling

AMS subject classifications. 47J20, 65F30, 49M99, 49N35, 93B52

DOI. 10.1137/16M1059382

1. Introduction. We consider the numerical solution of the algebraic Riccati
equation

A∗X +XA−XBB∗X + C∗C = 0,(1.1)

where A ∈ Rn×n is large and sparse, and B ∈ Rn×q, C ∈ Rp×n with q, p � n; here
and in the following A∗ denotes the complex conjugate of A. Under certain hypotheses
on the data, the solution matrix X of interest is the one that is symmetric positive
semidefinite and such that A − BB∗X is stable.1 Equation (1.1) arises in many
scientific and engineering applications that require controlling a dynamical system,
and it have been deeply studied by applied algebraists and numerical mathematicians;
we refer the reader to [31] for a thorough description of the problem and its many
mathematical relations. In the recent book [12], the numerical treatment of this and
related problems has been discussed, both in the small and large scale cases. In
the large scale setting, with n � 103, a serious bottleneck is given by the fact that
the possibly dense n × n matrix X cannot be stored. Most numerical methods thus
approximate X by means of factored low-rank matrices, e.g., X ≈ ZZ∗, so that only
Z needs to be stored. Different approaches have been explored to solve (1.1) under
this constraint, and for quite some time a variant of the Newton method, the Newton–
Kleinman iteration, has been the most popular approach [30],[18],[11],[9]. Low-rank
subspace iteration strategies have also been considered in the past few years; see, e.g.,
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[1],[7],[33],[8]. Other forms of data-sparse approximations include multilevel [21] and
hierarchical [22] methods, which rely on available structure in the data.

Projection-type methods also yield low-rank approximations, however, they had
not been used for the Riccati equation until very recently. In fact, projection methods
are extensively employed in the solution of algebraic linear systems and eigenvalue
problems. In the past decade, specific choices of approximation spaces have shown
that projection methods are also particularly effective for linear matrix equations such
as the Lyapunov and Sylvester equations [41]. Lately, the projection idea has been
applied to the algebraic (quadratic) Riccati equation [28],[27], with surprisingly good
results, to the point that better performance is often observed than with Newton-
based procedures [42]. Moreover, ad hoc parameter selections have been proposed
to further enhance particularly effective approximation spaces [33]. This strong nu-
merical evidence however is lacking of any theoretical justification: the procedure is
mainly based on its linear counterpart and therefore it seems to completely disregard
the quadratic term −XBB∗X. Nonetheless, fast convergence to the sought after
solution is usually observed.

The aim of this paper is to start an analysis that will lead to a better understand-
ing of this class of methods. By looking at the computed quantities from different
perspectives, we are able to give new insights into the role of the approximate solution
Xk in the various contexts where the Riccati equation is extensively studied. We start
in section 3 with model order reduction (MOR) of linear dynamical systems, where
approximation by projection is a recognized important tool, and show that Xk carries
information on the optimal function value in the reduced control problem. In section 5
we deepen our knowledge of Xk and the associated residual, which allows us to derive
new expressions for the residual matrix and justify recently proposed enhancements
of a popular space in MOR, that is the rational Krylov subspace. A key role in our
discussion will be played by the residual matrix,

Rk := A∗Xk +XkA−XkBB
∗Xk + C∗C.(1.2)

By simple algebra, it is customary to rewrite Rk as

Rk = (A∗ −XkBB
∗)Xk +Xk(A−BB∗Xk) + C∗C +XkBB

∗Xk,(1.3)

which highlights the occurrence of the matrix A∗ − XkBB
∗. This matrix and its

projected version will be ubiquitous in the paper, and are the true players in the
approximation process. Finally, the connection between the approximation of the
matrix equation and the invariant subspace setting is highlighted in section 6. While
our interest was motivated by the good performance of rational Krylov methods,
which are the main focus of section 5, many of the results in fact hold for more
general projection methods. We believe that our analysis helps provide good ground
to characterize projection methods as a natural and effective strategy for solving the
Riccati equation.

The following notation and definitions will be used. For X ∈ Rn×n, X ≥ 0 means
that X is symmetric and positive semidefinite, while X > 0 means that it is symmetric
and positive definite. A stable matrix is a square matrix with all its eigenvalues in
the open left-half complex plane. An n × n matrix A is passive if its field of values,
{z ∈ C : z = (x∗Ax)/(x∗x), 0 6= x ∈ Cn}, is all in the open left-half complex plane.
In denotes the identity matrix of size n, and the subscript will be avoided whenever
clear from the context. A pair (A,B) is controllable if the matrix [B,AB, . . . , An−1B]
is full row rank, and (C,A) is observable if (A∗, C∗) is controllable. A pair (A,B) is
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stabilizable if there exists a matrix X such that A−BB∗X is stable. The Euclidean
norm ‖ · ‖ for vectors and its induced norm for matrices will be used, together with
the Frobenius norm for matrices, defined as ‖A‖2F =

∑
i,j |ai,j |2, where A = (ai,j).

The matrix Ek ∈ Rj×p contains the kth block of p columns of the identity matrix of
size j ≥ pk; the actual value of j is clear from the context.

2. Background on projection methods. Projection methods usually gener-
ate a sequence of nested approximation spaces, Kk ⊆ Kk+1, k ≥ 1, where an approx-
imate solution is determined. Let the columns of Vk ∈ Rn×dk span the space Kk,
where dk is the space dimension with dk ≤ dk+1. An approximation to X in (1.1) is
sought as Xk = VkYkV

∗
k ≈ X, where Yk is determined by imposing some additional

condition. A Galerkin method is characterized by an orthogonality condition of the
residual to the given space, namely, Rk ⊥ Kk, where Rk is as defined in (1.2); the or-
thogonality is with respect to the standard matrix inner product, so that the Galerkin
condition reads

V ∗k RkVk = 0.(2.1)

As the subspace grows, the residual is forced to belong to a smaller and smaller space.
When dk = n then clearly it must be Rk = 0 and a solution to (1.1) is determined
in exact arithmetic. The main goal is to determine a sufficiently good approximate
solution Xk for dk � n. For computational convenience and stability, an orthonormal
basis is usually considered. Therefore, from now on we shall assume that the columns
of Vk are orthonormal. To obtain Yk we substitute Xk into the expression for the
residual matrix in (2.1):

V ∗k (A∗VkYkV
∗
k + VkYkV

∗
k A− VkYkV ∗k BB∗VkYkV ∗k + C∗C)Vk = 0,

V ∗k A
∗VkYk + YkV

∗
k AVk − YkV ∗k BB∗VkYk + V ∗k C

∗CVk = 0,

where we used that V ∗k Vk = Idk . Setting Tk = V ∗k AVk, Bk = V ∗k B, and C∗k = V ∗k C
∗

we see that Yk can be obtained by solving the reduced Riccati equation

T ∗kYk + YkTk − YkBkB∗kYk + C∗kCk = 0.(2.2)

Under the assumption that A is passive, Tk is stable, therefore (2.2) admits a unique
stabilizing positive semidefinite solution Yk, which is then used for constructing Xk;
we refer to the next section for less restrictive hypotheses.

