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Abstract

An increase in confirmed human salmonellosis cases in the EU after 2014 triggered investigation of
contributory factors and control options in poultry production. Reconsideration of the five current target
serovars for breeding hens showed that there is justification for retaining Salmonella Enteritidis,
Salmonella Typhimurium (including monophasic variants) and Salmonella Infantis, while Salmonella
Virchow and Salmonella Hadar could be replaced by Salmonella Kentucky and either Salmonella
Heidelberg, Salmonella Thompson or a variable serovar in national prevalence targets. However, a target
that incorporates all serovars is expected to be more effective as the most relevant serovars in breeding
flocks vary between Member State (MS) and over time. Achievement of a 1% target for the current
target serovars in laying hen flocks is estimated to be reduced by 254,400 CrI95[98,540; 602,700]
compared to the situation in 2016. This translates to a reduction of 53.4% CrI95[39.1; 65.7] considering
the layer-associated human salmonellosis true cases and 6.2% considering the overall human
salmonellosis true cases in the 23 MSs included in attribution modelling. A review of risk factors for
Salmonella in laying hens revealed that overall evidence points to a lower occurrence in non-cage
compared to cage systems. A conclusion on the effect of outdoor access or impact of the shift from
conventional to enriched cages could not be reached. A similar review for broiler chickens concluded that
the evidence that outdoor access affects the occurrence of Salmonella is inconclusive. There is conclusive
evidence that an increased stocking density, larger farms and stress result in increased occurrence,
persistence and spread of Salmonella in laying hen flocks. Based on scientific evidence, an impact of
Salmonella control programmes, apart from general hygiene procedures, on the prevalence of
Campylobacter in broiler flocks at the holding and on broiler meat at the end of the slaughter process is
not expected.
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Summary

Following a request from the European Commission, the Scientific Panel on Biological Hazards
(BIOHAZ) was asked to provide a scientific opinion on Salmonella control in poultry flocks and its
public health impact.

In particular, the European Food Safety Authority (EFSA) was requested in Term of Reference 1
(ToR 1) to estimate the public health impact if the target serotypes in flocks of breeding hens of Gallus
gallus (Salmonella Enteritidis, Salmonella Typhimurium, including monophasic S. Typhimurium with the
antigenic formula 1,4,[5],12:i:-), Salmonella Hadar, Salmonella Virchow and Salmonella Infantis) are
changed, while maintaining the current Union target (1%), testing scheme and trade restrictions. The
target serotypes were to be defined based on their public health significance taking into account the
criteria described in Annex III of Regulation (EC) No 2160/2003: (a) the most frequent Salmonella
serovars associated with human salmonellosis; (b) the route of infection; (c) whether any serovar
shows a rapid and recent ability to spread and cause disease in humans and/or animals; and (d)
whether any serovar shows increased virulence, e.g. regarding invasiveness or resistance to relevant
therapies for human infections. The scenarios to be assessed were (a) a new top five of serotypes and
(b) all serotypes. The estimated impact on the reported prevalence in flocks of broilers and layers was
to be evaluated and, if possible, also on the reported human salmonellosis cases through the poultry
meat and egg production chains. This ToR was answered by literature review supplemented by
descriptive analysis of serovar distributions in breeding, laying and broiler flocks, and humans based on
data from 2014 to 2016. The connection with the impact on human health was also considered
through ToR 2, which provided an indication of the relative contribution of the laying hen and broiler
reservoirs to human salmonellosis cases, taking underestimation (combining underreporting and under-
ascertainment) into account. Unfortunately, it was not possible to assess the impact of proposed
changes of target serovars in breeding flocks on laying hen or broiler populations or on human
salmonellosis cases as there are multiple sources of these serovars other than breeding flocks and the
impact of breeding flocks depends on the individual strains involved and control actions in the food
chain. Therefore, the ‘impact’ was interpreted as the possibility for achieving a relevant reduction in
the considered serovars in laying hen and broiler flocks. There is justification, based on their
occurrence in populations of G. gallus and in humans for retaining S. Enteritidis, S. Typhimurium
(including monophasic variants) and S. Infantis in the target for breeding flocks. S. Kentucky was
proposed as the fourth serovar as it has recently spread among broiler populations in several European
Union (EU) Member States (MSs), and because many strains are resistant to multiple antimicrobials,
including critically important fluoroquinolones. For the fifth serovar, several options are proposed
depending on Salmonella control priorities at the EU and MS level. S. Heidelberg (based on data
showing increased potential for vertical transmission and resistance to multiple antimicrobials, including
extended-spectrum cephalosporins) could be considered to prevent it becoming established in the EU,
in the way that has occurred in the American continent. S. Thompson could be considered, based on
its occurrence in breeding flocks and dissemination in a small number of MSs or a variable fifth serovar
in MS-specific national prevalence targets could be proposed, based on the national situation and
knowledge of potentially emerging serovars in other countries. On the other hand, a target that
incorporates all serovars is expected to be more effective as the most relevant serovars in breeding
flocks vary between MS and over time. It would be more effective in reducing the dissemination of all
serovars, including newly emerging strains with ‘epidemic potential’ and the re-emergence of
previously specified target serovars. In order to provide more definitive evidence of a link between
breeding flocks and human infections, use of whole genome sequencing (WGS) for comparing isolates
from poultry breeding flocks with those in commercial generations of birds and in humans is
recommended. In addition, the reporting of all individual Salmonella serovars in poultry flocks would
facilitate source attribution and epidemiological studies.

The second ToR was to estimate the public health impact if the target set for adult flocks of laying
hens of G. gallus is reduced from 2 to 1% for the current target serotypes (S. Enteritidis and
S. Typhimurium, including monophasic variants), maintaining the current testing scheme and trade
restrictions. The impact was to be expressed as a relative reduction of reported human salmonellosis
cases and taking into account the data from the last reporting year (i.e. 2016). For this assessment, a
‘Salmonella source attribution model (SAM)’, based on the microbial subtyping attribution approach
was used. The model included the laying hen, pig, broiler and turkey reservoirs and included 23 MSs
and 28 serovars. The baseline model was compared with the scenario in which the prevalence of the
current target serotypes was set at 1% (or less) in layers. The prevalence was kept as reported if it
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was already below 1%. In this scenario, the number of layer-associated human salmonellosis true
cases (465,200 CrI95[212,100; 979,800]) (i.e. accounting for under-ascertainment and underreporting)
was estimated to be reduced by 53.38% CrI95[39.11; 65.69] compared to the situation 2016. This
corresponds to an estimated reduction of 254,400 cases CrI95 [98,540; 602,700]. This reduction would
translate into a 6.2% reduction of the overall 4.08 million CrI95 [2.22; 7.39] human salmonellosis
estimated true cases. It was recommended to review the SAM and its conclusions as new data
emerges as the Salmonella situation in the EU is dynamic in terms of the foodstuff-associated risks and
the serovars of most importance. To reduce the data limitations in such modelling, it was also
recommended to report all individual Salmonella serovars in poultry flocks to facilitate source
attribution and epidemiological studies and to obtain more recent and comparable data on Salmonella
in cattle and pigs or pork. In addition, it was recommended to investigate the potential and reasons
for under-detection of Salmonella, particularly S. Enteritidis, in flocks of laying hens and the reasons
for failure to control S. Enteritidis in countries where it appears regularly in chicken breeding flocks,
laying hens or broilers. Also, field investigations on the effectiveness of administration of Salmonella
vaccination programmes used in laying flocks, and their protective effect, are proposed.

In ToR 3, the risk factors for the occurrence of Salmonella in laying hens for which targets have
been set were to be evaluated, in relation to the farming methods based on monitoring data and a
review of literature, and in particular with the view to assess if the ban on unenriched cages had an
effect on such occurrence. To answer this ToR, the presence of Salmonella in laying hen flocks housed
in different farming systems was compared using data supplied by European Economic Area (EEA)
countries following a request from EFSA. In addition, a literature review on the influence of housing
and management systems as well as biosecurity measures on Salmonella occurrence in laying hens
was performed, focussing on recent studies in the EU and equivalent high-income countries.
Unfortunately, there are no field studies that specifically address the impact of the transition from
conventional to enriched cage systems on the occurrence of Salmonella in laying flocks. It was
concluded that conflicting evidence is found in the literature and MS data on the occurrence of
Salmonella in laying hens when raised in cage systems compared to non-cage systems. Overall,
evidence points to a lower occurrence in non-cage systems compared to cage systems. Whether this is
linked to the housing system as such or whether it is caused by the associated change of furniture,
break in the historical infection cycle or the reduced stocking density, is unclear. The evidence that
outdoor access or conventional vs enriched cage systems affect Salmonella occurrence in laying hens
at the EU level is inconclusive.

In ToR 4, the risk factors for the occurrence of Salmonella, based on monitoring data and literature,
were to be reviewed in relation to the type of farming for broiler chickens and in relation to other
animal welfare indicators for broilers and laying hens. To answer ToR 4, the Salmonella presence in
broiler flocks by housing system with or without outdoor access and by stocking density and age at
slaughter was compared by means of a literature review and additionally provided data from EEA
countries. Similarly, the literature review was used to assess risk factors relating to management and
housing systems and biosecurity practices, with the same focus as described for ToR 3. In addition to
this, literature on other welfare indicators in laying hen and broiler flocks was examined. The evidence
that outdoor access affects the occurrence of Salmonella in broiler flocks is inconclusive. There is
conclusive evidence that an increased stocking density, larger farms and stress-inducing conditions
result in increased occurrence, persistence and spread of Salmonella in laying hen flocks. For broiler
flocks, the limited evidence available shows that stress, stocking density and increasing the number of
flocks per farm increases Salmonella susceptibility or infection rate. There is no data evaluating the link
between welfare indicators and Salmonella occurrence in broilers. It was recommended to record in
future monitoring programs the housing type of laying hen and broiler flocks to enable assessment of
its impact on Salmonella occurrence in these flocks.

ToR 5 was to indicate if there is scientific evidence on a possible negative or positive impact of
Salmonella control programmes on the prevalence of Campylobacter in broiler flocks at the holding
and on broiler meat at the end of the slaughter process. As the effect of Salmonella control
programmes on the prevalence of Campylobacter has never been explicitly studied, the approach
taken to answer ToR 5 was to describe the co-colonisation of Salmonella and Campylobacter in broiler
flocks and individual birds and the presence of Salmonella and Campylobacter on broiler meat at the
slaughterhouse level, using EU data and literature review. These sources of information were
investigated to identify possible positive or negative associations between the organisms. In addition,
literature was consulted to gather information about the epidemiology of Campylobacter in broiler
flocks compared and contrasted with Salmonella. Unfortunately, field studies are lacking that have
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specifically investigated the impact of Salmonella control programmes on the occurrence of
Campylobacter in broiler flocks. It was concluded that overall evidence points towards no association
(negative or positive) between the occurrence of Salmonella and Campylobacter in broiler flocks or on
broiler meat at the end of the slaughter line. The epidemiological and biological differences between
the two organisms result in a greater likelihood of introduction of Campylobacter into broiler flocks, at
any stage of the life of the birds, if there are lapses in biosecurity standards, than for Salmonella. In
addition, successful Salmonella control has involved actions taken at the breeding flock level, such as
culling and vaccination, which are not applicable to Campylobacter. Based on scientific evidence on the
differences between Salmonella and Campylobacter epidemiology and patterns of colonisation, an
impact of Salmonella control programmes, apart from general hygiene procedures, on the prevalence
of Campylobacter in broiler flocks at the holding and on broiler meat at the end of the slaughter
process is not expected. Reporting of the results of samples that contain combinations of organisms,
and not just reporting the prevalence and concentrations of each organism separately, in any infection
study that includes more than one organism, was recommended.
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1. Introduction

1.1. Background and Terms of Reference as provided by the requestor

In accordance with Regulation (EC) No 2160/20031 targets have been set for reduction of this comes
from the mandate Salmonella in flocks of breeding hens, laying hens, broilers, breeding turkeys and
fattening turkeys by the adoption of several implementing Regulations.2 The targets are set on two
serotypes (Salmonella Enteritidis and Salmonella Typhimurium, including monophasic S. Typhimurium
with the antigenic formula 1,4,[5],12:i:-), except for breeding hens for which the target includes also
Salmonella Hadar, Salmonella Virchow and Salmonella Infantis. In order to achieve the targets, Member
States (MSs) have introduced Salmonella control programmes in these poultry populations. In addition, a
number of trade restrictions have been introduced in case these populations were still infected with
S. Enteritidis or S. Typhimurium. An overview of measures is provided in Table 1.

Regulation (EC) No 2160/2003 and the implementing Regulations also lay down testing schemes
(frequency of sampling, sampling protocol, laboratory analysis, reporting requirements) for each of
these populations. The outcome of the testing is reported to EFSA within the frame of the zoonoses
monitoring Directive 2003/99/EC3. EFSA examines and publishes the data in the annual EFSA/ECDC EU
summary reports on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks.4

These summary reports clearly illustrate the success of the Salmonella control programmes e.g. by the
reporting of more than 200,000 reported confirmed human salmonellosis cases per year in 15 MSs in
the first years of the millennium and less than 100,000 in 28 MSs in 2012–2015. In 2014 and 2015,
the number of human confirmed salmonellosis cases in the EU seems to increase again slightly (see
Figure 1).

Table 1: An overview of measures in case poultry populations were still infected with Salmonella
Enteritidis

Population
Target
serotypes

Maximum %
remaining
positive

Trade restrictions(a)

Adult breeding hens
(Gallus gallus)

S. Enteritidis,
S. Typhimurium,
S. Hadar,
S. Virchow and
S. Infantis

1% Destruction or safe disposal of (hatching) eggs
and birds (Annex II C of Regulation (EC)
No 2160/2003)

Adult laying hens
(Gallus gallus)

S. Enteritidis,
S. Typhimurium

2% Destruction or safe disposal of hens birds,
marketing of eggs as class B (only for heat treated
egg products) (Annex II D of Regulation (EC)
No 2160/2003)

Broilers (Gallus
gallus)

1% Absence in 25 g of fresh meat (Point 1.28 of
Annex I to Regulation (EC) No 2073/2005(b))

Adult breeding
turkeys (Meleagris
gallopavo)

1% Destruction or safe disposal of (hatching) eggs
and birds (Annex II C of Regulation (EC)
No 2160/2003)

Fattening turkeys
(Meleagris gallopavo)

1% Absence in 25 g of fresh meat (Point 1.28 of
Annex I to Regulation (EC) No 2073/2005)

(a): Only in case of detection of S. Enteritidis or S. Typhimurium.
(b): Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs (text with EEA

relevance). OJ L 338, 22.12.2005, p. 1–26.

1 Regulation (EC) No 2160/2003 of the European Parliament and of the Council of 17 November 2003 on the control of
Salmonella and other specified food-borne zoonotic agents. OJ L 325, 12.12.2003, p. 1–15.

2 The latest targets can be found in Regulation (EU) No 200/2010 (breeding hens), Regulation (EC) No 517/2011 (laying hens),
Regulation (EU) No 200/2012 (broilers) and Regulation (EU) No 1190/2012 (turkeys).

3 Directive 2003/99/EC of the European Parliament and of the Council of 17 November 2003 on the monitoring of zoonoses and
zoonotic agents, amending Council Decision 90/424/EEC and repealing Council Directive 92/117/EEC (OJ L 325, 12.12.2003, p. 31).

4 The latest published version contains 2015 data (EFSA Journal 2016;14(12):4634).
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The five serotypes of the target set in breeding hens, may no longer be the most relevant ones
based on the most frequently reported ones in humans and/or in flocks of breeding hens.
Furthermore, most MSs achieved the target set for flocks of laying hens in 2015 and 2016 and a more
ambitious target could be considered. However, before considering a revision of targets in breeding
and laying hens, the potential impact on reported human salmonellosis cases should be estimated.

During the 2004–2007 period, EU-wide baseline surveys (BLS) were carried out to estimate the
prevalence of Salmonella in flocks of laying hens, broilers and turkeys. The data were also used by
EFSA to evaluate potential risk factors.5 It is relevant to review these risk factors based on more recent
monitoring data, in particular since housing conditions have been changed as a consequence of animal
welfare rules, both for laying hens6 and broilers.7

Finally, despite the obligation to introduce biosecurity measures in broiler flocks for control of
Salmonella in accordance with Regulation (EC) No 2160/2003, and while such flocks are considered as
the main reservoir of Campylobacter,8 no reduction of human campylobacteriosis is reported in recent
years.

Terms of Reference

EFSA is asked to provide a scientific opinion on Salmonella control in poultry flocks and its public
health impact. In particular, EFSA is requested:

1) To estimate the public health impact if the target serotypes in flocks of breeding hens of
Gallus gallus are changed, maintaining the current Union target (1%), testing scheme and
trade restrictions unchanged. The target serotypes should be defined by EFSA based on
their public health significance taking into account the criteria described in Annex III of
Regulation (EC) No 2160/2003). Following scenarios should be assessed:

a) a new top 5 of serotypes and
b) all serotypes.

Figure 1: Evaluation of the incidence of Salmonella infection in poultry populations and the number of
reported human cases of salmonellosis

5 Report of the Task Force on Zoonoses Data Collection on the Analysis of the baseline survey on the prevalence of Salmonella in
holdings of laying hens flocks of Gallus gallus, The EFSA Journal (2007), 97; Report of the Task Force on Zoonoses Data
Collection on the Analysis of the baseline survey on the prevalence of Salmonella in holdings of broiler flocks of Gallus gallus,
Part B, The EFSA Journal (2007), 101, 1–86; Report of the Task Force on Zoonoses Data Collection on the Analysis of the
baseline survey on the prevalence of Salmonella in turkey flocks, Part B, The EFSA Journal (2008), 198, 1–224.

6 From 1 January 2012, due to the application of Directive 1999/74/EC laying down minimum standards for the protection of
laying hens, the use of unenriched cages systems was banned in the EU for all holdings. Council Directive 1999/74/EC of 19
July 1999 laying down minimum standards for the protection of laying hens. OJ L 203, 3.8.1999, p. 1–53.

7 From 30 June 2010, due to the application of Directive 2007/42/EC laying down minimum rules for the protection of chicken
kept for meat production, animal welfare standards were applicable to most broiler chickens farms in the EU. This Directive
also introduces the principle of animal-based indicators to be monitored in slaughterhouses.

8 EFSA Scientific Opinion on the risk of human campylobacteriosis linked to broiler meat (EFSA Journal 2010: 8(1): 1437).
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The impact of these scenarios should be estimated on the reported prevalence in flocks of
broilers and layers (tested in accordance with Commission Regulations (EU) No 200/20129

and No 517/201110). If data allow, the impact should also be estimated on the reported
human salmonellosis cases through the poultry meat and egg production chains.

2) To estimate the public health impact expressed as relative reduction of reported human
salmonellosis cases if the target set for adult flocks of laying hens of Gallus gallus is reduced
from 2 to 1% for the current target serotypes (Salmonella Enteritidis and Salmonella
Typhimurium including the monophasic strains), maintaining the current testing scheme and
trade restrictions unchanged and taking into account the data from the last reporting year
(i.e. 2016).

3) To review the risk factors for the occurrence of Salmonella in laying hens for which targets
have been set, in relation to the farming methods11 based on monitoring data and a review
of literature, and in particular with the view to see if the ban on unenriched cages had an
effect on such occurrence.

4) To review the risk factors for the occurrence of Salmonella based on monitoring data and a
review of literature

a) in broiler chickens, in relation to the type of farming12;
b) in broilers and laying hens in relation to other animal welfare indicators.13

5) To indicate if there is scientific evidence on a possible negative or positive impact of
Salmonella control programmes on the prevalence of Campylobacter in broiler flocks at the
holding and on broiler meat at the end of the slaughter process.

1.2. Interpretation of the Terms of Reference

In Term of Reference (ToR 1), ‘all serotypes’ refers to zoonotic serovars of Salmonella. ‘Breeder’
flocks, unless specified otherwise, refers to the combination of all types of breeding flocks, i.e. elite,
grandparent and parent. For the second criterion of the ‘public health significance’, that is the route of
infection (i.e. the presence of the serovar in relevant animal populations and feed). Feed is not
considered in detail in the assessment as the focus is on the impact of breeding flocks, rather than the
multiple other routes of infection that could be possible for broiler and laying hen flocks. The impact of
targets largely depends on the sensitivity of detection of flock infections and the effectiveness of
control actions, and therefore ‘impact’ is interpreted as the possibility for achieving a relevant
reduction in the considered serovars in laying hen and broiler flocks. Decisions on monitoring and
control programmes are considered to be risk management activities and are not included in the
assessment.

For ToR 2, underestimation (combining underreporting and under-ascertainment) was taken into
account to estimate the relative reduction in the true number of salmonellosis cases.

In the scientific opinion, serovar was used as synonym of serotype.

9 Commission Regulation (EU) No 200/2012 of 8 March 2012 concerning a Union target for the reduction of Salmonella
enteritidis and Salmonella typhimurium in flocks of broilers, as provided for in Regulation (EC) No 2160/2003 of the European
Parliament and of the Council Text with EEA relevance. OJ L 71, 9.3.2012, p. 31–36.

10 Commission Regulation (EU) No 517/2011 of 25 May 2011 implementing Regulation (EC) No 2160/2003 of the European
Parliament and of the Council as regards a Union target for the reduction of the prevalence of certain Salmonella serotypes in
laying hens of Gallus gallus and amending Regulation (EC) No 2160/2003 and Commission Regulation (EU) No 200/2010 (text
with EEA relevance). OJ L 138, 26.5.2011, p. 45–51

11 Farming methods for laying hens are defined in the EU by Commission Regulation (EC) No 589/2008 of 23 June 2008 laying
down detailed rules for implementing Council Regulation (EC) No 1234/2007 as regards marketing standards for eggs. OJ L
163, 24.6.2008, p. 1–6.

12 Types of farming, besides organic farming, are defined in EU by Commission Regulation (EC) No 543/2008 of 16 June 2008
laying down detailed rules for the application of Council Regulation (EC) No 1234/2007 as regards the marketing standards for
poultry meat. OJ L 157, 17.6.2008, p. 1-46.

13 For example, if there is correlation between animal welfare indicators monitored in farms or in slaughterhouses and the risk of
contamination (see I Alpigiani, C Bacci, LJ Keeling, MD Salman, F Brindani, S Pongolini, PL Hitchens and S Bonardi. 2016, The
associations between animal-based welfare measures and the presence of indicators of food safety in finishing pigs,
Universities Federation for Animal Welfare, Animal Welfare 2016, 25: 355-363, ISSN 0962-7286).
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1.3. Additional information

1.3.1. Additional background information

1.3.1.1. Previous scientific opinions of the BIOHAZ Panel

In April 2008, the European Commission requested EFSA to assess the public health impact of the
setting of a permanent target for the prevalence of Salmonella in flocks in certain poultry populations
(G. gallus). This resulted in the publication of three scientific opinions from the Panel on Biological
Hazards (BIOHAZ Panel). The first one, published in April 2009, dealt with the impact of setting a new
target for the reduction of the Salmonella prevalence in breeding hen flocks of G. gallus (EFSA, 2009).
A second and third scientific opinion, published, respectively, in April 2010 and July 2011, provided an
estimation of the public health impact of setting new targets for the reduction of Salmonella in laying
hen (EFSA BIOHAZ Panel, 2010a) and broiler flocks (EFSA BIOHAZ Panel, 2011a). In April 2012,
following an additional request by the European Commission in June 2010, a fourth scientific opinion
was published dealing with the assessment of the public health impact of setting new targets for the
reduction of Salmonella in breeding and fattening turkey flocks (EFSA BIOHAZ Panel, 2012). An
overview of these risk assessments and the subsequent follow-up by the European Commission are
provided in Messens et al. (2013).

In 2008, the European Commission requested EFSA to assess the extent to which meat derived
from broilers contributes to human campylobacteriosis at the EU level. It was concluded that the
handling, preparation and consumption of broiler meat may account for 20% to 30% of human cases
of campylobacteriosis, while 50–80% may be attributed to the chicken reservoir as a whole. The
conclusions must be interpreted with care as data for source attribution was limited (EFSA BIOHAZ
Panel, 2010b). In 2009, the European Commission asked EFSA to identify and rank the possible control
options within the broiler meat production chain taking into account the expected efficiency in
reducing human campylobacteriosis and to propose potential performance objectives and/or targets at
different stages of the food chain in order to obtain, e.g. 50% and 90% reductions of the prevalence
of human campylobacteriosis in the EU caused by broiler meat consumption or cross-contamination
(EFSA BIOHAZ Panel, 2011b).

A EU-wide BLS on Campylobacter in broiler batches and on Campylobacter and Salmonella on
broiler carcasses was carried out in 2008. A total of 10,132 broiler batches were sampled from 561
slaughterhouses in 26 EU MSs and 2 countries not belonging to the EU. From each randomly
selected batch, the caecal contents of 10 slaughtered broilers were collected, pooled and examined
for Campylobacter. From the same batch one carcass was collected after chilling and the neck skin
together with the breast skin was examined for the presence of Campylobacter and Salmonella, in
addition to the determination of the Campylobacter counts. EFSA analysed the results of this BLS,
in particular to estimate the prevalence of Campylobacter in broiler flocks and the prevalence of
Campylobacter and Salmonella on broiler carcasses in MSs and at the EU level (EFSA, 2010a); and
to assess quantitatively the risk factors for Campylobacter in broiler flocks and Campylobacter
(EFSA, 2010b) and Salmonella on broiler carcasses based on the information collected (EFSA,
2010b).

1.3.1.2. Legal background

According to Regulation (EC) No 2160/2003 and its following amendments, MS have to set up
Salmonella National Control Programmes (NCP) aimed at reducing the prevalence of Salmonella serovars,
which are considered relevant for public health, in certain animal populations. Currently, prevalence
targets have been defined for breeding flocks of G. gallus, laying hens, broilers and breeding and
fattening turkeys and correspond to the maximum annual percentage of flocks remaining positive for
relevant serovars (S. Enteritidis and S. Typhimurium, including its monophasic variants, except for
breeding flocks of G. gallus, where S. Infantis, S. Virchow and S. Hadar are considered to be relevant as
well). In particular, the prevalence target is equal to 1% or less for breeding flocks of G. gallus. In
breeding flocks of G. gallus, 2016 was the tenth year in which MS were obliged to implement a
Salmonella NCP. These NCPs are based on Regulation (EC) No 200/201014 and the prevalence target

14 Commission Regulation (EU) No 200/2010 of 10 March 2010 implementing Regulation (EC) No 2160/2003 of the European
Parliament and of the Council as regards a Union target for the reduction of the prevalence of Salmonella serotypes in adult
breeding flocks of Gallus gallus. OJ L 61, 11.3.2010, p. 1–9.
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(1% or less) was set for all commercial-scale adult breeding flocks, during the production period,
comprising at least 250 birds (however, MS with fewer than 100 breeding flocks would attain the target if
only one adult breeding flock remained positive). The NCP are set up in individual MS to achieve the EU
prevalence targets in these animal populations at the primary production level. NCP have to be approved
by the European Commission, which evaluates the compliance of the programmes with the relevant EU
legislation. The results of the programmes have to be reported by the MS to the EC and EFSA as part of
the annual EU zoonoses monitoring (Boelaert et al., 2016; EFSA and ECDC, 2017d).

The minimum requirements for systems of production for the various egg farming methods is
provided in Appendix A. Eggs can be produced from ‘enriched cages’ (otherwise known as ‘furnished
cages’ or ‘colony cages’) and from alternative systems producing ‘barn eggs’, ‘free-range eggs’ and
‘organic eggs’. Rearing in unenriched cages (or battery cages, referred to a ‘conventional cages’ in this
scientific opinion) has been prohibited since 2012. Currently, there are no derogations regarding the
implementation of the laying hens directive. The minimum requirements for systems of production for
the fattening poultry can be found in Appendix B. In order to indicate types of farming of fattening
poultry following terms may appear on the labelling: extensive indoor (barn-reared), free range,
traditional free range, free range – total freedom, ‘organic’.

1.3.1.3. Description of the poultry production chain

In 2016, 15.6 million tonnes (tonnes carcass weight) of poultry meat were produced in the EU,
mainly broilers (ca 83%), turkeys (ca 14%) and ducks (ca 3%) (AVEC, 2018). For the egg line, the
total production in the EU was approximately 7.15 million tonnes, representing 6.41 million tonnes of
eggs produced per year for human consumption.15

Poultry meat or egg production (Figure 2) is based on selection of male and female breeding lines
based on precise genetic criteria, such as productivity, quality of products and resistance to disease.
The resulting chicks are reared in tiered grandparent and parent breeding stages, ultimately giving rise
to chicks intended for fattening for poultry meat, and pullets for production of table eggs. Spent hens
are also often slaughtered for human consumption, although in most countries the majority of such
meat is used for heat-treated products rather than as fresh meat.

Different genetic lines of birds are used for meat and egg producing flocks of chickens. There are
also different genetic lines of birds for conventional and free-range or organic production systems.
Figure 2 shows how poultry production is structured between different types of breeding flocks and
commercial (production) flocks. Theoretically, based on data from 2004, every Elite female could be
the origin of up to 280,000 broilers or 300,000 laying hens producing up to 9.0 x 107 table eggs
(Hunton, 1993; EFSA, 2004). In view of the continuous genetic improvement of birds to increase
productivity, the current multiplication figures are likely to be considerably increased. More than 70%
of the European production of hatching eggs in 2016 occurred in the United Kingdom, Poland, France,
the Netherlands, Germany, Belgium and Spain.14

Continuous genetic selection is carried out in primary breeding or elite flocks to achieve ongoing
progress in terms of performance characteristics of these valuable birds. These flocks are normally
kept under conditions of extremely high biosecurity and in the case of chickens, normally in regions
where there is a low prevalence of Salmonella and a low risk of other avian diseases.

Primary breeding of chickens is managed by a small number of companies globally. Consequently,
there is considerable international trade in fertilised hatching eggs and day-old chicks and grand-
parents and parents are distributed worldwide to be hatched and reared in many other countries.

Countries such as France, Spain, the Netherlands, Greece and the United Kingdom report a
considerable number of movements (both import and export) of both breeding and production chicks
while the other EU MSs report much less trade (EUROSTAT). There are control measures in place
specified in regulatory instruments for the trade in poultry and hatching eggs.

France, Germany and Italy are the largest table egg producers, followed by Spain, the United
Kingdom and the Netherlands, producing more than 70% of the 6.413 million eggs produced for
human consumption per year in the EU.15 The distribution of laying hens by production system in the
EU in 2016 was as follows: 55.5% were held in enriched cages, while the alternative systems
producing barn eggs, free-range eggs and organic eggs accounted for 25.6%, 14.1% and 4.6%,
respectively.

15 https://circabc.europa.eu/sd/a/18f7766e-e9a9-46a4-bbec-94d4c181183f/20.09.2018_eggs.pdf
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Poland, the United Kingdom, Germany, Spain, France, the Netherlands and Italy were the top-7
producers of broiler meat in the EU. These countries produced almost three quarters of the 12,326,000
tonnes carcass weight produced. There is no legal reporting obligation for MS under Regulation (EC) No
543/200812 on poultry meat marketing standards. In France, alternative production accounted for 25%
of the broilers’ controlled slaughtering. In the United Kingdom, about 20% originates from ‘alternative
production’, including indoor production of slow-growing meat birds.

1.3.2. Approach to answer the ToR

The approach taken to answer ToR 1 was to provide an update of the literature review in the
previous scientific opinion of the BIOHAZ Panel on the impact of setting a new target for the reduction
of the Salmonella prevalence in breeding hen flocks of G. gallus (EFSA, 2009), supplemented by
descriptive analysis of serovar distributions on breeding, laying and broiler flocks based on data from
2014 to 2016. The connection with the impact on human health was achieved through a descriptive
analysis of serovar distributions and through ToR 2, which provided an indication of the relative
contribution of the laying hen and broiler reservoirs to human salmonellosis cases, taking
underestimation into account.

The approach taken to answer ToR 2 was to use a ‘Salmonella source attribution model (SAM)’,
based on the microbial subtyping attribution approach using various animal/food sources of
Salmonella (e.g. layers, broilers, turkeys and pigs), similar to the previous scientific opinions of the
BIOHAZ Panel (EFSA BIOHAZ Panel, 2011a, 2012). The most recent 2016 data, when available, was
used.

To answer ToR 3, the presence/prevalence of the regulated Salmonella serovars and Salmonella in
laying hen flocks housed in different farming systems was compared, as far as data requested from
the MS permitted. In addition, a review of the published literature on the influence of housing and
management systems as well as biosecurity measures on Salmonella occurrence in laying hens and
broilers was performed. This literature review was mainly focussed on studies in Europe and equivalent

Figure 2: Simplified structure of poultry production (Modified from EFSA (2009))
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high-income countries, but relevant studies from other global regions were included if relevant
production systems, management and housing practices applied. The review was also focussed on
recent studies to provide maximum comparability of the described housing and management systems
with the current situation.

To answer ToR 4, the presence/prevalence of Salmonella in broiler flocks by housing system with
or without outdoor access and by stocking density and age at slaughter was compared by means of a
literature review and additionally provided data from European Economic Area (EEA) countries.
Similarly, the literature review was used to assess risk factors relating to management and housing
systems and biosecurity practices with the same focus as described for ToR 3. In addition to this,
literature on other welfare indicators in laying hen and broiler flocks was examined.

The approach taken to answer ToR 5 was to describe the co-colonisation of Salmonella and
Campylobacter in broiler flocks and individual birds and the presence of Salmonella and Campylobacter
on broiler meat at the slaughterhouse level using data provided by EEA countries and literature review.
These sources of information were investigated in order to identify possible positive or negative
associations between the organisms. In addition, literature was consulted to gather information about
the epidemiology of Campylobacter in broiler flocks compared and contrasted with Salmonella. This
included a consideration of similarities and differences in the biology, survival, infection/host response
characteristics and colonising doses of the organisms that are relevant to different sources of infection
or contamination and the ability of biosecurity to minimise infection at the farm level, including the role
of compliance with required biosecurity standards.

2. Data and methodologies

2.1. Data

2.1.1. ToR 1

2.1.1.1. Occurrence of Salmonella in poultry populations

Salmonella testing (as required under the Directive 2003/99/EC) is carried out by each EU MS and
reported to EFSA in the framework of the EU annual zoonoses monitoring (EFSA and ECDC, 2017d). As
such, the following data in breeding (all types) and production flocks (adult productive laying hens and
broilers) by number of reports, prevalence and serovar using data of 2014–2016 was used in the
analysis. Only data from the NCPs were used, thus originating from adult birds and broilers before
slaughter:

• Salmonella serovar data from each year between 2014 and 2016 for each MS as well as
summary data for the whole EU for breeders (if possible described according to the stage of
breeding – elite, grandparent, parents and whether broiler or layer breeders);

• Salmonella serovar data from each year between 2014 and 2016 for each MS as well as
summary data for the whole EU for laying hens;

• Salmonella serovar data from each year between 2014 and 2016 for each MS as well as
summary data for the whole EU for broiler flocks.

Years 2014–2016 were selected due to the better data quality compared with earlier years and the
unavailability of 2017 data in time for consideration in this scientific opinion. A 3-year period was
considered because of the limited amount of data from breeding flocks in any single year and because
infection in a breeding flock may only be detected in progeny in subsequent years, after amplification
in hatcheries.

Validated data were extracted from the EFSA zoonoses database on 20 April 2018. EU MSs for
which data were missing or had a large proportion (~30%) of ‘unspecified’ serovars were contacted to
request these data. As a consequence of this request, additional data on Salmonella serovars isolated
between 2014 and 2016 from breeding, broiler and laying flocks were obtained from Italy, Poland and
Spain. Malta also provided 2014 data (reported 2015–2016 data sufficiently included information on
other serovars isolated). From France, only the additional serovar data from layer flocks in 2016 could
be used. Due to the large poultry industry in France and number of Salmonella isolations, the broiler
flock data from the 2017 submission by France was also used as this provided some additional

Salmonella control in poultry flocks and its public health impact

www.efsa.europa.eu/efsajournal 14 EFSA Journal 2019;17(2):5596



information on non-target serovars. Some changes have been applied to the reporting of the serovars
to harmonise the nomenclature.16

2.1.1.2. Human salmonellosis

Data on reported cases of human salmonellosis in the EU by MSs and the related serovar
distribution for both sporadic cases and food-borne outbreaks in 2016 were used. Human cases of
non-typhoidal salmonellosis are reported by EU MSs and EEA countries in accordance with Decision
No 1082/2013 on serious cross-border threats to health, repealing Decision No 2119/98/EC. The cases
are reported annually to The European Surveillance System (TESSy) in accordance with the EU case
definition for salmonellosis. Data on Salmonella from 2014 to 2016 were extracted on 14 March 2018
from TESSy for all EU MSs, except for Croatia and Poland. For those two countries, case-based data
were first time available in 2017 (extracted on 20 August 2018). Only confirmed cases as defined in
the EU case definition were used for analyses. Whether cases were either ‘domestic’, ‘EU travel’, ‘travel
outside EU’ or ‘unknown’ was differentiated. Based on the reporting of the official national notification
data from each EU/EEA MSs to TESSy, the European Centre for Disease Prevention and Control (ECDC)
calculates notification rates and age standardised rate per 100,000 population by country and at the
EU and EU/EEA level. The notification rate is the closest estimate to a population-based incidence rate
in the EU/EEA and the best available harmonised data at the EU level. In this scientific opinion, the
wording ‘notification rate’ is used when references are made to the published EU-wide data originating
from TESSy. The human data are published annually in the EU summary reports and are available in
the interactive Surveillance Atlas on the ECDC website. In addition, annual epidemiological reports are
published on the ECDC website and a seroincidence calculator tool17 is available to estimate the
frequency of exposure to Salmonella. Similarly, as above, some changes have been applied to the
reporting of serovars.18 Compared to the poultry data sets, EU MSs had less ‘unspecified’ serovars so
no further data were requested. These data were used to guide the consideration of serovars that
were subjected to descriptive analysis.

In addition, the outcome in terms of mortality (death/alive) and hospitalisation status (yes/no) for a
selection of serovars was extracted considering the period 2014–2016 for ‘all salmonellosis cases’ and
‘salmonellosis cases acquired in the EU (domestic and EU travel) only’.

Data on food-borne outbreaks caused by Salmonella from 2014 to 2016 were extracted on 7
February 2018 from the EFSA zoonoses database. A selection was made for ‘strong evidence’
outbreaks as for these outbreaks more detailed information is collected than for ‘weak evidence’ food-
borne outbreaks, including food vehicle and its origin, nature of evidence linking the outbreak cases to
the food vehicle, extent of the outbreak, place of exposure, place of origin of the problem and
contributory factors. The technical specifications for harmonised reporting of food-borne outbreaks
through the EU reporting system, in accordance with the above mentioned EU Zoonoses Directive can
be found in EFSA (2014).

16 More specifically, ‘S. 13,23:i:-’ has been revised to ‘S. 1,13,23:i:-’, while ‘S. I 4,12:d:-’ and ‘S. I 4,12:d:-’ have been revised to
‘S. 1,4,12:d:-’. The following reporting has been revised to ‘Salmonella spp., unspecified’: ‘Salmonella’, ‘Salmonella other
serovars’, ‘Salmonella not typeable’, ‘S. enterica’, ‘S. Enterica, unspecified’, ‘S. enterica subsp. enterica rough’, ‘S. enterica,
subspecies diarizonae’, ‘S. enterica, subspecies enterica’, ‘Salmonella enterica, subspecies salamae’, ‘S. enterica, unspecified
O:3,10’, ‘S. enterica, unspecified O:21’, ‘S. group C1’, ‘S. group O:7’, ‘S. I, group O:1,3,19’, ‘S. I, group O:7’, ‘S. I, group O:30’,
‘S. I, group O:41’, ‘S. I 4,12:-:-‘, ‘S. I 6,7:-:-‘, ‘S. I 6,7:-:1,5’, ‘S. II, group O:4’, ‘S. 1,4,5,12:-:1,2’, ‘S. 1,4,[5],12:-:1,2’, ‘S. 1,4,
[5],12:-:-’, ‘S. 3,19:-:-’, ‘S. 4,12:l,v:-’, ‘S. 6,7:-:e,n,z15’, ‘S. 6,7:b:-’, ‘S. 6,7:r:-’, ‘S. 6,8:z10:-’, ‘S. 9,46:-:-’, ‘S. 13,23:-:-’.
Monophasic variants of S. Typhimurium have been reported by MS using several different designations, generally as the
generic term ‘monophasic S. Typhimurium’ or by using the antigenic formula with different levels of details in terms of
antigens investigated and identified. The isolates belonging to the group of monophasic variants of S. Typhimurium and
reported by MS with different designations (S. Typhimurium monophasic, S. 1,4,[5],12:i:-, S. 1,4,5,12:i:-, S. 1,4,12:i:-, S. 4,
[5],12:i:-, S. 4,5,12:i:- and S. 4,12:i:-) were merged into the same group and named ‘S. Typhimurium, monophasic’.