The effectiveness of the whole procedure depends on the choice of Kk. The ap-
proximation spaces explored in the (quite recent) literature are all based on block
Krylov subspaces generated with A or with rational functions of A and starting term
C∗ [28],[27],[42]. In section 5 we will analyze the case of the block rational Krylov
subspace, while the results of the next two sections hold for any approximation space.

3. Order reduction of dynamical systems by projection. The Riccati
equation is tightly connected with the time-invariant linear system{

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,
y(t) = Cx(t),

(3.1)

where u(t) and x(t) are the control (or input) and state vectors, while y(t) is the
output vector; x0 is the initial state. We note that x(t) also depends on both x0 and
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u(t), but this will not be explicitly reported in the notation. Let us introduce the
following quadratic cost functional2

J (u, x0) =

∫ ∞
0

(x(t)∗C∗Cx(t) + u(t)∗u(t))dt.

The Riccati equation matrix X is used in the solution of the following linear-quadratic
regulator (LQR) problem

inf
u
J (u, x0),

which consists in finding an optimal control function u∗(t) associated with the system
(3.1), at which the function J attains its infimum. The following well-known result
connects the optimal cost problem with the solution of the algebraic Riccati equation
(1.1); see, e.g., the relevant part of [31, Theorem 16.3.3] in our notation.

Theorem 3.1. Let the pair (A,B) be stabilizable and (C,A) observable. Then
there is a unique solution X ≥ 0 of (1.1). Moreover,

i) for each x0 there is a unique optimal control, and it is given by u∗(t) =
−B∗X exp((A−BB∗X)t)x0 for t ≥ 0;

ii) J (u∗, x0) = x∗0Xx0 for all x0 ∈ Cn.

The optimal control function u∗(t) in the theorem above is in fact determined as
u∗(t) = −B∗Xx(t), giving rise to the closed-loop dynamical system

ẋ(t) = (A−BB∗X)x(t), x(0) = x0,

whose solution is x(t) = exp((A−BB∗X)t)x0 for t ≥ 0 [26].
A reduced order model aims at representing the given large dynamical system

by means of a significantly smaller one. This can be done by projecting data onto a
smaller space. A popular strategy in this class is to use the rational Krylov subspace
to reduce the coefficient matrices by projecting them onto an appropriate vector space
[3]. The solutions of the reduced system can effectively approximate the original state
and control in case the space trajectories do not occupy the whole state space. In
practice, this means that the original model can be well represented by far fewer
degrees of freedom [2].

A quantity of interest to the control community that is used to monitor the
quality of the reduced system is the transfer function, for which a large literature
is available; see, e.g., [3],[10],[20],[40], and their references. Here we focus on the
reduction process, and show that the subspace projection allows one to determine
the optimal control of the reduced dynamical system. Let the dk � n orthonormal
columns of Vk ∈ Rn×dk span the computed subspace and, as in the previous section,
let Tk = V ∗k AVk, Bk = V ∗k B, C∗k = V ∗k C

∗. Then we can define the reduced order
system {

˙̂x(t) = Tkx̂(t) +Bkû(t), x̂(0) = x̂0 :=V ∗k x0,
ŷ(t) = Ckx̂(t).

(3.2)

Clearly, for dk = n the reduced system is equivalent to the original one. For
smaller dk, the quantity xk(t) = Vkx̂(t) is an approximate state of the original system.
In spite of its simplicity, the following result relating (3.2) and the projected solution
Yk appears to be new. Most importantly, it allows us to completely justify the recently
developed Galerkin projection strategy for solving (1.1) in the context of MOR.

2Here we consider a simplified version to make an immediate connection with the Riccati equation
stated in (1.1).
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Corollary 3.2. Let the pair (Tk, Bk) be stabilizable and (Ck, Tk) observable.
Then there is a unique solution Yk ≥ 0 of (2.2) that for each x̂0 gives the feedback
optimal control

û∗(t) = −B∗kYk exp((Tk −BkB∗kYk)t)x̂0, t ≥ 0,(3.3)

for the system (3.2).

Proof. Let

Ĵk(û, x̂0) =

∫ ∞
0

(x̂(t)∗C∗kCkx̂(t) + û(t)∗û(t))dt

be the cost functional associated with (3.2). By applying Theorem 3.1, an optimal
control for the reduced system is û∗(t) = −B∗kYk exp((Tk − BkB∗kYk)t)x̂0, where Yk
solves the reduced Riccati equation

T ∗kY + Y Tk − Y BkB∗kY + C∗kCk = 0(3.4)

with the reduced state x̂(t) = exp((Tk−BkB∗kYk)t)x̂0. Equation (3.4) is precisely the
Riccati equation obtained by Galerkin projection of the original large scale matrix
equation (1.1) onto the given subspace.

A sufficient condition on the original data for the pair (Tk, Bk) to be stabilizable,
and thus satisfy the hypothesis of Corollary 3.2 is given in the following proposi-
tion. A similar condition can be written down for the observability of (Ck, Tk). This
proposition generalizes the result stating that if A is passive, then Tk is stable.

Proposition 3.3. If there exists a matrix K such that A− BK is passive, then
the pair (Tk, Bk) is stabilizable.

Proof. Let K be such that the field of values of A − BK is all in C−. Then the
matrix V ∗k (A−BK)Vk = Tk−Bk(KVk) has all its eigenvalues in C−, that is, (Tk, Bk)
is stabilizable.

Theorem 3.1(ii) implies

Ĵk(û∗, x̂0) = x̂∗0Ykx̂0 = x∗0VkYkV
∗
k x0 = x∗0Xkx0.(3.5)

Therefore, ifXk → X as dk →∞, the optimal value of the reduced functional yields an
estimate to the minimum functional cost via the approximate solution Xk = VkYkV

∗
k

to the large Riccati equation.

Remark 3.4. Using the expression of Ĵk(û∗, x̂0) in (3.5), it is possible to derive
error estimates with respect to the unreduced optimal cost functional, that is,

|J (u∗, x0)− Ĵk(û∗, x̂0)| = |x∗0(X −Xk)x0| ≤ x∗0x0‖X −Xk‖.(3.6)

Bounds for ‖X −Xk‖ can then be obtained by using results in the literature, such as
Theorem 4.1 in the next section. The bound in (3.6) strongly relates the quality of
the cost functional approximation to the accuracy of the Riccati equation solver.

In the literature it is common to use an approximate stabilizing solution X̃ to (1.1)
to directly determine a numerical approximation of the optimal control function of
the original LQR problem as ũ(t) := −B∗X̃x(t), where x̃(t) := exp((A−BB∗X̃)t)x0;
see, e.g., the discussion in [9]. It is important to realize, however, that if one were to
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apply this strategy to our Xk, then (a) one would not determine the same optimal
control function û∗ introduced above and (b) the cost functional would not be the
same in general. In other words, the control function û∗ defined in Corollary 3.2 is the
ideal candidate associated with Xk, as it is optimal for the reduced problem, while
Xk is precisely the matrix defining the projected cost functional at the infimum. On
the other hand, using ũ with X̃ = Xk, in general, leads to a nonoptimal strategy. The
key point here is that Xk is obtained by projection in the form Xk = VkYkV

∗
k , where

Yk is the quantity that is used to define the optimal control function of the reduced
problem. This is an advantage of projection methods, not shared by methods that
only output a—possibly factored—approximation X̃ in the original space. To deepen
this discussion, let us assume that the approximate Riccati solution Xk is stabilizing.
Then common practice would suggest defining

uk(t) = −B∗Xkxk(t) with xk(t) = exp((A−BB∗Xk)t)x0.(3.7)

SubstitutingXk = VkYkV
∗
k we get uk(t) = −(B∗Vk)YkV

∗
k exp((A−B(B∗Vk)YkV

∗
k )t)x0.

Clearly, uk and û∗ are not equal; we next show that they induce different actions on
the cost functional. Comparing the expression in (3.7) with that of û∗(t), we see that
they are close to each other as soon as

exp((V ∗k (A−BB∗Xk)Vkt)V
∗
k ≈ V ∗k exp((A−BB∗Xk)t).

Using the expansion of exp(z) in terms of power series and taking transpose conjuga-
tions, this approximation can be written as

(A∗ −XkBB
∗)`Vk ≈ Vk (V ∗k (A∗ −XkBB

∗)Vk)
`

for any ` ∈ N.

This approximation becomes an equality if range(Vk) is an invariant subspace of
A∗ −XkBB

∗. In general, however, the columns of Vk do not span an invariant sub-
space. The following proposition provides a relation between the optimal reduced
cost functional value with the value of the original functional at uk.

Proposition 3.5. Assume that A − BB∗Xk is stable and that uk is defined as
in (3.7). With the previous notation it holds

|J (uk, x0)− Ĵk(û∗, x̂0)| ≤ ‖Rk‖
2α

x∗0x0,

where α > 0 is such that ‖e(A−BB∗Xk)
∗t‖ ≤ e−αt for all t ≥ 0.

Proof. Using (1.3), let us write the Riccati residual equation as

(A−BB∗X∗k)∗Xk +Xk(A−BB∗Xk) +XkBB
∗Xk + C∗C −Rk = 0.

Then

J (uk, x0) =

∫ ∞
0

(u∗kuk + x∗kC
∗Cxk)dt

=

∫ ∞
0

x∗0e
(A−BB∗Xk)

∗t(XkBB
∗Xk + C∗C)e(A−BB

∗Xk)tx0dt

= x∗0Xkx0 +

∫ ∞
0

x∗0e
(A−BB∗Xk)

∗tRke
(A−BB∗Xk)tx0dt.

From x∗0Xkx0 = Ĵk(û∗, x̂0) and |
∫∞
0
x∗0e

(A−BB∗Xk)
∗tRke

(A−BB∗Xk)tx0dt| ≤ ‖Rk‖
2α x∗0x0

the result follows.
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This theorem establishes a linear relation between the matrix equation residual
norm and the distance between the optimal value of the reduced functional and the
value of the approximate unreduced functional. As the residual norm goes to zero,
the two functional values tend to coalesce. However, the proof shows that in general
J (uk, x0)− Ĵk(û∗, x̂0) will not be zero for Rk 6= 0.

We conclude with a remark about the type of approximation space used. In MOR
different projection spaces are usually employed from the left and from the right, so
as to expand both in terms of C∗ and B. The connection between this approach and
the reduction of the (symmetric) Riccati equation deserves future analysis.

4. Control stability properties of the subspace projection approxima-
tion. By using the residual equation, norm estimates for the error X − Xk can be
derived by using classical perturbations results. In this section we recall these classical
estimates, which can have a different flavor in our setting, where the perturbations
are not very small in general. Nonetheless, these results enable us to state that for
dk large enough the approximate solution Xk is rigorously equipped with all the nice
stabilizability properties of the exact solution. Moreover, they can be used to track
the progress in the approximation as the approximation space grows.

Unlike the linear equation case, a small residual norm does not necessarily imply
a small error, since the Riccati equation has more than one solution. Therefore, in
general, an assumption is needed about the closeness of the approximate solution to
the sought after one, to be able to derive information on the error norm from the
residual norm.

Let X be an exact stabilizing solution, Ek = X−Xk the error, and Rk = A∗Xk +
XkA − XkBB

∗Xk + C∗C the residual. Subtract this residual equation from (1.1).
Then by adding and subtracting XBB∗Xk and EkBB∗Xk in sequence, we obtain

(A∗ −XBB∗)Ek + Ek(A−BB∗X) + EkBB∗Ek +Rk = 0.

We observe in passing that the second order term in Ek becomes negligeable for
‖Ek‖ � 1. From this Riccati equation for the error, under certain conditions a bound
on the error can be obtained. To this end we recall the definition of the closed-loop
Lyapunov operator

ΩX(Z) := (A−BB∗X)∗Z + Z(A−BB∗X),

and observe that if H is the matrix solving (A−BB∗X)∗H +H(A−BB∗X) = −I,
then ‖H‖ = ‖Ω−1X ‖ = maxZ 6=0(‖Ω−1X (Z)‖/‖Z‖); see [29, Lemma 2]. Note that ‖Ω−1X ‖
is the reciprocal of the sep operator when applied to the given matrix and its opposite
transposed conjugate [43]. An interesting interpretation of ‖Ω−1X ‖ in terms of the
damping of the closed-loop dynamical system is also given in [29].

Theorem 4.1 (see [29]). Let X be a symmetric and positive semidefinite solution
to (1.1) such that A − BB∗X is stable. Assume that ‖X −Xk‖ < 1/(3‖B‖2‖Ω−1X ‖).
If the residual matrix Rk satisfies 4‖B‖2‖Ω−1X ‖2‖Rk‖ < 1 then

‖X −Xk‖ ≤ 2‖Ω−1X ‖ ‖Rk‖.

We refer the reader to [19] for more refined estimates. This bound is a generalization
to the nonlinear case of the well known bound for the (vector) norm of the error when
approximately solving a linear system Ax = b. We note that the “norm of the inverse”
is replaced here with the norm of the closed-loop operator inverse, which takes into
account both the linear and the quadratic coefficient matrices.