17 https://ecdc.europa.eu/en/publications-data/seroincidence-calculator-tool
18 Following reporting has been revised to ‘Salmonella spp., unspecified’: ‘ENTERICA’, ‘Group11’, ‘Group13’, ‘Group3.10’, ‘Group4’,

Group6.14’, ‘Group60’, ‘Group61’, ‘Group7’, ‘Group8’, ‘Group9’, ‘GroupA’, ‘GroupB’, ‘GroupC’, ‘GroupC1’, ‘GroupC2’, ‘GroupD’,
‘GroupD1’, ‘GroupD2’, ‘GroupE’, ‘GroupE1’, ‘GroupE4’, ‘GroupF’, GroupG, ‘GroupH’, ‘GroupI’, ‘GroupJ’, ‘GroupK’, ‘GroupM’,
‘GroupO’, ‘GroupR’, ‘GroupS’, ‘GroupT’, ‘GroupX’, ‘GroupZ’, ‘OTHER’, ‘SUBSPI’, ‘SUBSPII’, ‘SubspIIIa’, ‘SubspIIIb’, ‘SubspIV’,
‘SubspV’, ‘SubspVI’. Also ‘S. choleraesuis var. Decatur’ and ‘S. choleraesuis var. Kunzendorf’ have been grouped as
‘S. Choleraesuis’, ‘S. anatum var. 15+’ has been changed to ‘S. Anatum’ and ‘S. weltevreden var. 15+’ has been revised to
‘S. Weltevreden’. ‘S. monophasic Typhimurium 1.4.[5].12:I:-‘ has been named ‘S. Typhimurium, monophasic’.
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2.1.1.3. Literature data

Literature searches for ToR 1 were carried out in Scopus and Google Scholar beginning from 2008
and using a broad range of exploratory search terms relating to occurrence of Salmonella and
breeding chickens, integrated chicken production, hatcheries, vertical transmission, egg transmission,
virulence, antimicrobial resistance, epidemic potential for Salmonella in general. Specific searches were
also carried out for any data relating to named serovars occurring most frequently in humans and
those that have spread rapidly in poultry populations in recent years. Monthly searches on ‘Salmonella’
and on ‘antimicrobial/antibiotic resistance’ were maintained during the time span of the working group
and relevant new data were included in the scientific opinion. From the monthly searches, a small
number of additional references were obtained in relation to antimicrobial resistance or virulence
characteristics of Salmonella serovars, and this information was included in the scientific opinion.

2.1.2. ToR 2

The following data are key data employed for building the SAM.

2.1.2.1. Occurrence of Salmonella in food-producing animal populations

The Salmonella monitoring data (prevalence data in food-producing animal populations) for the
years 2014–2016 were considered as reported by the MS in the framework of the EU annual zoonoses
monitoring (EFSA and ECDC, 2017d):

• Laying hens: from the official NCPs, adult flocks (flocks in production);
• Broilers: from the official NCPs, flocks before slaughter;
• Fattening turkeys: from the official NCPs, flocks before slaughter; breeding turkeys were also

included to increase the data relating to the turkey reservoir and because these are also a
relatively important source of turkey meat;

• Pigs: from bacteriological monitoring programmes carried out in the MSs and also from the
Salmonella monitoring data related to the Process Hygiene Criterion;

• Cattle: from bacteriological monitoring programmes carried out in the MSs.

Validated data were extracted from the EFSA zoonoses database on 30 January 2018. Specific
requests to zoonoses network representatives from the MS were made to complement these data in
case of a large proportion (~30%) of ‘unspecified’ serovars in the data set. Only sparse data on
Salmonella occurrence including Salmonella serovars in cattle herds, beef products or dairy products
were available from MSs. For this reason, the cattle reservoir was not included in the model, which
was also the case for previous EU-level models.

The selection criteria for the prevalence and serovar data are shown in Table 2. For two MSs
(Luxembourg and Romania), no relevant data representing the pig reservoir was available. For a single
MS (Lithuania), no data on any source was available.

Table 2: Selection criteria for prevalence and serovar data

Prevalence data 1st choice 2nd choice 3rd choice 4th choice

Laying hens Official NCPs (2016) NA NA NA

Broilers Official NCPs (2016) NA NA NA
Fattening turkeys Official NCPs (2016) NA NA NA

Pigs EU-wide BLS (All MSs
except MT and HR)

Bacteriological
monitoring programmes
(2016: MT)

Average prevalence
as found in the BLS
(HR)

NA

Serovar data

Laying hens Official NCPs (2016) MS request(a) (FR, ES,
IT, NL, PL)

AMR data (DE) NA

Broilers Official NCPs (2016,
2017: FR)

MS request(a) (ES, IT,
NL, PL)

AMR data (DE) NA

Fattening turkeys Official NCPs (2016,
2017: FR)

MS request(a) (ES, IT,
PL)

AMR data (DE) NA
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2.1.2.2. Human salmonellosis

The total number of reported Salmonella cases in humans includes sporadic, travel inside EU, travel
outside of EU and outbreak-related infections and was obtained from ECDC (see Section 2.1.1.2).
Human data reported for 2016 were included in the model for all MSs except Croatia and Poland,
where 2017 data were used, as case-based data were not available for 2016.

As the attribution model considers the EU, those cases resulting from travel inside EU were
regarded as ‘domestic’, meaning that they would be allocated to a food-animal source within the EU.
Travel cases outside EU were not allocated to a food-animal source, but to a travel category. For cases
with unknown travel history, an extra number of travellers were estimated based on the proportion of
travellers out of total per serovar and MS, and the remainder of the unknowns were assumed to be
domestically acquired. If information on travel was unknown for all cases per serovar, cases were
assumed to be domestically acquired. To estimate the number of sporadic cases, the number of
outbreak-related cases per serovar and MS were subtracted from the total number of domestically
acquired cases, except for one case per outbreak, which was assumed to be sporadic, meaning that
one outbreak contributed with one sporadic case.

To account for differences in underestimation (i.e. the combined underreporting and under-
ascertainment) between MSs (Gibbons et al., 2014), the true number of cases was estimated using the
multiplication factors published by Havelaar et al. (2013) and used in the two previous Salmonella
attribution models used to evaluate the target setting for broilers and turkeys (EFSA BIOHAZ Panel,
2011a, 2012). As no multiplication factor was available for Croatia, a multiplication factor of 60 was
assumed, which is around the same level as other Eastern EU MSs. Multiplication factors were included as
probability distributions to account for uncertainty around their true value.

2.1.2.3. Consumption of different types of foods

Production data and import/export data were used to calculate an approximation for the
consumption of the different types of food with different origin for each MS in 2016. The production
data were derived from AVEC (2017) for broiler and turkey meat (1,000 tonnes carcass weight), from
the slaughtering in slaughterhouses - annual data (apro_mt_pann19) database of the Statistical Office
of the EU (EUROSTAT) for pigs (1,000 tonnes pig meat) and CIRCAB for consumption eggs (tonnes).
Import and export data20 of 2016 were extracted from EUROSTAT (EU Trade Since 1988 By CN8 (DS-
016890)) for broiler meat,21 turkey meat,22 pork meat23 and eggs.24

The amount available for consumption was calculated by [production – export + import] for each
MS. The amount available for consumption produced in a MS was calculated by [production – export].

Prevalence data 1st choice 2nd choice 3rd choice 4th choice

Pigs Bacteriological
monitoring programmes
(2016: MT)

AMR data (2014–2016)
(BE, BG, CZ, DE, DK,
EE, FI, HR, IE, IT, NL,
SE, SI)

MS request(a)

(2014–2016) (ES,
FR, PL, UK)

EU-wide BLS (AT, CY,
EL, HU, LV, PT, SK)

AMR: antimicrobial resistance; BLS: baseline survey; NA: not applicable; NCP: National Control Programme.
Country abbreviations: AT: Austria; BE: Belgium; BG: Bulgaria; CZ: Czech Republic; CY: Cyprus; DE: Germany; DK: Denmark; EE:
Estonia; ES: Spain; FI: Finland; FR: France; EL: Greece; HR: Croatia; HU: Hungary; IE: Ireland; IT: Italy; LV: Latvia; MT: Malta;
NL: Netherlands; PL: Poland; PT: Portugal; SE: Sweden; SI: Slovenia; SK: Slovakia; UK: United Kingdom.
(a) EU MSs for which data were missing or had a large proportion (> 30%) of ‘unspecified’ serovars were contacted to request

these data.

19 http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=apro_mt_pann&lang=en
20 http://epp.eurostat.ec.europa.eu/newxtweb/setupdimselection.do
21 Aggregate of codes 020711;01/01/1996;31/12/2500;LIBEN;0;FRESH OR CHILLED FOWLS OF THE SPECIES GALLUS

DOMESTICUS, 020712;01/01/1996;31/12/2500;LIBEN;0;FROZEN FOWLS OF THE SPECIES GALLUS DOMESTICUS, 020713;01/
01/1996;31/12/2500;LIBEN;0;FRESH OR CHILLED CUTS AND EDIBLE OFFAL OF FOWLS OF THE SPECIES GALLUS
DOMESTICUS and 020714;01/01/1996;31/12/2500;LIBEN;0;FROZEN CUTS AND EDIBLE OFFAL OF FOWLS OF THE SPECIES
GALLUS DOMESTICUS.

22 Aggregate of codes 020724;01/01/1996;31/12/2500;LIBEN;0;FRESH OR CHILLED TURKEYS OF THE SPECIES DOMESTICUS,
020725;01/01/1996;31/12/2500;LIBEN;0;FROZEN TURKEYS OF THE SPECIES DOMESTICUS, 020726;01/01/1996;31/12/2500;
LIBEN;0;FRESH OR CHILLED CUTS AND EDIBLE OFFAL OF TURKEYS OF THE SPECIES DOMESTICUS and 020727;01/01/
1996;31/12/2500;LIBEN;0;FROZEN CUTS AND EDIBLE OFFAL OF TURKEYS OF THE SPECIES DOMESTICUS.

23 Code 0203;01/01/1988;31/12/2500;LIBEN;0;MEAT OF SWINE.
24 Code 04079010 – POULTRY EGGS, IN SHELL, PRESERVED OR COOKED.
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In some instances, this resulted in negative production values, i.e. the amount exported was larger
than the amount produced within the country. To ensure that MSs would still have nationally produced
food available in their own country, it was assumed that imported products could also be re-exported.
This assumption was made for turkey meat for four MSs (Denmark, Estonia, Ireland and Latvia).

2.1.3. ToR 3 and 4

2.1.3.1. Literature data

The strategy for conducting the literature searches is provided in Appendix C. The search aimed to
retrieve information on welfare aspects or housing systems and risk factors (e.g. biosecurity) in
relation to Salmonella occurrence in laying hen production (i.e. laying hen flocks, breeder flocks or
hen’s eggs) and broiler production (i.e. broiler or breeding flocks) (see Tables C.1 and C.2,
Appendix C). Information was collected on the country, the type of study (i.e. experimental and/or
field study), the evaluation of the risk/protective factors (i.e. qualitatively and/or quantitatively), and
the risk/protective factor(s) in relation to the farming system investigated and the animal welfare
indictors described. The search was conducted on 6 February 2018.

The risk/protective factor categories in relation to the farming system of laying hen production or
breeder flocks listed were: outdoor access, cage systems (if yes: describe type of cage (free text)),
alternative systems, group size, stocking density, genetic, rearing of pullets in the same place as layers,
type of litter, biosecurity, and other diseases. The risk/protective factor categories in relation to the
farming system of broiler production or breeder flocks listed were: outdoor access, group size, stocking
density, genetic, farm hatching, existence of enrichment (such as perches, windows, nest boxes), type of
litter, factors relating to biosecurity measures (e.g. disinfection, pest control), and occurrence of other
diseases. The animal welfare indicators listed were: stress (other than heat stress), heat stress, activity/
behaviour, body status (e.g. foot pad dermatitis (FPD)), other diseases, other: free text.

Factors relating to study design, such as control of confounding, potential for bias and applicability
to current husbandry conditions in the EU were taken into account when drawing conclusions from the
literature data.

2.1.3.2. Data from EEA countries

As monitoring data have no information on farming methods or flock size, data on the occurrence
of the regulated Salmonella serovars (S. Enteritidis and S. Typhimurium, including monophasic
S. Typhimurium with the antigenic formula 1,4,[5],12:i:-) in laying hen production flocks or broiler
flocks in different housing systems in 2016 and 2017 were requested through EFSA’s Microbiological
Risk Assessment (MRA) Network.

Both data requests for laying hen production flocks and broiler flocks gathered data according to the:

• Country
• Reference
• Year of sampling: 2016, 2017, 2016 and 2017
• Salmonella: the regulated Salmonella serovars (S. Enteritidis and S. Typhimurium, including

monophasic S. Typhimurium with the antigenic formula 1,4,[5],12:i:-), S. Enteritidis,
S. Typhimurium, or monophasic S. Typhimurium with the antigenic formula 1,4,[5],12:i:-

• Number of flocks tested
• Number of positive flocks
• Number of samples taken per flock
• Sample type: faecal/boot swabs, caecal material or unknown.

In addition, the request for laying hen production flocks requested the following data:

• Housing system related

– System_level1: cage or non-cage
– System_level2:

– In case of cage at System_level1: conventional cage, enriched or furnished cage,
Kleingruppenhaltungen25 or unknown

– In case of non-cage at System_level1: single tier barn, multitier barn or unknown

25 German colony system with group production similar to the enriched cage.
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– System_level3: no outdoor access, outdoor access or unknown
– System_level4: in case of cage at System_level1: without wintergarden,26 with wintergarden

or unknown

• Flock size (birds per house) when available
• Number of laying hen flocks at holding when available.

In addition, the request for broiler flocks requested the following data:

• Housing system related

– System_level1: barn (multitier) or floor
– System_level2: no outdoor access, outdoor access

• Stocking density and unit of stocking density when available
• Age at slaughter when available.

2.1.4. ToR 5

2.1.4.1. Literature data

The strategy for conducting the literature searches is also provided in Appendix C. The search
aimed to retrieve information on the co-colonisation or co-detection of Salmonella and Campylobacter
in poultry at the farm and slaughterhouse level (see Tables C.5 and C.6, Appendix C). The search was
conducted on 6 February 2018.

In addition, separate broad monthly searches in Scopus using the search terms ‘Salmonella’, and
‘Campylobacter’ for ToR 5 were in place for the term of this mandate in order to identify any new
relevant references since the original search was carried out. The papers remaining after screening
were examined in detail and data on co-colonisation or co-contamination of carcasses at the abattoir
by Salmonella and Campylobacter, plus key conclusions were tabulated. If studies reported a statistical
analysis to detect possible positive or negative correlations between the occurrences of the two
organisms, this was reported. No additional papers on co-colonisation of Salmonella and
Campylobacter were identified by the monthly searches, but a small number of papers on the immune
response to infection and the potential for Campylobacter to enhance the invasion of other organisms
beyond the intestinal tract were summarised. In addition, targeted searches were carried out in
Scopus and Google Scholar to identify factors relating to differences in the epidemiology and biology of
Salmonella and Campylobacter.

2.1.4.2. Data from EEA countries

EU data on the occurrence of Salmonella or Campylobacter for any broiler flocks and broiler
batches at the farm or slaughterhouse level (e.g. neck skin or caecal samples) that had been tested
for both pathogens from 2010 onwards were requested through EFSA’s MRA Network.

The request for laying hen production flocks gathered data according to the:

• Country
• Reference
• Year of sampling: 2010, 2011, 2012, 2013, 2014, 2015, 2016 or 2017
• Sampling level: broiler flocks or broiler batches (at slaughterhouse)
• Sample type: faecal/boot swabs (only for broiler flocks at sampling level); caecal material (for

broiler flocks and Broiler batches at sampling level); neck/skin of carcass (only for broiler
batches at sampling level)

• Number of batches/flocks tested for both organisms
• Number of batches/flocks positive for Salmonella only
• Number of batches/flocks positive for Campylobacter only
• Number of batches/flocks POSITIVE for Salmonella AND Campylobacter
• Number of batches/flocks NEGATIVE for Salmonella AND Campylobacter.

26 A run area attached to a barn that allows birds additional space to dust-bath in litter and experience natural light.
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2.2. Methodologies

2.2.1. ToR 1

It is not possible to directly model or quantify the impact of particular Salmonella serovars in
breeding flocks on commercial generations of laying hens or broilers, or on humans directly from the
Salmonella monitoring data reported to EFSA as part of MS’s surveillance. This is because of the
aggregated nature of the data and because of lack of data on flock sizes and ages, variations in the
efficiency of detection of infected flocks, particularly for laying hens in cage systems, effect of control
measures by MS after identifying positive breeding flocks, transmission rates and relative contribution
of other routes of infection, such as feed, which may act as a common source for multiple food animal
sectors. In addition, many MSs did not report the type of breeding flock from which Salmonella has
been isolated, i.e. whether it was from a broiler or layer poultry line and from which level within the
production pyramid (see Figure 2). As a consequence of this, the serovar data at the breeding flock
level was aggregated across all production types. ToR 1 was therefore addressed by a combination of
literature review and a descriptive analysis of the available surveillance data.

A critical literature review based on that provided in the previous EFSA scientific opinion relating to
Salmonella targets in breeding flocks (EFSA, 2009) was updated to focus on evidence for vertical and
pseudo-vertical (hatchery contamination of egg origin) transmission of Salmonella. In addition, updates
were provided on scientific literature relating to the range of Salmonella serovars that have been shown
to be more capable of vertical transmission, have higher level of virulence for humans or ability to spread
in poultry populations or pose a greater threat because of resistance to critically important antimicrobials.
Literature searches used a wide range of exploratory search terms relating to these topics.

The descriptive analyses are based on the serovar data (including monophasic variants as a
separate serovar in the case of S. Typhimurium) detected in breeding flocks, production flocks (layers,
broilers) and humans within EU MSs. There were no data that enabled quantification of the impact of
particular Salmonella serovars identified in breeding flocks on human cases and this depends on the
timing of identification of infection and control actions in the breeding stages as well as hatchery and
production holding practices and the propensity of individual strains to result in transient or resident
hatchery contamination or to cause infection of the ovary and oviduct in breeding birds leading to
vertical transmission. Factors relating to the infectivity and virulence for humans of each strain involved
would also influence the burden of disease and data were also lacking in this respect. It was therefore
only possible to address this part of ToR 1 qualitatively.

1) Consideration of the five current target serovars

Using the data sets described in Section 2.1.1, the distribution of the current five target serovars
for breeding flocks of G. gallus (S. Enteritidis, S. Typhimurium (including monophasic S. Typhimurium
with the antigenic formula 1,4,[5],12:i:-), S. Infantis, S. Hadar and S. Virchow) was obtained and
plotted for 2014, 2015, 2016 for all EU MSs and for the EU overall. This allowed for an evaluation of
the importance of the current target serovars in the different poultry populations and in humans. The
distribution of the five target serovars was also plotted for layer flocks, broiler flocks and humans,
years 2014–2016.

2) Consideration of an alternative five target serovars

Potential serovars for inclusion were identified in one of four ways: (1) being among the most
commonly reported 20 serovars reported in humans as acquired in the EU during 2014–2016; (2) being
linked to an outbreak of Salmonella attributed to eggs / egg products or broiler meat and products
thereof between 2014 and 2016; (3) serovars identified by the source attribution (see Section 2.2.2; ToR
2) as serovars reported in humans that are attributed to broilers/layers; and (4) serovars identified by the
literature review carried out within ToR 1, with special attention given to those serovars that can be
vertically transmitted. For each serovar the frequency of isolations of the serovar in both the official
monitoring data and the additional data acquired from some EU MSs was considered. Combining this
descriptive analysis with the literature review, each serovar was assessed against four specific criteria
(listed in Regulation (EC) No 2160/2003, Annex III) as summarised in Section 3.1.1 to ascertain whether
a serovar could be considered to be relevant for inclusion within an alternative target for chicken
breeding flocks. A Red-Amber-Green (RAG) score was assigned to each criterion for each serovar on the
basis of the amount of evidence available. In particular, a red score was assigned when: (a) the serovar
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had been frequently reported (> 10% of EU cases) in humans or accounted for > 10% of human cases
attributed to layers/broilers; (b) there was substantial evidence of transmission through the poultry
industry; (c) there was substantial evidence of rapid and recent ability of the serovar to spread in poultry
and cause disease in humans; and (d) there was substantial evidence of increased virulence (e.g.
invasiveness or antimicrobial resistance). The score was amber when: (a) the serovar had only been
occasionally reported in humans (1–10% of EU cases) or accounted for 1–10% of human cases
attributed to layers/broilers; (b) there was some evidence of transmission through the poultry industry;
(c) there was some evidence of rapid and recent ability to spread in poultry and cause disease in
humans; and (d) there was some evidence of increased virulence (e.g. invasiveness or antimicrobial
resistance). A green score was given when: (a) the serovar had been rarely reported in humans (< 1% of
EU cases) or accounted for < 1% of human cases attributed to layers/broilers; (b) there was limited/no
evidence of transmission through the poultry industry; (c) there was limited/no evidence of rapid and
recent ability to spread and cause disease; and (d) there was limited/no evidence of increased virulence
(e.g. invasiveness or antimicrobial resistance). Due to the uncertainty surrounding the prevalence of non-
target serovars in the breeding, broiler and layer flocks these data were not quantitatively used to assign
a RAG status by percentage thresholds (as was done for the human data). However, these data informed
the second criterion ‘transmission through the poultry industry’ by providing an indication of how
widespread the serovar is within the EU and whether disseminated throughout the EU or clustered within
a few MSs. As a consequence of the uncertainty regarding assessment of potential virulence of serovars
expressed in terms of mortality (death/alive) and hospitalisation status (yes/no), the RAG status for
criterion 4 prioritised information from scientific literature on the occurrence, or lack of reported
evidence, of more severe infections associated with specific serovars. From this, an overall RAG status
was assigned for each serovar based on an expert evaluation of the impact of the different criteria.

3) Consideration of inclusion of ‘all serovars’ as a possible target

The prevalence of Salmonella in breeding flocks was provided for all EU MSs (2014–2016) and
compared to the prevalence for the five current target serovars. This provided an indication of which
MSs would be likely to exceed a target of 1%. A consideration of the advantages and disadvantages of
using all serovars as a target in breeding flocks was produced.

2.2.2. ToR 2

The EFSA Source Attribution Model (EFSA_SAM) was used. This model can be found at https://
zenodo.org/record/57132#.W9cXYVVKiUk. The model included the data described in Section 2.1.2.
Sources of uncertainty accounted for in the model included uncertainty around the underestimation/
multiplication factors for estimating the true number of human salmonellosis cases, and uncertainty
around factors associated with differences between serovars and food sources in their ability give rise
to human infections. Parameters describing uncertainty were included as probability distributions in the
model. Uncertainties that are not quantified in the model are given in Table F.2, Appendix F. The
estimated changes to human incidence rates are therefore based on the MSs included in the model.
More information on the model, including its principles, assumptions and uncertainties, can be found in
Hald et al. (2012a) and Hald and Lund (2012).

The model included the following 23 MSs: Austria, Belgium, Croatia, the Czech Republic, Denmark,
Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Malta, Poland, Portugal,
Slovakia, Slovenia, Spain, Sweden, the Netherlands and the United Kingdom. Five MSs were excluded
from the analysis because of lack of sufficient data: Bulgaria (human data), Cyprus (human data),
Lithuania (all food source data), Luxembourg (pig data) and Romania (pig data).

Based on an assessment of the most prevalent serovars in humans that were not primarily related to
travel outside EU, 28 serovars (S. Enteritidis, S. Typhimurium, monophasic S. Typhimurium, S. Agona,
S. Anatum, S. Bovismorbificans, S. Braenderup, S. Brandenburg, S. Derby, S. Goldcoast, S. Hadar,
S. Havana, S. Indiana, S. Infantis, S. Java, S. Kentucky, S. Livingstone, S. London, S. Mbandaka, S.
Montevideo, S. Napoli, S. Newport, S. Rissen, S. Saintpaul, S. Senftenberg, S. Tennessee, S. Virchow
and S. Weltevreden) were included individually in the model. If not reported as monophasic
S. Typhimurium, the monophasic variants of S. Typhimurium were grouped into this category using the
antigenic formula, where the following were considered to be monophasic S. Typhimurium: S. 1,4,
[5],12:i:-, S. 1,4,5,12:i:-, S. 1,4,12:i:-, S. 4,[5],12:i:-, S. 4,5,12:i:- and S. 4,12:i:-. The remaining
serovars (> 900) were grouped in an ‘Other serovar’ category. Cases belonging to this category were per
definition allocated to an ‘unknown source’ category.
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The results of the baseline model were compared with the scenario in which the prevalence of the
current target serotypes (S. Enteritidis and S. Typhimurium including monophasic variants) was set at
1% (or less) in layers, assuming all MS would comply with this requirement. The prevalence for laying
flocks was kept as reported to EFSA, if it was already below 1%.

2.2.3. ToR 3

Although many countries (n = 19) provided data on the occurrence of the regulated Salmonella
serovars in laying hen production flocks in different housing systems, some important limitations were
observed. First, some countries provided data on the positive flocks only and not on negative flocks.
Secondly, some countries specified which Salmonella was tested for (e.g. S. Enteritidis) whereas others
did not provide this information or indicated ‘the regulated serovars’, in which case the serovar of
Salmonella was not known. Also, there was a very variable level of detail in the provided data
regarding the description of the characteristics of the housing systems, although the information on
‘cage’ vs ‘non-cage’ was always provided. Moreover, the cage systems always referred to enriched
cages as the data originates from 2016/2017 when the rearing in conventional cage was prohibited in
the EU. Yet, for the non-cage systems additional information such as ‘outdoor access’ vs no ‘outdoor
access’ and presence of a ‘winter garden’ was missing in the majority of the provided data and could
therefore not be analysed. As a result of these data issues, a thorough data selection step was first
performed. As the majority of the data was on S. Enteritidis, it was decided to work with this data only
(from 13 countries). From these results, it was obvious that in a number of countries (Belgium, Latvia,
Lithuania, Portugal, Poland, Slovenia and the United Kingdom) typically a combination of a small
number of sampled flocks and a high prevalence of S. Enteritidis was provided. It is likely that for
these countries only the data on the positive flocks was provided. As this would have distorted the
analysis it was decided to exclude these countries. The final data set that was used comprised data
from six MS.

2.2.4. ToR 4

Data on the occurrence of the regulated Salmonella serovars in broiler flocks in different housing
systems in 2016 and 2017 were provided by 17 countries, all EU MSs. This included data on S. Enteritidis,
S. Typhimurium and monophasic S. Typhimurium with the antigenic formula 1,4,[5],12:i:- and non-
specified Salmonella. As the different serotypes may differ substantially in their epidemiology it was
decided to split the data set in three based on the reported serovars. If the serovar was not reported, the
data were not included.

2.2.5. ToR 5

Eleven countries provided data on the occurrence of Salmonella or Campylobacter for broiler flocks
and broiler batches at the farm or slaughterhouse level that had been tested for both pathogens. Of
those 11 countries, 8 provided useful data. In some cases, the same procedure was not used for
sampling Salmonella and Campylobacter but it was considered justified to include those data when the
sampling would represent the status of the live animal (e.g. swabs at farm and caeca at slaughter
represent faecal/caecal (intestinal) material). Fisher’s Exact Test for Count Data in R software R version
3.3.2 (2016-10-31) was used to investigate if the proportion of Campylobacter-positive flocks/batches
is independent from their Salmonella status. The confidence level was set at 95% and the alternative
hypothesis was two-sided.

2.2.6. Uncertainty

EFSA’s Scientific Committee has developed a guidance document on how to characterise, document
and explain all types of uncertainty arising in EFSA’s scientific assessments. The document (EFSA
Scientific Committee, 2018) provides a framework and principles for uncertainty analysis, with the
flexibility for assessors to select different methods to suit the needs of each assessment. Attention was
given to identifying sources of uncertainty and their potential impact on the outcome of the
assessment (for ToR 2 only) (see Table F.2, Appendix F). Uncertainty relating to ToRs 1, 3, 4 and 5
was addressed descriptively (Table F.1, Appendix F).
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3. Assessment

3.1. Public health impact of a new Salmonella target in flocks of
breeding hens of Gallus gallus

3.1.1. Salmonella serovars of public health significance

Criteria for Salmonella monitoring have been laid down in Regulation (EC) No 2160/2003. Annex II
lists the minimum requirements that food business operators have to respect in relation to having
samples taken and analysed for the control of Salmonella in different animal species and categories. As
far as flocks of G. gallus, turkeys and pigs are concerned, the Regulation requires all Salmonella
serovars ‘with public health significance’ to be monitored at various production stages. Annex III of
this Regulation defines the specific criteria to be adopted to determine Salmonella serovars with public
health significance to which community targets will apply:

• the most frequent Salmonella serovars associated with human salmonellosis on this basis of
data collected through EU surveillance system;

• the route of infection (i.e. the presence of the serovar in relevant animal populations and
feed);

• whether any serovar shows a rapid and recent ability to spread and cause disease in humans
and/or animals; and

• whether any serovar shows increased virulence for instance, as regards invasiveness or
resistance to relevant therapies for human infections.

The assessment therefore focuses on these aspects of the epidemiology of the considered serovars.

3.1.1.1. Salmonella serovars in human salmonellosis

Human sporadic cases of salmonellosis in the EU

In 2016, 96,039 salmonellosis cases were reported by 28 MS, with 94,530 confirmed cases
resulting in an EU notification rate of 20.4 cases per 100,000. As in the previous year, the highest
notification rates were reported by the Czech Republic and Slovakia (≥ 97.7 per 100,000), while the
lowest rates were reported by Greece, Italy, Ireland and Portugal (≤ 6.8 per 100,000) (EFSA and
ECDC, 2017d).

There was a statistically significant (p < 0.05) decreasing trend for the number of reported cases of
human salmonellosis in the EU/EEA in 2008–2016; however, at the EU level, there was no significant
change over the last 5 years (2012–2016) (Figure 3). The same observation was made using incidence
rates. In those last 5 years, in four MS there was a decreasing trend, while a statistically significant
increasing trend was observed in seven MS (EFSA and ECDC, 2017d).

Due to differences in national surveillance systems, notification rates are not directly comparable
between MSs. Several attempts have been made to estimate the level of underestimation (combining
underreporting and under-ascertainment) for Salmonella infections in different MSs. The multiplication
factor for underestimation was estimated at 57.5 CI95[9.0; 172] in 27 EU MSs, and ranged from 0.4 times
the number of reported cases for Finland to more than 2,000 times for Portugal (Havelaar et al., 2013).

In 2016, information on Salmonella serovars was available for 73.4% of reported cases (69,336 of
the total 94,530 reported cases) from 25 MS (all except Bulgaria, Croatia and Poland) (see Tables D.1
and D.2 in Appendix D). Data includes all cases reported with serovar information regardless the
importation/travel status.

The proportion of domestic vs travel-associated cases varied markedly between countries, but most
of the salmonellosis cases were infected in the EU (53.3% cases acquired in EU, 6.8% travel outside
EU and 39.9% of unknown origin). Among 8,337 travel-associated cases with known information on
probable country of infection, 79.0% of the cases were related to travel outside the EU and 21.0% to
travel within the EU (EFSA and ECDC, 2017d).
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To estimate the impact of the Salmonella infections acquired in the EU, case-based serovar data
reported to TESSy were analysed for domestic and travel-associated cases when the probable country
of infection was a MS (cases acquired in EU; Table 3). Information on Salmonella serovars with
importation (domestic vs travel) data was available for 52,679 cases and in addition, information of the
country of infection for travel-acquired cases was available for 6,427 cases (88.8% of all travel related
cases) for all 20 MS reporting such cases. Thereby the estimation of the most frequent serovars
obtained in EU was based on data on 51,866 cases from 24 MS. This represents 74.8% of cases with
known serovar data (69,336 cases) and 54.9% of all 94,530 reported cases in 2016. The majority
(96.8%) of the cases were acquired in the reporting country.

More than half (57.1%) of the reported cases were infected by S. Enteritidis (Table 3). Together
with S. Typhimurium, including monophasic S. Typhimurium 1,4,[5],12:i:-, these three serovars
represented 75.9% of the reported human cases with known serovar and country of origin of infection
in 2016. The proportion of S. Enteritidis continued to increase in 2016 compared with 2014 and 2015,
although this was not a statistically significant trend. The proportion of S. Typhimurium (excluding the
monophasic variants) decreased significantly in 2016, while its monophasic variant strains (S. 1,4,
[5],12:i:-), and S. Infantis remained at similar levels to 2015 and 2014.

The cases of the top five serovars were mostly acquired in the EU in 2016: S. Enteritidis (94.7%),
S. Typhimurium (93.8%), monophasic S. Typhimurium (93.3%), S. Infantis (92.4%) and S. Derby
(95.6%), whereas S. Newport, the fifth most commonly reported serovar, included 36.6% of cases
associated with travel outside the EU. The highest proportion of travel-associated cases was reported
for S. Stanley (52.9%) and S. Kentucky (53.2%).

There was a statistically significant (p < 0.01) decreasing trend for S. Enteritidis acquired in the EU
from 2008 until 2012, but from 2012 to 2016 the number of reported cases stabilised and no
statistically significant change was observed (EFSA and ECDC, 2017d).

Source: Austria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Italy, Lithuania, Luxembourg, Latvia, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia,
Slovenia, Spain, Sweden, and United Kingdom. Belgium, Bulgaria and Croatia did not report data to the level of
detail required for the analysis.

Figure 3: Trend in reported confirmed human cases of non-typhoidal salmonellosis in the EU/EEA, by
month, 2012–2016
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Table 3: Distribution of confirmed salmonellosis cases in humans acquired in the EU (domestic and EU travel) by serovar (the 20 most frequent
serovars). TESSy data, 2010–2016

2016 2015 2014 2013 2012 2011 2010

Serovar N % Serovar N % Serovar N % Serovar N % Serovar N % Serovar N % Serovar N %

Enteritidis 26,779 57.1 Enteritidis 25,788 54.7 Enteritidis 25,474 54.6 Enteritidis 21,621 48.0 Enteritidis 24,828 50.9 Enteritidis 26,609 52.7 Enteritidis 27,039 51.6

Typhimurium 6,719 14.3 Typhimurium 7,971 16.9 Typhimurium 8,625 18.5 Typhimurium 9,981 22.2 Typhimurium 10,635 21.8 Typhimurium 12,402 24.6 Typhimurium 13,498 25.8

Monophasic

Typhimurium

1,4,[5],12:i:-

2,088 4.5 Monophasic

Typhimurium

1,4,[5],12:i:-

2,303 4.9 Monophasic

Typhimurium

1,4,[5],12:i:-

1,775 3.8 Monophasic

Typhimurium

1,4,[5],12:i:-

1,823 4.0 Monophasic

Typhimurium

1,4,[5],12:i:-

1,577 3.2 Monophasic

Typhimurium

1,4,[5],12:i:-

1,208 2.4 Infantis 1,231 2.4

Infantis 1,098 2.3 Infantis 1,137 2.4 Infantis 1,163 2.5 Infantis 1,540 3.4 Infantis 1,238 2.5 Infantis 1,130 2.2 Monophasic

Typhimurium

1,4,[5],12:i:-

372 0.7

Derby 372 0.8 Stanley 450 1.0 Derby 447 1.0 Derby 453 1.0 Thompson 938 1.9 Newport 375 0.7 Derby 294 0.6

Newport 316 0.7 Derby 338 0.7 Stanley 420 0.9 Stanley 404 0.9 Stanley 508 1.0 Poona 356 0.7 Newport 271 0.5

Virchow 257 0.5 Newport 278 0.6 Bovismorbificans 309 0.7 Agona 319 0.7 Panama 400 0.8 Derby 355 0.7 Bovismorbificans 256 0.5

Bovismorbificans 242 0.5 Bovismorbificans 259 0.5 Newport 276 0.6 Muenchen 278 0.6 Derby 327 0.7 Bovismorbificans 202 0.4 Virchow 208 0.4

Stanley 181 0.4 Virchow 203 0.4 Muenchen 262 0.6 Newport 255 0.6 Newport 268 0.5 Agona 199 0.4 Kentucky 206 0.4

Kentucky 181 0.4 Oranienburg 182 0.4 Virchow 195 0.4 Bovismorbificans 232 0.5 Bovismorbificans 249 0.5 Java 166 0.3 Java 199 0.4

Agona 172 0.4 Java 179 0.4 Brandenburg 179 0.4 Virchow 191 0.4 Braenderup 204 0.4 Virchow 164 0.3 Agona 192 0.4

Saintpaul 148 0.3 Agona 162 0.3 Agona 164 0.4 Kentucky 188 0.4 Agona 191 0.4 Oranienburg 157 0.3 Bareilly 181 0.3

Braenderup 142 0.3 Kentucky 154 0.3 Java 139 0.3 Montevideo 186 0.4 Java 181 0.4 Goldcoast 154 0.3 Saintpaul 128 0.2

Java 128 0.3 Thompson 149 0.3 Kentucky 135 0.3 Brandenburg 154 0.3 Brandenburg 165 0.3 Kentucky 151 0.3 Braenderup 121 0.2

Thompson 124 0.3 Saintpaul 105 0.2 Saintpaul 127 0.3 Thompson 140 0.3 Kentucky 163 0.3 Montevideo 141 0.3 Brandenburg 120 0.2

Brandenburg 108 0.2 Mikawasima 101 0.2 Montevideo 117 0.3 Saintpaul 133 0.3 Virchow 161 0.3 Brandenburg 139 0.3 Montevideo 116 0.2

Bareilly 106 0.2 Kottbus 99 0.2 Goldcoast 114 0.2 Napoli 113 0.3 Goldcoast 144 0.3 Thompson 123 0.2 Hadar 115 0.2

Napoli 97 0.2 Livingstone 97 0.2 Indiana 105 0.2 Goldcoast 112 0.2 Saintpaul 142 0.3 Saintpaul 117 0.2 Poona 106 0.2

Hadar 97 0.2 Bareilly 96 0.2 Enterica 104 0.2 Java 106 0.2 Groupc 118 0.2 Stanley 102 0.2 London 100 0.2

Mikawasima 95 0.2 Montevideo 95 0.2 Oranienburg 94 0.2 Oranienburg 98 0.2 Muenchen 114 0.2 Hadar 92 0.2 Mbandaka 101 0.2

Other 7,459 15.9 Other 7,003 14.9 Other 6,474 13.9 Other 6,818 15.1 Other 6,570 13.5 Other 6,280 12.4 Other 7,355 14.0

Total 46,909 93.0 Total 47,149 95.1 Total 46,698 95.4 Total 45,039 94.9 Total 48,822 95.0 Total 50,456 94.1 Total 52,377 97.6

Unknown

serovar

3,509 7.0 Unknown

serovar

2,439 4.9 Unknown

serovar

2,247 4.6 Unknown

serovar

2,430 5.1 Unknown

serovar

2,589 5.0 Unknown

serovar

3,189 5.9 Unknown

serovar

1,265 2.4

Source: TESSy. Country abbreviations: AT: Austria; BE: Belgium; CZ: Czech Republic; DE: Germany; DK: Denmark; EE: Estonia; EL: Greece; ES: Spain; FI: Finland; FR: France; HU: Hungary;
IE: Ireland; IT: Italy; LT: Lithuania; LU: Luxembourg; LV: Latvia; MT: Malta; NL: Netherlands; PT: Portugal; RO: Romania; SE: Sweden; SI: Slovenia; SK: Slovakia; UK: United Kingdom.
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Reported food-borne salmonellosis outbreaks

Data from outbreaks is particularly valuable as this can often be linked either epidemiologically or
microbiologically with particular sources. A total of 3,637 food-borne outbreaks (FBO) caused by
Salmonella at EU level (2014–2016) were reported with 29,250 human cases. Of these, 756 were
strong-evidence FBOs with 10,995 human cases. The vehicle was known for 753 of these strong-
evidence outbreaks with in total 10,858 cases; it was ‘broiler meat (Gallus gallus) and products
thereof’ in 46 outbreaks (550 cases), ‘eggs and egg products’ in 296 outbreaks (3,547 cases), ‘meat
and meat products’ in 32 outbreaks (566 cases), ‘other, mixed or unspecified poultry meat and
products thereof’ in 10 outbreaks (44 cases) and ‘mixed food’ in 65 outbreaks (1,143 cases). An
overview of the Salmonella serovars involved in the FBOs caused by ‘egg and egg products’ and
‘broiler meat (Gallus gallus) and products thereof’ is shown in Table 4. S. Enteritidis is by far the most
important serovar in terms of the number of outbreaks and outbreak cases relating to both eggs and
egg products and broiler meat.