We next recall a theorem on the sensitivity of the Lyapunov equation solution.
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Theorem 4.2 (see [26, Theorem 2.2]). Let A be stable and let H satisfy A∗H +
HA = −I. Let ∆A satisfy ‖∆A‖ < 1/(2‖H‖). Then A+ ∆A is stable.

This result enables us to state that if the error X −Xk is small enough, then Xk

is stabilizing; a similar result can also be found in [29, Lemma 1].

Corollary 4.3. Let A−BB∗X be stable and let Xk be an approximate solution
to (1.1) and Ek = X −Xk. If ‖BB∗Ek‖ < 1/(2‖Ω−1X ‖), then A−BB∗Xk is stable.

Proof. We write A−BB∗Xk = (A−BB∗X)+BB∗Ek =: Ã+∆Ã. We thus apply

Theorem 4.2 to Ã, ∆Ã: Ã is stable by hypothesis; moreover, if ‖BB∗Ek‖ = ‖∆Ã‖ <
1/(2‖Ω−1X ‖) then Ã+ ∆Ã is stable.

Finally, we turn our attention to the special form of the approximate solution,
that is Xk = VkYkV

∗
k . Under the stated hypotheses, Corollary 3.2 ensures that Yk

is stabilizing. This important property can be exploited in the eigenvalue context
discussed in section 6.

The next result tracks the modification in the approximate solution matrix Xk as
the subspace grows. It is important to realize that, in general, the matrices Yk in the
sequence are computed by solving a new and expanding Riccati equation; therefore,
the entries of Yk and Yk+1 are not related by a simple explicit recurrence.

Proposition 4.4. Let Xj be the approximate solution onto Kj for j = k, k+1 and
let Y̌k+1 be Yk padded with extra rows and columns to match the dimension of Yk+1.

Let Ω̂Yk+1
be the closed-loop operator associated with the reduced problem. Assume that

‖Yk+1 − Y̌k+1‖ < 1/(3‖Bk+1‖2‖Ω̂−1Yk+1
‖) and ‖ρk‖ ≤ 1/(4‖Bk+1‖2‖Ω̂−1Yk+1

‖2), where

ρk := T ∗k+1Y̌k+1 + Y̌k+1Tk+1 − Y̌k+1Bk+1B
∗
k+1Y̌k+1 + C∗k+1Ck+1. Then

‖Xk+1 −Xk‖ ≤ 2‖Ω̂−1Yk+1
‖‖Rk‖.

Proof. We write Xk+1 = Vk+1Yk+1V
∗
k+1 and Xk = VkYkV

∗
k = Vk+1Y̌k+1V

∗
k+1,

where we recall that Vk+1 = [Vk, ?]. Moreover, we set Tk+1 = [Tk, t
(1)
k+1; (t

(2)
k+1)∗, ?].

Yk+1 solves the reduced equation T ∗k+1Y + Y Tk+1 − Y Bk+1B
∗
k+1Y + C∗k+1Ck+1 = 0.

Substituting instead the matrix Y̌k+1 we obtain that the residual satisfies

ρk = T ∗k+1Y̌k+1 + Y̌k+1Tk+1 − Y̌k+1Bk+1B
∗
k+1Y̌k+1 + C∗k+1Ck+1

= V ∗k+1(A∗Vk+1Y̌k+1V
∗
k+1 + Vk+1Y̌k+1V

∗
k+1A− Vk+1Y̌k+1V

∗
k+1BB

∗Vk+1Y̌k+1V
∗
k+1 + C∗C)Vk+1

= V ∗k+1(A∗Xk +XkA−XkBB
∗Xk + C∗C)Vk+1.

Therefore, ‖ρk‖ ≤ ‖Rk‖. Using Theorem 4.1, if ‖Yk+1−Y̌k+1‖ < 1/(3‖Bk+1‖2‖Ω̂−1Yk+1
‖)

and ‖ρk‖ ≤ 1/(4‖Bk+1‖2‖Ω̂−1Yk+1
‖2) then

‖Yk+1 − Y̌k+1‖ ≤ 2‖Ω̂−1Yk+1
‖‖ρk‖.

Noticing that ‖Yk+1 − Y̌k+1‖ = ‖Xk+1 −Xk‖, the result follows.

5. Rational Krylov subspace approximation. The approximation quality of
projection methods depends on the choice of the approximation space Kk. In the case
of the Lyapunov and Sylvester equations, a classical choice is the Krylov subspace
Kk = range([C∗, A∗C∗, . . . , (A∗)k−1C∗]), first introduced for this problem by Saad
in [39]. Note that, in general, C∗ ∈ Rn×p satisfies p ≥ 1, therefore, the space is in
fact a “block” space, whose dimension is not greater than dk = pk. More recently
and motivated by the reduction of dynamical systems, rational Krylov subspaces have



Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

RATIONAL KRYLOV METHOD FOR RICCATI EQUATIONS 1663

shown to be very attractive; see below for some specific references. For s = [s1, s2, . . .]
with sj ∈ C+, they are given by

Kk(A,C∗, s) := range

([
C∗, (A− s2I)−1C∗, . . . ,

k−1∏
j=1

(A− sj+1I)−1C∗
])
.

If the problem data are real, the shifts are included in conjugate pairs, so that the pro-
jection procedure can be implemented so as to only work in real arithmetic. Moreover,
<(sj) > 0; therefore, all inverses exist for A stable. We remark that the first block of
columns generating Kk is simply the matrix C∗; this corresponds to using an infinite
parameter s1 =∞ as first shift, and this will be an assumption throughout. Including
C∗ into the space is crucial for convergence, since the whole constant matrix term is
exactly represented in the approximation space. The effectiveness of the space now
depends on the choice of the parameters sj , j = 2, 3, . . .. A lot of work has been de-
voted to the analysis of ideal shifts, due to the relevance of rational Krylov subspaces
in eigenproblems [38],[35], matrix function evaluations [24],[16],[25], and model order
reduction [23],[37],[17]; we refer the readers to [41] and to the references cited above.
We mention that for linear matrix equations, the choice of sj ∈ {0,∞} seems to be
particularly effective in many cases, since the computational cost of solving with the
coefficient matrix at each iteration can be somewhat mitigated, without dramatically
sacrificing the asymptotic convergence rate. Numerical experiments reported in [42]
show that for the algebraic Riccati equation this is no longer the case: the general
rational Krylov subspace appears to be superior in all considered examples, in terms
of subspace dimension, if the shifts are properly selected.

For k ≥ 1, the rational Krylov subspace with shifts s1, s2, . . . , sk satisfies the
following Arnoldi relation3 (see, e.g., [13], [32]):

A∗Vk = VkT
∗
k + v̂k+1g

∗
k, V ∗k Vk = I,(5.1)

where Kk = range(Vk), and v̂k+1βββ = vk+1sk − (I − VkV ∗k )A∗vk+1 is the QR decom-
position of the right-hand side matrix, and with g∗k = βββhk+1,kE

∗
kH
−1
k . The matrix[

Hk

hk+1,kE
∗
k

]
contains the orthogonalization coefficients that generate the orthonormal columns of
Vk+1 (see, e.g., [17]). We set V1β0 = C∗, the reduced QR factorization of C∗. By
construction, the matrix [Vk, v̂k+1] has orthonormal columns as well.

Proposition 5.1. The matrix Xk satisfies the following algebraic Riccati equa-
tion

(A∗ − v̂k+1f
∗
k )X +X(A− fkv̂∗k+1)−XBB∗X + C∗C = 0,

where fk = Vkgk and gk is as in (5.1).

Proof. Using the Arnoldi relation (5.1) and the fact that Yk solves the reduced
equation, the residual satisfies

Rk = A∗VkYkV
∗
k + VkYkV

∗
k A− VkYkV ∗k BB∗VkYkV ∗k + VkE1β0β

∗
0E
∗
1V
∗
k

= VkT
∗
kYkV

∗
k + v̂k+1g

∗
kYkV

∗
k + VkYkTkV

∗
k + VkYkgkv̂

∗
k+1

−VkYkV ∗k BB∗VkYkV ∗k + VkE1β0β
∗
0E
∗
1V
∗
k

3The conjugate transposition in T ∗k is used for consistency in the notation employed for the
reduced Riccati equation.
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= [Vk, v̂k+1]

[
0 Ykgk

g∗kYk 0

] [
V ∗k
v̂∗k+1

]
= v̂k+1g

∗
kYkV

∗
k + VkYkgkv̂

∗
k+1 = v̂k+1g

∗
kV
∗
k Xk +XkVkgkv̂

∗
k+1.(5.2)

Substituting into (1.2) and collecting terms, the result follows.

Since ‖f∗kXk‖ = ‖Rk‖/
√

2, the modified equation of Proposition 5.1 tends to the
original Riccati equation as convergence takes place. However, we cannot infer that
Xk is close to X in the backward error sense, since v̂k+1f

∗
k is not small in general.

5.1. The adaptive rational Krylov subspace. Several different selection
strategies have been proposed for the shifts sj . In the linear equation case, Penzl
[37] suggested a preprocessing for the computation of a fixed number of shifts, which
are then applied cyclically. More recently, a greedy adaptive strategy was proposed in
[17] for the same class of problems, which determines the next shift during the com-
putation, so that the process can automatically learn from the convergence behavior
of the method. The shifts are selected by minimizing a particular rational function on
an approximate and adaptively adjusted spectral region of A. In [33] it was observed
that for the Riccati equation the inclusion of information on BB∗ during the shift
computation—in the form of eigenvalues of V ∗k (A∗ −XkBB

∗)Vk—may be beneficial
in certain cases. In the following we aim to justify this choice. To this end, we need
to set up a rational function framework that parallels some of the matrix relations
obtained in the previous sections.

A relation corresponding to (5.1) can be obtained by using orthogonal rational
functions with respect to some inner product; see, e.g., [13]. We note that each vj+1

can be written as vj+1 = ϕj(A
∗)C∗/‖C∗‖ for some orthogonal rational function ϕj =

pj/qj−1, where pj , qj−1 are polynomials of degree at most j and j − 1, respectively.
For j = 0 we define ϕ0 = 1. Let Φk−1(λ) = [ϕ0(λ), ϕ1(λ), . . . , ϕk−1(λ)]. Then,

λΦk−1(λ) = Φk−1(λ)T ∗k + ϕ̂k(λ)g∗k(5.3)

for certain rational function ϕ̂k = pk/qk−1. From (5.3) it follows that θ is a zero of
ϕ̂k if and only if θ is an eigenvalue of T ∗k . We refer to [5, section 2.2] for a similar
relation, where a different Arnoldi-type relation is used.

A first attempt to justify the use of information from A−BB∗Xk can be obtained
by generalizing the argument in [17], working as if the problem were linear. For the
sake of the argument, let us assume that p = 1, that is, C∗ is a vector. Moreover,
for notational simplicity, for the rest of this section we let Ak = A − BB∗Xk and
Tk = V ∗k AkVk = Tk −BkB∗kYk. Using (1.2) we can write the residual as

Rk = (A∗ −XkBB
∗)Xk +Xk(A−BB∗Xk) + C∗C +XkBB

∗Xk

= A∗kXk +XkAk +DkD∗k,(5.4)

where Dk = [C∗, XkB]. We observe that all columns of Dk belong to Kk(A∗, C∗, s),
since Dk = Vk[E1β0, YkBk].

Remark 5.2. The rational Krylov subspace Kk(A∗, C∗, s) satisfies an Arnoldi-
type property for the matrix Ak. Indeed,

A∗kVk = A∗Vk −XkBB
∗Vk

= VkT
∗
k + v̂k+1g

∗
k − VkYkBkB∗k

= Vk(T ∗k − YkBkB∗k) + v̂k+1g
∗
k = VkT ∗k + v̂k+1g

∗
k.
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By using the expression of the residual (5.4) as if it were the residual matrix of a
Lyapunov equation, we can follow the same reasoning as in [17] for the selection of
the next shift. However, as opposed to the linear case, all involved matrices now
depend on the iteration k. Consider the shifted system (A∗k − sI)x = C∗, and the
approximate Galerkin solution xk ∈ Kk(A∗k, C∗, s). Then the system residual can be
written as

C∗ − (A∗k − sI)xk = C∗ − (A∗k − sI)Vk(T ∗k − sI)−1e1β0

=
ψk,Tk(A∗k)C∗

ψk,Tk(s)
, ψk,Tk(z) :=

k∏
j=1

z − λj
z − sj

,(5.5)

where λj are the eigenvalues of T ∗k ; we refer the reader to [15, section 4], [5, section
2.2], and to [36, Thm. 3] for a proof of this result. Note that this result is very general:
given a shifted linear system, this expression holds for the Galerkin approximation
obtained in the rational Krylov subspace generated with the coefficient matrix of the
shifted linear system and right-hand side vector C∗. The next shift sk+1 is then
determined so that

sk+1 = arg

(
max
s∈∂Sk

∣∣∣∣ 1

ψk,Tk(s)

∣∣∣∣) ,
where Sk ⊂ C+ approximates the mirrored spectral region ofAk, and ∂Sk is its border.
For k = 0 the process is initialized by taking as Sk a real interval approximating the
interval containing all real parts of the eigenvalues of −A. An accurate approximation
is not usually needed, as the process is self-correcting for larger k; we refer the reader
to [17] for more algorithmic details.