The vehicle was ‘pig meat and products thereof’ in 55 outbreaks (1,041 cases), ‘bovine meat and
products thereof’ in 17 outbreaks (132 cases) and ‘turkey meat and products thereof’ in 5 outbreaks
(297 cases).

S. Enteritidis has been causing large and ongoing outbreaks associated with international trade in
table eggs. Eggs are more frequently associated with outbreaks, many of which are diffuse outbreaks
that may appear to be sporadic cases unless whole genome sequencing (WGS) is carried out on
isolates to demonstrate links to a common source of eggs (Dallman et al., 2018). Eggs are more
frequently associated with outbreaks than poultry meat because of the occurrence of internal
contamination due to vertical transmission, common use of raw pooled eggs as an ingredient or glaze
for various food products and the possibility for temperature abuse. Eggs are not required to be
refrigerated at retail and are not individually marked with use-by dates in most countries (Howard
et al., 2012; EFSA BIOHAZ Panel, 2014). Climatic factors and consumer preferences can also influence
the proportion of Salmonella cases linked to meat products, if these are more likely to be eaten raw or

Table 4: Salmonella serovars involved in the strong-evidence food-borne outbreaks in the EU
caused by Salmonella in egg and egg products and in broiler meat (Gallus gallus) and
products thereof (2014–2016) as reported in the zoonoses database on occurrence of
strong-evidence food-borne outbreaks

Serovar

Number of outbreaks according to
attributed source

Number of outbreak cases according to
attributed source

Eggs and
egg

products

Broiler meat
and products

thereof
Total

Eggs and egg
products

Broiler meat
and products

thereof
Total

S. Enteritidis 218 (92.0%) 28 (84.8%) 246 (91.1%) 3,007 (95.3%) 400 (84.7%) 3,407 (93.9%)

S. Typhimurium 14 (5.9%) 3 (9.1%) 17 6.3%) 92 (2.9%) 36 (7.6%) 128 (3.5%)
S. Senftenberg 0 (0%) 1 (3.0%) 1 (0.4%) 0 (0%) 34 (7.2%) 34 (0.9%)

S. 9,12:-:- 1 (0.4%) 0 (0%) 1 (0.4%) 21 (0.7%) 0 (0%) 21 (0.6%)
S. Typhimurium,
monophasic

1 (0.4%) 0 (0%) 1 (0.4%) 17 (0.5%) 0 (0%) 17 (0.5%)

S. Virchow 1 (0.4%) 0 (0%) 1 (0.4%) 9 (0.3%) 0 (0%) 9 (0.2%)
S. Infantis 1 (0.4%) 0 (0%) 1 (0.4%) 5 (0.2%) 0 (0%) 5 (0.1%)

S. group B 1 (0.4%) 0 (0%) 1 (0.4%) 4 (0.1%) 0 (0%) 4 (0.1%)
S. Goldcoast 0 (0%) 1 (3.0%) 1 (0.4%) 0 (0%) 2 (0.4%) 2 (0.1%)

Total Typed 237 33 270 3,155 472 3,591
Salmonella spp.,
unspecified

43 4 47 315 24 339

S. enterica subsp.
enterica

2 0 2 16 0 16

Not typeable 5 0 5 15 0 15

Blank 9 9 18 46 54 100

Grand Total 296 46 342 3,547 550 4,097
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lightly cooked. Standards of kitchen hygiene also impact the degree of cross-contamination of cooked
and ready to eat foodstuffs (EFSA BIOHAZ Panel, 2011a).

There appears to be a seasonal trend towards increased infection in laying hens as well as humans
in warmer parts of the year (Powell et al., 2018). Improved monitoring, use of WGS to definitively link
outbreak isolates from diverse sources and good co-operation between competent authorities in
different MS have facilitated more rapid identification and control of outbreaks such as recent
examples involving international trade in table eggs (EFSA and ECDC, 2017c; Hormansdorfer et al.,
2017). Five EFSA reports on multicountry outbreaks linked to eggs have been published since 2006, all
involving S. Enteritidis and international trade in table eggs originating from Germany in 2014 or
Poland, with cases ongoing since 2016 (ECDC and EFSA, 2014a; EFSA and ECDC, 2016). Based on the
current evidence, the source of infection of these outbreaks is likely to be at the level of the laying hen
farms (EFSA and ECDC, 2017b). WGS and epidemiological evidence suggests that there is persistent
contamination of laying hen premises in Poland (EFSA and ECDC, 2017a).27 A focus on improved
detection and control of S. Enteritidis in all poultry populations, particularly early and sensitive
detection in laying hens, is therefore needed to supplement the proposed targets for breeding flocks.

3.1.1.2. The route of infection (i.e. the presence of the serovar in relevant animal
populations and feed)

Several factors (e.g. feed (Hald et al., 2012b) and other sources such as, replacement animals,
humans, domestic, wild and feral animals and birds, insects, contaminated equipment or water)
(Chousalkar et al., 2018)) can introduce infection into a poultry unit and salmonellas can further
spread within and between holdings through movements of people, vehicles and equipment (Cerda-
Cuellar et al., 2018; Velhner et al., 2018). After introduction, infection may be perpetuated in poultry
houses, often without detection (Davies et al., 2001).

Infected chicks may acquire Salmonella infections via ‘vertical’ transmission within the egg from the
parent breeder flock, by ‘pseudo-vertical’ transmission from externally contaminated eggs or via
‘horizontal’ transmission from pre-existing or resident contamination including cross-contamination in
the hatchery (Sivaramalingam et al., 2013; Gaucher et al., 2017). These transmission routes are
described in more detail in EFSA (2009).

The chicken breeding pyramid (Figure 2) has provided a means of maintaining Salmonella-free
replacement birds for parent breeding flocks since the international dissemination of S. Enteritidis in
the 1970/1980s (Ward et al., 2000), but at parent level control of infection has not always been so
robust and there have been outbreaks of S. Enteritidis associated with international trade in broiler
hatching eggs (Lawes et al., 2016).

It is not always possible to distinguish infections originating from hatchery and other horizontal
contamination routes from those transmitted from breeding flocks and vertical transmission, but trace-
back exercises (McLlroy et al., 1989; Liljebjelke et al., 2005; Crabb et al., 2018), risk factor analyses
(Chriel et al., 1999; Skov et al., 1999) and temporal correlations (Van Der Fels-Klerx et al., 2008) have
demonstrated that breeding flocks can often be identified as the original source. In Canada, hatchery-
associated Salmonella contamination has been suggested, on the basis of Expert Knowledge Elicitation
(EKE) used for risk modelling, to account for 4% of human infections due to poultry meat and 8% due
to eggs, leading to a conclusion that stronger regulatory control at hatchery level would be beneficial
for public health (Gaucher et al., 2017; Racicot et al., 2018).

Some zoonotic serovars are more commonly found to contaminate hatching and table eggs
internally, especially certain strains of S. Enteritidis (Campioni et al., 2018; Gast et al., 2018; Ricke
et al., 2018; Wang et al., 2018b). This serovar is more consistently traced from breeders to broilers
and broiler meat than other serovars (Byrd et al., 1998; Kim et al., 2007) and has been shown to be
able to invade both epithelial and lymphoid cells in the reproductive tract of chickens, and thus evade
the immune system of some birds (Legesse and Garesu, 2017) as well as being able to establish a
super-shedder intestinal carriage state in a minority of birds (Menanteau et al., 2018; Eade et al.,
2019). However, Salmonella serovars other than S. Enteritidis trace-backs to breeders have been
documented, including S. Typhimurium, S. Infantis (Crabb et al., 2018), S. Heidelberg (Nakao et al.,
2018), S. Kentucky and S. Senftenberg (Byrd et al., 1998; Chriel et al., 1999; Liljebjelke et al., 2005;
Kim et al., 2007; Moffatt et al., 2016). By contrast, hatchery contamination originating from faecal
contamination of hatching eggs leading to broiler flock infection can involve a wide range of serovars
(Bailey et al., 2001).

27 https://ecdc.europa.eu/en/news-events/epidemiological-update-multi-country-outbreak-salmonella-enteritidis-infections-linked
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In oral and intravenous inoculation models, S. Heidelberg (a major serovar involved in egg and
poultry meat contamination in the USA) and certain S. Typhimurium strains appeared to colonise the
chicken reproductive organs as efficiently as S. Enteritidis, despite being recovered less frequently from
egg contents (Gast et al., 2005, 2007; Gantois et al., 2008). In Australia, certain S. Typhimurium
strains have been strongly associated with laying hen flocks and egg-borne food poisoning outbreaks,
and show invasive properties in tissue culture assays (Chousalkar et al., 2018) (McWhorter et al.,
2018; Moffatt et al., 2016). It is not known if similar strains exist in Europe, but in the EU
S. Typhimurium is much more frequently associated with pig, ruminant and environmental reservoirs
than with chickens (Carson and Davies, 2018; Gavin et al., 2018; MacDonald et al., 2018).

Chicken egg-associated serovars of S. Enteritidis, S. Typhimurium and S. Heidelberg also survived
in egg albumen better than S. Hadar and S. Virchow. A genetic locus identified in S. Enteritidis (yafD)
appears to confer an enhanced phenotype for survival in albumen, which was transferable to a
S. Typhimurium strain (Lu et al., 2003). Other factors proposed to be important for intra-egg survival
and access to the yolk (permitting multiplication to high numbers) include storage conditions (EFSA
BIOHAZ Panel, 2014), stress response genes, high molecular mass lipopolysaccharide and surface
appendages such as curli, type I fimbriae and flagella (Guard-Petter, 2001; Cogan et al., 2004; De
Buck et al., 2004; Guard-Bouldin et al., 2004; Quan et al., 2018; Xiaojie et al., 2019).

In the USA, S. Braenderup has been intermittently reported and is associated with outbreaks of
Salmonella associated with eggs and newly hatched chicks, suggesting that some strains of this
serovar may also have an ability to transmit vertically (Nakao et al., 2015; Ricke, 2017; CDC, 2018).

A variety of serovars other than those considered to have vertical transmission abilities can be
found in breeding flocks, hatcheries and broiler flocks. Breeding flocks and broiler flocks may share the
same source of contaminated feed, so finding the same serovar in both populations does not
necessarily indicate transmission from breeders (Corry et al., 2002).

As an example, in a multistate study of four integrated broiler companies in the USA (Bailey et al.,
2001) examined samples from hatcher basket liners through to slaughter. Of 36 serovars isolated, 12
were found on processed carcasses, and nine of these were also found on hatcher basket liners.
S. Thompson was common in liners, on farms and on broiler carcasses. Other serovars found on
hatcher basket liners and carcasses were: S. Brandenburg, S. Infantis, S. Kentucky, S. Mbandaka,
S. Montevideo, S. Senftenberg, S. Typhimurium and a monophasic variant of S. Typhimurium;
S. 4,5,12:i–. Most of these are also common feed contaminants.

Fewer data are available in the case of laying hens, but transmission of S. Enteritidis PT6 from a
layer breeding company to commercial laying flocks via the hatchery was demonstrated in the United
Kingdom by field investigations and molecular typing (Davies et al., 2003). The international
dissemination of S. Enteritidis during the 1980s is thought to have been promoted by international
trade in breeding chickens before monitoring programmes were in place (Evans et al., 1999), with
evidence of S. Enteritidis infection of primary breeding flocks, possibly originally acquired from feed,
occurring sporadically in various parts of the world (Obrien, 1990; Nakamura et al., 1993; Edel, 1994).

In conclusion, a variety of serovars other than S. Enteritidis and S. Typhimurium and the other
currently regulated serovars in breeding flocks may be associated with pseudo-vertical transmission,
resulting in wider dissemination of infection via day-old chicks among production flocks (Namata et al.,
2009), including by means of omphalitis in day old chicks traded internationally (Saad et al., 2017).
However, vertical transmission seems to be largely associated with particular strains of S. Enteritidis, so
control of this serovar in breeding flocks and laying hens, including sensitive sampling and detection
methods, remains a major priority in the EU (Kangas et al., 2007; Carrique-Mas and Davies, 2008;
Mahe et al., 2008). The impact of improved controls on S. Enteritidis in breeding flocks on human
infections in the United Kingdom was smaller than the effect of vaccination of laying hens,
demonstrating the importance of the laying hen reservoir (O’Brien, 2013; Lane et al., 2014).

3.1.1.3. Changes in the ability of different Salmonella serovars to spread and cause
disease in humans

The main source of infection for humans is the consumption of contaminated foods of animal
origin, including eggs and poultry meat. Since the implementation of harmonised Salmonella control
programmes in Europe, beginning in 2007 with chicken breeding flocks, the most commonly detected
poultry-associated serovar, S. Enteritidis, declined substantially till 2013, then began to increase in both
people and laying hens (Poirier et al., 2008; Messens et al., 2013; Hugas and Beloeil, 2014; EFSA and
ECDC, 2017d; De Cesare, 2018). This trend has also been accompanied by some expansion of certain
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clones within previously less common serovars, e.g. S. Infantis, S. Stanley, S. Kentucky and
S. Heidelberg (Campos et al., 2018).

In the USA and Canada, multidrug resistant (MDR) S. Newport emerged in cattle after routine use
of ceftiofur and other cephalosporins and subsequently spread to other species, including turkeys and
humans and resulting in environmental contamination (Poppe et al., 1995; Iwamoto et al., 2017; Crim
et al., 2018). Similar strains have not been reported in food animals in the EU.

S. Kentucky ST198 with resistance to multiple antimicrobials including ciprofloxacin is the latest
clone to show rapid international dissemination both in humans and in the food chain in the EU and
more widely (Le Hello et al., 2011; Le Hello et al., 2013; Rauch et al., 2018). This clone was observed
in a high proportion of isolates from humans, broilers and fattening turkeys (EFSA and ECDC, 2018).
The spread of ST198 in broiler production in the EU has led to France including S. Kentucky among
the target regulated serovars for poultry in 2016.28

Monophasic S. 1,4,[5],12:i:- variants of S. Typhimurium have increased dramatically in pigs in
recent years (Hauser et al., 2010), but are considered to be opportunist infections of poultry flocks
rather than becoming persistent.

The potential for the emergence of new strains, such as S. Infantis which has arisen in poultry in
Hungary, many other European countries and Israel (Nogrady et al., 2008; Gal-Mor et al., 2010;
Hauser et al., 2012; Wilk et al., 2017) is present in a situation where mobile virulence and
antimicrobial or heavy metal resistance genes and phage incursions may lead to the selection and
emergence of new strains with enhanced epidemiological fitness (Litrup et al., 2010; Figueiredo et al.,
2018; Worley et al., 2018). Seven MS (Austria, Belgium, Estonia, France, the Netherlands, Slovenia
and Spain) reported MDR S. Infantis isolates in humans in 2016 with the highest proportions in Austria
(69%) and Slovenia (64%) (EFSA and ECDC, 2018). In the USA, a recent increase in S. Infantis and
some other serovars is thought to be associated with increased regulatory focus on a limited range of
serovars in poultry, thus potentially creating a niche for expansion of others (Marder et al., 2018).

A large S. Stanley outbreak involving related strains of MDR organisms occurred between 2011 and
2013 in the EU, affecting 10 countries (ECDC and EFSA, 2014b). Although this was linked to infected
turkey flocks and meat, some infected broiler flocks were reported and similar strains were identified
from diverse sources, including poultry feed. S. Stanley still occurs, but less commonly in food animals
and humans after its initial emergence in the EU in Poland, followed by limited spread to poultry in
other countries and there have not been further large outbreaks (EFSA and ECDC, 2017d; Skarzynska
et al., 2017; Huang et al., 2019). This serves as an example of how there can be rapid spread of
specific Salmonella strains, which may originate from countries outside Europe, through poultry
breeding and production chains when there is international trade in eggs and meat (Pastore et al.,
2008; Wasyl et al., 2013; ECDC and EFSA, 2014b; Kinross et al., 2014). The occurrence of such
outbreaks relating to non-regulated serovars also prompted calls for improved legislative control of
emerging potentially ‘epidemic’ Salmonella serovars other than those currently targeted in the EU
(Springer et al., 2014).

3.1.1.4. Increased virulence or resistance to relevant therapies for human salmonellosis

Certain serovars of Salmonella have been consistently reported to be associated with excess
mortality and serious clinical disease in humans. These include S. Enteritidis, S. Typhimurium,
S. Choleraesuis (only associated with pigs), S. Dublin (largely associated with cattle), S. Virchow,
S. Heidelberg and S. Infantis (Helms et al., 2003; Wollin, 2007; Silva et al., 2017; Karacan Sever and
Akan, 2018) and new MDR variants of these with greater health impact often emerge and spread
internationally (Luk-in et al., 2018; Parisi et al., 2018).

Table D.3 in Appendix D shows human case hospitalisation and mortality rates of those cases
acquired in the EU (domestic and EU travel) between 2014 and 2016 for the reported serovars
considered in Section 3.1.2.3 for possible inclusion in a revised serovar selection for breeding chicken
flocks. The reported hospitalisation rate for Salmonella infections acquired in the EU ranges from
23.8% for S. Havana to 57.6% for S. Heidelberg, but confidence limits are wide for less common
serovars and there is a large potential bias associated with variations in reporting practices in different
countries, with some only reporting the most serious cases and a high proportion of cases lacking
hospitalisation or mortality data. The completeness of this data appears to vary by serovar. There is

28 JORF no 0194 du 24 août 2018 texte no 50. Arrêt�e du 1er août 2018 relatif �a la surveillance et �a la lutte contre les infections
�a Salmonella dans les troupeaux de l’esp�ece Gallus gallus en fili�ere ponte d’œufs de consommation; NOR: AGRG1734200A;
ELI: https://www.legifrance.gouv.fr/eli/arrete/2018/8/1/AGRG1734200A/jo/texte
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also potential bias associated with the variable distribution of some serovars in different countries with
different reporting practices and the influence of outbreaks on completeness of serotyping and
reporting. Uncertainty is even greater in the case of mortality data, since fatal cases are uncommon.
Reported mortality ranges from 0% for several serovars to 2.6% for S. Havana, for which there were
only 63 reported cases and only one of the cases with mortality data provided died. As a consequence
of the uncertainty regarding assessment of potential virulence of serovars based on monitoring data,
the RAG status for this criterion prioritised information from scientific literature on the occurrence, or
lack of reported evidence, of more severe infections associated with specific serovars.

More routine use of WGS would allow a focus on high-risk strains within serovars that have
emerged in other parts of Europe or globally, since epidemic spread of a specific serovar follows the
emergence of particular strains with enhanced dissemination potential, while the majority of strains
within a serovar may be of more limited relevance (Kenney, 2018; Worley et al., 2018; Chiou et al.,
2019; Yokoyama et al., 2019; Zhang et al., 2019).

Some studies have suggested a greater number of virulence genes in S. Enteritidis and
S. Typhimurium than in other serovars, but panels of strains used are not fully representative of those
circulating currently, and recent data from ECDC suggests the reported hospitalisation (30.3%) and
mortality rate (0.153%) for S. Enteritidis in 2014–2016 was not greater than the mean for all serovars,
although this may be influenced by increased detection and reporting of milder cases that are
associated with outbreaks. It is recommended that larger studies using WGS linking epidemiology,
phylogeny and virulotyping are performed, using Salmonella isolates from the harmonised monitoring
of poultry and from human disease in the EU, to facilitate attribution studies and identify trends
associated with virulence and stress-response genes (M’Ikanatha et al., 2010; Bertelloni et al., 2017;
Allard et al., 2018; Pornsukarom et al., 2018). Further definition of the genes that promote enhanced
colonisation of the reproductive tract in chickens is also required (Szmolka et al., 2018).

Emerging threats such as resistance of microorganisms to extended-spectrum cephalosporins
(ESCs), carbapenems, fluoroquinolones (FQs) and colistin are considered to be among the highest
public health priorities within the EU (Florez-Cuadrado et al., 2018; Stella et al., 2018). Two of the
most important antimicrobial classes for treatment of human salmonellosis are FQs, such as
ciprofloxacin, and ESCs, such as ceftriaxone. There is conflicting evidence regarding the magnitude of
the threat presented by AMR in Salmonella in terms of the potential for treatment failure and severity
of disease, but some studies have suggested more severe illness associated with resistant strains
(Helms et al., 2002; Angulo et al., 2004; Martin et al., 2004; Hald et al., 2007; Jones et al., 2008; de
Curraize et al., 2017).

It has been postulated that antimicrobial resistance might be partly responsible for the emergence
of certain strains with enhanced virulence in food animal populations (Nde et al., 2006; Singer and
Hofacre, 2006; Nde and Logue, 2008). Use of preventive therapeutic antimicrobials may have
contributed to selection of resistant strains of Salmonella or mobilisation of plasmids, including hybrid
antimicrobial resistance (AMR/virulence plasmids) (Silva et al., 2017; Touzain et al., 2018), from other
intestinal organisms (Chander et al., 2008).

Initial emergence of a MDR Salmonella strain following plasmid transfer may be followed by clonal
expansion and further dissemination nationally or internationally (Cao et al., 2018b). The serovars
most frequently showing MDR in the EU are S. Typhimurium, S. Paratyphi B variant Java (S. Java),
S. Hadar, S. Virchow, S. Heidelberg, S. Newport and certain clones of S. Infantis (Aviv et al., 2014;
EFSA and ECDC, 2018; McDermott et al., 2018).

Resistance to third-generation ESCs in Salmonella has emerged more recently, predominantly in
S. Newport, S. Typhimurium and S. Heidelberg, in the USA, Canada and South America initially
(Salmon and Watts, 2000; Gray et al., 2004; Poppe et al., 2005; Poppe et al., 2006; Taylor et al.,
2008; Sjolund-Karlsson et al., 2010) but increasingly also in the EU and globally (Pan et al., 2018b).
These strains typically possess resistance genes on transferable multidrug resistance plasmids or
transposons that can move between different Salmonella serovars and E. coli or other commensal flora
(Allen and Poppe, 2002).

Large outbreaks of S. Heidelberg have occurred on the American continent which have involved
highly multiple resistant strains associated with egg, broiler and turkey meat production that also
demonstrate increased tolerance to biocides (Antony et al., 2018; Stefani et al., 2018). The occurrence
of high severity food-borne disease outbreaks caused by S. Heidelberg has increased in the USA in
recent years, and contaminated chicken caused infections in 634 patients in 29 US states and Puerto
Rico, with a 38% being hospitalised. Approximately 14% of S. Heidelberg isolates were from human
bloodstream infections with resistance to one or more antimicrobial agents, including third-generation
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cephalosporins, and being associated with increased risk for invasive disease. S. Heidelberg is
responsible for 7% of human deaths due to non-typhoidal Salmonella in the USA, the second most
frequent serovar causing mortality after S. Typhimurium. The prevalence of MDR in S. Heidelberg
increased 2.6-fold since 2004, associated with transferrable genomic elements encoding resistance
genes (Nakao et al., 2015; Bearson et al., 2017; Deblais et al., 2018), but control efforts in poultry
flocks and meat production facilities have been followed by some reduction in human cases (Green
et al., 2018). There is trade between the USA and the EU in grandparent layer breeding chicks, and
S. Heidelberg (but not the MDR epidemic strains) has been detected in such chicks on arrival in
quarantine. Use of antibiotic egg or chick injection that is used to minimise transport-related infections
in countries outside the EU may interfere with detection of infection in imported chicks or hatching
eggs from third countries (Dutil et al., 2010).

Importation of poultry meat has been suggested as a possible means of the introduction of
Salmonella serovars infrequently reported in Europe (Mueller et al., 2018). S. Heidelberg and
S. Minnesota, both with multidrug-resistant profiles, including to ESCs and/or FQs, were identified in
meat imported from outside the EU into Portugal. All but one isolate carried blaCMY-2, located on two
epidemic plasmids, IncA/C or IncI1. S. Heidelberg was associated with five pulsed field gel
electrophoresis (PFGE) types, including one similar to a previously reported American epidemic clone
(Campos et al., 2018). MDR S. Heidelberg has also been found in humans and poultry in the
Netherlands and Ireland, with the source being identified as imported poultry meat from Brazil
(Liakopoulos et al., 2016). The Netherlands is an important source of broiler hatching eggs for several
other countries so occurrence of MDR S. Heidelberg there is a concern for the EU as a whole. Various
Salmonella serovars can also be found in day-old parent breeder chicks traded outside the EU (Osman
et al., 2010) or imported into the EU (Nogrady et al., 2012) and plasmid-mediated transferrable FQ
resistance is increasing reported in some countries (Karp et al., 2018; Ma et al., 2018).

S. Infantis producing VIM-I carbapenemase was found in broilers, as well as pigs, during an
anonymised survey in Germany during 2011 (Fischer et al., 2013a), but there does not appear to have
been any increase in detection of such resistant strains in EU food animals since then, even though a
NDM-1 carbapenemase-producing S. Corvalis isolate was obtained from a wild black kite around the
same time (Fischer et al., 2013b; Fernandez et al., 2018). Reporting of miscellaneous Salmonella
isolates with important AMR is summarised in EFSA and ECDC (2018). More recently a cephalosporin
resistant strain of S. Infantis has emerged in the broiler industry and people in Italy (Franco et al.,
2015) and may disseminate further if not effectively controlled at an early stage. Some of the Italian
strains also show reduced susceptibility to FQs (EFSA and ECDC, 2018) and/or transferable colistin
resistance due to the mcr-1 gene (Carfora et al., 2018).

3.1.2. Impact of a new Salmonella target in flocks of breeding hens of Gallus
gallus

3.1.2.1. Monitoring of Salmonella in flocks of Gallus gallus

During 2007–2016, 3 MS (out of 26) reported a 0% prevalence for target serovars in their breeding
G. gallus flocks. The estimated EU flock prevalence of the target Salmonella serovars in breeding flocks
decreased from 1.12% CI95[0.77; 1.62] in 2007 to 0.32% CI95[0.20; 0.49] in 2016. The 2007–2016
trend for the estimated EU flock prevalence of S. Enteritidis of breeding flocks was very similar to the
one for the target serovars. The estimated EU Salmonella flock prevalence decreased from 2.7%
CI95[1.8; 4] in 2012 to 1.3% CI95[0.92; 2.02] in 2014 and then it remained stable over time.

Figure 4 shows the overall EU prevalence of Salmonella target and non-target serovars in the
various poultry populations, EU, 2007–2016. There is similarity in the occurrence of regulated serovars
(dominated by S. Enteritidis) in breeding flocks and laying hens over time, but no apparent correlation
with broiler flocks, for which feed and hatchery contamination by a variety of serovars is a more
common source. No relationship is apparent between the collective occurrence of non-target serovars
in breeding and commercial generations.
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Figure 4: Overall EU prevalence of Salmonella target serovars (top) and Salmonella non-target
serovars (bottom) in various poultry populations, EU, 2007–2016
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Reported monitoring figures for chicken breeding flocks in 2016 (Table 5) show that all but two MS
achieved the current target of 1% flock prevalence for the five target serovars, but 13 MS exceeded
this level for all serovars combined. Across the EU, 32% of Salmonella reported were S. Enteritidis;
16% S. Typhimurium and 6% S. Infantis. However less than 1% of Salmonella serovars reported in
breeding flocks were S. Hadar or S. Virchow.

Table E.1 in Appendix E shows the distribution of Salmonella serovars in flocks of breeders, layers
and broilers of G. gallus during the production period at the EU level and for confirmed human
salmonellosis cases acquired in the EU in 2014–2016, based on the MS reporting. S. Enteritidis
predominated in breeder (24.8%) and laying hen (43.7%) sectors and was third most common (8.8%)

Table 5: Salmonella in breeding flocks of Gallus gallus during the production period (all types of
breeding flocks, flock-based data) in countries running control programmes in accordance
with Regulation (EC) No 2160/2003, 2016

Country
Tested
flocks

Salmonella
positive
flocks

Percentage positive flocks(a) for
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Austria 146 2 1.37 0 0 0 0 0 0 1.37

Belgium 565 16 2.83 0.35 0.35 0 0 0 0 2.48
Bulgaria 222 4 1.8 0.45 0 0 0.45 0 0 1.35

Croatia 109 2 1.83 0 0 0 0 0 0 1.83
Cyprus 33 4 12.12 0 0 0 0 0 0 12.12

Czech
Republic

673 2 0.3 0.3 0.3 0 0 0 0 0

Denmark 202 3 1.49 0 0 0 0 0 0 1.49

Estonia 11 0 0 0 0 0 0 0 0 0
Finland 163 1 0.61 0.61 0 0.61 0 0 0 0

France 2,057 12 0.58 0.58 0.29 0.24 0.05 0 0 0
Germany 868 11 1.27 0.46 0 0.35 0.12 0 0 0.81

Greece 242 4 1.65 1.24 0.83 0 0.41 0 0 0.41
Hungary 654 6 0.92 0.92 0.31 0.46 0.15 0 0 0

Ireland 182 4 2.2 0 0 0 0 0 0 2.2
Italy 1,194 11 0.92 0 0 0 0 0 0 0.92

Latvia 31 0 0 0 0 0 0 0 0 0
The
Netherlands

1,669 10 0.6 0.54 0.54 0 0 0 0 0.06

Poland 1,927 46 2.39 1.45 1.35 0.1 0 0 0 0.99
Portugal 537 1 0.19 0 0 0 0 0 0 0.19

Romania 377 13 3.45 0.8 0 0 0.8 0 0 2.65
Slovakia 110 0 0 0 0 0 0 0 0 0

Slovenia 131 1 0.76 0 0 0 0 0 0 0.76
Spain 1819 47 2.58 0.44 0 0.38 0.05 0.05 0.05 2.75

Sweden 159 1 0.63 0.63 0 0.63 0 0 0 0
United
Kingdom

1,396 27 1.93 0.14 0 0.14 0 0 0 1.79

Total (MSs) 15,477 228 1.47 0.54 0.32 0.16 0.06 < 0.01 < 0.01 1.02

(a): When the prevalence is > 1%, the figure is shown in bold font.
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in broilers, confirming the importance of including this serovar in the target. S. Mbandaka, was the
second most common (9.8%) in breeders and broilers (9.7%), and also occurred in laying hens
(ranked fifth; 4.0%). S. Typhimurium was ranked third (9.4%) in breeders, second (9.0%) in layers
and fifth (4.7%) in broilers. S. Senftenberg ranked fifth (5.5%) in breeding flocks, was ranked as ninth
in laying hens (1.8%) and was ranked eighth (2.6%) in broilers. S. Infantis ranked fifth (8.0%) in
breeding flocks, fourth (7.9%) in laying hens and first (42.5%) in broilers. Monophasic S. Typhimurium
ranked ninth (2.7%) in breeding flocks, but was much less common in laying hen flocks and broilers
(both 1.8%). Neither of the currently regulated serovars, S. Virchow and S. Hadar, were reported
among the top 15 in breeding flocks, laying hens or broilers.

3.1.2.2. Review of the current target serovars in breeding and production chicken
populations and humans

Figure 5 shows the proportion of reported Salmonella that are the current target five serovars in
breeding flocks for each EU MS between 2014 and 2016. In order to compare the prevalence of the
five target serovars across the different poultry populations and humans, Figure 6 provides this
information for breeders, broilers, layers and humans in the EU. For broilers and layers, this figure
includes both official monitoring data as well as any MS data in response to the data requests. This
particularly relates to S. Infantis, S. Hadar and S. Virchow for which there is no mandatory reporting
for broilers and layers as they are not target serovars and may be grouped as part of the unspecified
serovars for reporting purposes). As reporting of the five target serovars is mandatory for breeding
flocks, additional data were not needed.

From Figure 5, it is difficult to make robust conclusions due to the low sample sizes for many MSs;
however, at EU level it is clear that S. Hadar and S. Virchow are rarely reported in breeding flocks.
Indeed, across all of the MSs reporting to EFSA during 2014–2016, 4 (0.5%) out of 733 isolations were
S. Hadar (all from Spain) and 6 (0.8%) out of 733 isolations were S. Virchow (3 from Poland; 3 from
Spain). S. Enteritidis, S. Typhimurium (incl. monophasic strains) and S. Infantis accounted for 219 of
the 733 (~ 30%) of Salmonella detections across all EU MSs.

A wide range of other serovars were present in the three populations, but the data available did
not allow a relationship between breeding flocks and the other populations to be determined. In
breeding flocks, 35% of reported Salmonella were ‘other’ serovars (i.e. not the target 5). Across the
EU MSs, between 2014 and 2016, 54 different serovars were reported from breeding flocks, of which

Figure 5: Distribution of the five target Salmonella serovars, other Salmonella serovars and
unspecified Salmonella serovars in breeding flocks of Gallus gallus in countries running
control programmes in accordance with Regulation (EC) No 2160/2003, 2014–2016
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35 serovars were reported less than five times within this 3-year time period. Finally, a significant
proportion of Salmonella reports were unspecified regarding the serovar involved; across all EU MSs
33% of Salmonella serovars were unspecified, with variability between MSs.

The human data includes domestically acquired cases and EU travel cases only. From Figure 6, it is
concluded that S. Enteritidis, S. Typhimurium (incl. monophasic strains) and S. Infantis, which are
regularly found in breeding flocks, are also reported in broiler flocks, layer flocks and human
salmonellosis cases (31.4%, 41.4% and 78.8%, respectively). However, S. Hadar and S. Virchow are
only infrequently reported in the progeny of breeding flocks. From broilers (N = 24,531 flocks), there
were only 9 isolations of S. Hadar and 11 isolations of S. Virchow in the official monitoring data.
Including the additional data, provided by some MSs on request, led to identification of 48 isolations of
S. Hadar and 160 isolations of S. Virchow. From layers (N = 3,323 flocks), there were only 18
isolations of S. Hadar and 13 isolations of S. Virchow in the official monitoring data; including the
additional data provided by some MSs identified 29 isolations of S. Hadar and 27 isolations of
S. Virchow. As mentioned previously, some MSs did not report the non-target serovars identified on
poultry farms. This is particularly frequent for broiler flocks where 44.4% of Salmonella were
unspecified (2014–2016). In some countries over 90% of broiler flock isolations reported provided no
serovar information in 2014–2016 (e.g. from Germany, Hungary, the Netherlands and Spain).

In humans, the number of reported cases of S. Hadar and S. Virchow was also low: 261 reports of
S. Hadar were submitted and 655 reports of S. Virchow, from a total of 140,756 sporadic cases
occurring in the EU (domestically acquired or from travel within the EU). There was a single small
outbreak (9 cases) of S. Virchow within this time period, which was linked to eggs.

From this descriptive analysis, it can be concluded that there is a case for reconsidering the 5
target serovars in breeding flocks due to the low frequency of S. Hadar and S. Virchow reported in all
sources (breeder, broiler, layer flocks and humans), although it is not possible to assess the impact of
such changes because there are multiple sources of these serovars other than breeding flocks and the
impact of breeding flocks depends on the individual strains involved and control actions in the food
chain. For example, as shown in Table E.2 in Appendix E, including S. Kentucky in a target for
breeding flocks could only provide a maximum reduction of 0.53% of reported broiler flock cases and
5.75% of positive laying hen flocks, assuming that breeding flocks are responsible for all infections in
commercial broiler and laying flocks, that there are no other sources of sporadic or persistent
infections and that application of a target would be 100% effective. None of these assumptions are
realistic. Similarly, it is not possible to assess the impact of proposed changes of target serovars on

Figure 6: Distribution of the five target Salmonella serovars and other or unspecified Salmonella
serovars reported in breeding, broiler and layer flocks and in humans in the EU
(domestically acquired and EU travel only), 2014–2016
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human cases, but for serovars that are ranked below S. Infantis, the maximum reduction for any
individual serovar, assuming that all human cases would be abolished (which is impossible to achieve)
by adding a serovar to the breeding flock target, would be less than 1% of human cases. In
Section 3.1.2.3, alternative serovars for inclusion as a target serovar are considered.

3.1.2.3. Alternative serovars of public health significance in top-5 target of breeding
flocks

Table 3 shows the most common serovars for human salmonellosis cases acquired in the EU
(domestically acquired and EU travel in 2016). In 2014–2016, S. Enteritidis, S. Typhimurium (including
monophasic strains) and S. Infantis accounted for a high proportion of reported serovars: 78.2%,
78.9%, and 79.4% in 2016, 2015 and 2014, respectively. Other serovars individually accounted for 1%
or less. S. Hadar is no longer in the top 20 human serovars; it was ranked as the 24th most common
serovar for EU-acquired infections during this time period. Salmonella Derby was among the top 5
most prevalent serovars in human cases acquired in the EU in 2016, but declined in 2017 to eighth
position, behind S. Newport, S. Agona and S. Kentucky (EFSA and ECDC, 2017d). In the EU the main
reservoir host is pigs (Zheng et al., 2017a) with which this serovar is considered to be host-associated,
and to a lesser extent, turkeys in some countries, due to previous international trade in breeding
turkeys and subsequent persistence in the commercial breeding and production pyramid. In the United
Kingdom, S. Derby has recently spread to broilers following contamination by association with infection
in turkey breeders and has persisted on some broiler farms where it has been introduced (APHA,
2018). S. Derby is considered to be less virulent than many serovars and lacks certain genes
associated with invasiveness (Litrup et al., 2010; Hauser et al., 2011; Card et al., 2016), but large
numbers of cases occur in countries with high consumption of uncooked or lightly cooked pig meat
and outside the EU strains with MDR and an extended host range are reported (Xu et al., 2017; Cao
et al., 2018b), reflecting the occurrence of MDR in many bacterial species in response to liberal
antimicrobial use in food animals. S. Newport is also among the most common Salmonella serovars
acquired in the EU, but this serovar is very diverse genetically (Zheng et al., 2017b) and many strains
are not considered to have a primary reservoir in food animals, being frequently found in wildlife,
reptile and amphibian pets and foods of non-animal origin (McLauchlin et al., 2018; Pan et al., 2018a;
Teplitski and de Moraes, 2018). The MDR S. Newport clones that are common in the USA and Canada
(Campbell et al., 2018; Cao et al., 2018a) are not known to be resident in the EU (Espie et al., 2005;
Horton et al., 2016) and despite the MDR profile, appear to be less virulent than S. Typhimurium
(Parisi et al., 2018). It is therefore not considered appropriate to specify S. Derby or S. Newport in a
target for breeding flocks, and the ranking of these serovars has already changed in 2017. In the case
of S. Newport, the ranking increased due to human cases resulting from importation of contaminated
foods of non-animal origin from outside the EU in one MS (EFSA and ECDC, 2018).

Table 6 provides the basis for selection of the serovars considered as alternative target serovars
while Table E.2 in Appendix E considers the suitability of 28 Salmonella serovars to be target serovars.
In addition to the most 20 common human serovars, the table also includes serovars linked to
outbreaks of Salmonella attributed to eggs/egg products or broiler meat and products thereof between
2014 and 2016, serovars identified by the SAM (ToR 2) as serovars contributing > 0.1% of human
cases that are attributed to broilers/layers (see Appendix E) and serovars identified by the literature
review carried out within Sections 3.1.1.2–3.1.1.4). S. Hadar, a current target serovar in breeding
flocks, was not identified in any of these sources but was included in Table E.2 in Appendix E for
completeness as it is included in the current target. S. Heidelberg is also included as it was identified
in the literature review as having an enhanced capability for vertical transmission and high virulence.
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The prevalence of each of the current and potential alternative target serovars in breeding, broiler
and layer flocks was reviewed and included in Table E.2 in Appendix E. The percentage is given for
each flock type based on the official monitoring data only. Details of which MSs had reported the
serovar are provided as well as, in some cases, additional information providing specific years and
number of cases the serovar was reported for a particular MS. This aims to ascertain whether there is
any likelihood of a serovar that has been detected in a broiler / layer flock could have originated from
a breeding flock. However due to the aggregated nature of the data, this can only be observational
and cannot indicate any causal link between breeding and production flocks (see Section 2.1.1).
Reviewing the data provided in Table E.2 in Appendix E it can be seen that, other than S. Enteritidis,
S. Typhimurium and S. Infantis, the serovars that are more frequently observed in humans are not
commonly found in breeding flocks of G. gallus, so the impact of introducing additional serovar targets
is considered to be limited unless there is substantial emergence of a serovar that is not subject to
regulatory control. S. Infantis, for example, has largely spread via environmental contamination within
broiler production rather than through the breeding pyramid (Karacan Sever and Akan, 2018).
However, it is still considered important to include S. Infantis in targets for breeding flocks because of
the frequency of its occurrence in poultry populations and humans.

For some serovars found in humans, there is a high frequency of detection in broiler/layer flocks in
some MS (e.g. S. Thompson in broilers in Italy; S. Kentucky in broilers in Spain) and a small number
of reports from breeding flocks. There are also reports from broiler/layer flocks in relevant numbers
(e.g. S. Kentucky in broilers in Romania and in both broilers and layers in Italy); however, there is no
record of important levels of detection of the common human serovars, other than S. Enteritidis, in
breeding flocks. Therefore, along with the difficulty of being unable to epidemiologically link detection
of Salmonella between breeders, production flocks and humans, it is not straightforward to discern
which other serovars should replace (if at all) S. Hadar and S. Virchow within the target 5.

For each of the serovars considered in Table E.2 in Appendix E, the four specific criteria provided
were used to determine Salmonella serovars with public health significance (see Section 3.1.1). A Red-
Amber-Green (RAG) score is assigned to each criterion for each serovar on the basis of the amount of
evidence available. From the specified criteria, an overall RAG status is assigned for each serovar,
based on an expert evaluation of the impact of the different criteria.

Therefore, after reviewing the available evidence, S. Kentucky is identified as a potential alternative
serovar for inclusion in a breeding flock target. S. Kentucky has spread among broiler populations in
several EU MS in recent years, and many strains are resistant to multiple antimicrobials and exhibit
high level resistance to critically important FQ antimicrobials.

Although not currently common in the EU, S. Heidelberg has shown a high propensity for vertical
transmission and resistance to ESCs in the American continent and some incursion into Europe via
imported poultry meat has been reported (see Section 3.1.1.4). This serovar could therefore be
considered for inclusion in a new top 5 to help prevent its dissemination within the EU, but it could be
more likely that a different serovar could be introduced from third countries bordering on Eastern
Europe than introduction of an important strain from a different continent (Jansen et al., 2019).

Table 6: Basis for the selection of the Salmonella serovars to be considered as alternative target
serovars of breeding hen flocks

Source of serovar identification
Salmonella serovars selected as an alternative target
serovar

Top 20 serovars infecting humans in the EU
(sporadic cases)

S. Enteritidis, S. Typhimurium, S. Typhimurium monophasic
variants, S. Infantis, S. Derby, S. Stanley, S. Newport,
S. Bovismorbificans, S. Virchow, S. Agona, S. Kentucky, S. Java,
S. Muenchen, S. Brandenburg, S. Saintpaul, S. Oranienberg,
S. Thompson, S. Braenderup, S. Montevideo, S. Goldcoast

Additional serovars associated with
outbreaks attributed to broilers/eggs

S. Senftenberg

Additional serovars identified by the source
attribution model (ToR 2)

S. Napoli, S. Weltevreden, S. Livingstone, S. Havana,
S. Mbandaka

Additional serovar identified by the literature
review

S. Heidelberg

Additional serovar for completeness (current
target serovar)

S. Hadar
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From this descriptive analysis it can be concluded that S. Enteritidis, S. Typhimurium (including
monophasic strains), S. Infantis, S. Kentucky, and possibly S. Heidelberg or S. Thompson could be
relevant for consideration within a new selection of five target serovars, based on its occurrence in
breeding flocks, laying flocks and broiler production in some MS, plus enhanced virulence of some
strains. All of the other considered serovars were assigned a green RAG status overall and therefore
not considered as an alternative target Salmonella serovar in breeding flocks.

A further alternative could be a more proactive selective approach to control of Salmonella in the
breeding and production pyramid via inclusion of a variable fifth serovar in MS-specific national prevalence
targets for breeding flocks if serovars of particular concern arise in breeding flocks and progeny in that
country, or are considered to be a threat, based on occurrence and epidemiology in other regions. For
example, France has included S. Kentucky in flock prevalence targets on the basis of its rapid emergence
and dissemination in poultry and humans in countries bordering Europe and in some other EU MS.

3.1.2.4. Consideration of ‘all serovars’ as a target for breeding flocks

In the mandate for this scientific opinion, the possibility of considering all serovars in flocks of
breeding hens as target serovars was requested. Collectively many other serovars are likely to be
transmitted from breeding flocks to hatcheries and thence to progeny, at least intermittently, and may
lead to long-term or permanent contamination of hatcheries or poultry farms, therefore there is a case
for considering a target that includes all serovars.

It is assumed, since the mandate specifies that control measures would remain unchanged, that
only the detection of S. Enteritidis and S. Typhimurium in a breeding flock will result in the mandatory
cull of the flock and extensive cleaning and disinfection in all MS, which would limit the impact of the
target if infected flocks remain in production, although in many MS there would be a cull if any of the
target serovars were found and in some MS, or in grandparent flocks and above, breeding flocks
would be culled if any Salmonella serovar was confirmed.

To consider the impact of a 1% target for Salmonella in breeding flocks on EU MSs, the EU data were
analysed. Presented in Figure 7 is both the prevalence, for each MS, for both the five target serovars (the
current scenario) and also the prevalence of all Salmonella in 2014, 2015 and 2016. From this descriptive
analysis, it can be seen that under the current five serovar target six MSs failed the target in breeding
flocks at some point in the previous 3 years: Belgium (2014), Bulgaria (2015), Denmark (2014), Greece
(2014, 2016), Poland (2014, 2015, 2016) and Romania (2014). However, if there had been an ‘all
Salmonella’ serovar target, 18 MSs would have failed the target at some point during the 3 years; only the
Czech Republic, Estonia, Finland, France, Portugal and Sweden did not exceed the 1% target in this time
frame. Since, apart from S. Enteritidis, Salmonella serovars that occur in broiler and laying hen flocks
predominantly originate from feed or environmental contamination rather than from breeding flocks, it is
not possible to assess the impact of an ‘all Salmonella’ target on either production flocks or human cases.

Advantages of an ‘all serovar’ target

A target that incorporates all serovars could be more effective than one for selected serovars as the
most relevant serovars in breeding flocks vary between MS and over time. A target for all serovars
would help focus greater attention on any serovar that occurs in breeding flocks, which should help
minimise further dissemination and reduce the occurrence of resident contamination in hatcheries and
dissemination of Salmonella via international trade in hatching eggs. A target that includes all serovars
would be more effective in reducing the risk of introduction of newly emerging or re-emerging strains
with ‘epidemic potential’, especially if control measures are taken to deal effectively with those serovars
or strains that have already been shown to present a serious risk to poultry and human populations in
other MS or outside the EU. An ‘all serovar’ target would also focus more attention on the feed
industry, because of fears of introduction of Salmonella to flocks via breeder feed. A large proportion
of Salmonella infections in chickens originate from contaminated oil seed residue-based feed
ingredients or recontamination of heat-treated feed during cooling or fat coating stages. The same
feed mills are usually used for producing breeder feed and feed for other food animals, so improved
feed hygiene would have wider benefits (Jones, 2011).

Disadvantages of an ‘all serovar’ target

Many MS may not be able to achieve a 1% prevalence target for all serovars, whereas most MS
can meet the current target (Figure 7). A dual target could therefore be considered for the previously
mentioned high priority serovars and for all serovars. There is also not a clear relationship between the
occurrence of many serovars in breeding flocks and commercial generations or humans, since sources
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of Salmonella for both populations are diverse. This could result in unnecessary control action and loss
of sources of food if more breeding flocks are culled. Still, culling is the most effective option for
breeding flocks that are infected with strains of Salmonella serovars that are being transmitted to
progeny and could be recommended for infections involving the top five named serovars. Other
containment methods such as improved egg hygiene, segregated hatching, competitive exclusion
treatment and improved terminal hygiene following depopulation of infected flocks could be applied for
other serovars that are considered less relevant.

Figure 7: Percentage of breeding flocks in EU MSs that are positive for the 5 target Salmonella
serovars (top) and for Salmonella (bottom) in 2014, 2015 and 2016
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3.1.3. Concluding remarks and recommendations

• Although vertical transmission of Salmonella within the contents of eggs resulting from transfer
from the ovary or oviduct during the formation of eggs is an uncommon event, it can occur and
infection that can be subsequently spread between hatchlings further amplifies the level of
Salmonella. Certain zoonotic Salmonella serovars, particularly S. Enteritidis and S. Heidelberg (in
the American continent), have been shown to be disseminated by vertical transmission, but this
can be strain-dependent. Vertical transmission also increases the public health risk in relation to
table eggs.

• Most Salmonella serovars can transmit from breeding flocks to progeny via faecal
contamination of the shells of hatching eggs, which can result in cross-contamination of
various sources of chicks during the hatching process, either on a short-term basis, or as a
result of establishment of longer term resident contamination within some hatcheries.

• It is not possible to assess the impact of proposed changes of target serovars in breeding
flocks, either on laying hen or broiler populations. There are multiple sources of these serovars
other than breeding flocks and the impact of breeding flocks depends on the individual strains
involved and control actions in the food chain. It is also not possible to assess the impact of
proposed changes of target serovars on human salmonellosis cases for the same reasons; for
example, control of S. Enteritidis in breeding flocks in the United Kingdom had a small impact
on human cases compared to vaccination of laying hens.

• There is justification for retaining S. Enteritidis, S. Typhimurium (including monophasic
variants) and S. Infantis in the target for breeding flocks considering their occurrence in
breeding hen, laying hen and broiler flocks, as well as in humans. S. Infantis can readily
acquire resistance to critically important antimicrobials, be disseminated within the poultry
industry and is difficult to eliminate from broiler farms. It is not clear whether the inclusion of
serovars other than S. Enteritidis would have limited their dissemination, and S. Infantis, which
has been included in breeding flock targets since 2007, has still emerged and spread in broiler
flocks across the EU since then.

• Apart from these three serovars, the predominant Salmonella serovars in humans are subject
to change on an annual basis, so a new top 5 serovar target list based on human prevalence
could become out of date quite rapidly, as has occurred for the current target serovars,
S. Virchow and S. Hadar.

• S. Kentucky could be proposed for inclusion in a breeding flock target as the fourth serovar as
it has spread among broiler populations in several EU MS in recent years, and many strains are
resistant to multiple antimicrobials and exhibit high level resistance to critically important FQ
antimicrobials.

• For the fifth serovar, there are several options depending on Salmonella control priorities at the
EU and MS level

� S. Heidelberg could be included on a precautionary basis to prevent dissemination of
epidemic strains in the EU. Although not currently common in the EU, this serovar has
shown a high propensity for vertical transmission and resistance to ESCs in the
American continent.

� S. Thompson could be proposed as an option for enhanced control in the EU, based on
its occurrence in breeding flocks and dissemination in a small number of MS, plus
enhanced virulence of some strains.

� A further alternative could be a more proactive selective approach to control of
Salmonella in the breeding and production pyramid via inclusion of a variable fifth
serovar in MS-specific national prevalence targets in breeding flocks if serovars of
particular concern arise in breeding flocks and progeny in that country, or are
considered to be a threat, based on occurrence and epidemiology in other regions.

• A target that incorporates all serovars could be more effective than one for selected serovars
as the most relevant serovars in breeding flocks vary between MS and over time. A target for
all serovars would help focus attention on any serovar that occurs in breeding flocks, which
should help minimise further dissemination. Such a target would be more effective in reducing
the dissemination of all serovars, including newly emerging or re-emerging strains with
‘epidemic potential’, especially if measures are taken to effectively control those serovars or
strains that have already been shown to present a serious risk to poultry and human
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populations in other MS or outside the EU, and would place greater pressure on poultry feed
producers to minimise Salmonella contamination. It would also avoid the possibility of
reversion if previously specified target serovars were to re-emerge in breeding flocks.

• In 2016, 13 MSs exceeded the prevalence target of 1% for all serovars. A dual prevalence
target for all serovars and for the selected high priority serovars could be proposed.

• A focus on improved detection and control of S. Enteritidis in all poultry populations,
particularly early and sensitive detection in laying hens, could support the proposed targets for
breeding flocks.

• It is recommended to investigate in detail the reasons for failure to control S. Enteritidis in
countries where it appears regularly in chicken breeding flocks, laying hens or broilers,
especially if current or proposed targets are exceeded.

• It is also recommended to use WGS to compare isolates from poultry breeding flocks with
those in commercial generations of birds and in humans in order to provide more definitive
evidence of a link between breeding flocks, commercial generations and human infections. This
could be done via the EU Reference Laboratories (EURL) and network of Salmonella National
Reference Laboratories (NRLs), as well as the joint ECDC/EFSA database for animal and food
Salmonella isolates from 2019 when WGS data will be available, using stored isolates and
sequence data from the MS NCPs.

• Reporting of all individual Salmonella serovars in poultry flocks would facilitate source
attribution and epidemiological studies.

3.2. Public health impact of a new Salmonella target in adult flocks of
laying hens of Gallus gallus

3.2.1. Monitoring of Salmonella in laying hen flocks

In laying hens flocks, 2016 was the ninth year in which MS were obliged to implement a Salmonella
NCP. According to Regulation (EC) No 517/2011, targeted serovars are S. Enteritidis and
S. Typhimurium, including its monophasic variant. The prevalence target (which depends on the
prevalence of the preceding year and was equal in 2016 to 2% or less for all MS except for Poland
where it was 2.56% or less) was set for all commercial-scale adult laying hen flocks in the production
period. However, MS with fewer than 50 flocks of adult laying hens would attain the target if only one
adult flock remained positive.

During 2008–2016, no MS reported a 0% prevalence for target serovars in these flocks. The
estimated EU flock prevalence of the target Salmonella serovars in laying hens was 3.7% CI95[2.6;
5.3] in 2008 and decreased to 0.8% CI95[0.54; 1.2] in 2014. From 2014 onwards, it increased to 0.9%
CI95[0.62; 1.3] in 2015 and to 1.3% CI95[0.86; 1.9] in 2016. The 2016 prevalence was higher than
2014 at the limits of significance (p = 0.056). The decreasing EU-level flock prevalence of target
Salmonella serovars in laying hens reported since the implementation in 2008 of NCPs, has thus been
reversed into an increasing trend during the last two years. The exclusion of Poland did not change
this EU trend, and during 2015–2016, seven MS reported an increased target Salmonella serovars flock
prevalence in laying hens. The trend for estimated EU S. Enteritidis flock prevalence in laying hens
during 2008–2016 was similar to the trend described for the target serovars and notably increased
since 2014. This recent increase involved several MS and was more pronounced in some of them.

Reported monitoring figures for flocks of laying hens in 2016 (see Figure 8) show that seven MS
exceeded the 2016 flock prevalence targets for S. Enteritidis and S. Typhimurium, while during 2015
only one MS, Poland, did not meet it. However, 15 MS exceeded 1% during 2016, including some of
the major egg producing and exporting countries.

Salmonella control in poultry flocks and its public health impact

www.efsa.europa.eu/efsajournal 41 EFSA Journal 2019;17(2):5596



3.2.2. Baseline source attribution model

The SAM included the following 23 MSs: Austria, Belgium, Croatia, the Czech Republic, Denmark,
Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Malta, Poland, Portugal,
Slovakia, Slovenia, Spain, Sweden, the Netherlands and the United Kingdom. Five MSs were excluded
from the analysis because of lack of sufficient data as explained in Section 2.2.2.

The results of the baseline model are presented in Table 7. As explained above, the baseline model
applied to the extent possible reported monitoring (prevalence) data and human surveillance data
from 2016, except for slaughter pigs, where for most countries the BLS data from 2006 to 2007 were
used. The results indicate that 11.7% (with 95% credibility interval according to Bayesian modelling
CrI95[5.7; 22.2]) of the true human salmonellosis cases (i.e. estimated number of cases when
accounting for underestimation) in the EU were attributed to the laying-hen reservoir. This corresponds
to 465,200 CrI95[212,100; 979,800] human cases in 2016.

For the other animal-food sources included in the model, the attribution estimates were that 41.5%
CrI95[23.1–59.7], 24.9% CrI95[11.1; 45.7] and 7.5% CrI95[4.7; 10.6] of the estimated number of
human salmonellosis cases could be attributed to the pig, broiler and turkey reservoir, respectively. In
total, 14.1% of human cases could not be attributed to any of the included sources. A proportion of
these were reported as known travel-related. The estimated number of true human salmonellosis
cases in the EU in 2016 was 4.08 million CrI95[2.22; 7.39]. The outbreak figures in Section 3.1.1.1,
give a much higher attribution to ‘eggs and egg products’ thereof’, being involved in 70.6% of the
outbreaks and 63.7% of the cases when comparing with ‘broiler meat (Gallus gallus) and products
thereof’, ‘pig meat and products thereof’, ‘turkey meat and products thereof’ and ‘bovine meat and
products thereof’. These were involved in 11.0%, 13.1%, 1.2%, and 4.1% of the outbreaks and 9.9%,
18.7%, 5.3% and 2.4% of the outbreak cases, respectively.

0

1

2

3

4

5

6

7

8

9

10

P
ol

an
d

+M
al

ta

E
st

on
ia

C
ro

at
ia

P
or

tu
ga

l

H
un

ga
ry

+L
at

vi
a

+F
ra

nc
e

+C
ze

ch
R

ep
ub

lic

+S
pa

in

+S
lo

ve
ni

a

+G
re

ec
e

+G
er

m
an

y

+B
ul

ga
ria

+N
et

he
rla

nd
s

+R
om

an
ia

+I
ta

ly

+D
en

m
ar

k

+A
us

tri
a

+B
el

gi
um

+S
w

ed
en

+F
in

la
nd

+C
yp

ru
s

+I
re

la
nd

+L
ux

em
bo

ur
g

+S
lo

va
ki

a

+U
ni

te
d

K
in

gd
om

Pr
ev

al
en

ce
 (%

) o
f p

os
iti

ve
 la

yi
ng

 h
en

 fl
oc

ks
 

2016  Target

Figure 8: Prevalence of laying hen flocks of Gallus gallus during the production period positive for
S. Enteritidis or S. Typhimurium (including the monophasic variants) and targets for MS, 2016

Table 7: Estimated number and percentage (%) of human salmonellosis cases in EU attributable to
the four main animal reservoirs included in the baseline model

Animal
reservoir

Estimated number of human cases(a) Percentage of human cases

Mean Median 2.5% 97.5% Mean Median 2.5% 97.5%

Broilers 1,018,000 878,600 404,600 2,465,000 24.9 23.6 11.1 45.7

Layers 465,200 420,600 212,100 979,800 11.7 10.9 5.7 22.2
Pigs 1,718,000 1,534,000 753,600 3,781,000 41.5 41.5 23.1 59.7

Turkeys 306,600 282,600 144,400 610,300 7.5 7.5 4.7 10.6

Total
cases(b)

4,083,000 3,838,000 2,220,000 7,390,000

(a): Accounting for underreporting.
(b): Includes unknown and travel (accounting for a mean of 575,200 cases i.e. 14.1%).
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In 2010, the estimated number of true human salmonellosis cases was 5.41 million CrI95[3.03;
9.51] (EFSA BIOHAZ Panel, 2011a, 2012). It should be noted though that two model outcomes are not
directly comparable as fewer MSs are included in the current model and therefore the estimated
number of cases is expected to be lower (both models excluded Bulgaria, while the 2010 model
included Cyprus, Lithuania, Luxembourg and Romania, whereas the present model did not, but it did
include Croatia and Malta, while the 2010 model did not).

At the EU population level, the baseline model estimated the pig reservoir to be the most important
source of human infections, followed by the broiler and laying hen reservoir. However, when looking at
the relative risk between laying hens/eggs and the other three sources weighted by the tonne of
meat/eggs available for consumption, this picture changes, indicating that the risk of infection for the
individual consumer is highest when consuming turkey meat followed by the consumption of broiler
meat, whereas the risk for consuming pig meat was lower and almost the same as for eggs/meat from
spent hens (i.e. the laying hen reservoir) (Table 8). The relative risks can be interpreted as the
probability of acquiring salmonellosis for the individual consumer when consuming e.g. 100 g of turkey
meat is almost two times higher than when eating 100 g of shell eggs.

The results presented in Table E.3 in Appendix E show the distribution of the estimated laying hen-
associated cases by serovar. Around 95.4% of the laying hen-associated human salmonellosis cases
were caused by the currently regulated serovars, and S. Enteritidis is still by far the most important
serovar, representing 93.3% of human cases. Table E.4 in Appendix E provides this information for all
the reservoirs included in the model. Most (40.9%) of the estimated 2.19 million human cases
involving S. Enteritidis could be attributed to the broiler reservoir, followed by 33.2% attributed to
pigs, 19.8% to layers and 6.1% to turkeys. For S. Typhimurium and its monophasic variant, the
majority (87.2% of 0.48 million human cases and 91.5% of 0.45 million human cases, respectively)
could attributed to the pig reservoir. Only 1.67% and 0.46%, respectively, could be attributed to the
laying hen reservoir.

The higher attribution to the broiler reservoir, especially for S. Enteritidis cases, was unexpected but
can be explained by particularly high reported prevalence in two MSs (the Czech Republic and Poland)
that contributed substantially to the number of broiler-related S. Enteritidis cases. Therefore, an
additional model was run excluding these two countries, which resulted in a decline in the mean
number of broiler-related S. Enteritidis cases from 896,900 broiler-related cases to 130,000 cases.
Similarly, the exclusion of these two MSs from the model would result in a relative risk of broiler meat
consumption compared to egg consumption of 0.39 (broiler-related cases per tonne: 0.0259; egg-
related cases per tonne: 0.0662).

The high attribution of S. Enteritidis cases to the pig reservoir has also been observed in previous
studies (Hald et al., 2012a). In this study, around 662,000 (91%) of the 728,000 pork-associated
S. Enteritidis cases could be explained by four MSs (Spain, Portugal, Greece and Hungary), which were
also the countries having the highest prevalence of S. Enteritidis in pigs ranging from 1.15% to
1.52%). In comparison, the average prevalence in the other 19 MSs was 0.2%. Salmonella Enteritidis
was also found in laying-hen flocks in the same four MSs with prevalence ranging from 0.95% to
4.00%, and it is considered that the model, because of lack of further subtyping information, was
unable to distinguish sufficiently between the pig and laying hen reservoir, resulting in more cases than
expected being attributed to the pig reservoir. In addition, the serovar data used for pigs in three of
these MSs (Greece, Hungary and Portugal) were from the BLS, and therefore likely to not represent
the situation in 2016.

As mentioned in Section 2.1.2.1, data from the cattle reservoir were insufficient to allow for its
inclusion in the model. The consequence of this may be that a proportion of human cases were
wrongly attributed to reservoirs with similar serovar distributions. If more cases were attributed to the

Table 8: Relative risk of human salmonellosis in EU per kg meat/eggs eaten attributable to the four
main animal reservoirs included in the baseline model

Broilers Layers Pigs Turkeys

Available for consumption (3 1,000 tonnes) 11,382 6,264 22,676 2,107

Cases per tonne 0.0894 0.0743 0.0758 0.1455

Risk relative to laying hens/eggs(a) 1.20 1 1.02 1.96

(a): The risk ratios can be interpreted as the risk of salmonellosis for the individual consumer when consuming e.g. 100 grams
of turkey meat is two times higher than when eating 100 grams of eggs.
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laying-hen reservoir because of this, it may have resulted in a higher reduction of the estimated
number of both absolute and relative human cases in the scenario analyses than what would occur in
reality. Overall, it is considered unlikely that the lack of available data from other food sources biases
the model result significantly, as long as it is kept in mind that SAM only attributes domestic and
sporadic cases to EU animal reservoirs.

3.2.3. Impact of new Salmonella target in laying hen flocks

The results of the baseline model were compared with the scenario in which the combined
prevalence of the current target serotypes (S. Enteritidis and S. Typhimurium including monophasic
strains) in laying hen flocks was set at 1%. The prevalence was kept as reported if it was already
below 1%. It should be noted that the estimated changes to human incidence rates only apply to the
MSs included in the model.

Table 9 provides the overall summary statistics for each output and scenario. The scenario results
in an estimated reduction in the number of layer-associated human salmonellosis cases of 53.38%
CrI95[39.11; 65.69] compared to the situation in 2016. In absolute numbers, this corresponds to an
estimated reduction of 254,400 cases CrI95[98,540; 602,700] out of the total 4.08 million human
salmonellosis number of estimated true cases, considering the 23 MSs included in the model. This
reduction would translate into a 6.2% reduction of the 4.08 million CrI95[2.22; 7.39] human
salmonellosis estimated true cases.

3.2.4. Model validation, assumptions and data uncertainty

Results of the goodness of fit ratio (i.e. the reported divided by the estimated number of cases per
MS) showed that the model fit was satisfactory for the vast majority of the countries. Poor fit was in
particular observed for countries with estimated low underreporting factors (Finland and Sweden).
However, since these MS contributed less than 3,000 true cases to the total figure, their impact was
considered minimal, but the results do suggest revisiting the estimated underreporting factors. The
goodness of fit ratios for the Czech Republic and Poland were both very close to 1 (0.997 and 0.993,
respectively) and could not help explain the estimated high number of broiler-related cases in these MSs.

The attribution of human Salmonella infections to food-animal sources in the EU on the basis of
available data implied a number of assumptions:

• All major food sources of human salmonellosis in EU are included in the model;
• The sampling schemes and data collection of the EU harmonised monitoring programs in

broilers, laying hens and turkeys, and the BLS of slaughter pigs generate prevalence data that
are representative of the included animal reservoirs and MSs;

• The serovar distribution data used for each animal reservoir are representative of the included
animal reservoirs and MSs;

• The food-borne outbreak reporting system captures all large Salmonella outbreaks with around
the same detection sensitivity in each MSs;

• The TESSy generates data that are representative of the occurrence of human salmonellosis in
each MSs as well as the serovar distribution;

• If travel information was not recorded, or was reported as ‘Unknown’, and it was not possible
to estimate an additional number of travellers based on reported travel data, the human
Salmonella infection was assumed to be acquired in the country where it was reported;

• The EUROSTAT production and trade data reflects the true flow of food in EU and food
imported into a country is generally also consumed in that country, unless the amount

Table 9: Estimated number and percentage (%) of human salmonellosis cases in EU originating
from the laying hen reservoir under the scenario where the prevalence of the current
target serovars (S. Enteritidis and S. Typhimurium including monophasic strains) was set
at a maximum of 1% (or less if the prevalence was already below 1%)

Mean Median 2.5% 97.5%

Estimated number of human cases (baseline) 465,200 420,600 212,100 979,800

Estimated number of human cases (scenario) 210,800 195,400 104,000 407,200
Absolute difference baseline vs scenario 254,400 222,100 98,540 602,700

Percentage difference baseline vs scenario 53.38 53.75 39.11 65.69
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produced in a country is less than the amount exported; in such cases re-exportation of
imported food was assumed;

• The ability of a Salmonella serovar to cause infection is a characteristic of the serovar and
independent of time period and country of isolation;

• Food preparation practices and consumption patterns influence the estimated ability of a food
source to act as a vehicle for infection, and so the source-dependent factors may vary from
country to country.

Due to data limitations and data uncertainty, it is obvious that some of the above assumptions can
be questioned. It is not possible to quantify the effect of these assumptions and data uncertainties
may have on the model results, but the most important data issues identified have been included in
Table F.2 in Appendix F.

A similar model to the SAM is applied annually to report on the contribution of different sources to
human salmonellosis cases in Denmark (de Knegt et al., 2016). The data sources used in 2016 were
quite different, particular for the pig reservoir and for imported food, where prevalence and serovar data
were obtained from extensive monitoring of pork carcasses at Danish slaughterhouses and from
monitoring of imported meat at importers’ premises. In addition, the Danish model used multiple locus
variable number tandem repeat analysis (MLVA) typing and resistance profiling to further distinguish
strains within S. Typhimurium, monophasic Typhimurium and S. Enteritidis. Despite these differences, it
was considered useful to compare the results from the Danish model with the Danish results from the EU
model. For broilers and layers, the two models agreed well (broilers: 29% DK model and 31% EU model;
laying hens: 12% DK model and 10% EU model). In contrast, the proportion of attributed cases from
pigs/pork was considerably larger according to the DK model than the EU model (57% vs 22%), whereas
the opposite was the case for turkeys (2% vs 37%). It is well recognised in Denmark that pork is a major
source of domestic human salmonellosis, particularly S. Typhimurium and monophasic Typhimurium. The
lack of further subtyping data, (especially for S. Typhimurium, monophasic Typhimurium and
S. Enteritidis) in the EU data that would allow for better distinction between reservoirs with similar
serovar distribution, as well as the low-quality EU data on the pig reservoir are assessed to be the main
reasons for the observed discrepancies between the DK and EU model.

Despite the relatively limited estimated contribution of the laying hen reservoir calculated by the
model, effective control of S. Enteritidis in laying hens is essential because of the important role of
eggs in human infections and outbreaks. If the contribution of the laying hen reservoir to human cases
has been underestimated, for example because of failure to identify infected laying flocks resulting in a
substantially lower reported prevalence than is actually the case, as has been shown in recent
outbreak investigations (EFSA and ECDC, 2017a; ECDC, 2018), and studies cited below, the potential
impact of a lower prevalence target would be greater if it leads to improved control of S. Enteritidis. A
stricter target for laying hens is expected to be exceeded when S. Enteritidis-infected flocks remain in
production for heat-treated eggs, as most laying farms comprise multiple age flocks and if infected
hens remain, there is an increased probability of transmission to other flocks on the holding (Dewaele
et al., 2012). The true prevalence and impact of national targets is difficult to assess because of a low
detection rate in flocks using limited numbers of faecal samples. This mean that some infected flocks
may only be detected months after introduction of infection, or in some cases may not be detected at
all (Riemann et al., 1998; Van Hoorebeke et al., 2009; Arnold et al., 2010; Arnold et al., 2011; Arnold
et al., 2014a,b). Culling of infected laying hen flocks, followed by effective decontamination of housing,
is therefore a more effective control measure than heat treatment of eggs.

It is also possible that changes in vaccination programmes used in the EU for laying-hen flocks
against S. Enteritidis, now that vaccination for S. Enteritidis is no longer obligatory under EU
regulations in any MS as the 10% flock prevalence is not exceeded, may play a role in the increasing
occurrence of S. Enteritidis. For instance, certain live vaccines are more difficult to administer
effectively via long complex drinker lines in large laying houses, because of limited stability once
reconstituted (Davies and Carrique-Mas, 2010a) so may provide more limited protection. Similarly,
complacency in implementation of biosecurity measures such as pest control and terminal hygiene
between flock cycles may have followed the initial success of the Salmonella control programmes
leading to a greater risk of introduction or recurrence of infection. It is therefore recommended that
further investigation of these aspects is carried out, including gathering more detailed information on
the diverse vaccination practices in different EU MS.
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3.2.5. Concluding remarks and recommendations

• The estimated number of all human salmonellosis true cases (i.e. accounting for under-
ascertainment and underreporting) in the 23 EU Ms included in the Salmonella SAM in 2016
was 4.08 million CrI95[2.22; 7.39].

• 11.7% CrI95[5.7; 22.2] of the cases were attributed to the laying hen reservoir. This is estimated
to correspond to around 465,200 human true cases CrI95[212,100; 979,800] in 2016.

• For the other Salmonella sources included, the SAM estimated that 41.5% CrI95[23.1–59.7],
24.9% CrI95[11.1; 45.7] and 7.5% CrI95[4.7; 10.6] of the estimated number of human
salmonellosis true cases could be attributed to the pig, broiler and turkey reservoirs,
respectively. Around 14% of human cases could not be attributed to any of the included
sources. A proportion of these were reported as known travel-related.

• The SAM estimated that per tonne of food available for consumption, table eggs were
associated with a similar risk as pig meat (0.07 and 0.08 cases per tonne, respectively). The
risks associated with broiler meat and in especially turkey meat were higher (0.09 and 0.15
cases per tonne, respectively).

• Around 95.4% of the layer-associated human salmonellosis true cases were caused by the
currently regulated serovars. Most (40.9%) of the estimated 2.19 million human cases of
S. Enteritidis could be attributed to the broiler reservoir, followed by 33.2% attributed to pigs,
19.8% to layers and 6.1% to turkeys.

• For S. Typhimurium and its monophasic variant, the majority (87.2% of 0.48 million human
cases and 91.5% of 0.45 million human cases, respectively) could be attributed to the pig
reservoir. Only 1.67% and 0.46%, respectively, could be attributed to the laying hen reservoir.

• These conclusions are based on analysis of retrospectively collected data. The Salmonella
situation in the EU is, however, dynamic, and - the food animal reservoir- associated risks and
the relative importance of the different serovars are expected to change over time and data
quality may improve. Therefore, it is important to review the model and its conclusions as new
information emerges.

• In 2016, 7 MS exceeded the 2016 2% flock prevalence targets in laying hen flocks for
S. Enteritidis and S. Typhimurium including the monophasic strain. In total, 15 MS exceeded
1% during 2016, including some of the major egg producing and exporting countries.

• If a 1% target of the EU control programme of Salmonella in laying hen flocks would be met in
the 23 EU MSs, the number of layer-associated human salmonellosis true cases is estimated to
be reduced by 53.38% CrI95[39.11; 65.69] compared to the situation in 2016.

• In absolute numbers, this corresponds to an estimated reduction of 254,400 true cases
CrI95[98,540; 602,700] associated with the laying-hen reservoir. This reduction would translate
in a 6.2% reduction of the overall 4.08 CrI95[2.22; 7.39] million human salmonellosis estimated
true cases.

• Investigation of the potential and reasons for under-detection of Salmonella, particularly
S. Enteritidis, in flocks of laying hens and field investigations on the effectiveness of
administration of Salmonella vaccination programmes used in laying flocks and their protective
effect are recommended.

• An EU-wide survey of Salmonella in cattle or beef would help to investigate the role of the
cattle reservoir as a source of human infections and in pigs or pork to obtain more recent and
comparable data in order to reduce the uncertainty on the role of the pig reservoir as a source
of human infections.

3.3. Risk factors for the occurrence of Salmonella in laying hens in
relation to the farming methods and other animal welfare indicators

The risk/protective factor(s) in relation to the farming systems for laying hen production or
breeding flocks considered, based on the available evidence, were: outdoor access, cage systems,
alternative systems, age of the production system and previous Salmonella infection, farm size, group
size and stocking density, the presence of rodents, and cleaning and disinfection. The animal welfare
indicators considered were: stress (other than heat stress), heat stress, moulting, activity/behaviour,
body status (e.g. FPD) and other diseases.

The assessment was based on both literature review, mainly focussed on studies in the EU and
equivalent high-income countries, on the occurrence of Salmonella in laying hen flocks housed in
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different farming systems, and based on the data requested from the MS. More information on
housing systems is provided in Appendix A and elsewhere.29

3.3.1. Literature data

Table C.3 in Appendix C provides an overview of the studies dealing with the occurrence of
Salmonella in laying hens in relation to the farming methods and other animal welfare indicators.

The papers have been screened for internal and external validity and some limiting factors have
been identified:

• Limited sample size on both farm and individual sample level;
• Existence of confounding factors not (properly) addressed in some studies;
• Diversity in sample matrix and laboratory analysis conducted;
• Non-recent data in studies.

Most of the studies do not report on the odds ratio (OR) or relative risk (RR) of the risk/protective
factors and therefore a meta-analysis was not conducted. Whenever available, this information is
provided in the summary below.

3.3.1.1. Impact of cage vs non-cage farming (alternative systems)

Results from studies investigating the effect of housing systems/farming methods on Salmonella
prevalence/transmissions/persistence in laying hen populations are very diverse and sometimes
conflicting. This could be due to differences in the methodology used and the populations being
studied in different countries. The literature found can be divided into three groups: (1) studies that
concluded that the occurrence of Salmonella in cage systems was higher than in alternative systems;
(2) studies that concluded occurrence of Salmonella was lower in cage systems, and (3) studies that
do not show any difference between cage and alternative systems.

Occurrence of Salmonella in cage systems was higher than in alternative systems

The majority of studies that compared cage to non-cage systems in the EU found a higher
Salmonella prevalence in laying hen flocks housed in conventional cages compared to alternative
systems. These studies were mostly carried out before the ban on conventional cages in 2012. Small
battery cages have been replaced by larger cages holding bigger groups of birds in which enrichment
by installation of a nest boxes pecking and scratching area, claw shorteners and perches was provided.
It has been speculated that replacement of conventional cages by enriched cages may have played a
part in the initial reduction of S. Enteritidis in laying hens from 2009, when restrictions on sales of
fresh eggs from infected flocks were introduced (ACMSF, 2016).

A higher occurrence of Salmonella in cage systems was observed in studies from multiple countries
as cited by Holt et al. (2011), more specifically including in Germany (Methner et al., 2006), the United
Kingdom (Snow et al., 2010; Wales et al., 2010), France (Mahe et al., 2008), and Belgium (Namata
et al., 2008).

Furthermore, a retrospective epidemiological study in Denmark (Molbak et al., 2002) found that
consumption of eggs from conventional cages was associated with human salmonellosis, whereas no
association with eggs from free-range or organic production was found.

Surveys in Austria (Lassnig et al., 2011) and France (Huneau-Salaun et al., 2007), conducted in the
framework of the EU-wide BLS on Salmonella in laying flocks, found higher occurrence of Salmonella
contamination in cage systems compared to alternative systems. In the latter study, it was hypothesised
that better cleaning practices in non-cage houses had a protective effect against Salmonella persistence.
A later study from the same research group (Huneau-Salaun et al., 2009) reported results from 519
flocks studied between October 2004 and September 2005. The Salmonella status of the flocks was
assessed from five faeces and two dust samples analysed using a classical bacteriological method. At
least one Salmonella-positive sample was found in 93 flocks. The prevalence was significantly higher in
caged flocks than in on-floor flocks (30.9% in caged flocks vs 7.9% in on-floor flocks; p < 0.001); the
non-adjusted OR associated with cage housing compared to on-floor housing was 35.1 CI95[12.2; 101.1]
(p < 0.001).

Several other studies also used the data collected as part of the BLS. In these, a significant difference
between the housing systems was often observed, and cages were found to be a risk factor compared

29 https://zootecnicainternational.com/featured/housing-systems-laying-hen-husbandry/
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to non-cage systems, as was also found in the overall analysis of the BLS (EFSA, 2007). Among the
related studies, Snow et al. (2010) collected data from 380 laying hen holdings to investigate risk factors
for Salmonella at farm level. Using a multivariable logistic model weighted to account for the survey
design, non-caged systems (OR 0.14 CI95[0.04; 0.49], p = 0.002), vaccination (OR 0.08 CI95[0.02;
0.38], p = 0.001), the use of a non-company feed source (i.e. from independent feed mill) (OR 0.11
CI95[0.03; 0.47], p = 0.003), running the site as all-in/all-out (OR 0.06 CI95[0.01; 0.24], p < 0.001) and
the presence of cats and dogs on the farm (OR 0.14 CI95[0.04; 0.50], p = 0.002) were associated with a
reduced risk of being positive for S. Enteritidis. A similar study was conducted in Germany (Ovelhey
et al., 2009). Based on the results of the univariable logistic regression model, the highest risk of
Salmonella was found in cage systems, but confounding may have existed, as the authors could not
separate the effect of different risk factors such as holding or flock size, and residual confounding was
also deemed likely because of factors not considered in the BLS.