A major practical difference from the adaptive procedure in the Lyapunov equa-
tion case is that Sk will change at each iteration in agreement with the modifications
in the spectrum of Ak. In fact, thanks to the Arnoldi relation of Remark 5.2, the
unknown spectral region of Ak is replaced with the spectral region of Tk, which is
computable after the approximate solution Yk is determined. This approach is pre-
cisely the one explored in [33] for the Riccati equation. As opposed to an adaptive
shift selection based on A (see, e.g., [42]), this approach includes information on the
second order coefficient matrix, which may be crucial when the term −BB∗X in
A − BB∗X significantly modifies the spectral properties of A (see Example 5.5). In
the next section we give a rigorous formalization of this argument.

5.2. A new expression for the residual and the choice of shifts. In [4] a
new expression for the residual of the Sylvester equation was proposed. We extend
this expression to the case of the Riccati residual matrix. The new expression allows
an interpretation of the two-term sum in (5.2) by means of rational functions. Note
that the result also holds for B = 0, therefore, its proof provides a more elementary
proof for the Lyapunov equation than in [4].

Proposition 5.3. Assume that the columns of C∗ belong to Range(Vk), and let
Tk = V ∗k AkVk = Tk −BkB∗kYk. Then the residual Rk satisfies

Rk = R̂kV
∗
k + VkR̂

∗
k with R̂k = A∗VkYk + VkYkTk + C∗(CVk),

so that ‖Rk‖F =
√

2‖R̂k‖F .
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Proof. By substituting R̂k in the expression for Rk we obtain,

R̂kV
∗
k + VkR̂

∗
k = A∗Xk + VkYkTkV

∗
k − VkYkBkB∗kYkV ∗k + C∗C

+XkA+ VkT
∗
kYkV

∗
k − VkYkBkB∗kYkV ∗k + C∗C

= Rk + 0,

where the reduced equation (2.2) and C∗CV V ∗ = C∗C were used; this proves the first

relation. The norm relation follows from V ∗k R̂k = 0, which can be readily verified.

We shall call R̂k the “semi”residual matrix. The proposition above shows that
the residual norm of the Galerkin method for the Riccati equation is the same as that
of an associated Sylvester equation times the constant

√
2. As a consequence, we can

at least formally state that VkYkV
∗
k is a solution to the Riccati equation (1.1), that

is, Rk = 0 if and only if Zk = VkYk is the solution to the Sylvester equation

A∗Z + ZTk + C∗CVk = 0,(5.6)

where Tk typically has dimensions much smaller than A. Note that this Sylvester
equation is in terms of A (and not of Ak = A−BB∗Xk), and also in terms of Tk. Let

ψk,Tk
(z) =

det(zI − T ∗k )∏k
j=1(z − sj)

=

∏k
j=1(z − θj)∏k
j=1(z − sj)

,(5.7)

where θj are the eigenvalues of T ∗k = V ∗k A
∗Vk. Then the following rational function

representation holds for the semiresidual R̂k. The result was first proved for the
Sylvester equation in [4] and then generalized to the multiterm linear case in [6]. We
prove the result for C∗ having a single column, the generalization to multiple columns
can be obtained by working with each column of C∗, since the whole matrix C∗ is
used to build the approximation space.

Theorem 5.4. Assume that p = 1, that is C∗ ∈ Rn, and let the orthonormal
columns of Vk span the rational Krylov subspace Kk(A∗, C∗, s). Let ψk,Tk

be the
rational function defined in (5.7) and assume that Tk = V ∗k AkVk is diagonalizable.

The semiresidual R̂k of Proposition 5.3 satisfies

R̂k = ψk,Tk
(A∗)C∗CVk(ψk,Tk

(−Tk))−1.

Proof. Let Tk = QΘQ−1 with Θ = diag(θ1, . . . , θk). Then the result follows from
standard arguments for shifted linear systems. Indeed, substituting this decomposi-
tion into R̂k in Proposition 5.3 it follows that R̂kQ = A∗VkYkQ+VkYkQΘ+C∗CVkQ.
Let Z := VkYkQ = [z1, . . . , zk], C∗ηj := C∗CVkQej , and rj = R̂kQej , then we have

rj = (A∗ + θjI)zj + C∗ηj .

For each j, rj is the Galerkin residual of the shifted system (A∗ + θjI)z = −C∗ηj .
Using (5.1) and (5.3), we can thus write rj as rj = ϕ̂k(A∗)C∗ηj/ϕ̂k(−θj), where
the rational Krylov subspace Kk(A∗, C∗, s) is employed and ϕ̂k is now a multiple of

ψk,Tk
in (5.7). Collecting all columns we get R̂kQ = ψk,Tk

(A∗)C∗CVkQψk,Tk
(−Θ)−1.

Multiplying from the right by Q−1 the result follows.

We observe that the expression of the semiresidual generalizes the residual for-
mula for the shifted system in (5.5) to the case of matrix equations. The quantity
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(ψk,Tk
(−Tk))−1 plays the same scaling role as the scalar 1/ψk,Tk(s) in the shifted sys-

tem in (5.5) (but note that Tk replaces Tk in the subscript here). This new relation
thus appears to be of interest on its own. Indeed, while for linear matrix equations
a parallel with shifted systems had already been performed (see [41, section 4.3] and
references therein), the residual matrix associated with the special Sylvester equation
(5.6)—and thus of the Riccati equation—had not been explicitly written down in
terms of polynomials or rational functions.

The new expression for R̂k provides a strong ground for the strategy proposed in
[33] to determine the next shift sk+1. Indeed, we first recall that the numerator of the
rational function ψk,Tk

is the characteristic polynomial of T ∗k , which thus minimizes
the polynomial part of ‖ψk,Tk

(A∗)C∗‖ among all monic polynomials of degree k. This
makes ‖ψk,Tk

(A∗)C∗‖ small among all rational functions ψk,Tk
with fixed denomina-

tor and monic numerator. With the next shift we thus want to make the quantity
(ψk,Tk

(−Tk))−1 smaller in the expression for R̂k. To this end, we need to determine
for which z in the spectral region of Tk the quantity (ψk,Tk

(−z))−1 is large, and add
a root there for the construction of the next function ϕk. In other words, with the
expression for R̂k at hand, it is more meaningful to work within the spectral region
of Tk like in [33], as opposed to the spectral region of Tk (see, e.g., [42]): sk+1 is thus
chosen as the solution to the following problem

sk+1 = arg max
s∈∂Sk

∣∣∣∣ 1

ψk,Tk
(s)

∣∣∣∣ ,(5.8)

where here Sk is a region enclosing the eigenvalues of −Tk and ∂Sk is its border. This
approach should be compared with the original algorithm that uses Tk in place of
Tk. This modified selection strategy can be implemented very easily, with a slight
modification of the original algorithm in [17]: the algorithm needs to compute the
eigenvalues of Tk = Tk−BkB∗kYk instead of those of Tk to determine the corresponding
convex hull. It is interesting to observe that for A Hermitian, working with the non-
Hermitian matrix Tk appears to be more complex than working with the Hermitian
matrix Tk. On the other hand, the matrix Tk has a key role in the Riccati semi-
residual matrix, and it takes into account the nonlinear term in the original equation.
Clearly, if the convex hulls of Tk and Tk are similar, and the same for those of A and
of A − BB∗X, then no major differences will be observed between the two selection
strategies. In other words, if the fields of values are similar, then the projection
method based only on the linear part will be able to decrease ‖R̂k‖ with a similar
convergence rate.