Similarly, Belgian data from the 2005 BLS (Namata et al., 2008) showed that flocks reared in cages
were more likely to be positive compared to flocks reared in barns and free-range systems. Moreover,
controlling for other variables, rearing layer flocks in cages was still a significant risk factor whereas
flock age, flock size and the season of sampling became borderline significant and Salmonella
vaccination status was non-significant.

In the Austrian BLS (Much et al., 2007), 96 cage and 241 non-cage (72 barn, 100 free-range
standard and 69 free-range organic) flocks were sampled. Salmonella was found in 34.4% of the cage
flocks but only in 7.9% of the non-cage flocks (more specifically in 15.3%, 7.0%, and 1.4% of the
barn, free-range standard and free-range organic flocks, respectively).

Persistence of Salmonella laying hen houses in the United Kingdom was analysed by the use of
survival analysis methodology applied to retrospective data relating to 264 reported Salmonella cases in
152 flocks of laying hens that occurred between 1998 and 2007 (Carrique-Mas et al., 2009). For cases
involving S. Enteritidis, both the level of rodent infestation of the houses and the housing system were
positively associated with longer duration of detectable infection, especially in houses with deep manure
pits, where high levels of mice or rats were harboured, compared to free-range or barn houses that used
deep litter and/or slatted flooring or cage systems that had manure belts instead of droppings pits.

Within the EU project Safehouse (Schulz et al., 2009), 92 German laying hens flocks (27 in
conventional cages, 23 in floor-raised systems, 25 in free-range systems and 17 in organic free-range
systems) were intensively sampled for Salmonella between May 2007 and June 2008. Information on
risk factors was collected through a questionnaire. In total, 30% of the flocks were positive for
Salmonella. Lower occurrence was found in the alternative housing systems compared to conventional
cages (conventional cages vs floor-raised system OR = 9.73 CI95[2.73; 43.11], conventional cages vs
free-range OR = 8.82 CI95[2.45; 39.29], conventional cages vs organic free range OR = 13.32
CI95[2.89; 107.56]).

In a US field study, the prevalence of Salmonella colonisation of individual 77 week-old laying hens
was significantly higher (13.33%) in a conventional cage system than in an aviary (3.3%) or enriched
(colony) cage system (5%) (120 hens per system) (Jones et al., 2016).

Occurrence of Salmonella in cage systems was lower than in alternative systems

Conversely, other studies found a lower occurrence of Salmonella in conventional cage systems
compared to alternative systems, as cited by Holt et al. (2011), more specifically in the USA (Kinde
et al., 1996), Germany (Schaar et al., 1997), and the Netherlands (Mollenhorst et al., 2005).

A more recent (2015) USA study compared the prevalence of Salmonella and other microorganisms
in environmental swabs and eggshell pools from commercial farms using conventional cages, enriched
cages, and aviary systems. The environmental swabs revealed that all farms were contaminated with
Salmonella. Higher proportions of Salmonella-positive swabs were obtained for samples collected from
manure scrapers and the forage area from aviary systems and lower proportions in samples from the
enriched colony cage system wire (16%) and nest box (16%) swabs. Nevertheless, there was no
difference in the frequency of Salmonella contamination of eggshells, which remained low (0–8%),
regardless of the housing system (Jones et al., 2015).

In a study on packed table eggs in Romanian supermarkets, Galis et al. (2012) detected Salmonella
in the egg’s albumen in 33% of the organic eggs, 28% of the free-range eggs, 25% of the
aviary-obtained eggs and 14% of the cage production eggs. Thus, eggs from non-cage systems were
found to be more often contaminated than those from cage systems, and eggs from the outdoor
systems were most often contaminated.
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An experimental study on bird-to-bird transmission of Salmonella in layers showed a trend (but
non-significant) towards a higher risk of transmission of S. Enteritidis for birds housed in the aviary
and floor systems compared with the conventional and enriched cage systems (de Vylder et al., 2011).
Moreover, in this study significantly more internally contaminated eggs were laid by hens kept in an
aviary compared with birds in the cage systems and the floor system. Differences in reproduction
ratios were attributed to housing system-specific characteristics such as hygienic status, air quality, and
large group housing that would result in more intensive contact between birds and with litter and
droppings in aviary/floor systems, thus increasing the risk of contact with faecally contaminated
materials.

Mollenhorst et al. (2005) collected questionnaires on risk factors from farms submitted for
serological investigation to detect S. Enteritidis; analysing information from about 1,900 flocks. The
data set contained information on S. Enteritidis status, month and year of sampling, housing system
(i.e., conventional cage with wet and dry manure, deep litter and aviary, with and without outdoor
run), number of hens, vaccination against S. Enteritidis, and the presence of hens of different ages in
the same house or on the farm. On farms with all hens of the same age, a flock kept in a cage system
with wet manure had a significantly (OR = 0.26, p < 0.01) lower chance of infection with S. Enteritidis
compared with a cage system with dry manure. For a farm with all hens of the same age, a deep litter
system also had a significantly (OR = 0.47, p < 0.05) lower chance of infection with S. Enteritidis
compared with a cage system with dry manure. The difference between a deep litter system and a
cage system with wet manure was not significant. On a farm with hens of different ages, however, a
deep litter system had a significantly (OR = 2.09 and OR = 2.91, p < 0.01) for cages with dry and wet
manure) higher chance of infection with S. Enteritidis compared with both types of cage systems. An
outdoor run increased the chance of infection with S. Enteritidis significantly (OR = 2.14, p < 0.05) for
farms with all hens of the same age. On farms with hens of different ages, no effect of an outdoor run
could be found. A higher number of hens increased the chance of infection with S. Enteritidis of a flock
significantly (OR = 1.02, p < 0.01).

Housing system did not influence the occurrence of Salmonella

Finally, some studies did not observe a difference between the housing systems, as cited by Holt
et al. (2011).

An exploratory field study in Belgium found Salmonella in 20.7% (6 out of 29) laying hen farms (of
which 8 were conventional cage units, 10 floor-raised, 8 free-range, and 3 organic farms) using faecal
and dust samples. Using multivariate logistic regression with the Salmonella status of the flock as an
outcome variable, previous Salmonella contamination on the farm and the age of the production
system were identified as risk factors for the presence of Salmonella in laying hens (p < 0.05), while
the housing system did not have a significant influence on Salmonella prevalence (Van Hoorebeke
et al., 2010a).

Non-significant results were also reported in a small study in Lithuania (8 farms) where the
prevalence of Salmonella in laying hens housed in an aviary system (n = 2) was similar to cages
(n = 6) (Pieskus et al., 2008b). However, the absence of significant differences could be due to the
limited discriminatory power of these studies.

In an experimental study by De Vylder et al. (2009), shedding and colonisation of layers housed in
3 different housing systems (conventional cage, furnished cage, and aviary) were measured at regular
time points post-inoculation with S. Enteritidis. The results did not show an increased risk for
alternative housing systems compared with the conventional cage system.

An experimental study by Hannah et al. (2011) on horizontal transmission in conventional cages
(0.06 m2/hen), slatted floor systems (0.6 m2/hen) and floor systems with shavings (0.6 m2/hen) again
showed no impact of the housing system on the frequency of horizontal transmission from
S. Enteritidis or S. Typhimurium-inoculated hens to pen mates. Still, the recovery of Salmonella from
the non-challenged hens infected by contact was lower when they were housed in cages (15%),
intermediate for hens on slats (20%), and highest for hens on shavings (38%). Results could be
explained by the housing system effect in addition to the positive impact of a lower stocking density
on the immune system.

3.3.1.2. Outdoor access and organic production as a factor

In the Austrian BLS on Salmonella in laying hens (2004–2006), the ranking of Salmonella
prevalence went from cages to barns, to standard free-range and to organic free-range housing
systems (with 34.4%, 15.3%, 7.0% and 1.4%, respectively). These results suggest that outdoor
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access and the possible contact of eggs with faeces or litter was not a risk factor for Salmonella
infection (Lassnig et al., 2011).

In Sweden, the occurrence of Salmonella between 2007 and 2015 in broilers and laying hens in
outdoor and indoor production was evaluated. There was no indication that the Salmonella exposure in
outdoor poultry production was higher than in indoor production. The annual incidence of Salmonella-
infected flocks in outdoor production remained at a very low level, similar to that observed for indoor
production (Wierup et al., 2017).

In the Netherlands in 2004, a field study on the sustainability of different housing systems was
performed (Van Der Zijpp et al., 2006) which collected data from 16 farms with conventional cages, 15
with a deep litter system without outdoor run, 17 with a deep litter system with outdoor run and 13
with an aviary system with outdoor run. There was only one S. Enteritidis-infected flock in this study,
which resulted in no significant differences among housing systems.

An experimental study in the USA found no Salmonella on the shells of eggs produced in conventional
cages vs 2.36% on eggs from free-range systems. This suggests that the greater physical access to the
eggs by the hens in free-range systems may lead to a higher probability of contamination if Salmonella is
present in the barn (Parisi et al., 2015). In contrast, a survey conducted in the same country found no
difference in the level of environmental and egg (content/shell) Salmonella contamination over time in
two sister flocks using conventional cage and free-range housing systems. The small sample size (one
flock per treatment), however, limits the external validity of these findings (Jones et al., 2012).

In a Mexican paper by Posadas Hernandez et al. (2005), an experimental study on laying hens was
reported. Three hundred and sixty, 24-week-old, laying hens were used. The birds were randomly
assigned into two treatments of 180 birds each. Treatments included 4 replicates of 45 birds
distributed as follows: treatment 1, birds housed in conventional cages; and treatment 2, housed in
pens with access to green areas. S. Enteritidis, isolated from internal organs, showed no statistical
difference between treatments. Similar results were obtained in a field observational study in the US
(Green et al., 2009), involving 3 types of laying-hen houses (4 houses for each type), namely, high-
rise, manure-belt, and cage-free floor-raised, which were monitored for air temperature, relative
humidity (RH), CO2, and atmospheric ammonia under winter and summer conditions in Iowa. No
statistical difference in Salmonella prevalence was identified, but non-caged houses were only found to
be negative for Salmonella during winter time.

3.3.1.3. Impact of the type of cage: conventional vs enriched cages

The mandate requests an exploration of whether the gradual change from conventional cages to
enriched cages could have been associated with the initial reduction of Salmonella prevalence in laying
hens that occurred from 2009 until 2013.

Pieskus et al. (2008b) found that the prevalence of Salmonella in laying hens reared in enriched
cages was not significantly different (26.8%) than those reared in conventional cages (33.3%) in a
small field study in Lithuania.

An experimental study by Gast et al. (2014b) showed no difference in the prevalence of
S. Enteritidis in eggs laid by experimentally infected laying hens housed in conventional cages (3.97%)
and enriched cages (3.58%). However, extrapolation of these results should be carried out with care
given that (i) an artificial infection challenge may not be the best way to detect the effect of the type
of cage since all hens were infected experimentally; and (ii) the enriched cages in this study were
composed of nests and perches but not pecking and scratching areas, which are compulsory and more
likely to retain faeces and disseminate Salmonella in enriched cages.

Another experimental study looking into bird-to-bird transmission of S. Enteritidis (Gast et al.,
2014a) did not find any difference in the frequency of horizontal transmission between animals housed
in conventional and enriched cages. Still, enriched cages did not have pecking and scratching areas,
which can accumulate faeces and eventually increase the risk of horizontal transmission of
Enterobacteriaceae, and thus extrapolation of findings should be made carefully.

In a third experimental study by the same group (Gast et al., 2015) on the persistence of
Salmonella shedding after an infection it was found that faecal shedding of S. Enteritidis was detected
for up to 8 weeks post-inoculation in hens housed in enriched cages and 10 weeks in hens housed in
conventional cages. For both trials combined, the frequency of positive faecal cultures was significantly
(p < 0.05) greater for conventional cages than for enriched colony cages at 1 week (84.7 vs 71.5%),
2 weeks (54.2 vs 31.3%), 3 weeks (21.5 vs 7.6%), and 4 weeks (9.7 vs 2.8%) post-inoculation.

Another experimental study, using laying hens inoculated with S. Enteritidis, showed a higher
diversity in the microbiota of hens housed in enriched cages or aviaries than in conventional cages
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(due to contact with faeces). However, this did not translate into differences between these groups in
the colonisation and shedding patterns of Salmonella (Nordentoft et al., 2011).

In a USA field study, the within-flock prevalence of Salmonella colonisation of 77 week-old laying
hens removed from commercial farms was significantly higher in conventional cage (13.33%) systems
than in aviaries (3.3%) or enriched (colony) cage systems (5%) (Jones et al., 2016).

In the United Kingdom, conversion of conventional cages to enriched colony cages was associated
with a marked improvement in control of persistent S. Enteritidis. This was because laying houses were
totally cleared for refurbishment, which takes several weeks rather than the normal few days turnaround
period. During this time all existing cages and feeding and egg-collection equipment is removed from the
houses allowing total cleaning and elimination of rodent and litter beetle populations. The original cage
houses were predominantly based on deep pit manure removal systems, which provided perfect
harbourage for breeding rodent populations, litter beetles and flies in the droppings pits beneath the
birds. The new colony cage houses used the whole house space for cages, from which manure is
regularly removed (usually at least twice a week) by belts beneath the cages. This eliminated the
harbourage for farm pests and there has been no evidence of persistent Salmonella infections in such
colony cage houses (Carrique-Mas et al., 2009; Davies and Carrique-Mas, 2010b; ACMSF, 2016; Martelli
et al., 2017; Chousalkar et al., 2018). The new cages are much more complex than the old conventional
cages and more difficult to clean, so effective cleaning and disinfection is difficult and this has been
associated with increased red mite problems, but no evidence of increased occurrence of Salmonella
over time has been found so far. There has been a gradually reducing incidence of S. Enteritidis in laying
hen flocks in the United Kingdom since 2012, when all cages would have been converted to colony
systems, and since 2015, all S. Enteritidis cases and the majority of S. Typhimurium incidents have
occurred in free-range flocks (APHA, 2018), demonstrating that there may be an increased
environmental risk associated with outdoor access and that maintaining effective biosecurity may be
easier in enclosed housing once resident S. Enteritidis contamination has been eliminated.

3.3.1.4. Farm size, group size and stocking density

The French BLS on Salmonella prevalence in flocks of laying hens found a higher Salmonella
contamination rate in larger flocks (> 10,000 laying hens), which could be due to the presence of
animals of different ages in the farm (Huneau-Salaun et al., 2007), an already described risk factor for
Salmonella (Van Hoorebeke et al., 2012). In Trinidad and Tobago, Grenada and St Lucia, (Adesiyun
et al., 2014) found similar results, with the farm size being the only risk factor significantly associated
(p = 0.031) with the prevalence of Salmonella. The prevalence was established through pooled data
from layers, feed, and environmental sampling: 77.8% of large (> 10,000 layers, n = 9) farms were
positive for this pathogen compared with 33.3 and 26.1% of medium (5,000–10,000 layers, n = 3) and
small (< 5,000 layers, n = 23) farms, respectively.

Large holdings (≥ 30,000 birds) were observed to have higher odds of Salmonella occurrence
(OR = 4.79 CI95[1.22; 18.78]; p = 0.025) in the United Kingdom BLS compared to smallest holdings
< 3,000 birds) (Snow et al., 2010).

In another French study (Huneau-Salaun et al., 2009), in caged flocks the risk of Salmonella
contamination increased when the size of the poultry-house exceeded 20,000 laying hens (OR = 6.02;
CI95[1.8; 19.8]; p = 0.003).

In a French study, Chemaly et al. (2009), conducted in conjunction with the EU-wide BLS,
significant correlations were found between the Salmonella status of eggshells and a farm size of more
than 30,000 birds. In this study 4,200 eggs collected from 28 positive flocks were tested.

Also, the highest risk for Salmonella contamination appeared to be in farms with a higher number
of birds (> 30,000 hens) in a study by Ovelhey et al. (2009).

A USA experimental infection study was undertaken on laying hens housed in colony cages enriched
with perching and nesting areas and in conventional cages at two different stocking densities. After
S. Heidelberg infection, the overall frequency of positive faecal cultures was significantly (p < 0.05)
greater from either conventional (51.0%) or enriched colony cages (46.5%) at high stocking density
(648 cm2/bird) than from enriched colony cages at low stocking density (33.3%) (973 cm2/bird). No
significant differences in S. Typhimurium faecal isolation were identified between housing groups. This
demonstrates that stocking density can affect intestinal colonisation and faecal shedding in laying hens
for some (but not necessarily all) Salmonella serovars or strains (Gast et al., 2017b). The invasion of the
internal organs was not significantly influenced in this study by the housing systems (Gast et al., 2017c).
In a comparable study with S. Enteritidis, it was again found that stocking density can affect
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S. Enteritidis intestinal colonisation and faecal shedding in laying hens and that lower shedding was
observed in enriched colony cages compared to conventional ones (Gast et al., 2017a).

An experimental study on the colonisation of organs post-inoculation by S. Enteritidis, detected
Salmonella at significantly higher frequencies in several different sample types from hens in
conventional cages compared to enriched cages (with half the stocking density, enclosed nest, perches
and pecking and scratching area) (Gast et al., 2013). The samples included livers (96.9% vs 75.0%),
spleens (93.8% vs 53.1%), ovaries (25.0% vs 10.4%), and oviducts (19.8% vs 2.1%). These results
indicate that differences in housing systems for egg-laying flocks can affect the susceptibility of hens
to colonisation of internal organs by S. Enteritidis. This could be due to stocking density, group size,
cage enrichment, or a combination of various factors, providing better living conditions for the birds
and hence a higher resistance to pathogen colonisation. High stocking densities can lead to stress and
increase contact between animals and faeces, and therefore increase Salmonella transmission (Van
Hoorebeke et al., 2012).

In a modelling exercise relating to cage size, the basic reproduction number (R0 of an infectious
agent; defined as the average number of secondary infections produced by an infected individual) has
been shown to increase with increasing cage length, which is related to a higher number of birds in
close contact (Zongo et al., 2015).

3.3.1.5. Age of the production system and previous Salmonella infections

In the study of Van Hoorebeke et al. (2010a), described earlier, the age of the production system
(OR = 1.35 CI95[1.01; 1.81], p = 0.04)) as well as previous Salmonella infections (OR = 77 CI95[1.68;
3,596], p = 0.03) were found to be significant risk factors for Salmonella infection in a multivariable
analysis.

3.3.1.6. Presence of rodents

The number of rodents trapped was found to be a significant risk factor for Salmonella infection of
laying hens in several studies (Davies and Breslin, 2003; Garber et al., 2003) and clearance of rodents
was identified as the most important factor in elimination of Salmonella from persistently infected
laying farms in the United Kingdom (Davies and Carrique-Mas, 2010b).

3.3.1.7. Cleaning and disinfection

Cleaning and disinfecting houses between flocks has been associated with a reduced risk of
persistence of Salmonella in the USA (Garber et al., 2003).

Significant residual contamination remained on the surfaces of buildings and equipment in the barn
and especially the cage layer houses after cleaning and disinfection in a study in the United Kingdom
(Davies and Breslin, 2003). Large enriched cage houses can be difficult to clean due to complex fixed
cage fittings and limited drainage, and often only dry cleaning, followed by fogging with disinfectant, is
carried out (ACMSF, 2016).

3.3.1.8. Impact of stress on Salmonella spread and persistence

Several studies have shown that stress induced by restrictive housing conditions, high stocking
density, induced moulting and high temperatures can induce immunosuppression that promotes spread
and persistence of Salmonella within a flock (Holt and Porter, 1992; Holt, 1995; Holt et al., 1998;
Garber et al., 2003; Kubena et al., 2005; Sasaki et al., 2012; Van Hoorebeke et al., 2012).

A study (Sasaki et al., 2012) performed to determine the baseline Salmonella prevalence and identify
associated risk factors in laying-hen farms in Japan found a significantly higher prevalence of Salmonella
in windowless farms (50%, n = 101) than in open houses (28%, n = 299). In a comparable study,
Salmonella was isolated from four (80%) of five farms with windowless hen houses whereas only one
serotype of Salmonella was isolated from 1 (6.7%) of 15 farms with open hen houses (Matsumoto et al.,
2001). In another Japanese study in a slaughterhouse, samples from spent hens were tested. Salmonella
was isolated from the birds of ten laying-hen farms; all of these hens were raised in houses without
windows and with automatic feeders; factors linked with stressful rearing conditions and management
practices (e.g. no access to natural daylight; use of forced moulting). No isolations of Salmonella were
obtained from birds raised in houses with windows (Sunagawa et al., 1997). This may be associated with
induced moulting that is exclusively performed in windowless houses and in older flocks. Murase et al.
(2006) used an enzyme-linked immunosorbent assay (ELISA) test to detect Salmonella antibodies in
chicken eggs, comparing two naturally infected flocks moulted by feed withdrawal, and two moulted
through the administration of a wheat bran diet, concluding that that a less severe moult initiated
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through the administration of a wheat bran diet can reduce the risk of Salmonella infection in a
commercial egg-producing setting. This result supports other evidence that stress induced by moulting
procedures such as feed withdrawal can increase susceptibility to Salmonella.

3.3.2. Salmonella prevalence according to distribution of housing system

3.3.2.1. Official monitoring data

Figure 9 shows a reducing prevalence of Salmonella, both for total Salmonella and target serovars
(based on the official monitoring), in EU MS as the national proportion of non-cage flocks or free-range
flocks increases. Several factors could be implicated in this observation, such as the size of farm,
number of flocks per farm, number of birds per flock and historic association of persistent S. Enteritidis
with cage systems, if contamination was not eliminated during conversion of laying houses from
conventional to enriched cages. In addition, country–related factors that could be linked (e.g. climate,
economy, and attention to animal welfare) may influence this finding.
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Figure 9: Prevalence of Salmonella and Salmonella target serovars in laying hen production flocks by
fraction of laying hens held in alternative systems (top) and free-range systems (bottom)
by MS and in the EU-25 (without Hungary, Lithuania, and Malta), 2016
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3.3.2.2. MS data

The descriptive results of the prevalence of S. Enteritidis in laying hen flocks per MS and housing
system in 2016–2017 are detailed in Table 10. It should be highlighted there is a need for caution in
the interpretation of the results based on these MS data as they were not collected according to any
scientific study design but within a monitoring framework, with varying levels of reported detail by MS.

Based on a multivariate mixed model analysis of the data, taking country (six countries from
Table 10) and housing system into account, it was found that there are significant differences between
countries (p < 0.001) and housing systems (p < 0.001). Based on the same analysis considering the
three countries that provided data for cage and non-cage systems (i.e. the Czech Republic, Italy and
the Netherlands), it can be concluded that there are still significant differences between countries
(p < 0.001) and housing systems (p < 0.001) with a lower level of S. Enteritidis in the non-cage
systems. This was in particular obvious for the Netherlands with 4.5% of flocks being S. Enteritidis-
positive flocks in cage systems compared to 0.68% in non-cage systems. For the Czech Republic and
Italy, the prevalence in cage and non-cage systems is similar.

The lowest flock prevalence of S. Enteritidis in 2016 and 2017 in the six included countries is
observed in the non-cage systems (see Figure 10).

Based on these limited data, it can be concluded that S. Enteritidis apparently occurs less
frequently in laying hens housed in non-cage systems in comparison to laying hens housed in enriched
cages. For the future, it would be desirable to collect more data on the housing type used as part of
the monitoring data reported to EFSA as this will facilitate better analyses based on more data.

Table 10: Salmonella Enteritidis flock level prevalence in laying hen production flocks per country
and housing system, 2016–2017

Housing system Country Mean prevalence (%) N

Cage Czech Republic 1.52 592

Italy 0.63 2521
the Netherlands 4.50 222

Slovakia 1.86 215
Total 1.10 3,550

Non-cage Austria 0.52 4,657
Czech Republic 1.41 213

Denmark 0.46 217
Italy 0.69 3,784

the Netherlands 0.68 13,626

Total 0.63 21,123

N: number of flocks tested.

Figure 10: Salmonella Enteritidis flock level prevalence in laying hen production flocks by housing
system, based on data provided by six countries (Austria, the Czech Republic, Denmark,
Italy, the Netherlands, Slovakia)
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3.3.3. Concluding remarks and recommendations

• Conflicting evidence is found in the literature and MS data on the occurrence of Salmonella in
laying hens when raised in cage systems compared to non-cage systems. Overall, evidence
points to a lower occurrence in non-cage systems compared to cage systems (hosting large
flocks and with a structure which is often difficult to clean and disinfect). Whether this is linked
to the housing system as such or whether it is caused by the associated change of furniture,
break in the historical infection cycle or reduced stocking density, is unclear.

• The limited evidence in the literature that outdoor access affects Salmonella occurrence in
laying hens at the EU level is inconclusive.

• No studies have specifically investigated the impact of the shift from conventional to enriched
cages longitudinally, so it is not possible to conclude on the impact of this change on the
occurrence of Salmonella at the EU level.

• The literature provides conclusive evidence that an increased stocking density, larger farms and
stress-inducing conditions result in increased presence, persistence and spread of Salmonella in
laying hen flocks.

• It is recommended that future monitoring programs record the housing type of laying hen
flocks to enable assessment of its impact on Salmonella occurrence in these flocks.

3.4. Risk factors for the occurrence of Salmonella in broiler chickens in
relation to the type of farming methods and other animal welfare
indicators

The risk/protective factors in relation to the farming system of broiler production or breeding flocks
considered, based on the available evidence, were: outdoor access, group (flock size/farm) size,
stocking density, existence of enrichment, previous Salmonella infection, type of litter, biosecurity. The
animal welfare indicators considered were: stress (apart from heat stress), heat stress, activity/
behaviour, body status (e.g. FPD and other diseases).

The assessment was based both on literature review to assess risk factors relating to management
and housing systems and biosecurity practices and based on the data requested from the MS.

More information on housing systems is provided in Appendix B and elsewhere.30

3.4.1. Literature data

Table C.4 in Appendix C provides an overview of studies dealing with the occurrence of Salmonella
in broiler chickens in relation to the farming methods and other animal welfare indicators.

The papers have been screened for internal and external validity and some limiting factors have
been identified:

• Limited sample size on both farm and individual sample level;
• Existence of confounding factors not (properly) addressed in some studies;
• Diversity in sample matrix and laboratory analysis conducted;
• Non-recent data in studies.

Generally, less literature data are available on the effect of housing systems on the prevalence of
Salmonella in broilers in comparison to layers.

3.4.1.1. Effect of outdoor access and organic production

As in layers, some conflicting results are found in the literature.
Alali et al. (2010) found a lower Salmonella prevalence in faecal samples from organic farms

(5.6%) compared to conventional farms (38.8%). This was demonstrated through a cross-sectional
study by sampling one house per farm at three organic and four conventional broiler farms from the
same company in North Carolina.

Esteban et al. (2008) investigated 60 flocks of ‘traditional free-range’ chicken from 34 farms in the
Basque Country (Northern Spain). A low Salmonella flock prevalence of 1.7% CI95[0.0; 4.0] was found
and the authors considered such prevalence lower than literature data on conventional flocks. In a
study in the USA on 31 broiler farms no significant difference in Salmonella prevalence between
housing systems was found with 33% pasture and 47% conventional poultry farms being positive

30 https://www.berspcaassured.org.uk/media/1236/rspca-welfare-standards-for-meat-chickens.pdf
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(p = 0.49). On an individual sample level, flocks reared conventionally had higher prevalence than in
pasture (Siemon et al., 2007).

In other studies, no statistically significant differences were obtained, even if in some cases the
prevalence in organic farms appeared to be lower than in conventional ones. Pieskus et al. (2008a)
described a study performed in 4 different countries (Italy, Germany, Lithuania and the Netherlands),
sampling conventional and organic broiler flocks (Italy: 11 organic, 10 conventional; the Netherlands:
18 conventional, 108 organic; Lithuania and Germany: 27 and 22 conventional, respectively, no
organic flocks sampled). Different sampling schemes were applied in different countries, and therefore
insufficient power was available in the study. Proietti et al. (2007) compared the presence of
Salmonella in two organic and two conventional broiler farms located in central Italy, also with
inconclusive results due to limited number of farms included. Van Overbeke et al. (2006) compared 9
organic and 11 conventional farms belonging to the same integrated company, and located in the
southern part of Belgium. No significant differences were found in Salmonella presence at any
sampling point during rearing (overshoes) and at the slaughterhouse (gastrointestinal tracts). Also in a
study by Lund et al. (2003) no difference in Salmonella occurrence between free-range and pastured
pen (free-range unit with mobile housing) was found.

Also in Sweden, no evidence was found in a study conducted between 2007 and 2015, that
Salmonella prevalence in the small number of free-range flocks included in the study was greater than
for conventional housing systems. The finding that 0.16% CI95[0.09; 0.2] of indoor flocks and 0%
CI95[0; 2] of outdoor flocks tested positive for Salmonella was not statistically significant and was even
less relevant after exclusion of flocks that were likely to have been infected via vertical transmission or
from a contaminated hatchery. Despite the limitations of the study such field data is limited and this
investigation was still considered to provide useful information (Wierup et al., 2017).

In the analysis of data from the French BLS (Le Bouquin et al., 2010), flock size and the type of
housing system did not significantly affect the Salmonella prevalence of broiler flocks, which was 8.6%
CI95[5.7; 11.5] overall. Detection of Salmonella at clearance of flocks was increased when
neighbouring farmers helped with chick placement and reduced when mobile equipment was
dismantled for cleaning, when drinking water was acidified and if there were specific disposal bins for
dead birds. A similar study on the data from the BLS in the United Kingdom (Snow et al., 2008), on
382 holdings, did not demonstrate any significant risk factor, apart from a slight significance relating to
the number of birds in the holding. This finding was mirrored by the results of the overall BLS, which
also failed to identify statistically significant differences between production systems, and only
identified factors relating to the number of flock cycles per year and the season when samples were
taken as statistically significant (EFSA, 2007).

In the USA, a field study found a significantly higher prevalence of Salmonella in poultry litter
samples from newly organic compared to conventional farms, but the small sample size requires
cautious interpretation (5/5 vs 2/5 positive, respectively, (Sapkota et al., 2014)).

Santos et al. (2008) demonstrated, through an experimental study comparing different feeding
regimes and different housing systems, a lower rate of caecal contamination and shedding of
Salmonella by broilers raised on litter, compared with caged animals.

Van Hoorebeke et al. (2012) reported that ‘it is recognized that both conventionally reared and free
range broilers can be colonized with Salmonella (McCrea et al., 2006; EFSA and ECDC, 2009). Data
from United Kingdom retail surveys of chicken have shown that Salmonella can be isolated from
standard, free range and organic chicken meat (FSA, 2003; CLASSP, 2007). Various risk factors have
been identified for Salmonella infection on broiler farms including farm management factors,
biosecurity, flock size, age of chickens and season (Le Bouquin et al., 2010a; Namata et al., 2009).’

3.4.1.2. Effect of the flock size/farm size and stocking density

A national Salmonella and Campylobacter monitoring programme for the broiler supply chain in the
Netherlands found an increase of Salmonella prevalence with increasing flock size (Franz et al., 2012),
whereas the study by Chriel et al. (1999) showed no effect of flock size on S. Typhimurium
contamination in Danish broiler flocks.

In another longitudinal retrospective survey in Denmark, it was shown that farms with five barns
were significantly associated with S. Typhimurium infection in broiler flocks (OR = 2.5) (Skov et al.,
1999). Authors have not been able to explain this finding biologically, and considering the small
number of farms having more than five houses, it has been difficult to investigate if special problems
can be related to having more than five houses on a farm.
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A Brazilian team (Gomes et al., 2014) studied the effect of overcrowding stress in broiler chicken by
comparing chicken reared at 10/m2 vs 16/m2 in an experimental setting and focussing on serum
corticosterone levels, the relative weight of the bursa of Fabricius, plasma IgA and IgG levels, intestinal
integrity, macrophage activity and experimental S. Enteritidis invasion. They showed a deleterious
impact of overcrowding on performance parameters, inducing enteritis and decreasing macrophage
activity and the relative Fabricius bursa weight in broiler chickens. The data strengthen the hypothesis
that avoidance of overcrowding stress in chicken are relevant factors for the maintenance of intestinal
integrity, performance and decreased susceptibility to Salmonella infection. Environmental enrichment
can help reduce stress levels in broilers (Baxter et al., 2018).

3.4.1.3. Effect of the type of litter

A study comparing the impact of the type of litter on the detection of Salmonella through boots
swabs over time was performed on one farm. In a limited sample set collected over time in a single
broiler house, wood shavings bedding showed the highest Salmonella prevalence (3/6 positive
samples), followed by peat (2/6) and corn silage (1/6), while no positive chopped straw samples were
collected in the study. These results need to be confirmed in a wider study (Volkel et al., 2011). Chriel
et al. (1999) did not demonstrate any effect of the quality of bedding (dry, wet, hard) on
S. Typhimurium contamination in Danish broiler flocks.

3.4.1.4. Previous Salmonella infection

In a French field study on 86 broiler flocks, litter swabs and dust samples were analysed for the
presence of Salmonella. Using a multivariable logistic regression analysis, it was demonstrated that
Salmonella contamination inside of the house before placing day-old chicks (OR = 18.4 CI90[4.1; 82.5]
and the Salmonella infection of incoming day-old chicks (OR = 11.0 CI90[3.2; 38.6]) were significantly
related to Salmonella contamination of the flock at the end of the rearing period (Rose et al., 1999).

3.4.1.5. Effect of stress

As in layers, stress has been shown to increase Salmonella shedding by broilers. Quinteiro-Filho
et al. (2012) observed that heat stress led to reduced daily live-weight gain and suppressed feed
intake. Feed conversion efficiency was also reduced when heat stress was combined with S. Enteritidis
infection. An increase in Salmonella counts in the spleens of the stressed and Salmonella-infected
chickens was also found. However, a study on the effect of heat stress on S. Typhimurium definitive
phage type (DT) 104 and S. Infantis of Traub-Dargatz et al. (2006) did not identify any effect of heat
stress of the shedding of these strains.

Soliman et al. (2009) studied the effect of environmental stress on S. Enteritidis colonisation in
broilers. Withdrawal of feed or exposure to high temperature for 24 h led to increased attachment of
S. Enteritidis to the mucosa of birds in a post-mortem in-vitro ileal loop assay (9.05 log10 vs 7.59 log10
S. Enteritidis/g of ileal tissue; p = 0.0006). Increased mucosal attachment also occurred when birds
had been subjected to 30°C room temperature for 24 h (8.77 log10 vs 8.50 log10 S. Enteritidis /g of
ileum; p = 0.01) compared with birds held at 23°C.

3.4.1.6. Relation between animal welfare indicators and food borne diseases

Up to now there is a lack of data showing any link between welfare indicators and Salmonella in
broilers, in part due to the fact that the prevalence of Salmonella is low.

For example, a recent study from Alpigiani et al. (2017) at farm and slaughterhouse level, studied
the potential relationship between welfare indicators and food-borne pathogen prevalence/incidence
levels. Salmonella was very low in prevalence, therefore only Campylobacter results were presented in
the paper. Flocks with more than 25% animals with severe footpad dermatitis lesions were predicted
to be Campylobacter positive, whereas flocks in which fewer than 13 individuals had arthritis were
predicted to be Campylobacter negative. Similar factors may apply for Salmonella, as footpad lesions
are linked with wet litter, which can also increase transmission of Salmonella in broiler flocks (Dunlop
et al., 2016; Opengart et al., 2018).

3.4.2. Data from EEA countries

The goal of the data analysis was to assess the effect of the housing system on the occurrence of
Salmonella in broiler flocks using data from 2016 to 2017. In all countries the broilers were housed on
‘floor-raised’ systems, therefore the comparison was focused on ‘outdoor access’. As in Section 3.3.2, it
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should be highlighted that there is a need for caution in the interpretation of the results based on
these MS data as they were not collected according to any scientific study design.

3.4.2.1. Salmonella Enteritidis

The results for S. Enteritidis are shown in Table G.1 in Appendix G. Only Austria provided data on
flocks raised with and without outdoor access. In Austria, one positive flock was found in 3,761 tested
flocks without outdoor access (flock prevalence = 0.03%) whereas in flocks with outdoor access four
flocks tested positive out of 2,421 flocks tested (flock prevalence = 0.16%). This resulted in a
significant difference (p < 0.001). The biological importance of this difference is uncertain given the
very low number of positive flocks.

3.4.2.2. Salmonella Typhimurium

The results for S. Typhimurium are provided in Table G.2 in Appendix G. Only Sweden provided
data on flocks raised with and without outdoor access. Based on the Swedish results, 10 positive flocks
were found in 8,852 tested flocks without outdoor access (flock prevalence = 0.09%) whereas in flocks
with outdoor access zero positive flocks were found out of 384 tested flocks (flock
prevalence = 0.0%). Based on this, it cannot be concluded whether the prevalence is affected by the
housing system.

3.4.2.3. Monophasic S. Typhimurium with the antigenic formula 1,4,[5],12:i:-

The results for monophasic S. Typhimurium with the antigenic formula 1,4,[5],12:i:- are provided in
Table G.3 in Appendix G. Based on these results it can be observed that data on flocks raised with and
without outdoor access and results on the monophasic variant were provided only by Belgium. As in
the layer data set, the data provided by Belgium only considers positive flocks and therefore does not
allow conclusions to be made on the housing type.

Overall, it can be concluded that for the occurrence of Salmonella in broilers no clear effect of outdoor
access can be observed. For the future it would be desirable to collect more data on the housing type
used as part of the monitoring data as this would enable better analysis based on more data.

3.4.3. Concluding remarks

• The impact of the housing system on the occurrence of Salmonella in broilers was investigated
in only a limited number of studies that mostly did not report significant differences. Therefore,
the evidence that outdoor access affects the occurrence of Salmonella in broiler flocks is
inconclusive.

• There is a lack of data evaluating the impact of flock/farm size and stocking density on
Salmonella occurrence in broilers. However, the limited evidence available shows that stress,
stocking density and increasing the number of flocks per farm increases Salmonella
susceptibility or infection rate.

• Up to now there is no data evaluating the link between welfare indicators and Salmonella
occurrence in broilers.

• It is recommended that future monitoring programs record the housing type of broiler flocks to
enable assessment of its impact on Salmonella occurrence in these flocks.

3.5. Impact of Salmonella control programmes on the prevalence of
Campylobacter in broiler flocks and on broiler meat

In total, 38 records were considered in the assessment, but on further examination of the full
papers, 13 papers contained data on concurrent occurrence of Salmonella and Campylobacter in the
same flock and 7 considered co-contamination at slaughter, so only these papers were taken into
account. Despite not meeting the set criteria given in Appendix C, two extra records were included
(Jacobs-Reitsma et al., 1994; Rouxel et al., 2018) because of their relevance to the topic.

3.5.1. Differential characteristics of Salmonella and Campylobacter

Table 11 details numerous differences in the biology, epidemiology and immunology between
Salmonella and Campylobacter that can influence the persistence and dissemination of microorganisms
and thereby the infection pathways and impact of control programmes. Salmonella is a robust
organism that can survive for long periods, sometime years, outside the host and can multiply in warm
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moist environmental niches, whereas Campylobacter is much more fragile and fastidious, being unable
to survive for long periods outside a living host, to multiply outside the gut or to resist desiccation or
oxidative stress. Still, less susceptible variants of Campylobacter may be linked with AMR and survive
better along the food chain (Ugarte-Ruiz et al., 2018) and survival may be underestimated because of
relatively insensitive detection methods compared to Salmonella and the ability to enter a viable but
non-culturable (VBNC) state, although VBNC cells appear to show reduced infectivity (Sibanda et al.,
2018). Survivability impacts the main infection routes for the organism such that transmission via feed
contamination, vertical transmission or hatchery contamination are currently considered to be
uncommon infection pathways, whereas these are the most common sources of infection for
Salmonella in broiler flocks (Shreeve et al., 2002; Alter et al., 2011; Garcia-Sanchez et al., 2018).