We next report some examples illustrating the expected behavior of the rational
Krylov method with or without the inclusion of the term−BkB∗kYk in the computation
of the spectral region in (5.8).4

Example 5.5. We consider a small built-up example, where A is the Toeplitz
matrix5 A = −toeplitz(−1,−1.5, 2.8, 1, 1, 1) of size n=700 (this small size allows
us to easily compute all quantities for this theoretical analysis). Moreover, B = t1
and C = [1,−2, 1,−2, 1,−2, ...]; this example is motivated by an example with similar
data in [33]. The parameter t takes the values tj = 5·10−j , so that for j = 3, ‖B‖ ≈ 1.
The left plot of Figure 1 shows the convergence history (relative residual norm) of

4The Matlab [34] code of the rational Krylov subspace method for the Riccati equation is available
at the author’s webpage http://www.dm.unibo.it/∼simoncin/software.html.

5In the notation for the Toeplitz matrix, the underlined value is the main diagonal entry, while
the previous (subsequent) values are the elements of the diagonals below (above) the main diagonal.

http://www.dm.unibo.it/~simoncin/software.html
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Fig. 1. Example 5.5. Left: convergence history of rational Krylov method with modified shift

selection as t varies. Right: convex hull of A∗ −XBB∗ as t varies.

the rational Krylov method for each of the three different values of t, when the shifts
are adaptively computed on the spectral region of Tk, as in (5.8). The right plot of
Figure 1 shows the modification of the convex hull of A∗ − XBB∗ as t varies. For
the larger values of tj , the magnitude of B significantly influences the spectral convex
hull; by using the modified shift computation strategy, the method is able to adapt
to this change and capture the new problem features. By using spectral information
of Tk instead, the method takes about 12 iterations to converge, irrespective of the
value of t. We notice that for B of rank one, the matrix XBB∗ is also rank one, with
a real positive eigenvalue whose magnitude depends on B and thus on t. For ‖B‖
large, Figure 1 shows that for this example only one eigenvalue of A∗ is significantly
perturbed in A∗ −XBB∗, causing the extension of the original spectrum to the left,
by an amount depending on t.

Example 5.5 shows that for these data, the magnitude of B influences the residual
convergence of the modified method in a counterintuitive way: the larger its norm,
the faster the method convergence. By using the modified shift selection, the isolated
eigenvalue of A∗ −XBB∗ (see Figure 1) is readily located, and the residual is forced
to be small in that region as well.

In the next example we explore the influence of the nonsymmetry of Tk in the
shift computation, when A is symmetric.

Example 5.6. We consider the same setting as for Example 5.5, except that now
A = A0⊗In0

+In0
⊗A0, with A0 = toeplitz(1,−2, 1) ∈ Rn0×n0 , with n0 = 30 and ⊗

the Kronecker product, giving rise to a 900× 900 symmetric negative definite matrix.
These data represent the scaled finite difference discretization of the Laplacian on
the unit square with homogeneous boundary conditions. As t varies, we compare the
performance of the method when S ⊂ R is associated with the symmetric matrix Tk
with the case when S ⊂ C due to the use of Tk; to emphasize this dependence we shall
use S(Tk) and S(Tk), respectively. Table 1 shows the space dimension required by
the two approaches to reach an absolute residual norm of 10−9. Shown are also the
absolute residual and error norms at convergence, and the norm of the exact solution.
We report that all computed shifts were real also for Tk. The table shows that the
number of iterations for the residual to converge is always smaller when S(Tk) is used,
and it decreases with the magnitude growth of the B term, as in the previous example.
We also notice that when using Tk, the final error is significantly smaller than in the
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Table 1
Example 5.6. Comparison of performance for A symmetric. Number of iterations for the two

variants for the absolute residual norm and final accuracies to go below 10−9.

t Spectral Space ‖Rk‖F ‖X −Xk‖F ‖X‖F
region dim.

103 S(Tk) 21 1.8500e-10 1.6646e-13 4.9999e-03

S(Tk) 3 8.5599e-10 1.4389e-10

102 S(Tk) 23 3.1915e-10 3.0155e-13 4.9994e-02

S(Tk) 7 4.9612e-10 1.0148e-10

10 S(Tk) 25 9.6706e-10 2.5302e-13 4.9938e-01

S(Tk) 9 9.0853e-10 2.2998e-10
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Fig. 2. Example 5.6. Convergence history of rational Krylov method with and without modified
shift selection as t varies. Solid curves: use of Tk. Dashed curves: use of Tk.

modified version of the method; apparently, the residual lags behind in convergence,
when S(Tk) is used.

Figure 2 displays the residual convergence history for the two approaches as t
varies. The initial steep phase of the residual in the modified approach is granted
by the fact that the approximation space immediately locates the isolated eigenvalue,
and that the residual appears to have a large component in the corresponding eigendi-
rection. After that, the convergence behavior depends on the rest of the spectrum.
The original solver maintains the same convergence rate for all values of t.

By generalizing field of values results in [14],[4] it may be possible to exploit the
semiresidual form to analyze the convergence of the method and its dependence on Tk.
A shortcoming in the analysis is that the field of values of the non-Hermitian matrix
Tk depends on k, and that its relation with the field of values of A∗ −XBB∗ is not
easy to formalize, especially at an early stage of the convergence history. Resorting to
the residual expression in (5.4), it is possible to exploit some of the results available
in the literature for the Lyapunov equation. For instance, if the field of values of
A∗ − XBB∗ and of A∗ − XkBB

∗ is contained in a disk of center c > 0 and radius
equal to one for all k, then using [14, Theorem 4.11] we can state that the error
satisfies

limk→∞‖X −Xk‖
1
k ≤ 2c2 + c− 1− (2c+ 1)

√
c2 − 1

c+ 1 +
√
c2 − 1

=: γ.

The following example shows that this asymptotic bound can be descriptive of the
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Fig. 3. Example 5.7. Left: field of values and eigenvalue location. Right: error norm conver-

gence history and estimate γk.

actual behavior.