The timing of infection is also very different, with introduction of Salmonella into a flock being
much more likely during the first week of life, but for Campylobacter there is usually a ‘lag phase’ of
2–3 weeks. If Salmonella is not present in feed, day-old chick deliveries or the internal environment of
broiler houses, it is normally possible to exclude its entry by means of basic precautions such as
disinfectant boot dips of boot changes, but with Campylobacter this appears to be much more difficult,
and any lapse in implementation of high biosecurity and farm hygiene standards is much more likely to
lead to introduction of infection from the external environment, either from the direct farm
environment or from other farms visited by personnel such as field managers and auditors on the
same day (Sibanda et al., 2018). This is likely to be related to a lower number of organisms needed to
infect broiler flocks than for Salmonella and the lack of age-related reduced susceptibility. Poultry flocks
infected with Campylobacter also shed huge numbers of organisms; with flock prevalence increasing
rapidly to approach 100% within days of the first bird becoming infected and with Campylobacter
loads of between 6 and 9 logs CFU/g of caecal contents or fresh faeces. This makes it very difficult to
avoid spreading infection between different flocks on a broiler farm once one flock has become
infected or to prevent spread of infection by thinning personnel and equipment, which have very close
contact with birds on a daily basis (Thornton, 2010; Higham et al., 2018; Wales et al., 2018).

The seasonality of Campylobacter is also different from Salmonella, which usually shows more
limited seasonality, especially in colder climates. In the Nordic countries where there is very good
control of Salmonella through a high level of compliance with best biosecurity standards,
Campylobacter also occurs at very low levels for most of the year, becoming a rare event in winter
months, but is much more difficult to control in summer, resulting in a high flock prevalence even
though Salmonella remains rare (Kuhn et al., 2018).

There is also evidence suggesting different colonisation mechanisms, colonisation sites in the gut
and many host immune responses relating to infection with the two organisms in different hosts
(Iglesias-Torrens et al., 2018; Korolik, 2018), although a proportion of host-response genes may be
common to both infections (Calenge and Beaumont, 2012; Psifidi et al., 2016). According to
Shaughnessy et al. (2009), the innate regulation of immune responses differentiates the avian
intestinal colonisation between Salmonella and Campylobacter, the latter being able to modulate and
possibly evade host immune mechanisms. Meade et al. (2009) demonstrated the difference in
colonisation patterns were due to the innate immune system (Toll-Like Receptors and avian B-defensin
gene expression), which responds differently to Salmonella and Campylobacter infection.

These factors suggest that interaction between the two organisms in the competitive way that
applies to more closely related organisms is unlikely (Yang et al., 2018), although the inflammation and
intestinal damage associated with some Campylobacter infections may enhance the establishment and
tissue dissemination of other organisms (Awad et al., 2018) and this has also been shown in mice
(Wang et al., 2018a). This observation is also supported by the ability to readily infect chickens with
both organisms in laboratory in-vivo infection models (Heres et al., 2003; Meade et al., 2009; Rouxel
et al., 2018; Wilson et al., 2018).
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Table 11: Differences in the biology, epidemiology and immunology between Salmonella and
Campylobacter

Characteristic Salmonella Campylobacter References

Survival outside
the gut

Good – up to several years in dry
shady conditions

Poor, especially in dry
conditions. Can form biofilms
that may prolong survival in
moist conditions or enter a
VBNC state

Trachoo et al. (2002);
Davies (2005); Murphy
et al. (2006); Bronowski
et al. (2014)

Multiplication
outside the host

Common, especially in feed mills
and hatcheries and warm, moist
environmental areas. Can grow
aerobically and anaerobically

Very unlikely to occur outside
the laboratory. Usually requires
microaerobic environment so
normally unable to grow in air

Silva et al. (2011); Wales
and Davies (2013)

Multiplication
temperature
range

7–45°C > 30°C, 41–42°C is optimal;
sensitive to high temperatures
so easily killed in heat-treated
feed

Fehihaber and Krueger
(1998); Park (2002)

Susceptibility to
freezing

Reduction in numbers during
freeze-thaw cycles but generally
resistant to freezing

More susceptible than coliform
indicator organisms, e.g. a 2
log reduction can be achieved
in broiler meat by freezing

Olson et al. (1981);
Georgsson et al. (2006);
EFSA BIOHAZ
Panel (2011b)

Occurrence in
wild animals

Sporadic, but more common in
reptiles, badgers and some
species of wild birds

Very common, so also common
in the environment

Wahlstrom et al. (2003);
Wilson et al. (2003);
Briones et al. (2004);
Hilbert et al. (2012)

Dissemination by
vertical
transmission in
eggs or by
hatchery
contamination

Vertical transmission likely for
some strains within certain
serovars and persistent hatchery
contamination is common due to
multiplication in incubators and
waste/wash areas

Unlikely; would not survive
normal hatchery conditions or
within egg contents

Callicott et al. (2006);
Howard et al. (2012);
Crabb et al. (2018)

Dissemination via
contaminated
feed

Persistent contamination of feed
storage and production facilities,
including multiplication within
cooling systems, is common

Very unlikely due to poor
desiccation survival

Jones (2011); Ge et al.
(2013); Magossi et al.
(2018)

Survival in broiler
house between
crops

Common, due to good
environmental survival and
relatively high tolerance for
disinfectants

Unlikely unless poor cleaning
and disinfection standards apply

Evans and Sayers (2000);
Rose et al. (2000)

Colonisation of
broilers (natural)

The colonising dose can be low
for chicks within the first 2–3
days of life, then progressively
increases with age as the chick
immune system and gut flora
matures. Most infections occur
within the first week of life, peak
at 2–3 weeks then start to
regress, often not being readily
detected by the time of slaughter

Most infections occur after a lag
phase of 2–3 weeks, thought to
be related to maternal
immunity, with the flock being
much more likely to be infected
with high levels of
Campylobacter by the time of
slaughter than earlier in life.
Dose very low throughout the
life of a broiler resulting in a
much higher flock prevalence
than for Salmonella, especially
in summer

Gradel et al. (2002);
Newell and Fearnley
(2003); Van Immerseel
et al. (2004); Berghaus
et al. (2013); Vidal et al.
(2014); Awad et al.
(2018)
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Characteristic Salmonella Campylobacter References

Colonisation of
broilers
(experimental)

Colonisation can be achieved
with a concentration in the feed
as low as 0.1–0.3 CFU/g feed for
day-old chicks, but is age-
dependent and the within-flock
prevalence and duration of
shedding is dose dependent, with
at least 100–1,000 CFU needed
to reliably establish infection in
older. Colonised within 6 h,
oesophagus, small intestine and
caeca. Clearance by 20 h except
in caeca (7 log10 CFU/g at 48 h).
High level in liver (6 log10 CFU/g
at 48 h) and low level in spleen

Infection can be established in
broilers with inoculation doses
of 20–90 CFU. Colonised within
6 h, oesophagus, small
intestine and caeca but
colonisation of caeca was over
10-fold higher than in
oesophagus and small intestine
and reached 11 log10 CFU/g at
48 h. Low levels in liver and
spleen

Ruiz-Palacios et al.
(1981); Hinton (1988);
Gast and Beard (1989);
Cawthraw et al. (1996);
Heres et al. (2004);
Meade et al. (2009);
Awad et al. (2018)

Within-flock
prevalence

Very variable from 1–50%;
typically much lower at the time
of slaughter

Considered to be likely to be
100% birds within a few days
of introduction of infection,
persisting to normal broiler
slaughter age

Limawongpranee et al.
(1999); Newell and
Fearnley (2003)

Mean count in
caeca

Usually < 2 log10 CFU/g > 5 log10 CFU/g Berghaus et al. (2013)

Impact of farm
biosecurity

Infection due to staff or visitors
entering houses is rare as long as
reasonable precautions are
applied to footwear. Infection
within one broiler house can
normally be prevented from
spreading to others by normal
precautions

Entry of personnel into broiler
houses is thought to be the
main means of introduction and
spread. Compliance with
excellent biosecurity standards
must be much higher than for
Salmonella, probably because
of the low colonising dose, and
high numbers of organisms
shed by infected animals. In
some countries flies are also
considered to be an important
means of introduction of
infection during summer
months and these are not
impacted by normal biosecurity
measures

Gibbens et al. (2001);
Hald et al. (2004);
Davies (2005); Newell
et al. (2011); Bahrndorff
et al. (2013); Battersby
et al. (2016); CAMCON
(2016); Sommer et al.
(2016); Meerburg and
Schoelitsz (2018)

Role of farm
vectors

Rodents and wild birds most
important

Cattle, rodents and flies have
been considered to be most
important, but more recent
molecular genetic evidence
suggests this may be over-
estimated in comparison with
environmental contamination
originating from other poultry
flocks

Meerburg and Kijlstra
(2007); Agunos et al.
(2014)

Role of
contaminated
water

Little evidence of water as an
important route or survival within
protozoa

Several studies report non-
municipal water or untreated
water to increase risk. Survival
within protozoa may be a factor

Kapperud et al. (1993);
Pearson et al. (1993);
Snelling et al. (2005);
Alali et al. (2010);
Riquelme et al. (2016)
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3.5.2. Presence of Salmonella vs Campylobacter in broiler flocks

3.5.2.1. Literature data

Studies on co-colonisation

Despite increased biosecurity and farm hygiene standards that have been associated with a
reduction in Salmonella prevalence in broiler flocks in the EU (Figure 4), a statistically increasing trend
in reported Campylobacter infection of humans has occurred at the EU level since 2008, although this
has stabilised in recent years (EFSA and ECDC, 2017d). In some countries where regular monitoring
for Campylobacter is carried out, there has also been no improvement at broiler flock level (Lawes
et al., 2012; Vidal et al., 2014). In order to investigate the possible relationships between Salmonella
and Campylobacter prevalence, publications reporting co-colonisation by both organisms were
reviewed for a possible negative or positive association between the organisms. Although many studies
have produced data on the occurrence and bacterial load of Salmonella and Campylobacter resulting
from natural or artificial infections and concurrent persistence of both organisms has been shown in
experimental models (Cox et al., 2018), a relatively small number of studies have considered both
organisms in the same naturally infected birds or flocks and even fewer have specifically reported the
data on co-colonisation of individual birds or flocks by both organisms and have usually only reported
the total proportion positive for either Campylobacter or Salmonella. Therefore, co-colonisation studies
in poultry other than broilers were also included. Other studies have reported such high prevalence of
both organisms that co-colonisation must have been present, but is not explicitly stated in the
publications (e.g. Line (2002); Cox et al. (2003)). No negative associations have been reported from
any studies. Two large studies that did provide data and conducted analysis on concurrent infection
reported no positive or negative statistical association between the organisms (Wedderkopp et al.,
2001; Rasschaert et al., 2007), whereas in a third study a positive statistical correlation was found

Characteristic Salmonella Campylobacter References

Seasonality Little evidence of seasonality but
heat stress may influence
shedding and extra-intestinal
infection in infected birds

Large increase in risk in
summer months in many
countries and reports of very
effective control by good
biosecurity in some countries
apart from during the summer

Jacobs-Reitsma et al.
(1994); Ravel et al.
(2010); Quinteiro-Filho
et al. (2012); Allain et al.
(2014)

Colonisation site Mainly colonises subepithelial
gut-associated lymphoid tissue
with intermittent egress to the
gut lumen, especially in the
caecum

Mainly in the caeca, large
intestine and cloaca and is
generally restricted to the
intestinal mucous layer in the
crypts of the intestinal epithelium
This is a highly specialised
environment and C. jejuni has
evolved specialised strategies
that allow it retain motility within
mucus and utilise local nutrients

Desmidt et al. (1997);
Park (2002)

Impact of
thinning

Very limited evidence of an
increased rate of infection at
slaughter because of the higher
infectious dose for Salmonella at
slaughter age and slow rate of
spread in older birds

Major impact on flock infection,
with very few flocks remaining
clear of Campylobacter after
thinning, except in low
prevalence countries or seasons

Van Der Fels-Klerx et al.
(2008); EFSA (2010b);
Koolman et al. (2014)

Proportions of
innate cells
(heterophils,
monocytes)

Significant variation in numbers
as response to infection

No variation in numbers as
response to infection

Meade et al. (2009);
Shaughnessy et al.
(2009)

Gene expression
(CD4/5,
chemokine,
cytokine, AMP
gene)

Increase in response to
S. Typhimurium infection

Transient, if any, increase and
in general no significant change
in response to C. jejuni
infection

Meade et al. (2009);
Shaughnessy et al.
(2009)

VBNC: viable but non-culturable; CFU: colony forming units.
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between Campylobacter and Salmonella colonisation (Jacobs-Reitsma et al., 1994). This may have
been influenced by the lower standards of broiler farm biosecurity and terminal hygiene that applied in
the early 1990s, which could have increased the likelihood of occurrence of both organisms. A similar
positive statistical correlation was more recently reported by (Franz et al., 2012), but no data were
provided. Another recent finding, from an experimental trial of co-infected birds by Salmonella and
Campylobacter, indicated that co-colonisation by both microorganisms did not affect negatively the
mean counts (log CFU/g) in caeca of each but seemed to enhance Salmonella mean counts by 1 log in
birds co-infected with Campylobacter compared to birds infected only by Salmonella (Rouxel et al.,
2018). If these suggestions of enhanced colonisation and invasion of other pathogens in some batches
of birds that are infected with Campylobacter are correct, this could pose an increased likelihood of
higher levels of Salmonella being present in birds at slaughter and therefore the higher level of
biosecurity needed to control Campylobacter could have additional benefits in reducing the risk of dual
infections. A summary of the findings of various studies is tabulated in Table C.7 in Appendix C.

In the EU-wide BLS of Campylobacter in caeca and Salmonella and Campylobacter on carcasses,
Salmonella-contamination results on the broiler carcasses were not significantly associated with
Campylobacter status of the flocks. There was also no evidence of association between Campylobacter
and Salmonella contamination based on broiler carcass samples. The prevalence of Campylobacter on
the Salmonella-positive and -negative samples was nearly 70%. Unfortunately testing for Salmonella in
caeca, which would have provided a more meaningful comparison to study co-colonisation, was not
carried out (EFSA, 2010b).

In addition, comparison of the prevalence of the EU Campylobacter survey results of 2008 with the
Salmonella BLS of broiler flocks in 2006 (Figure 11) suggests that some MS that have low prevalence
of Salmonella may also have lower Campylobacter prevalence in flocks. The 2008 data in Figure 11
provides a correlation value of 0.46 (p = 0.09), suggesting a weak correlation overall and that the null
hypothesis that there is no correlation cannot be rejected. In Figure 11, countries such as Sweden,
Finland and Denmark which are known to have very high biosecurity standards, have low levels of
both Salmonella and Campylobacter in the BLSs and in monitoring data. However, other countries,
such as France and the United Kingdom, have been able to control Salmonella much more effectively
than Campylobacter and factors relating to climatic or production system differences may also be
involved (Trompette et al., 2018; Wales et al., 2018).
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Figure 11: Comparison of the Campylobacter prevalence of broiler batches and Salmonella
prevalence of broiler flocks in EU Members States as derived from the EU-wide baseline
surveys (in 2008 for Campylobacter and in 2006 for Salmonella)
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These observations are supported by several studies that have demonstrated the importance of
good compliance with high biosecurity standards when entering broiler houses for effective control of
Campylobacter (Humphrey et al., 1993; Berndtson et al., 1996; Rosenquist et al., 2009; Hansson
et al., 2010; EFSA BIOHAZ Panel, 2011b; Battersby et al., 2016; CAMCON, 2016; Van Wagenberg
et al., 2016; Higham et al., 2018). The epidemiological and biological differences between the two
organisms result in a greater likelihood of introduction of Campylobacter into broiler flocks, at any
stage of the life of the birds, if there are lapses in biosecurity standards than for Salmonella. In
addition, successful Salmonella control has involved actions taken at breeding flock level, such as
culling and vaccination, which are not applicable to Campylobacter.

3.5.2.2. Data from EEA countries

The data request on the occurrence of Salmonella or Campylobacter for any broiler flocks and
broiler batches at the farm or slaughterhouse level (e.g. neck skin or caecal samples) resulted in
potentially useful data provided by three countries on the co-occurrence of Salmonella and
Campylobacter of broiler flocks at the farm level. The data, consisting of test results from 4,914
(Iceland); 1,386 (Spain) and 247 (Latvia) flocks, are summarised in Table 12.

For Spain, the flock positivity for Campylobacter was not significantly (p > 0.05) influenced by the
Salmonella flock status (1.33; CI95[0.69–2.65]). Latvia and Iceland had no flocks being positive for
both pathogens and low flock positivity for Salmonella (Latvia had no flock positive for Salmonella,
while Iceland had only 14 flocks positive for Salmonella).

Limited evidence was obtained on whether Salmonella and Campylobacter positivity was found in the
same flocks more or less often than expected if they were independent infections, at least partly because
few flocks had a Salmonella-positive status. Because of the limited quality and representativeness of the
data, it was not possible to conclude on any possible association between the organisms.

3.5.3. Presence of Salmonella vs Campylobacter on broiler meat

3.5.3.1. Literature data

At the slaughterhouse level, similar findings have been reported for studies carried out on broiler
meat (Table C.8 in Appendix C). In this case, the data are more difficult to relate to the flock infection
status. Cross-contamination between slaughter batches at the abattoir occurs commonly, but
in situations where there is a low flock prevalence of either Salmonella or Campylobacter carcass

Table 12: Co-occurrence of Salmonella or Campylobacter of broiler flocks at the farm level based
on data from three countries, 2010–2017

Spain Status
Campylobacter(b)

Positive Negative Total

Salmonella(a) Positive 29 16 45

Negative 773 568 1,341

Total 802 584 1,386

Iceland Status
Campylobacter(c)

Positive Negative Total

Salmonella(c) Positive 0 14 14
Negative 178 4,722 4,900

Total 178 4,736 4,914

Latvia Status
Campylobacter(d)

Positive Negative Total

Salmonella(d) Positive 0 0 0

Negative 141 106 247

Total 141 106 247

(a): broilers holding tested using as sampling type: swabs.
(b): broilers batches tested using as sampling type: caecum.
(c): Sample type: faecal/boot swabs.
(d): Sample type: caecal material.
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contamination is most likely to originate from the flock itself rather than the slaughter process
(Kagambega et al., 2018).

Several studies report associations between the contamination of farm samples and processing
plant samples for Salmonella and Campylobacter (Arsenault et al., 2007; Hue et al., 2011; Franz et al.,
2012; Berghaus et al., 2013). Very few studies are available on the co-occurrence of both
microorganisms on broiler meat. An experimental study of the effect of litter acidification on carriage
of Salmonella and Campylobacter by broiler chicks and contamination of their carcases did not report
any association between the organisms (Line, 2002). In another study (Hue et al., 2011), the authors
reported the data collected from 425 samples of carcasses analysed for Salmonella and Campylobacter
and found no significant (p = 0.269) correlation between both microorganisms, and the counts of
Campylobacter were not influenced (p = 0.268) by the presence or absence of Salmonella on
carcasses. Franz et al. (2012) studied the occurrence of Salmonella and Campylobacter in the broiler
supply chain. They considered three different sampling points, the farm (one pair of shoe covers, fresh
droppings), arrival at the slaughterhouse (caecal swabs) and the end of the slaughter line (skins of
breast caps). While they found a significant positive correlation between both microorganisms at the
two first sampling points (farm (p = 0.008), arrival at the slaughterhouse (p = 0.018)), they did not
observe any significant correlation at the final sampling point; slaughterhouse departure. Williams and
Ebel (2014) reported a study based on a data set of 3,164 observations (400 ml carcass rinses) used
in a model to estimate the correlations between generic E. coli, Salmonella and Campylobacter. The
authors found a weak positive correlation between Campylobacter and Salmonella but this was not
statistically significant. These studies were not able to show a correlation between the two organisms
on broiler carcasses, despite the possibility for cross-contamination at slaughter and were therefore
not suggestive of any impact of Salmonella controls carried out at farm level.

3.5.3.2. MS data

The data request on the occurrence of Salmonella or Campylobacter for any broiler flocks and
broiler batches at the farm or slaughterhouse level (e.g. neck skin or caecal samples) resulted in useful
data provided by five countries on the co-occurrence of Salmonella and Campylobacter of broiler
batches at the slaughterhouse level. The data, consisting of test results from 1,081 (the Czech
Republic); 202 (Estonia); 138 (Slovenia); 253 (Romania); and 11 (Luxembourg) broiler batches, are
summarised in Table 13.

Broiler batch positivity by Campylobacter is not significantly (p > 0.05) associated with the
Salmonella batch status using the data from Slovenia (OR = 0.64; CI95[0.12–6.58]) and Romania
(OR = 1.48; CI95[0.62–3.50]). Sampling of the neck skin of carcasses was used in these studies. The
data from the Czech Republic seem to indicate that Salmonella positive batches are less likely to be
Campylobacter positive (OR = 0.62; CI95[0.46–0.84] (p = 0.001695). However, the sample type is
unknown in this study. Estonia and Luxembourg did not detect Salmonella in the flocks sampled.

Hence, no evidence was found that the occurrence of Salmonella and Campylobacter on broiler
batches at the slaughterhouse was correlated among these observations. The apparent negative
correlation found in samples from the Czech Republic is biologically implausible, and may relate to
differences in sample types, which were not reported.

Table 13: Co-occurrence of Salmonella or Campylobacter of broiler batches at the slaughterhouse
level based on data from five countries, 2010–2017

The Czech Republic Status
Campylobacter(a)

Positive Negative Total

Salmonella(a) Positive 121 109 230

Negative 546 305 851

Total 667 414 1,081

Slovenia Status
Campylobacter(c)

Positive Negative Total

Salmonella(c) Positive 11 2 13
Negative 112 13 125

Total 123 15 138
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3.5.4. Concluding remarks and recommendations

• Salmonella and Campylobacter have very different biological characteristics, epidemiology and
modes of infection and host immune response, occupying different intestinal niches, so a
relevant influence of one organism on infection patterns of the other is not expected.

• There is limited experimental evidence that a prior Campylobacter infection may result in a
greater colonisation and extra-intestinal invasion by other organisms, which may include
Salmonella.

• Very few studies considering both Salmonella and Campylobacter in broiler flocks or on broiler
meat provided data on the prevalence of both organisms together in the samples.

• Overall evidence points towards no association (negative or positive) between the occurrence
of Salmonella and Campylobacter in broiler flocks or on broiler meat at the end of the
slaughter line.

• The epidemiological and biological differences between the two organisms result in a greater
likelihood of introduction of Campylobacter into broiler flocks, at any stage of the life of the
birds, if there are lapses in biosecurity standards, than for Salmonella. In addition, successful
Salmonella control has involved actions taken at breeding flock level, such as culling and
vaccination, which are not applicable to Campylobacter.

• No longitudinal studies are available to directly assess the impact of Salmonella control
programmes on the Campylobacter prevalence. Based on scientific evidence on the differences
between Salmonella and Campylobacter epidemiology and patterns of colonisation, an impact
of Salmonella control programmes, apart from general hygiene procedures, on the prevalence
of Campylobacter in broiler flocks at the holding and on broiler meat at the end of the
slaughter process is not expected.

• It is recommended that any infection study that includes more than one organism should
report the results of samples that contain combinations of organisms and not just report the
prevalence and concentrations of each organism separately.

Romania Status
Campylobacter(d)

Positive Negative Total

Salmonella(d) Positive 14 14 28

Negative 91 134 225

Total 105 148 253

Estonia Status
Campylobacter(e)

Positive Negative Total

Salmonella(e) Positive 0 0 0
Negative 15 187 202

Total 15 187 202

Luxembourg Status
Campylobacter(f)

Positive Negative Total

Salmonella(f) Positive 0 0 0

Negative 11 0 11

Total 11 0 11

(a): No info on sample type.
(b): Sample type: neck/skin of carcass.
(c): Sample type: neck/skin of carcass.
(d): Sample type: neck/skin of carcass.
(e): Sample type: neck/skin of carcass.
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4. Conclusions

ToR 1: To estimate the public health impact if the target serotypes in flocks of breeding
hens of Gallus gallus are changed, maintaining the current Union target (1%), testing
scheme and trade restrictions unchanged. The target serotypes should be defined by EFSA
based on their public health significance taking into account the criteria described in
Annex III of Regulation (EC) No 2160/2003). Following scenarios should be assessed: (a)
a new top 5 of serotypes and (b) all serotypes. The impact of these scenarios should be
estimated on the reported prevalence in flocks of broilers and layers (tested in accordance
with Commission Regulations (EU) No 200/2012 and No 517/2011). If data allow, the
impact should also be estimated on the reported human salmonellosis cases through the
poultry meat and egg production chains.

• It is not possible to assess the impact of proposed changes of target serovars in breeding
flocks either on laying hen or broiler populations. There are multiple sources of these serovars
other than breeding flocks and the impact of breeding flocks depends on the individual strains
involved and control actions in the food chain. It is also not possible to assess the impact of
proposed changes of target serovars on human salmonellosis cases for the same reasons.

• There is justification for retaining S. Enteritidis, S. Typhimurium (including monophasic
variants) and S. Infantis in the target for breeding flocks considering their occurrence in
breeding hen, laying hen and broiler flocks, as well as in humans.

• Apart from these three serovars, the predominant Salmonella serovars in humans are subject
to change on an annual basis, so a new top 5 serovar target list based on human prevalence
could become out of date quite rapidly, as has occurred for the current target serovars
S. Virchow and S. Hadar.

• S. Kentucky could be proposed for inclusion in a breeding flock target as the fourth serovar as
it has spread among broiler populations in several EU MS in recent years, and many strains are
resistant to multiple antimicrobials and exhibit high level resistance to critically important FQ
antimicrobials.

• For the fifth serovar, there are several options depending on Salmonella control priorities at the
EU and MS level

� S. Heidelberg could be included on a precautionary basis to prevent dissemination of
epidemic strains in the EU. Although not currently common in the EU, this serovar has
shown a high propensity for vertical transmission and resistance to extended-spectrum
cephalosporins in the American continent.

� S. Thompson could be proposed as an option for enhanced control in the EU, based on
its occurrence in breeding flocks and dissemination in a small number of MS, plus
enhanced virulence of some strains.

� A further alternative could be a more proactive selective approach to control of
Salmonella in the breeding and production pyramid via inclusion of a variable fifth
serovar in MS-specific national prevalence targets in breeding flocks if serovars of
particular concern arise in breeding flocks and progeny in that country, or are
considered to be a threat, based on occurrence and epidemiology in other regions.

• A target that incorporates all serovars is expected to be more effective than one for selected
serovars as the most relevant serovars in breeding flocks vary between MS and over time. It
would be more effective in reducing the dissemination of all serovars, including newly emerging
strains with ‘epidemic potential’ and the re-emergence of previously specified target serovars.

ToR 2: To estimate the public health impact expressed as relative reduction of reported
human salmonellosis cases if the target set for adult flocks of laying hens of Gallus gallus
is reduced from 2 to 1% for the current target serotypes (Salmonella Enteritidis and
Salmonella Typhimurium including the monophasic strain), maintaining the current
testing scheme and trade restrictions unchanged and taking into account the data from
the last reporting year (i.e. 2016)

• If a 1% target of the EU control programme of Salmonella for the current target serovars in
laying hen flocks would be met in the 23 EU MSs included in the SAM, the number of human
salmonellosis true cases (i.e. accounting for under-ascertainment and underreporting) is
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estimated to be reduced by 254,400 CrI95[98,540; 602,700] compared to the situation in 2016.
This corresponds to a reduction of 53.38% CrI95[39.11; 65.69] considering the layer-associated
true cases and 6.2% considering the overall human salmonellosis estimated true cases.

ToR 3: To review the risk factors for the occurrence of Salmonella in laying hens for
which targets have been set, in relation to the farming methods based on monitoring data
and a review of literature, and in particular with the view to see if the ban on unenriched
cages had an effect on such occurrence

• There are no field studies that specifically address the impact of the transition from
conventional to enriched cage systems on the occurrence of Salmonella in laying flocks.

• Conflicting evidence is found in the literature and MS data on the occurrence of Salmonella in
laying hens when raised in cage systems compared to non-cage systems. Overall, evidence
points to a lower occurrence in non-cage systems compared to cage systems. Whether this is
linked to the housing system as such or whether it is caused by the associated change of
furniture, break in the historical infection cycle or reduced stocking density, is unclear.

• The evidence that outdoor access or conventional vs enriched cage systems affect Salmonella
occurrence in laying hens at the EU level is inconclusive.

ToR 4: To review the risk factors for the occurrence of Salmonella based on monitoring
data and a review of literature (a) in broiler chickens, in relation to the type of farming
and (b) in broilers and laying hens in relation to other animal welfare indicators

• The evidence that outdoor access affects the occurrence of Salmonella in broiler flocks is
inconclusive.

• There is conclusive evidence that an increased stocking density, larger farms and stress-
inducing conditions result in increased occurrence, persistence and spread of Salmonella in
laying hen flocks.

• For broiler flocks, the limited evidence available shows that stress, stocking density and
increasing the number of flocks per farm increases Salmonella susceptibility or infection rate.

• There is no data evaluating links between welfare indicators and Salmonella occurrence in
broilers.

ToR 5 - To indicate if there is scientific evidence on a possible negative or positive
impact of Salmonella control programmes on the prevalence of Campylobacter in broiler
flocks at the holding and on broiler meat at the end of the slaughter process

• There are no field studies that have specifically investigated the impact of Salmonella control
programmes on the occurrence of Campylobacter in broiler flocks.

• Overall evidence points towards no association (negative or positive) between the occurrence
of Salmonella and Campylobacter in broiler flocks or on broiler meat at the end of the
slaughter line.

• The epidemiological and biological differences between the two organisms result in a greater
likelihood of introduction of Campylobacter into broiler flocks, at any stage of the life of the
birds, if there are lapses in biosecurity standards, than for Salmonella. In addition, successful
Salmonella control has involved actions taken at breeding flock level, such as culling and
vaccination, which are not applicable to Campylobacter.

• Considering the differences between Salmonella and Campylobacter epidemiology and patterns
of colonisation, an impact of Salmonella control programmes, apart from general hygiene
procedures, on the prevalence of Campylobacter in broiler flocks at the holding and on broiler
meat at the end of the slaughter process is not expected.

5. Recommendations

• To use WGS for comparing isolates from poultry breeding flocks with those in commercial
generations of birds and in humans in order to provide more definitive evidence of a link
between breeding flocks, commercial generations and human infections.

• To investigate the potential and reasons for under-detection of Salmonella, particularly
S. Enteritidis, in flocks of laying hens and to conduct field investigations on the effectiveness of
administration of Salmonella vaccination programmes used in laying flocks, and their protective
effect.
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• To investigate in detail the reasons for failure to control S. Enteritidis in countries where it
appears regularly in chicken breeding flocks, laying hens or broilers, especially if current or
proposed targets are exceeded.

• To report all individual Salmonella serovars in poultry flocks to facilitate source attribution and
epidemiological studies.

• To review the SAM and its conclusions as new data emerges as the Salmonella situation in the
EU is dynamic in terms of the foodstuff-associated risks and the serovars of most importance.

• To perform an EU-wide survey of Salmonella in cattle and beef to investigate the role of the
cattle reservoir as a source of human infections and in pigs or pork to obtain more recent and
comparable data in order to reduce the uncertainty on the role of the pig reservoir as a source
of human infections.

• To record in future monitoring programs the housing type of laying hen and broiler flocks to
enable assessment of its impact on Salmonella occurrence in these flocks.

• To report the results of samples that contain combinations of organisms, and not just report
the prevalence and concentrations of each organism separately, in any infection study that
includes more than one organism.
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Appendix A – Minimum requirements for systems of production for the
various egg farming methods

Caged systems

According to Regulation (EC) No 589/2008, ‘eggs from unenriched caged hens’ must be
produced in systems of production which satisfy at least the conditions specified in Article 5 of
Directive 1999/74/EC. Rearing in unenriched cages has been prohibited since 2012:

1) at least 550 cm2/hen of cage area, measured in a horizontal plane, which may be used
without restriction, in particular not including non-waste deflection plates liable to restrict
the area available, must be provided for each laying hen;

2) a feed trough which may be used without restriction must be provided. Its length must be
at least 10 cm multiplied by the number of hens in the cage;

3) unless nipple drinkers or drinking cups are provided, each cage must have a continuous
drinking channel of the same length as the feed trough mentioned in point 2. Where
drinking points are plumbed in, at least two nipple drinkers or two cups must be within
reach of each cage;

4) cages must be at least 40 cm high over at least 65% of the cage area and not less than 35
cm at any point;

5) floors of cages must be constructed so as to support adequately each of the forward-facing
claws of each foot. Floor slope must not exceed 14% or 8%. In the case of floors using
other than rectangular wire mesh, MSs may permit steeper slopes;

6) cages shall be fitted with suitable claw-shortening devices.

According to Commission Regulation (EC) No 589/2008, ‘eggs from enriched caged hens’ must
be produced in systems of production which satisfy at least the conditions specified in Article 6 of
Directive 1999/74/EC:

1) laying hens must have:

a) at least 750 cm2 of cage area/hen, 600 cm2 of which shall be usable; the height of the
cage other than that above the usable area shall be at least 20 cm at every point and
no cage shall have a total area that is less than 2,000 cm2;

b) a nest;
c) litter such that pecking and scratching are possible;
d) appropriate perches allowing at least 15 cm/hen;

2) a feed trough which may be used without restriction must be provided. Its length must be
at least 12 cm multiplied by the number of hens in the cage;

3) each cage must have a drinking system appropriate to the size of the group; where nipple
drinkers are provided, at least two nipple drinkers or two cups must be within the reach of
each hen;

4) to facilitate inspection, installation and depopulation of hens there must be a minimum aisle
width of 90 cm between tiers of cages and a space of at least 35 cm must be allowed
between the floor of the building and the bottom tier of cages;

5) cages must be fitted with suitable claw-shortening devices.

Alternative systems

According to Commission Regulation (EC) No 589/2008, ‘barn eggs’ must be produced in systems
of production which satisfy at least the conditions specified in Article 4 of Directive 1999/74/EC. This
Article relates to alternative systems and specifies that:

1) All systems must be equipped in such a way that all laying hens have:

a) either linear feeders providing at least 10 cm/bird or circular feeders providing at least 4
cm per bird;

b) either continuous drinking troughs providing 2.5 cm/hen or circular drinking troughs
providing 1 cm/hen.

c) In addition, where nipple drinkers or cups are used, there shall be at least one nipple
drinker or cup for every 10 hens. Where drinking points are plumbed in, at least two
cups or two nipple drinkers shall be within reach of each hen;
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d) at least one nest for every seven hens. If group nests are used, there must be at least
1 m2 of nest space for a maximum of 120 hens;

e) adequate perches, without sharp edges and providing at least 15 cm/hen. Perches must
not be mounted above the litter and the horizontal distance between perches must be at
least 30 cm and the horizontal distance between the perch and the wall must be at least
20 cm;

f) at least 250 cm2 of littered area per hen, the litter occupying at least one third of the
ground surface.

2) The floors of installations must be constructed so as to support adequately each of the
forward-facing claws of each foot.

3) In addition to the provisions laid down in points 1 and 2,

e) if systems of rearing are used where the laying hens can move freely between different
levels,

i) there shall be no more than four levels;
ii) the headroom between the levels must be at least 45 cm;
iii) the drinking and feeding facilities must be distributed in such a way as to provide

equal access for all hens;
iv) the levels must be so arranged as to prevent droppings falling on the levels

below.

f) If laying hens have access to open runs:

i) there must be several pop-holes giving direct access to the outer area, at least
35 cm high and 40 cm wide and extending along the entire length of the
building; in any case, a total opening of 2 m must be available per group of
1,000 hens;

ii) open runs must be of an area appropriate to the stocking density and to the
nature of the ground, in order to prevent any contamination and equipped with
shelter from inclement weather and predators and, if necessary, appropriate
drinking troughs.

4) The stocking density must not exceed nine laying hens/m2 usable area. However, where the
usable area corresponds to the available ground surface, MSs may, until 31 December 2011,
authorise a stocking density of 12 hens/m2 of available area for those establishments
applying this system on 3 August 1999.

According to Commission Regulation (EC) No 589/2008, ‘free-range eggs’ must be produced in
systems of production which satisfy at least the conditions specified in Article 4 of Council Directive
1999/74/EC. In particular, for free-range systems the following conditions must be satisfied:

• hens must have continuous daytime access to open-air runs. However, this requirement does
not prevent a producer from restricting access for a limited period of time in the morning
hours in accordance with usual good farming practice, including good animal husbandry
practice.
In case of other restrictions, including veterinary restrictions, adopted under Community law to
protect public and animal health, having the effect of restricting access of hens to open-air
runs, eggs may continue to be marketed as ‘free-range eggs’ for the duration of the
restriction, but under no circumstances for more than 12 weeks;

• open-air runs to which hens have access must be mainly covered with vegetation and not be
used for other purposes except for orchards, woodland and livestock grazing if the latter is
authorised by the competent authorities;

• the maximum stocking density of open-air runs must not be greater than 2,500 hens/ha of
ground available to the hens or 1 hen/4 m2 at all times. However, where at least 10 m2/hen is
available and where rotation is practised and hens are given even access to the whole area
over the flock’s life, each paddock used must at any time assure at least 2,5 m2/hen;

• open-air runs must not extend beyond a radius of 150 m from the nearest pop-hole of the
building. However, an extension of up to 350 m from the nearest pop-hole of the building is
permissible provided that a sufficient number of shelters as referred to in Article 4(1)(3)(b)(ii)

Salmonella control in poultry flocks and its public health impact

www.efsa.europa.eu/efsajournal 90 EFSA Journal 2019;17(2):5596



of Directive 1999/74/EC are evenly distributed throughout the whole open-air run with at least
four shelters per hectare.

According to Council Regulation (EC) No 1804/199931, ‘organic eggs’ must be produced in
systems of production which satisfy at least the following

• Poultry must be reared in open-range conditions and cannot be kept in cages.
• Buildings for all poultry must meet the following minimum conditions:

✓ at least one third shall be solid, that is, not of slatted or of grid construction, and covered
with a litter material such as straw, wood shavings, sand or turf;

✓ in poultry houses for laying hens, a sufficiently large part of the floor area available to the
hens must be available for the collection of bird droppings;

✓ they must have perches of a size and number commensurate with the size of the group
and of the birds as laid down in Annex VIII:

– regarding the indoor area (1) the stocking density of may not exceed 6 laying hens
per m2 usable area; (2) 18 cm perch per animal; (3) 8 laying hens per nest or in
case of a common nest 120 cm2/bird;

– regarding the outdoor area: each laying hen must at least have 4 m2 of open run
area provided that the limit of 170 kg of N/ha/year is not exceeded;

✓ they must have exit/entry pop-holes of a size adequate for the birds, and these pop-holes
must have a combined length of at least 4 m/100 m2 area of the house available to the
birds;

✓ each poultry house must not contain more than 3,000 laying hens;
✓ the total usable area of poultry houses for meat production on any single production unit,

must not exceed 1,600 m2.

• In the case of laying hens natural light may be supplemented by artificial means to provide a
maximum of 16 h light/day with a continuous nocturnal rest period without artificial light of at
least 8 h.

• Poultry must have access to an open-air run whenever the weather conditions permit and,
whenever possible, must have such access for at least one third of their life. These open-air
runs must be mainly covered with vegetation be provided with protective facilities, and permit
animals to have easy access to adequate numbers of drinking and feeding troughs.

• For health reasons, buildings must be emptied of livestock between each batch of poultry
reared. The buildings and fittings are to be cleaned and disinfected during this time. In
addition, when the rearing of each batch of poultry has been completed, runs must be left
empty to allow vegetation to grow back, and for health reasons. MSs will establish the period
in which runs must be empty and they will communicate their decision to the Commission and
the other MSs. These requirements shall not apply to small numbers of poultry which are not
kept in runs and which are free to roam, throughout the day.

31 Council Regulation (EC) No 1804/1999 of 19 July 1999 supplementing Regulation (EEC) No 2092/91 on organic production of
agricultural products and indications referring thereto on agricultural products and foodstuffs to include livestock production.
OJ L 222, 24.8.1999, p. 1–28.
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Appendix B – Minimum requirements for systems of production for the
fattening poultry

According to Annex V of Commission Regulation (EC) No 543/2008,13 in order to indicate types of
farming of fattening poultry with the exception of organic or biological farming, no other terms except
those set out hereunder may appear on the labelling.

Extensive indoor (barn-reared) may only be used where:

• the stocking rate per m2 floor space does not exceed 15 birds but not more than 25 kg live
weight;

• the birds are slaughtered at 56 days or later.

Free range may only be used where:

• the indoor stocking rate per m2 floor space does not exceed 13 birds but not more than
27.5 kg live weight;

• the birds are slaughtered at 56 days or later;
• the birds have had during at least half their lifetime continuous daytime access to open-air

runs comprising an area mainly covered by vegetation of not less than 1 m2;
• the feed formula used in the fattening stage contains at least 70% of cereals;
• the poultry house is provided with pop-holes of a combined length at least equal to 4 m/100 m2

surface of the house.

Traditional free range may only be used where:

• the indoor stocking rate per m2 floor space does not exceed 12 birds but not more than 25 kg
live weight however, in the case of mobile houses not exceeding 150 m2 floor space and which
remain open at night, the stocking rate may be increased to 20, but not more than 40 kg live
weight/m2;

• the total usable area of poultry houses at any single production site does not exceed
1,600 m2;

• each poultry house does not contain more than 4,800 chickens;
• the poultry house is provided with pop-holes of a combined length at least equal to 4 m/100

m2 surface of the house;
• there is continuous daytime access to open-air runs at least as from the age of 6 weeks;
• open-air runs comprise an area mainly covered by vegetation amounting to at least

2 m2/chicken;
• the birds fattened are of a strain recognised as being slow growing;
• the feed formula used in the fattening stage contains at least 70% of cereals;
• the birds are slaughtered at 81 days or later;
• finition in claustration does not exceed for chickens after 90 days of age: 15 days.

The use of free range – total freedom shall require conformity with the criteria set out under
traditional free range above, except that the birds shall have continuous daytime access to open-air
runs of unlimited area.

According to Council Regulation (EC) No 1804/1999, ‘organic’ must be produced in systems of
production which satisfy at least the following:

• The birds are slaughtered at 81 days or later.
• Poultry must be reared in open-range conditions and cannot be kept in cages.
• Buildings for all poultry must meet the following minimum conditions:

✓ at least one third shall be solid, that is, not of slatted or of grid construction, and covered
with a litter material such as straw, wood shavings, sand or turf;

✓ they must have perches of a size and number commensurate with the size of the group
and of the birds as laid down in Annex VIII:

� in the case of fixed housing:

� the stocking density of the indoor area may not exceed 10 animals/m2 usable
area with a maximum of 21 kg live weight/m2

Salmonella control in poultry flocks and its public health impact

www.efsa.europa.eu/efsajournal 92 EFSA Journal 2019;17(2):5596



� each animal must have 4 m2 of outdoor area provided that the limit of 170 kg
of N/ha/year is not exceeded

� in the case of mobile housing:

� the stocking density of the indoor area may not exceed 16 animals/m2 usable
area with a maximum of 30 kg live weight/m2

� each animal must have 2.5 m2 of outdoor area provided that the limit of
170 kg of N/ha per year is not exceeded

✓ they must have exit/entry pop-holes of a size adequate for the birds, and these pop-holes
must have a combined length of at least 4 m/100 m2 area of the house available to the
birds;

✓ each poultry house must not contain more than 4,800 chickens;
✓ the total usable area of poultry houses for meat production on any single production unit,

must not exceed 1,600 m2.

• Poultry must have access to an open-air run whenever the weather conditions permit and,
whenever possible, must have such access for at least one third of their life. These open-air
runs must be mainly covered with vegetation be provided with protective facilities, and permit
animals to have easy access to adequate numbers of drinking and feeding troughs.

• For health reasons, buildings must be emptied of livestock between each batch of poultry
reared. The buildings and fittings are to be cleaned and disinfected during this time. In
addition, when the rearing of each batch of poultry has been completed, runs must be left
empty to allow vegetation to grow back, and for health reasons. MSs will establish the period
in which runs must be empty and they will communicate their decision to the Commission and
the other MSs. These requirements shall not apply to small numbers of poultry which are not
kept in runs and which are free to roam, throughout the day.
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Appendix C – Search strategies for literature searches and overview of
literature for ToR 3–5

C.1. ToR 3 and 4

Literature searches were conducted on 6 February 2018 in the Web of ScienceTM Core Collection
(1975–present), CABI: CAB Abstracts® (1910–present) and PubMed. The search strategies are reported
in Tables C.1 and C.2. Searches retrieved 1,786 (Web of Science), 1,721 (CABI) and 1,148 (PubMed) hits.

Table C.1: Details of search strings used for literature searches – search strings for Web of Science
and CABI

Set number Search

4 #3 AND #2 AND #1

3 TOPIC: (cage OR cages OR aviary OR aviaries OR barn OR barns OR pen OR pens OR outdoor
OR indoor OR “free range” OR house* OR “housing” OR “rearing” OR “stocking” OR farm* OR
farming OR husbandr* OR crowding OR stress OR welfare OR (risk NEAR/4 factor*) OR
(protective NEAR/4 factor*) OR “social environment”)
DocType = All document types
Language = All languages
Time span = 2010–2018

2 TOPIC: (salmonella OR “S Enterica” OR “S Enteritidis” OR “S Typhimurium” OR “S Hadar” OR “S
Virchow” OR “S Infantis”)
DocType = All document types
Language = All languages
Time span = 2010–2018

1 TOPIC: (chicken OR chickens OR hen OR hens OR broiler* OR pullet* OR “Gallus gallus” OR
“Gallus domesticus” OR “G gallus” OR “G domesticus” OR ((“layer” OR “layers”) NEAR/4 (farm*
OR environment* OR production OR flock* OR hous*))
DocType = All document types
Language = All languages
Time span = 2010–2018

Table C.2: Details of search strings used for literature searches – search strings for PubMed

Set number Search

4 #3 AND #2 AND #1

3 “animal husbandry” [Mesh:NoExp] OR “animal welfare” [Mesh] OR “farms” [Mesh] OR “risk
factors” [Mesh] OR cage [Tiab] OR cages [Tiab] OR aviary [Tiab] OR aviaries [Tiab] OR barn
[Tiab] OR barns [Tiab] OR pen [Tiab] OR pens [Tiab] OR outdoor [Tiab] OR indoor [Tiab] OR
“free range” [Tiab] OR house* [Tiab] OR “housing” [Tiab] OR “rearing” [Tiab] OR “stocking”
[Tiab] OR farm* [Tiab] OR farming [Tiab] OR husbandry [Tiab] OR crowding [Tiab] OR stress
[Tiab] OR welfare [Tiab] OR (risk [Tiab] AND factor*[Tiab]) OR (protective [Tiab] AND factor*
[Tiab]) OR “social environment” [Tiab]
DocType = All document types
Language = All languages
Time span = 2010–2018

2 “salmonella” [Mesh] OR salmonella [Tiab] OR “S Enterica” [Tiab] OR “S Enteritidis” [Tiab] OR “S
Typhimurium” [Tiab] OR “S Hadar” [Tiab] OR “S Virchow” [Tiab] OR “S Infantis” [Tiab]
DocType = All document types
Language = All languages
Time span = 2010–2018

1 “Chickens” [Mesh] OR chicken [Tiab] OR chickens [Tiab] OR hen [Tiab] OR hens [Tiab] OR
broiler* [Tiab] OR pullet* [Tiab] OR “Gallus gallus” [Tiab] OR “Gallus domesticus” [Tiab] OR “G
gallus” [Tiab] OR “G domesticus” [Tiab] OR ((“layer” [Tiab] OR “layers” [Tiab]) AND (farm* [Tiab]
OR environment* [Tiab] OR production [Tiab] OR flock* [Tiab] OR hous*[Tiab]))
DocType = All document types
Language = All languages
Time span = 2010–2018
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Three EndNote X7 files were created, containing the outputs from the three searches, including all
indexed fields per hit (e.g. title, authors, abstract). Files were combined and duplicate records
removed yielding 3,066 records after de-duplication. The EndNote file was transferred into
DistillerSR® Web-Based Systematic Review Software (Evidence Partners, Ottawa, Canada) for the
selection procedure.

The records were screened for relevance to the review question (ToR 3 and 4) in three steps:

• Step 1: title screening of 3,066 records to exclude obviously irrelevant records
• Step 2: screening of title and abstract of 546 remaining records by answering to specific

questions: Q1: Is Salmonella investigated?; Q2: The presence of Salmonella in relevant
population; Q3: Welfare aspects or housing systems considered in relation to Salmonella
occurrence; Q4: Other risk factors (e.g. biosecurity) considered in relation to Salmonella
occurrence? The answers to the first three questions needed to be positive or unclear to
proceed to the next step.

• Step 3: screening of remaining 171 records at full text based on records characteristics (i.e.
availability of full text, primary research study and language).

• Step 4: screening of remaining records at full text by answering to specific questions: Q1: Is
Salmonella investigated?; Q2: The presence of Salmonella in relevant population (i.e. laying
hen production flocks or hen’s eggs, laying hen breeder flocks, broiler production flocks, broiler
breeder flocks); Q3: Welfare aspects or housing systems considered in relation to Salmonella
occurrence?; Q4: Other risk factors (e.g. biosecurity) considered in relation to Salmonella
occurrence?; Q5: Country; Q6: Type of study (i.e. experimental, field study, experimental and
field study); Q7: How have the risk/protective factors been evaluated (i.e. qualitatively,
quantitatively, qualitatively and quantitatively); Q8: Which risk/protective factor(s) in relation to
farming system have been investigated?; Q9: Which animal welfare indicators are described?

The risk/protective factor(s) in relation to the farming system of laying hen production or breeder
flocks listed were: outdoor access, cage systems; if yes: describe type of cage (free text), alternative
systems, group size, stocking density, genetic, rearing of pullets in the same place as layers, type of
litter, biosecurity, other diseases. Those factor(s) in relation to the farming system of broiler production
or breeder flocks listed were: outdoor access, group size, stocking density, genetic, farm hatching,
existence of enrichment, type of litter, biosecurity, and other diseases. The animal welfare indicators
listed were: stress (not heat stress), heat stress, activity/behaviour, body status (e.g. FPD), other
diseases, other: free text. An overview of the studies obtained is given in Tables C.3 and C.4.
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Table C.3: Overview of studies dealing with the occurrence of Salmonella in laying hens (production flocks or hen’s eggs) in relation to the farming
methods and other animal welfare indicators

Reference Country
Welfare aspects or
housing systems
considered

Which risk/protective factor(s) in relation to
the farming system have been evaluated?

Which animal
welfare indicators
are described?

Other risk factors
considered

Field studies

Adesiyun et al. (2014) Trinidad and Tobago YES Cage systems; Alternative systems; Farm size None YES
Carrique-Mas et al.
(2009)

United Kingdom YES Cage systems (step cages/cage-scraper/cage belt);
Biosecurity

None YES

Chemaly et al. (2009) France YES Group size; Rearing of pullets in the same place as
layers; Biosecurity

None YES

Davies and Breslin
(2001)

United Kingdom YES Cage systems; Alternative systems; Vaccination None YES

Davies and Breslin
(2003)

United Kingdom YES Cage systems (conventional cage); Alternative
systems; Biosecurity, Cleaning and disinfection;
Presence of rats and mice

None YES

Galis et al. (2012) Romania YES Outdoor access; Cage systems; Alternative systems None NO

Garber et al. (2003) USA YES Alternative systems; Biosecurity; Cleaning and
disinfection, Moulting

None YES

Geue and Schluter
(1998)

Germany YES Cage systems; Alternative systems None YES

Green et al. (2009) USA YES Cage systems (high rise/manure belt); Stocking
density

Heat stress YES

Huneau-Salaun et al.
(2007)

France YES Cage systems; Alternative systems None YES

Huneau-Salaun et al.
(2009)

France YES Cage systems; Biosecurity; farm size None YES

Jones et al. (2012) USA YES Outdoor access, Cage systems (CC) None NO

Jones et al. (2015) USA YES Cage systems (CC, enriched cage); Alternative
systems

None NO

Jones et al. (2016) USA YES Cage systems; Alternative systems None NO

Kaufmann-Bart and Hoop
(2009)

Switzerland YES Alternative systems None NO

Lassnig et al. (2011) Austria YES Outdoor access, Cage systems; Alternative systems None NO

Lee et al. (2013) Republic of Korea YES Outdoor access; Cage systems None NO
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Reference Country
Welfare aspects or
housing systems
considered

Which risk/protective factor(s) in relation to
the farming system have been evaluated?

Which animal
welfare indicators
are described?

Other risk factors
considered

Matsumoto et al. (2001) Japan YES Presence of windows in stable None YES

Methner et al. (2006) Germany YES Outdoor access, cage systems (alternative systems) None NO
Mollenhorst et al. (2005) Netherlands YES Outdoor access; Cage systems; Group size; flock of

different age
None YES

Much et al. (2007) Austria YES Cage systems (traditional, barn), Alternative systems None YES
Namata et al. (2008) Belgium YES Outdoor access, cage systems (traditional cages,

barn)
None YES

Nistor et al. (2015) Romania YES Cage systems; Alternative systems None YES
Ovelhey et al. (2009) Germany YES Outdoor access; vaccination; farm size None YES

Pieskus et al. (2008b) Lithuania YES Cage systems (aviary and enriched cages) None NO
Proietti et al. (2001) Italy YES Outdoor access; Cage systems (traditional) None NO

Proietti et al. (2004) Italy YES Cage systems (traditional) None NO
Sasaki et al. (2012) Japan YES Outdoor access None NO

Schaar et al. (1997) Germany YES Cage systems; Alternative systems None YES
Schulz et al. (2009) Germany YES Outdoor access; Cage systems (conventional);

Alternative systems
None YES

Snow et al. (2010) United Kingdom YES Outdoor access, Cage systems (traditional/barn);
Alternative systems; Biosecurity; Vaccination; Farm
size

None YES

Sunagawa et al. (1997) Japan YES Cage systems; Presence of windows in stable None YES

Tamba et al. (2000) Italy YES Cage systems (traditional), vaccination; farm size None YES
Van Der Zijpp et al.
(2006)

Netherlands YES Cage systems; alternative systems; type of litter Activity/behaviour,
mortality

NO

Emous and Fiks-van
Niekerk (2004)

Netherlands YES Alternative systems Mortality NO

Van Hoorebeke et al.
(2010a)

Belgium YES Cage systems, Alternative systems, flock size, age of
hens, age of infrastructure

None YES

Van Hoorebeke et al.
(2010b)

Belgium YES Outdoor access, Cage systems (conventional/aviary);
Alternative systems; Biosecurity; farm size

None YES

Wierup et al. (2017) Sweden YES Outdoor access None NO
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Reference Country
Welfare aspects or
housing systems
considered

Which risk/protective factor(s) in relation to
the farming system have been evaluated?

Which animal
welfare indicators
are described?

Other risk factors
considered

Experimental studies
De Vylder et al. (2009) Belgium YES Cage systems (conventional, enriched, aviary) None NO

de Vylder et al. (2011) Belgium YES Cage systems; Alternative systems; Group size None NO
Gast et al. (2013) USA YES Cage systems (CC, enriched cage) None NO

Gast et al. (2014a) USA YES Cage systems (CC, enriched cage) None NO
Gast et al. (2014b) USA YES Cage systems (CC, enriched cage) None NO

Gast et al. (2015) USA YES Cage systems; Alternative systems None NO
Gast et al. (2017b) USA YES Cage systems (enriched cages); Stocking density None YES

Gast et al. (2017a) USA YES Cage systems (enriched cage); Stocking density None YES
Gast et al. (2017c) USA YES Cage systems (enriched cage); Stocking density None YES

Hannah et al. (2011) USA YES Cage systems; Alternative systems None NO
Holt and Porter (1992) USA YES Moulting None YES

Holt (1995) USA YES Moulting None YES
Holt et al. (1998) USA YES Moulting None YES

Koelkebeck et al. (1987) USA YES Cage systems; Stocking density Stress (not heat
stress); Activity/
behaviour

YES

Kubena et al. (2005) USA YES Moulting None NO

Murase et al. (2006) Japan YES Moulting None NO
Nordentoft et al. (2011) Denmark YES Cage systems; Alternative systems None NO

Parisi et al. (2015) USA YES Outdoor access; Cage systems (CC); Alternative
systems

None NO

Posadas Hernandez et al.
(2005)

Mexico YES Outdoor access, cage systems (traditional) Stress (not heat
stress)

NO

Thomas et al. (2011) Netherlands YES Group size None NO

Zongo et al. (2015) France YES Cage systems (enriched cage); Group size None NO
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Table C.4: Overview of studies dealing with the occurrence of Salmonella in broiler chickens in relation to the farming methods and other animal welfare
indicators

Reference Population Country
Welfare aspects or
housing systems
considered

Which risk/protective factor(s) in
relation to the farming system
have been evaluated?

Which animal
welfare indicators
are described?

Other risk
factors

Field study

Alali et al. (2010) Production flocks USA YES Outdoor access; Group size; Stocking
density; Organic

None NO

Alebachew and Mekonnen
(2013)

Production flocks Ethiopia YES Outdoor access None NO

Le Bouquin et al. (2010) Production flocks France YES Outdoor access, Organic None YES
Chriel et al. (1999) Production flocks Denmark YES Group size; Type of litter; Previous

infections
None NO

Esteban et al. (2008) Production flocks Spain YES Outdoor access None NO
Franz et al. (2012) Production flocks the Netherlands YES Group size None YES

Henken et al. (1992) Breeding flocks the Netherlands YES Biosecurity; Feeding None YES
Jacobs-Reitsma et al. (1994) Production flocks the Netherlands YES Biosecurity; Feeding None YES

Opara et al. (1992) Production flocks USA YES Type of litter None YES
Pieskus et al. (2008a) Production flocks Italy YES Organic None NO

Proietti et al. (2007) Production flocks Italy YES Organic None NO
Rose et al. (1999) Production flocks France YES Biosecurity, Feeding; Previous

infections
None YES

Rossa et al. (2013) Production flocks Brazil YES Outdoor access None NO
Sapkota et al. (2014) Production flocks USA YES Outdoor access; Organic None NO

Siemon et al. (2007) Production flocks USA YES Outdoor access; Pasture poultry farms None NO
Skov et al. (1999) Production flocks Denmark YES Group size; Stocking density; Genetic;

Biosecurity
None YES

Snow et al. (2008) Production flocks United Kingdom YES Outdoor access; group size; organic None NO
Thakur et al. (2013) Production flocks USA YES Outdoor access None NO

Tuyttens et al. (2005) Production flocks Belgium YES Outdoor access; Group size; Stocking
density

None NO

Tuyttens et al. (2008) Production flocks Belgium YES Outdoor access None NO

Van Overbeke et al. (2006) Production flocks Belgium YES Organic None NO
Volkel et al. (2011) Production flocks Germany YES Type of litter None NO

Wierup et al. (2017) Production flocks Sweden YES Outdoor access None NO
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Reference Population Country
Welfare aspects or
housing systems
considered

Which risk/protective factor(s) in
relation to the farming system
have been evaluated?

Which animal
welfare indicators
are described?

Other risk
factors

Experimental study

Corrier et al. (1992) Production flocks USA YES Type of litter None YES
Fries et al. (1994) Production flocks Germany YES Type of floor None YES

Gomes et al. (2014) Production flocks Brazil YES Stocking density Stress (not heat
stress)

NO

Gustafson and Kobland
(1984)

Production flocks USA YES Type of litter None YES

Lund et al. (2003) Production flocks USA YES Organic; Feeding None YES
Santos et al. (2008) Production flocks USA YES Type of litter, feeding None YES

Soliman et al. (2009) Production flocks USA YES There were no such factors evaluated Heat stress, food
withdrawal

NO

Waldroup et al. (1992) Production flocks USA YES Stocking density None YES
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C.2. ToR 5

Literature searches were conducted on 6 February 2018 in the Web of ScienceTM Core Collection
(1975–present), CABI: CAB Abstracts® (1910–present) and PubMed. The search strategies are
reported in Tables C.5 and C.6. Searches retrieved 1,316 (Web of Science), 360 (CABI) and 331
(PubMed) hits.

Three EndNote X7 files were created, containing the outputs from the three searches, including all
indexed fields per hit (e.g. title, authors, abstract). Files were combined and duplicate records
removed yielding 1,533 records after de-duplication. The EndNote file was transferred into
DistillerSR® Web-Based Systematic Review Software (Evidence Partners, Ottawa, Canada) for the
selection procedure.

Table C.6: Details of search strings used for literature searches - search strings for PubMed

Set number Search

4 #3 AND #2 AND #1

3 “Chickens” [Mesh] OR chicken [Tiab] OR chickens [Tiab] OR hen [Tiab] OR hens [Tiab] OR
broiler* [Tiab] OR pullet* [Tiab] OR “Gallus gallus” [Tiab] OR “Gallus domesticus” [Tiab] OR “G
gallus” [Tiab] OR “G domesticus” [Tiab] OR ((“layer” [Tiab] OR “layers” [Tiab]) AND (farm* [Tiab]
OR environment* [Tiab] OR production [Tiab] OR flock* [Tiab] OR hous*[Tiab]))
DocType = All document types
Language = All languages
Time span = 2000–2018

2 “salmonella” [Mesh] OR salmonella [Tiab] OR “S Enterica” [Tiab] OR “S Enteritidis” [Tiab] OR “S
Typhimurium” [Tiab] OR “S Hadar” [Tiab] OR “S Virchow” [Tiab] OR “S Infantis” [Tiab]
DocType = All document types
Language = All languages
Time span = 2000–2018

1 “Chickens” [Mesh] OR chicken [Tiab] OR chickens [Tiab] OR hen [Tiab] OR hens [Tiab] OR
broiler* [Tiab] OR pullet* [Tiab] OR “Gallus gallus” [Tiab] OR “Gallus domesticus” [Tiab] OR “G
gallus” [Tiab] OR “G domesticus” [Tiab] OR ((“layer” [Tiab] OR “layers” [Tiab]) AND (farm* [Tiab]
OR environment* [Tiab] OR production [Tiab] OR flock* [Tiab] OR hous*[Tiab]))
DocType = All document types
Language = All languages
Time span = 2000–2018

Table C.5: Details of search strings used for literature searches – search strings for Web of Science
and CABI

Set number Search

4 #3 AND #2 AND #1

3 TOPIC: (campylobacter OR “C jejuni” OR “C coli”)
DocType = All document types
Language = All languages
Time span = 2000–2018

2 TOPIC: (salmonella OR “S Enterica” OR “S Enteritidis” OR “S Typhimurium” OR “S Hadar” OR “S
Virchow” OR “S Infantis”)
DocType = All document types
Language = All languages
Time span = 2000–2018

1 TOPIC: (chicken OR chickens OR hen OR hens OR broiler* OR pullet* OR “Gallus gallus” OR
“Gallus domesticus” OR “G gallus” OR “G domesticus” OR ((“layer” OR “layers”) NEAR/4 (farm*
OR environment* OR production OR flock* OR hous*))
DocType = All document types
Language = All languages
Time span = 2000–2018
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The records were screened for relevance to the review question (ToR 5) in three steps:

• Step 1: title screening of 1,533 records to exclude obviously irrelevant records: 452 remained.
• Step 2: screening of title and abstracts of 452 remaining records by answering to three specific

questions: Q1: Occurrence of Salmonella and Campylobacter; Q2: The presence in poultry (i.e.
poultry at farm (consider broiler, laying hen, turkey, and ducks), poultry at slaughterhouse);
Q3: Co-infection (co-colonisation) or co-detection in samples, animals. The answers to these
questions needed to be positive or unclear to proceed to the next step.

• Step 3: screening of remaining 199 records at full text based on records characteristics (i.e.
availability of full text, primary research study and language).

• Step 4: screening of remaining 199 records at full-text level by answering to the same specific
questions as for step 2. The answers to these questions needed to be positive for inclusion.

An overview of the studies obtained is given in Tables C.7 (farm) and 21 (slaughterhouse).
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Table C.7: Literature data on the occurrence of Salmonella and Campylobacter in poultry at farm/group level

Population Infection Sample type
Additional
information

Prevalence Mean load (log10 CFU/g) Text extract, incl.
statistics used and
risk and protective
factors, if relevant

ReferenceSalmo-
nella

Campylo-
bacter

Salmo-
nella

Campylo-
bacter

Turkeys Natural Caecal material Period of 16 days 28.8% of
125 birds

87.2% of
125 birds

NS NS In each of 5 AGP trial
groups, both organisms
persisted for the whole
of the trial period and
although results from
individual birds are not
presented, the high
prevalence of
Campylobacter means
that at least some of
the birds must have
been colonised by both
organisms

Cox et al.
(2003)

Broilers Experimental Caecal material Control birds in a
litter acidification
experiment at 4
weeks considered

30.0% of
40 birds

100.0% of
40 birds

0.48 5.72 In a trial of the effect of
litter acidification,
intervention and control
birds infected by contact
with contaminated litter
were sampled
periodically. Although
data for individual birds
is not recorded, at the
end of the study all
birds were infected with
Campylobacter and 30%
with Salmonella,
showing colonisation by
both organisms

Line (2002)

Salmonella control in poultry flocks and its public health impact

www.efsa.europa.eu/efsajournal 103 EFSA Journal 2019;17(2):5596



Population Infection Sample type
Additional
information

Prevalence Mean load (log10 CFU/g) Text extract, incl.
statistics used and
risk and protective
factors, if relevant

ReferenceSalmo-
nella

Campylo-
bacter

Salmo-
nella

Campylo-
bacter

Broilers Natural Cloacal material
and boot swabs

Cloacal swabs from
live birds at slaughter
(pool 10) tested for
Campylobacter and
boot socks at farm
used for Salmonella:
8,911 flocks

5.5% of
8,911
flocks

2.2% of
8,911
flocks with
both
organisms

42.5% of
8,911 flocks

2.2% of
8,911 flocks
both
organisms

NS NS In national surveillance
programmes of broiler
flocks carried out in
Denmark during 1998
and 1999, 89,110
samples for
Campylobacter; ten per
flock, were taken at 10
different abattoirs, and
44,550 samples for
Salmonella were taken
from the same flocks in
the broiler houses. No
seasonal variation was
identified, unlike for
Campylobacter where
there was a pronounced
summer peak. 198 of
8,911 flocks (2.2%)
were positive for both
Campylobacter and
Salmonella, and 4,863
(54.6%) flocks were
negative for both. There
was no significant
correlation of flock
colonization with
Campylobacter and
Salmonella (OR = 1.04
CI95[0.86; 1.26]

Wedderkopp
et al. (2001)
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Population Infection Sample type
Additional
information

Prevalence Mean load (log10 CFU/g) Text extract, incl.
statistics used and
risk and protective
factors, if relevant

ReferenceSalmo-
nella

Campylo-
bacter

Salmo-
nella

Campylo-
bacter

Broilers Experimental Caecal material Control birds
considered in
competitive exclusion
experiment

90.0% of
30 birds

100.0% of
30 birds

4.2 7.3 In a trial of different
competitive exclusion
formulations for
protection against
experimental challenge,
all control birds
remained positive for
Campylobacter after one
week and almost all for
Salmonella,
demonstrating
co-colonisation in most
of the birds and all 3
batches of 10 birds

Stern et al.
(2001)

Turkeys Natural Caecal droppings Two flocks sampled
periodically

31.1% of
30 birds
(toms)

17.7% of
30 birds
(hens)

80% of 30
birds (toms)

70% of 30
birds (hens)

NS NS Overall, in a study of 2
naturally infected turkey
flocks, toms were 80%
positive for
Campylobacter and
31.1% positive for
Salmonella; hens were
70% positive for
Campylobacter and
17.7% positive for
Salmonella. Both
sampled flocks remained
positive for both
organisms for at least
15 weeks, although no
results from individual
birds for both organisms
were reported

Cox et al.
(2000)

Salmonella control in poultry flocks and its public health impact

www.efsa.europa.eu/efsajournal 105 EFSA Journal 2019;17(2):5596



Population Infection Sample type
Additional
information

Prevalence Mean load (log10 CFU/g) Text extract, incl.
statistics used and
risk and protective
factors, if relevant

ReferenceSalmo-
nella

Campylo-
bacter

Salmo-
nella

Campylo-
bacter

Broilers Experimental Caecal material Control group,
considered in feed
additive experiment
using 50 chickens per
group (10 samples
taken at 6 weeks

50% of 10
samples

90% of 10
samples

NS NS No data on coinfection
in individual birds but
high prevalence means
some birds must have
had both and all study
groups had both
organisms for the
6-week study period

Borta et al.
(2011)

Turkeys Natural Caecal material 33 days old birds
considered

98% of 50
birds

90% of 50
birds

NS NS Most birds infected so
most will have been co-
colonised

Thornton
(2010)

Broilers Experimental Cloacal swabs
(%) and caecal
content (log10
CFU/g)

Effect of fermented
liquid feed on
C. jejuni and
S. Enteritidis
colonisation in broiler
chickens Enumeration
of individual birds at
4,19,47 and 61 weeks
(control and
inoculated birds)

From 13 to
100%
depending
on the
groups (dry
feed and
fermented
liquid feed;
n = 6 or 8
birds)

From 0 to
100%
depending
on the
groups (dry
feed and
fermented
liquid feed;
n = 6, 8 or
10 birds)

6.8–8.2
depending on
the groups (dry
feed and
fermented
liquid feed; n =
6 or 8 birds)

7.6–9.0
depending on
the groups (dry
feed and
fermented
liquid feed;
n = 10 birds)

Birds can be colonised
by Campylobacter and
Salmonella concurrently
without impacting the
results of colonisation
when the birds are
infected by one of the
pathogens: ‘no
significant effect of co-
inoculation was found’

Heres et al.
(2003)

Turkeys
(breeder)

Experimental Pooled faecal
droppings

Routes of
transmission of
Salmonella and
Campylobacter in
breeder turkeys

From 52 to
70%
depending
on the
groups
(control
and
infected
toms and
hens;
n = 184)

NS NS 2–7
depending on
the groups
(control and
infected toms
and hens;
n = 200)

No analysis for co-
colonisation. The routes
of transmission as a
function of time for
each pathogen are
developed. Both were
able to colonise without
impacting each other

Crespo et al.
(2016)
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Population Infection Sample type
Additional
information

Prevalence Mean load (log10 CFU/g) Text extract, incl.
statistics used and
risk and protective
factors, if relevant

ReferenceSalmo-
nella

Campylo-
bacter

Salmo-
nella

Campylo-
bacter

Laying hens
(male chicks)

Experimental Caecal material Investigating the
effect of co-infected
birds by Salmonella
and Campylobacter
Enumeration:
individual birds at 5,
13, 19 days (15 birds
per group)

NS NS 7.9 (day 5),
6.8 (day 13),
6.7 (day 19)

8.2 (day 5),
7.4 (day 13),
8.7 (day 19)

At day 5, no significant
differences in mean
counts in the caecal
material were found
between the groups
(mean count 8 log10
CFU/mL) inoculated by
Salmonella and
Campylobacter alone
compared to the group
inoculated by both. At
day 13, in the group
inoculated by both, the
counts of Salmonella and
Campylobacter were
around one log higher
than those obtained
from birds inoculated by
one of each separately.
At day 19, only the group
inoculated by Salmonella
was still significantly
different (one log lower)
compared to the group
inoculated by both. In
conclusion, co-
colonisation of birds by
Salmonella and
Campylobacter did not
affect the mean counts
of each negatively but it
seemed that Salmonella
would be able to grow
better when birds are
infected by
Campylobacter

Rouxel et al.
(2018)(a)
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Population Infection Sample type
Additional
information

Prevalence Mean load (log10 CFU/g) Text extract, incl.
statistics used and
risk and protective
factors, if relevant

ReferenceSalmo-
nella

Campylo-
bacter

Salmo-
nella

Campylo-
bacter

Broilers Experimental Caecal samples Immune gene
expression and
intestinal responses
between Salmonella
and Campylobacter.
Results 48 h post-
challenge considered

NS NS 7 11 This article explains one
of the reasons why the
two organisms are able
to grow together
without negative impact
due to differences in
immune responses from
animals infected by
Salmonella and
Campylobacter

Shaughnessy
et al. (2009)

Broilers Experimental
trials

Oesophagus,
small intestine,
caeca, liver and
spleen samples

Comparative in vivo
infection models yield
insights on early host
immune response to
Campylobacter in
chickens. Results 48 h
post-challenge
considered

NS NS Clearance
(oesophagus);
clearance
(small
intestine); 7
(caeca); < 5
(liver, only one
bird); < 5
(spleen, only
one bird)

9
(oesophagus);
9 (small
intestine); 11
(caeca); 6
(liver, only 3
birds); 6
(spleen, only 3
birds)

Animals were inoculated
separately by
Salmonella and
Campylobacter.
Considered together,
microbiological, cellular
and gene expression
profiles indicate that the
innate immune system
responds differently to
Salmonella and to
Campylobacter infection.
Furthermore, reduction
in the expression of
AMPs may play a role in
the persistence of high
level colonisation of the
host by Campylobacter.
‘This study provided
novel evidence that the
chicken host immune
system can differentiate
between and
differentially respond to
Salmonella and

Meade et al.
(2009)(b)
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Population Infection Sample type
Additional
information

Prevalence Mean load (log10 CFU/g) Text extract, incl.
statistics used and
risk and protective
factors, if relevant

ReferenceSalmo-
nella

Campylo-
bacter

Salmo-
nella

Campylo-
bacter

Campylobacter infection.
Being asymptomatic the
identification of an AMP
expression signature
may shed light not only
on the pathogenesis of
infection but also the
mechanisms associated
with commensal
tolerance in the chicken’

Broilers Natural Farm: 2 pooled
samples of fresh
faecal droppings
(Salmonella); 1
pooled sample
of 5 swabs of
fresh faecal
droppings
(Campylobacter)

Slaughterhouse:
30 caecal swabs
pooled in 1
sample – 25 g of
neck skin (both)

Farm and SH
characteristics
affecting the
occurrence of
Salmonella and
Campylobacter: data
set collected between
2002 and 2005
(n = 59,495 at farm
departure and
slaughterhouse
arrival; n = 73,233 at
slaughterhouse
departure)

NS NS NS NS Positive, association
between Salmonella and
Campylobacter at 2
sampling points:
departure from farms
and arrival at slaughter

Franz et al.
(2012)

Broilers Natural Caecal contents
(pool of 25
samples per
flock at
slaughter)

Commercial broiler
flocks by culturing 25
pooled caecal
samples per flock at
slaughter

27%
(49/181)
flocks

82%
(153/187)
flocks

NS NS 187 Dutch broiler flocks
were screened in 1992/
3 for Campylobacter
and Salmonella carriage.
Campylobacter were
isolated from caecal
samples from 82% and
Salmonella was isolated
from 27% broiler flocks.

Jacobs-
Reitsma et al.
(1994)(b)
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Population Infection Sample type
Additional
information

Prevalence Mean load (log10 CFU/g) Text extract, incl.
statistics used and
risk and protective
factors, if relevant

ReferenceSalmo-
nella

Campylo-
bacter

Salmo-
nella

Campylo-
bacter

A positive statistical
correlation was found
between Campylobacter
and Salmonella
occurrence at flock level

Broilers; laying
hens and
breeders

Natural Crop, duodenum
and caeca

Concurrent
colonisation with
Campylobacter and
Salmonella and
assessment of
sampling site at
slaughter

13%
(7/56)
broiler
flocks of
which 3/56
colonised
by both
pathogens

65%
(13/20)
laying and
breeding
hen flocks
of which
13/20
colonised
by both
pathogens

73%
(41/56)
broilers

100% (20/
20) laying
and
breeding
hen flocks

NS NS Little to no association
between Campylobacter
and Salmonella
occurrence in broiler
flocks (Cramers’ V test)
Since all flocks were
colonised with
Campylobacter, it was
not possible to
determine an
association between
Campylobacter and
Salmonella occurrence
in laying and breeding
hen flocks

Rasschaert
et al. (2007)

AGP: antimicrobial growth promoter; AMP: antimicrobial peptide; NS: not specified.
(a): This study, presented at the International Salmonella and Salmonellosis conference, Sep 2018, was added to the articles from the literature search because of its relevance to the topic.
(b): This study cited by a reference from the literature search was added to the selected articles because of its relevance to the topic.
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Table C.8: Data from published literature on the occurrence of Salmonella and Campylobacter in poultry at the slaughterhouse

Population Infection Sample type
Additional
information

Prevalence Mean load (log10 CFU/g)

Text Extract Reference
Salmonella

Campylo-
bacter

Salmonella
Campylo-
bacter

Broiler Experimental Carcass rinse of
broiler carcasses

Carcasses of control
birds in a litter
acidification
experiment at 4
weeks considered

50.0% of 40
carcasses

77.5% of 40
carcasses

0.78 2.20 In a trial of the effect of
litter acidification,
intervention and control
birds infected by contact
with contaminated litter
were sampled
periodically. Although
data for individual birds
is not recorded, at 4
weeks slaughtered a
high prevalence of birds
was found positive for
Campylobacter and
Salmonella, showing
contamination of some
carcasses by both
organisms

Line (2002)

Broiler Natural Carcass rinse of
broiler carcasses

Comparison of
conventional and
organic production

19% of 299
carcasses;
65% of 20
organic
broiler farms

95% of 299
carcasses;
95% of 20
organic
broiler farms

NS NS Salmonella was found on
carcasses from 20
organic broiler farms in a
USA study.
Campylobacter was
found on most carcasses
from 19 of 20 farms.
This is comparable to
rates seen on
conventional farms. No
data on co-occurrence
but high prevalence
means that some birds
and most farms are likely
to be co-infected, but
cross-contamination of
carcasses not taken into
account

Bender
(2010)
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Population Infection Sample type
Additional
information

Prevalence Mean load (log10 CFU/g)

Text Extract Reference
Salmonella

Campylo-
bacter

Salmonella
Campylo-
bacter

Broiler Natural Carcass rinse Prevalence and risk
factors for Salmonella
and Campylobacter
on carcasses

21.2% of
2,414
carcasses
from 82 lots

35.8% of
2,414
carcasses
from 82 lots

NS NS No impact of co-
occurrence is described.
The prevalence of each
pathogen and potential
risk factors associated
to its presence on
carcasses described

Arsenault
et al. (2007)

Broiler Natural Carcass rinse Baseline study in
abattoirs (Alberta)

37.5% of
1,295
carcasses

75% of
1,234
carcasses

NS 0.85–1.94
depending on
the size of the
abattoirs

No impact of co-
occurrence is described

Bohaychuk
et al. (2009)

Broiler Natural Neck skins Campylobacter and
Salmonella correlation
on carcasses

7.5% of 425
batches

87.5% of
425 batches

NS 2.39 No significant
correlation (p = 0.269)
between the presence
of Campylobacter and
Salmonella on carcasses
(Spearman coefficient =
0.054). The
Campylobacter load did
not vary (p = 0.268)
according to the
Salmonella
contamination status of
the carcasses

Hue et al.
(2011)
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Population Infection Sample type
Additional
information

Prevalence Mean load (log10 CFU/g)

Text Extract Reference
Salmonella

Campylo-
bacter

Salmonella
Campylo-
bacter

Broiler Natural Environmental
farm samples
(swabs, faecal,
litter); carcass
rinses

Enumeration of
Salmonella and
Campylobacter at
farm and processing
plant samples

90.9% of 55
flocks (F)
94.5% of
carcass
samples
from 48
flocks (PP)

63.6% of 55
flocks (F)
87.3% of
carcass
samples
from 48
flocks (PP)

0.19–1.14
depending on
sampling
types

0.90–2.05
depending on
sampling types

Significant relationships
between F and PP
samples for both
pathogens (qualitative
and quantitative). No
indication about
relationships between
Salmonella and
Campylobacter.
Behaviour of both
pathogens within the
farms or the PP while
describing the
differences among them

Berghaus
et al. (2013)

Broiler Natural Carcass rinse Correlation between
concentrations of 2
species of bacteria
with censored
microbial testing data

45.8% of
3,164
carcasses

70.9% of
3,164
carcasses

NS NS A weak positive
correlation between
Salmonella and
Campylobacter
prevalence but not
significant. Both
pathogens were found
in 33 % of samples.
Parameter estimates
from a model (no real
data of bacterial
counts).