Example 5.7. We consider A = −1/(3.2)A0 − I, where A0 is the Grcar matrix,
A0 = toeplitz(−1, 1, 1, 1, 1) ∈ Rn×n, n = 1600, C = 1/‖1‖, and B ∈ Rn×p, p = 20
with normally distributed random numbers, normalized so that its norm is about
5 · 10−2. The left plot of Figure 3 shows the computed spectrum of A (“×” symbol),
that of A∗ − XBB∗ (“◦” symbol), the border of the field of values of both A and
A∗ − XBB∗ (thin line), and the circle of center c = 1.25 and radius one, enclosing
the field of values. The right plot of Figure 3 displays the error norm history of the
modified method (dashed line), and 10−2γk. The convergence rate is well captured
by the theoretical estimate γ at the early stage of the iterations.

6. Approximation of an invariant subspace. In this section we discuss the
natural, albeit gone almost unnoticed, role of the approximation matrix Xk in the
eigenvalue context. The problem of solving the large scale algebraic Riccati equation
for X ≥ 0 can be transformed into the problem of computing an approximate basis
for the stable invariant subspace of the following Hamiltonian matrix (see, e.g., [31])

H =

[
A −BB∗

−C∗C −A∗
]
.(6.1)

Several different approaches have been devised to this end; see, e.g., [1],[7],[33] and
references therein. Here we show that the projection process described in the previous
sections can be equivalently applied to this context, providing further motivation for
the method.

Let Xk be the approximate solution to (1.1) obtained by the rational Krylov
subspace method. For some L ∈ Rn×n consider the eigenvalue residual

Sk(A,B,C, L) =

[
A −BB∗

−C∗C −A∗
] [

I
Xk

]
−
[
I
Xk

]
L.

For L = A−B∗BXk, the invariant space residual Sk and the matrix equation residual
Rk can be easily related, since

Sk(A,B,C, L) =

[
A −BB∗

−C∗C −A∗
] [

I
Xk

]
−
[
I
Xk

]
(A−B∗BXk) =

[
0
Rk

]
,
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so that

‖Sk‖ = ‖Rk‖.(6.2)

Therefore, the Riccati equation residual norm also measures the accuracy of [I;Xk]
as an invariant subspace basis.

As a consequence of Proposition 5.1 the following result holds.

Proposition 6.1. The columns of the matrix [I;Xk] span an invariant subspace
of the matrix

Hk =

[
A− fkv̂∗k+1 −BB∗
−C∗C −(A− fkv̂∗k+1)∗

]
,

and the spectrum of T ∗k −YkBkB∗k is a subset of the spectrum of A∗−XkBB
∗−v̂k+1f

∗
k .

Proof. For L = A− fkv̂∗k+1−B∗BXk, writing the corresponding eigenresidual as

Sk(A− fk v̂∗k+1, B, C, L) =

[
A− fk v̂∗k+1 −BB∗
−C∗C −(A− fk v̂∗k+1)∗

] [
I
Xk

]
−

[
I
Xk

]
(A− fk v̂∗k+1 −B

∗BXk)

and using Proposition 5.1 we readily see that Sk = 0.
To prove the second assertion, we use the Arnoldi relation in (5.1). Let (θ, z) be

an eigenpair of T ∗ − YkBkB∗k . Then

(A∗ − v̂k+1f
∗
k −XkBB

∗)Vkz = (A∗Vk − v̂k+1f
∗
kVk −XkBB

∗Vk)z

= (VkT
∗
k + v̂k+1g

∗
k − v̂k+1f

∗
kVk −XkBB

∗Vk)z

= (VkT
∗
k −XkBB

∗Vk)z = Vk(T ∗k − YkBkB∗k)z = Vkzθ,

and the result follows.

The result above states that the approximate Riccati solution is associated with
an invariant subspace of a modification of the original matrix in (6.1), and that the
spectrum of T ∗k − YkBkB

∗
k is a portion of the spectrum of this modified problem.

These properties are a consequence of the Arnoldi relation (5.1), which indeed states
that Vk is an invariant subspace basis of a modification of A∗, namely of A∗− v̂k+1f

∗
k .

What is noticeable in our context is that we can relate the spectral region over which
we seek the next shift in (5.8) with the spectral region of a relevant matrix back in
Rn.

To make the interpretation of the relation in (6.2) more complete, we next show
that the approximation process leading to the computation of Yk can be interpreted
as a Galerkin method for the eigenvalue problem associated with H. Consider the
space

Vk = range

([
Vk 0
0 Vk

])
=: range(Vk).

Then by projecting H onto the space we obtain,

V∗kHVk =

[
V ∗k AVk −V ∗k BB∗Vk

−V ∗C∗CVk −V ∗k A∗Vk

]
=

[
Tk −BkB∗k

−C∗kCk −T ∗k

]
.

The block matrix on the right-hand side is the Hamiltonian matrix associated with
the reduced system in (3.2). Using the reduced Riccati equation in (2.2), it holds that[

Tk −BkB∗k
−C∗kCk −T ∗k

] [
I
Yk

]
=

[
I
Yk

]
(Tk −BkB∗kYk)
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with Yk stabilizing. In terms of original space dimensions, let Vk[I;Yk] = [Vk;VkYk] be
the computed approximate eigenbasis. Then for L = Tk − BkB∗kYk the eigenresidual
is given by

Ŝk(A,B,C,L) =

[
A −BB∗

−C∗C −A∗
] [

Vk
VkYk

]
−
[
Vk
VkYk

]
(Tk −BkB∗kYk).

It readily follows that the eigenresidual is orthogonal to the generated space, that is,
it holds that (Vk)∗Ŝk = 0, therefore, it satisfies a standard Galerkin condition. As
a consequence, for Tk − BkB

∗
kYk stable, Vk[I;Yk] approximates a basis of a stable

invariant subspace of the matrix H in the sense of Galerkin projection methods.

7. Conclusions. By looking at the problem from different but highly related
perspectives, we have shown that projection methods are a natural device for solving
the algebraic Riccati equation. This fact is particularly surprising as until the ap-
pearance of [42] projection methods had not been used for solving large scale Riccati
equations, in spite of the abundant use of projection strategies for MOR of linear
dynamical systems in the past twenty years. In this context, we have shown that the
reduced equation solves a reduced linear-quadratic optimization problem. By using
classical arguments, we have related the residual with the error of the current ap-
proximation. Moreover, we have derived a new expression for the residual in terms
of rational functions; this expression allows us to justify recent algorithmic strategies
for the choice of the shift parameters used in the construction of the approximation
space. In addition, this expression highlights the role of the quadratic term, and ex-
plains why it often happens that good convergence occurs even without taking the
quadratic term into account during the construction of the approximation space. We
have illustrated that the new relations for the residual in terms of rational functions
can be the starting point for a convergence analysis of the method. We notice that
while we have focused on generic rational Krylov subspaces in section 5, many of the
stated results hold for other choices of approximation spaces and, in particular, for
polynomial and extended Krylov subspaces.

Finally, we have shown that the computed quantities correspond to a Galerkin
approximation of the eigenvalue problem associated with the Hamiltonian matrix of
the dynamical system.
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