Williams and
Ebel (2014)
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Population Infection Sample type
Additional
information

Prevalence Mean load (log10 CFU/g)

Text Extract Reference
Salmonella

Campylo-
bacter

Salmonella
Campylo-
bacter

Broiler Natural Farm: 2 pooled
samples of fresh
faecal droppings
(Salmonella); 1
pooled sample
of 5 swabs of
fresh faecal
droppings
(Campylobacter)

SH: 30 caecal
swabs pooled in
1 sample – 25 g
of neck skin
(both)

Farm and SH
characteristics
affecting the
occurrence of
Salmonella and
Campylobacter: data
set collected between
2002 and 2005
(n = 59, 495 at farm
departure and
slaughterhouse
arrival; n = 73, 233 at
slaughterhouse
departure)

NS NS NS NS Positive, significant
(p ≤ 0.005) association
between Salmonella and
Campylobacter at 2
sampling points:
departure from farms
and arrival at slaughter

Franz et al.
(2012)

NS: not stated; F: farm; PP: processing plant.
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Appendix D – Additional tables on the distribution of confirmed salmonellosis cases in humans by serovar
Table D.1: Distribution of confirmed sporadic salmonellosis cases in humans by serovar (the 20 most frequent serovars, TESSy data, 2010–2016)

2016 2015 2014 2013 2012 2011 2010

Serovar N % Serovar N % Serovar N % Serovar N % Serovar N % Serovar N % Serovar N %

Enteritidis 32,994 47.6 Enteritidis 31,971 44.4 Enteritidis 32,447 44.5 Enteritidis 28,460 39.4 Enteritidis 32,389 41.1 Enteritidis 34,285 44.4 Enteritidis 36,436 44.3

Typhimurium 9,691 14.0 Typhimurium 11,900 16.5 Typhimurium 12,740 17.5 Typhimurium 14,727 20.4 Typhimurium 17,783 22.6 Typhimurium 19,569 25.4 Typhimurium 21,184 25.8

Monophasic

Typhimurium

1,4,[5],12:i:-

5,697 8.2 Monophasic

Typhimurium

1,4,[5],12:i:-

5,786 8.0 Monophasic

Typhimurium

1,4,[5],12:i:-

5,774 7.9 Monophasic

Typhimurium

1,4,[5],12:i:-

6,310 8.7 Monophasic

Typhimurium

1,4,[5],12:i:-

5,785 7.3 Monophasic

Typhimurium

1.4.[5].12:i:-

3,638 4.7 Infantis 1,779 2.2

Infantis 1,641 2.4 Infantis 1,647 2.3 Infantis 1,829 2.5 Infantis 2,205 3.1 Infantis 1,914 2.4 Infantis 1,672 2.2 Monophasic

Typhimurium

1.4.[5].12:i:-

1,545 1.9

Newport 732 1.1 Stanley 784 1.1 Derby 752 1.0 Derby 817 1.1 Thompson 1,074 1.4 Newport 766 1.0 Newport 834 1.0

Derby 615 0.9 Newport 728 1.0 Newport 726 1.0 Stanley 751 1.0 Stanley 902 1.1 Derby 703 0.9 Kentucky 780 0.9

Kentucky 552 0.8 Derby 693 1.0 Stanley 716 1.0 Newport 682 0.9 Derby 725 0.9 Kentucky 555 0.7 Virchow 686 0.8

Stanley 497 0.7 Kentucky 533 0.7 Kentucky 581 0.8 Kentucky 631 0.9 Newport 712 0.9 Poona 547 0.7 Derby 666 0.8

Virchow 497 0.7 Virchow 503 0.7 Virchow 491 0.7 Agona 559 0.8 Panama 693 0.9 Virchow 464 0.6 Java 505 0.6

Saintpaul 443 0.6 Java 420 0.6 Bovismorbificans 433 0.6 Virchow 556 0.8 Kentucky 615 0.8 Agona 453 0.6 Mbandaka 471 0.6

Agona 436 0.6 Agona 388 0.5 Java 370 0.5 Muenchen 443 0.6 Virchow 507 0.6 Stanley 390 0.5 Agona 445 0.5

Java 402 0.6 Bovismorbificans 381 0.5 Agona 365 0.5 Napoli 427 0.6 Braenderup 441 0.6 Bovismorbificans 379 0.5 Bareilly 434 0.5

Bovismorbificans 387 0.6 Napoli 366 0.5 Muenchen 360 0.5 Bovismorbificans 409 0.6 Agona 434 0.6 Montevideo 358 0.5 Bovismorbificans 408 0.5

Braenderup 377 0.5 Oranienburg 309 0.4 Saintpaul 356 0.5 Saintpaul 382 0.5 Java 410 0.5 Oranienburg 352 0.5 Saintpaul 390 0.5

Panama 306 0.4 Chester 287 0.4 Napoli 327 0.4 Montevideo 372 0.5 Bovismorbificans 404 0.5 Saintpaul 337 0.4 Stanley 385 0.5

Napoli 295 0.4 Saintpaul 282 0.4 Brandenburg 291 0.4 Panama 341 0.5 Napoli 359 0.5 Java 333 0.4 Braenderup 378 0.5

Chester 284 0.4 Panama 275 0.4 Chester 289 0.4 Java 318 0.4 Saintpaul 337 0.4 Napoli 309 0.4 Hadar 351 0.4

Hadar 272 0.4 Thompson 255 0.4 Hadar 281 0.4 Brandenburg 285 0.4 Oranienburg 302 0.4 Braenderup 269 0.3 Corvallis 315 0.4

Bareilly 259 0.4 Hadar 251 0.3 Braenderup 269 0.4 Oranienburg 264 0.4 Brandenburg 300 0.4 Hadar 268 0.3 Panama 304 0.4

Dublin 232 0.3 Braenderup 238 0.3 Oranienburg 254 0.3 Hada 260 0.4 Hadar 292 0.4 Brandenburg 254 0.3 Montevideo 280 0.3

Other 12,727 18.4 Other 13,956 19.4 Other 13,222 18.1 Other 13,021 18.0 Other 12,454 15.8 Other 11,288 14.6 Other 13,652 16.6

Total 69,336 91.7 Total 71,953 93.7 Total 72,873 94.1 Total 72,220 92.6 Total 78,832 92.8 Total 77,189 90.5 Total 82,228 93.4

Unknown

serovar

6,303 8.3 Unknown

serovar

4,863 6.3 Unknown

serovar

4,530 5.9 Unknown

serovar

5,798 7.4 Unknown

serovar

6,076 7.2 Unknown

serovar

8,121 9.5 Unknown serovar 5,767 6.6

N: number of cases; TESSy: The European Surveillance System.
Source: TESSy. Country abbreviations: AT: Austria; BE: Belgium; CZ: Czech Republic; DE: Germany; DK: Denmark; EE: Estonia; EL: Greece; ES: Spain; FI: Finland; FR: France; HU: Hungary; IE:
Ireland; IT: Italy; LT: Lithuania; LU: Luxembourg; LV: Latvia; MT: Malta; NL: Netherlands; PT: Portugal; RO: Romania; SE: Sweden; SI: Slovenia; SK: Slovakia; UK: United Kingdom.
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Table D.2: Distribution of confirmed salmonellosis cases in humans acquired outside the EU by serovar (the 20most frequent serovars, TESSy data, 2010–2016)

2016 2015 2014 2013 2012 2011 2010

Serovar N % Serovar N % Serovar N % Serovar N % Serovar N % Serovar N % Serovar N %

Enteritidis 1,487 30.0 Enteritidis 1,773 30.9 Enteritidis 1,810 35.3 Enteritidis 2,213 39.9 Enteritidis 1,813 34.6 Enteritidis 1,747 37.1 Enteritidis 2,192 37.3

Typhimurium 403 8.1 Typhimurium 505 8.8 Typhimurium 468 9.1 Typhimurium 505 9.1 Typhimurium 599 11.4 Typhimurium 463 9.8 Typhimurium 563 9.6

Stanley 186 3.8 Kentucky 170 3.0 Kentucky 168 3.3 Stanley 187 3.4 Stanley 191 3.6 Stanley 159 3.4 Virchow 224 3.8

Kentucky 178 3.6 Stanley 139 2.4 Stanley 138 2.7 Virchow 180 3.2 Virchow 156 3.0 Kentucky 135 2.9 Kentucky 213 3.6

Monophasic
Typhimurium
1,4,[5],12:i:-

151 3.0 Virchow 137 2.4 Virchow 131 2.6 Kentucky 156 2.8 Infantis 138 2.6 Virchow 132 2.8 Stanley 195 3.3

Newport 131 2.6 Newport 121 2.1 Newport 128 2.5 Infantis 140 2.5 Kentucky 132 2.5 Infantis 114 2.4 Newport 146 2.5

Virchow 109 2.2 Monophasic
Typhimurium
1,4,[5],12:i:-

116 2.0 Infantis 112 2.2 Newport 109 2.0 Newport 121 2.3 Newport 95 2.0 Infantis 118 2.0

Agona 107 2.2 Infantis 88 1.5 Corvallis 97 1.9 Corvallis 86 1.6 Braenderup 92 1.8 Agona 94 2.0 Braenderup 115 2.0

Java 106 2.1 Agona 83 1.4 Braenderup 76 1.5 Agona 85 1.5 Corvallis 88 1.7 Corvallis 83 1.8 Corvallis 96 1.6

Chester 91 1.8 Java 70 1.2 Java 76 1.5 Java 84 1.5 Agona 78 1.5 Oranienburg 74 1.6 Hadar 78 1.3

Braenderup 89 1.8 Chester 67 1.2 Saintpaul 70 1.4 Braenderup 67 1.2 Java 77 1.5 Braenderup 73 1.5 Agona 77 1.3

Infantis 86 1.7 Corvallis 66 1.1 Hadar 67 1.3 Saintpaul 67 1.2 Mbandaka 61 1.2 Bareilly 66 1.4 Java 73 1.2

Saintpaul 82 1.7 Hadar 61 1.1 Agona 59 1.2 Hadar 57 1.0 Bareilly 61 1.2 Mbandaka 65 1.4 Saintpaul 69 1.2

Hadar 68 1.4 Braenderup 58 1.0 Mbandaka 55 1.1 Oranienburg 55 1.0 Oranienburg 60 1.1 Java 59 1.3 Senftenberg 62 1.1

Corvallis 63 1.3 Saintpaul 55 1.0 Bareilly 52 1.0 Rissen 55 1.0 Saintpaul 59 1.1 Hadar 52 1.1 Bareilly 56 1.0

Weltevreden 59 1.2 Bareilly 54 0.9 Weltevreden 46 0.9 Weltevreden 49 0.9 Hadar 58 1.1 Saintpaul 47 1.0 Mbandaka 56 1.0

Bareilly 56 1.1 Weltevreden 52 0.9 Oranienburg 39 0.8 Mbandaka 48 0.9 Monophasic
Typhimurium
1,4,[5],12:i:-

50 1.0 Weltevreden 45 1.0 Oranienburg 52 0.9

Mbandaka 37 0.7 Mbandaka 37 0.6 Chester 39 0.8 Bareilly 44 0.8 Heidelberg 40 0.8 Heidelberg 39 0.8 Haifa 46 0.8

Poona 37 0.7 Montevideo 33 0.6 Heidelberg 34 0.7 Monophasic
Typhimurium
1,4,[5],12:i:-

44 0.8 Rissen 37 0.7 Haifa 39 0.8 Anatum 45 0.8

Heidelberg 33 0.7 Oranienburg 30 0.5 Monophasic
Typhimurium
1,4,[5],12:i:-

34 0.7 Schwarzengrund 38 0.7 Abony 37 0.7 Rissen 38 0.8 Heidelberg 40 0.7

Other 1,398 28.2 Other 2,030 35.3 Other 1,426 27.8 Other 1,272 23.0 Other 1,288 24.6 Other 1,111 23.6 Other 1,362 23.2

Total 4,957 75.5 Total 5,745 83.2 Total 5,125 81.4 Total 5,541 74.4 Total 5,236 72.4 Total 4,715 64.1 Total 5,878 73.2

Unknown
serovar

1,610 24.5 Unknown
serovar

1,158 16.8 Unknown
serovar

1,170 18.6 Unknown
serovar

1,904 25.6 Unknown
serovar

2,001 27.6 Unknown
serovar

2,645 35.9 Unknown
serovar

2,147 26.8

N: number of cases; TESSy: The European Surveillance System.
Source: TESSy. Country abbreviations: AT: Austria; BE: Belgium; CZ: Czech Republic; DE: Germany; DK: Denmark; EE: Estonia; EL: Greece; ES: Spain; FI: Finland; FR: France; HU: Hungary;
IE: Ireland; IT: Italy; LT: Lithuania; LU: Luxembourg; LV: Latvia; MT: Malta; NL: Netherlands; PT: Portugal; RO: Romania; SE: Sweden; SI: Slovenia; SK: Slovakia; UK: United Kingdom.
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Table D.3: Outcome in terms of mortality (death/alive) and hospitalisation status (yes/no) of the salmonellosis cases acquired in the EU (domestic and
EU travel) for a selection of Salmonella serovars, TESSy data, 2014–2016)

Serotype

Hospitalisation status Outcome in terms of mortality

Total (N)Hospitalised
(N)

Not hospitalised
(N)

Unknown
(N)

% hospitalised
CI95

(a) Alive (N) Death (N)
Unknown

(N)
% death CI95

(b)

Enteritidis 17,833 41,047 19,161 30.3 [29.9–30.7] 71,691 110 6,240 0.153 [0.126–0.185] 78,041

Typhimurium 2,358 3,487 17,470 40.3 [39.1–41.6] 17,775 35 5,505 0.197 [0.137–0.273] 23,315
Monophasic
Typhimurium
1,4,[5],12:i:-

896 1,768 3,502 33.6 [31.8–35.5] 2,978 15 3,173 0.501 [0.281–0.825] 6,166

Infantis 654 1,338 1,406 32.8 [30.8–34.9] 2,874 6 518 0.208 [0.076–0.453] 3,398
Derby 131 188 838 41.1 [35.6–46.7] 841 1 315 0.119 [0.003–0.660] 1,157

Stanley 221 420 410 34.5 [30.8–38.3] 805 3 243 0.371 [0.077–1.08] 1,051
Newport 110 189 571 36.8 [31.3–42.5] 550 3 317 0.543 [0.112–1.58] 870

Bovismorbificans 165 182 463 47.6 [42.2–53.0] 630 1 179 0.158 [0.004–0.880] 810
Virchow 101 182 372 35.7 [30.1–41.6] 496 3 156 0.601 [0.124–1.75] 655

Agona 38 86 374 30.6 [22.7–39.6] 338 0 160 0 [0–1.09] 498
Kentucky 63 104 303 37.7 [30.4–45.5] 278 2 190 0.714 [0.087–2.56] 470

Java 64 138 244 31.7 [25.3–38.6] 288 0 158 0 [0–2.326] 446
Muenchen 24 36 363 40.0 [27.6–53.5] 306 2 115 0.649 [0.079–2.33] 423

Brandenburg 56 101 224 35.7 [28.2–43.7] 243 0 138 0 [0–1.507] 381
Saintpaul 39 126 215 23.6 [17.4–30.9] 243 0 137 0 [0–1.507] 380

Oranienburg 56 45 258 55.4 [45.2–65.3] 198 1 160 0.503 [0.013–2.77] 359
Thompson 56 146 154 27.7 [21.7–34.4] 264 1 91 0.377 [0.010–2.08] 356

Braenderup 35 40 228 46.7 [35.1–58.6] 189 2 112 1.05 [0.127–3.73] 303
Montevideo 26 46 216 36.1 [25.1–48.3] 184 1 103 0.541 [0.014–2.98] 288

Goldcoast 29 31 221 48.3 [35.2–61.6] 217 0 64 0 [0–1.686] 281
Hadar 31 48 182 39.2 [28.4–50.9] 164 0 97 0 [0–2.224] 261

Napoli 11 15 227 42.3 [23.4–63.1] 51 0 202 0 [0–6.978] 253
Mbandaka 24 46 150 34.3 [23.3–46.6] 158 1 61 0.628 [0.016–3.454] 220

Livingstone 11 22 169 33.3 [18.0–51.8] 128 0 74 0 [0–2.841] 202
Senftenberg 27 37 96 42.2 [29.9–55.2] 123 0 37 0 [0–2.955] 160

Weltevreden 13 14 97 48.1 [28.7–68.1] 87 0 37 0 [0–4.151] 124
Heidelberg 19 14 88 57.6 [39.2–74.5] 55 0 66 0 [0–6.487] 121
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Serotype

Hospitalisation status Outcome in terms of mortality

Total (N)Hospitalised
(N)

Not hospitalised
(N)

Unknown
(N)

% hospitalised
CI95

(a) Alive (N) Death (N)
Unknown

(N)
% death CI95

(b)

Havana 5 16 42 23.8 [8.2–47.2] 39 1 23 2.50 [0.063–13.16] 63
Other 2,264 2,463 14,977 47.9 [46.5–49.3] 14,149 35 5,520 0.247 [0.172–0.343] 19,704

Total 25,360 52,375 63,021 32.6 [32.3–33.0] 116,342 223 24,191 0.191 [0.167–0.218] 140,756

TESSy: The European Surveillance System.
(a): The percentages have been calculated by serovar considering those cases with known hospitalisation status.
(b): The percentages have been calculated by serovar considering those cases with known outcome in terms of mortality.
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Table E.1: Distribution of Salmonella serovars in breeders, layers and broilers of Gallus gallus during the production period (flock-based data) in
countries running control programmes in accordance with Regulation (EC) No 2160/2003, 2014–2016

Breeding flocks N % Broiler flocks N %
Laying hen
flocks

N %
Human cases
acquired in the
EU

N %

Enteritidis 121 24.80 Infantis 5,666 42.46 Enteritidis 965 43.68 Enteritidis 78,041 61.00

Mbandaka 48 9.84 Mbandaka 1,295 9.71 Typhimurium 199 9.01 Typhimurium 23,315 18.22
Typhimurium 46 9.43 Enteritidis 1,176 8.81 Kentucky 191 8.65 Typhimurium,

monophasic
6,166 4.82

Infantis 39 7.99 Livingstone 779 5.84 Infantis 175 7.92 Infantis 3,398 2.66
Senftenberg 27 5.53 Typhimurium 627 4.70 Mbandaka 89 4.03 Derby 1,157 0.90

Mikawasima 15 3.07 Thompson 546 4.09 Agona 51 2.31 Stanley 1,051 0.82
Rissen 14 2.87 Kedougou 379 2.84 Typhimurium,

monophasic
40 1.81 Newport 870 0.68

Kentucky 14 2.87 Senftenberg 352 2.64 Montevideo 40 1.81 Bovismorbificans 810 0.63
Typhimurium,
monophasic

13 2.66 Tennessee 259 1.94 Senftenberg 39 1.77 Virchow 655 0.51

Livingstone 12 2.46 1,13,23:i:- 238 1.78 Ohio 37 1.67 Agona 498 0.39
Ohio 10 2.05 Kentucky 236 1.77 Livingstone 28 1.27 Kentucky 470 0.37

Taksony 10 2.05 Typhimurium,
monophasic

234 1.75 Newport 27 1.22 Java 446 0.35

Derby 9 1.84 Cerro 232 1.74 Kottbus 25 1.13 Muenchen 423 0.33

Toulon 9 1.84 Montevideo 148 1.11 Thompson 22 1.00 Brandenburg 381 0.30
Liverpool 9 1.84 Agona 129 0.97 Braenderup 20 0.91 Saintpaul 380 0.30

Worthington 8 1.64 Ohio 104 0.78 Hadar 18 0.81 Oranienburg 359 0.28
Virchow 6 1.23 Muenster 91 0.68 Corvallis 17 0.77 Thompson 356 0.28

Altona 6 1.23 Havana 90 0.67 Agama 13 0.59 Braenderup 303 0.24
Kedougou 6 1.23 Liverpool 85 0.64 Virchow 13 0.59 Montevideo 288 0.23

Agona 5 1.02 Kottbus 62 0.46 Tennessee 11 0.50 Goldcoast 281 0.22
Amsterdam 5 1.02 Derby 51 0.38 Cerro 11 0.50 Mikawasima 280 0.22

1,13,23:i:- 4 0.82 Indiana 43 0.32 Anatum 11 0.50 Bareilly 270 0.21
Hadar 4 0.82 Coeln 42 0.31 Havana 9 0.41 Hadar 261 0.20

Appendix E – Salmonella serovars in various animal populations based on reported data and model estimates
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Breeding flocks N % Broiler flocks N %
Laying hen
flocks

N %
Human cases
acquired in the
EU

N %

Mishmarhaemek 3 0.61 Taksony 37 0.28 Rissen 9 0.41 Rissen 255 0.20
Idikan 3 0.61 Java 36 0.27 Idikan 9 0.41 Napoli 253 0.20

Jerusalem 3 0.61 Anatum 32 0.24 Kedougou 9 0.41 Chester 237 0.19
Bredeney 3 0.61 Newport 29 0.22 Dublin 8 0.36 Kottbus 237 0.19

Llandoff 3 0.61 Gaminara 24 0.18 Blockley 8 0.36 Coeln 225 0.18
Muenster 2 0.41 Stanley 21 0.16 Albany 6 0.27 Dublin 221 0.17

Kottbus 2 0.41 Bredeney 20 0.15 Coeln 6 0.27 Mbandaka 220 0.17
Newport 2 0.41 Orion 18 0.13 Offa 5 0.23 Ohio 215 0.17

Poona 2 0.41 Chester 18 0.13 Derby 4 0.18 Livingstone 203 0.16
Montevideo 2 0.41 Give 18 0.13 Indiana 4 0.18 Indiana 201 0.16

Meleagridis 2 0.41 Saintpaul 13 0.10 Lexington 4 0.18 Panama 176 0.14
Other 21 4.30 Dublin 13 0.10 Bovismorbificans 4 0.18 London 173 0.14

Total 488 100 Minnesota 12 0.09 Muenster 4 0.18 Senftenberg 160 0.13
Salmonella spp.,
unspecified

245 Virchow 11 0.08 Mishmarhaemek 4 0.18 Poona 158 0.12

Grand Total 733 Rissen 11 0.08 Brandenburg 3 0.14 Bredeney 145 0.11
Hadar 9 0.07 Joal 3 0.14 Tennessee 144 0.11

Goldcoast 9 0.07 Gloucester 3 0.14 Litchfield 137 0.11
Idikan 8 0.06 Paratyphi B 3 0.14 Abony 134 0.10

Llandoff 8 0.06 Llandoff 3 0.14 Weltevreden 125 0.10
Mikawasima 8 0.06 Nottingham 2 0.09 Heidelberg 121 0.09

Nyborg 7 0.05 Stanleyville 2 0.09 Anatum 108 0.08
Abony 6 0.04 Elomrane 2 0.09 Corvallis 107 0.08

Reading 6 0.04 Kingston 2 0.09 Give 100 0.08
Albany 5 0.04 Tshiongwe 2 0.09 Arizonae 93 0.07

Haifa 5 0.04 Glostrup 2 0.09 Kedougou 91 0.07
Duesseldorf 5 0.04 Orion 2 0.09 Schwarzengrund 86 0.07

Braenderup 5 0.04 Meleagridis 2 0.09 Stanleyville 85 0.07
Glostrup 4 0.03 Schwarzengrund 2 0.09 Agama 79 0.06

Duisburg 4 0.03 Dabou 2 0.09 Javiana 78 0.06
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Breeding flocks N % Broiler flocks N %
Laying hen
flocks

N %
Human cases
acquired in the
EU

N %

Haardt 4 0.03 Essen 2 0.09 Manhattan 75 0.06

Bareilly 4 0.03 Muenchen 2 0.09 Sandiego 71 0.06
Brandenburg 3 0.02 Java 2 0.09 Blockley 69 0.05

II 42:b:e,n,x,z15 3 0.02 Bredeney 2 0.09 Havana 63 0.05
Agama 3 0.02 Cubana 2 0.09 Muenster 61 0.05

Schwarzengrund 3 0.02 Other 29 1.31 Pomona 61 0.05
1,4,12:d:- 3 0.02 Total 2,209 100 Haifa 60 0.05

Meleagridis 3 0.02 Salmonella spp.,
unspecified

1,114 Choleraesuis 57 0.04

Stanleyville 2 0.01 Grand Total 3,323 Reading 45 0.04

Bovismorbificans 2 0.01 Hvittingfoss 44 0.03
Madelia 2 0.01 Durham 42 0.03

Butantan 2 0.01 Telelkebir 42 0.03
Lille 2 0.01 Veneziana 39 0.03

Epinay 2 0.01 Monschaui 39 0.03
Szentes 2 0.01 Richmond 38 0.03

Mishmarhaemek 2 0.01 Cotham 38 0.03
Istanbul 2 0.01 Bardo 38 0.03

Putten 2 0.01 Umbilo 36 0.03
Other 32 0.24 Oslo 33 0.03

Total 13,344 100 Agbeni 32 0.03
Salmonella spp.,
unspecified

11,188 Stourbridge 32 0.03

Grand Total 24,532 Isangi 32 0.03
Uganda 31 0.02

Szentes 31 0.02
Cerro 29 0.02

Minnesota 29 0.02
Albany 28 0.02

Altona 28 0.02
Kenya 27 0.02
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Breeding flocks N % Broiler flocks N %
Laying hen
flocks

N %
Human cases
acquired in the
EU

N %

Gloucester 27 0.02
Schleissheim 25 0.02

Eastbourne 24 0.02
Potsdam 24 0.02

Adelaide 24 0.02
Urbana 24 0.02

Singapore 22 0.02
Ndolo 22 0.02

Kambole 22 0.02
Ajiobo 21 0.02

Gaminara 21 0.02
Other 1,405 1.10

Total 127,937 100
Salmonella spp.,
unspecified

12,819

Grand Total 140,756

N = number of cases.
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Table E.2: Suitability of the 28 selected Salmonella serovars for inclusion within an alternative target for breeding flocks of Gallus gallus based on the
four specific criteria to be adopted to determine Salmonella serovars with public health significance to which community targets will apply
(Annex III of Regulation (EC) No 2160/2003, 2014–2016

Salmonella
serovar

Association
with human
salmonellosis
based on
reported
sporadic cases
acquired in
the EU (% of
140,756
cases);
reported
number of
outbreaks/
outbreak
cases caused
by Salmonella
in egg and egg
products and
in broiler meat
(2014–2016);
estimated %
of human
cases (from
1.48 million)
attributable to
broilers/layers
in 2016

Route of infection: Proportion of reported Salmonella in the EU
and the number of reports in each EU MS (2014–2016)(b)

Recent/rapid ability to
spread and cause disease

Increased virulence for
human infections or
resistance to critically
important antimicrobials

Including hospitalisation
and mortality rates for
reported infections
acquired in the EU
2014–2016

Number of times a
particular MS
reported that
serovar between
2014 and 2016
from breeding
flocks
(N = 733)

Number of times a
particular MS reported
that serovar between
2014 and 2016 from
broiler flocks
(N = 24,531)

Number of times a
particular MS
reported that
serovar between
2014 and 2016
from layer flocks
(N = 3,323)

Enteritidis 55.44% of
sporadic cases

218 outbreaks
(3,007 cases)
attributed to
eggs and egg
products

16.51%
BE(4), CZ(4), DE(6),
DK(1), EL(5), ES(2),
FR(9), HU(5), NL(19),
PL(64), PT(1), UK(1)

4.79%
AT(19), BE(15), BG(2), CZ
(291), DE(31), DK(1), EL
(1), ES(18), FR(290), HR
(48), HU(32), MT(1), NL
(15), PL(191), PT(29), RO
(95), SI(1), SK(35), UK
(59)

29.04%
AT(20), BE(23), BG(6),
CZ(19), DE(124), DK
(1), EE(2), EL(13), ES
(62), FI(1), FR(140),
HR(17), HU(43), IT
(47), LV(2), MT(2), NL
(110), PL(278), PT

S. Enteritidis emerged as a
global epidemic in the 1980s
and has persisted in most
countries as the leading
cause of human
salmonellosis ever since in
almost all countries

High virulence is reported in
the literature but analysis of
recent human data from the
EU does not suggest higher
virulence than the mean for
all serovars among recent
infections Occasionally
resistant to CIAs such as FQs
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28 outbreaks
(400 cases)
attributed to
broiler meat and
products

89.7% of cases
attributed to
laying hens and
broilers

(17), RO(28), SK(3),
SI(3), UK(4)

in countries where historic
usage in breeding flocks has
been common, but most EU
isolates are fully sensitive

30.3% of reported cases
hospitalised and 0.15% of
cases died

S. Enteritidis is widely reported by EU MSs. PL reported the highest
number of cases in breeding flocks (64), of which most were parent
broiler-breeders, and in layer flocks (278). They also reported the second
highest number in broiler flocks (191). FR reported the highest number of
positive broiler flocks (290)

Vertical transmission via colonisation of the reproductive tract and internal
egg contamination has resulted in S. Enteritidis becoming the most
important serovar for transmission from breeding flocks and to humans
via egg products (primarily) and also broiler meat. Several outbreaks in
broiler flocks have resulted from infection of imported hatching eggs from
within or outside the EU. The organism also survives well in the
environment and readily infects rodents so is able to persist in poultry
houses, particularly housing for laying hens

Typhimurium 16.56% of
sporadic cases

14 outbreaks
(92 cases)
attributed to
eggs and egg
products

3 outbreaks (36
cases) attributed
to broiler meat
and products

1.46% of cases
attributed to
laying hens and
broilers

6.28%
AT(1), BE(3), BG(1),
DE(3), DK(1), EL(2),
ES(9), FI(1), FR(10),
HR(1), NL(2), PL(5),
SE(2), UK(5)

2.56%
AT(6), BE(44), BG(1), CY
(1), CZ(4), DE(48), DK(8),
EL(1), ES(86), FR(311),
HR(12), HU(26), IE(5), IT
(3), LU(1), MT(3), NL(18),
PL(5), PT(5), RO(7), SE
(16), SI(2), SK(2), UK(12)

5.99%
AT(12), BE(1), BG(1),
DE(49), DK(1), EL(4),
ES(18), FI(1), FR(59),
HR(1), HU(7), IE(1),
IT(22), NL(6), PL(1),
PT(5), RO(4), SE(2),
SI(2), UK(2)

S. Typhimurium is the
second most common
serovar in humans in the EU
and various strains have
shown epidemic potential in
food animal and human
populations

Many MDR strains, such
DT104, have shown
enhanced virulence in
humans and animals in the
arly years after their
emergence and there is a
general tendency towards
multiple antimicrobial
resistance, although
resistance to CIAs is not
common in most countries

40.3% of reported cases
hospitalised and 0.20% of
cases died

Reported in many EU MSs, particularly in FR in parent broiler-breeding
and broiler flocks (10 and 311 reports, respectively). There were also 59
reports of S. Typhimurium in FR in layers and 49 reports in DE. ES (86),
DE (48) and BE (44) also reported S. Typhimurium more frequently than
other MS

S. Typhimurium is a very diverse serovar containing host-adapted strains
associated with wild birds as well as strains with a wide host range. It is
particularly common in pigs in most countries, but is also associated with
ruminants, horses and companion animals. Some strains, e.g. DT104,
have achieved epidemic proportions in previous years and every decade
there has been emergence of a new epidemic type which also affects
humans and can be acquired by poultry. Although vertical transmission of
most strains is limited, the regular occurrence of S. Typhimurium in
chicken flocks and its unpredictability in terms of further dissemination
makes it a relevant target for control actions
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Typhimurium
monophasic

4.38% of
sporadic cases

1 outbreak (17
cases) attributed
to eggs and egg
products

No reported
outbreaks
attributed to
broiler meat and
products

0.54% of cases
attributed to
laying hens and
broilers

1.77%
BE(2), DK(1), ES(4),
FR(1), HU(3), UK(2)

0.95%
BE(18), CY(1), DK(29), ES
(25), FR(118), HR(2), HU
(5), MT(9), NL(4), PT(10),
UK(12)

1.20%
AT(2), DK(2), ES(10),
FR(11), HR(2), HU(1),
IT(9), MT(2), UK(1)

S. Typhimurium monophasic
strains emerged in pig
populations in the mid-2000s
and have spread widely on a
global basis since then,
probably via the movement
of infected breeding pigs. It
is the third most common
serovar in humans in the EU

Most isolates have resistance
to multiple antimicrobials
and occasionally to CIAs
such as cephalosporins or
gentamicin, but most EU
isolates are only resistant to
ampicillin, sulfonamides,
tetracyclines and
streptomycin/spectinomycin

33.6% of reported cases
hospitalised and 0.50% of
cases died. This apparent
higher mortality rate relates
to only 15 reported cases in
a 3-year period

Reported in poultry flocks in 13 MSs, most isolations reported by FR in
broilers (118). The single isolation from FR came from a parent broiler-
breeding flock but with the data available it is not possible to conclude
that the broiler cases are attributable to this case

S. Typhimurium monophasic strains are primarily associated with pigs,
but have regularly spread into ruminant and poultry populations,
particularly in areas where there is a heavy density of pig production,
especially outdoor pig breeding units. Dissemination via contamination of
feed ingredients grown or stored near to pig farms is also likely. There is
little evidence of dissemination from breeding to commercial poultry
flocks, contamination of eggs or spread or persistence of the organism on
chicken farms

Infantis 2.41% of
sporadic cases

1 outbreak (5
cases) attributed
to eggs and egg
products

No reported
outbreaks
attributed to
broiler meat and
products

3.7% of cases
attributed to
laying hens and
broilers

5.32%
BE(1), BG(3), DE(5),
EL(2), ES(2), FR(2),
HU(5), IT(3), PL(4),
RO(11), SI(1)

23.10%
AT(244), BE(128), BG(4),
CY(50), CZ(64), DK(14),
EL(5), HR(197), IT(2535),
MT(13), PL(65), RO
(1752), SK(37), SI(553),
UK(5)

ES(73), FR(9)*, MT(4)**,
PL(81)

5.27%
AT(8), BE(15), BG(2),
CY(3), CZ(1), EL(14),
ES(29), HR(5), IT(23),
LV(4), MT(2), PL(44),
PT(8), RO(15), SI(1),
UK(1)

ES(68), FR(2)*,
MT(2)**, PL(55)

There has been rapid spread
of MDR Infantis across EU
broiler production and
occurrence of human cases
in those countries that are
most affected

Some strains may show
enhanced virulence. Many
isolates have resistance to
multiple antimicrobials
including ESCs and colistin

32.8% of reported cases
hospitalised and 0.21% of
cases died

Reported in broiler flocks in many MSs and especially in AT, BE, ES, IT,
PL, RO and SI

S. Infantis is often associated with broiler production as well as laying
hens and other food animal sources. In recent years MDR strains that
have originated in Eastern Europe have spread in broiler production in
many EU countries. Once established these are very difficult to eliminate
from broiler farms. S. Infantis is consistently the fourth most common
serovar in humans, although the sources of infection are diverse and
most isolates in most countries are not MDR broiler-related strains
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Derby 0.82% of
sporadic cases

No reported
outbreaks
attributed to
eggs and egg
products or
broiler meat and
products

0.08% of cases
attributed to
laying hens and
broilers

1.23%
DK(1),IT(7), UK(1)

ES(1)

0.21%
BE(20), CZ(3), DK(4), IE
(2), MT(6), PT(1), UK(15)

ES(6), IT(10), MT(2)**

0.12%
BG(1), DK(1), PT(2)

ES(2), FR(12)*, IT(6)

Although S. Derby has been
among the top 10 serovars
in humans, the actual
numbers of cases are
relatively low, and showed a
reduction in 2017

Virulence is considered to be
low and resistance to
critically important
antimicrobials is unusual in
the EU

41.1% of reported cases
hospitalised, which
contradicts literature reports
of low virulence, but only
0.12% of cases died

The breeding flock case of S. Derby in DK was in a parent breeding flock
for the broiler production line in 2016. All the other incidents in breeding
flocks were unspecified as to their flock type. All the other incidents of
S. Derby in DK also occurred in 2016

The seven reports of S. Derby in breeding flocks in IT were reported in
2015. Using the additional data provided by IT S. Derby was also
detected in broiler and layer flocks in 2014 (8 in broiler; 4 in layer) and
2015 (2 in broiler and 2 in layers)

In the UK, the type of breeding flock was unspecified, but the detection
of S. Derby occurred in 2014. Of the 15 detections of S. Derby in broilers,
14 occurred in 2016, but this was related to contamination of a hatchery
that also hatched eggs from an infected turkey breeding flock and then
became persistently contaminated

In ES, the single isolation of S. Derby was from a breeding flock for the
broiler production line in 2015. S. Derby was also detected in broiler
flocks (3 reports in 2014, 1 in 2015, 2 in 2016) and layer flocks (1 report
in 2014 and 1 in 2016)

S. Derby is predominantly associated with pigs and, to a lesser extent,
turkeys rather than with chickens, but appears to be able to persist in
some hatcheries and poultry houses, despite regular cleaning and
disinfection. Human cases mostly relate to consumption of undercooked
pork products. No evidence of vertical transmission

Stanley 0.75% of
sporadic cases

No reported
outbreaks
attributed to
eggs and egg
products or
broiler meat and
products

0% 0.09%
AT(1), HR(20)

IT(1)

0% S. Stanley showed a rapid
emergence in turkey
populations in some Eastern
European countries in earlier
years, but has since largely
regressed

Little evidence of enhanced
virulence. Some isolates
have resistance to multiple
antimicrobials and
occasionally to CIAs

34.5% of reported cases
hospitalised and 0.37% of
cases (3 people) died

S. Stanley could be considered as potentially relevant for enhanced
control based on previous outbreaks in the EU, but these were mostly
confined to a small number of countries and mainly related to turkey
flocks/meat, and such outbreaks are no longer occurring. No evidence of
involvement of chicken breeding flocks. No evidence of vertical
transmission
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Newport 0.62% of
sporadic cases

No reported
outbreaks
attributed to
eggs and egg
products or
broiler meat and
products

0.15% of cases
attributed to
laying hens and
broilers

0.27%
CY(1), UK(1)

ES(2), PL(3)

0.12%
DK(3), IE (1), PO(4), PT
(4), RO(4), UK(13)

ES(8), IT(6), PL(12)

0.82%
PO(8), RO(10), UK(7)

ES(3), FR(1)*, IT(2),
PL(8)

S. Newport increased to the
no. 4 position in people in
2017, but this was mainly
related to a large outbreak
caused by imported food of
non-animal origin

Little evidence of enhanced
virulence in EU strains. Some
isolates have resistance to
multiple antimicrobials and
occasionally to CIAs such as
FQs, but most EU isolates
are fully sensitive. MDR
strains with resistance to
ESCs, associated mainly with
cattle, which have emerged
in the USA and Canada are
not known to occur in food
animals in the EU

36.8% of reported cases
hospitalised and 0.54% of
cases (3 people) died

The UK case of S. Newport in breeders was in an unspecified adult flock
in 2016; 10 of the 13 UK broiler cases occurred in 2016; for the layers,
there was 2 in 2016 and 5 in 2014

CY did not report human cases to ECDC. No S. Newport was reported in
broilers or layers. In ES, one of the isolations was in 2014, and one in
2016 (both for breeders for the broiler production line). Seven of the
eight ES isolations of S. Newport in broilers were in 2015 (4) and 2016
(3). In layer flocks, there was a single isolation each year

In PL all three isolations were from parent breeding flocks for broiler
production line (2 in 2014 and 1 in 2015). The 12 isolations from broiler
flocks were distributed across the years (5 in 2015, 3 in 2015 and 4 in
2016). In the layer flocks, all eight isolations occurred in 2016.
S. Newport is a very genetically diverse serovar and outbreaks are often
associated with FoNAO or exposure to reptiles. In the UK, it can be found
in badgers, resulting in feed grain contamination, and so can be isolated
occasionally from all animal species, but is particularly likely to be found
in turkeys and cattle. No evidence of vertical transmission

Bovismorbificans 0.58% of
sporadic cases

No reported
outbreaks
attributed to
eggs and egg
products or
broiler meat and
products

0.01% of cases
attributed to
laying hens and
broilers

0% 0.008%
RO(1), EL(1)

0.12%
HR(4)

IT(2)

S. Bovismorbificans has
caused some human
outbreaks, mainly linked with
contaminated pork products

Some strains may show
enhanced virulence. Many
isolates have resistance to
multiple antimicrobials

47.6% of reported cases
hospitalised but only 0.16%
of cases died

S. Bovismorbificans is more likely to be associated with pigs, ducks or
turkeys than chickens. It is sometimes found in animal feed so could be
transmitted to a variety of food animals
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Virchow 0.47% of
sporadic cases

No reported
outbreaks
attributed to
eggs and egg
products or
broiler meat and
products

0.9% of cases
attributed to
laying hens and
broilers

0.82%
PL(3), ES(3)

0.04%
BE(1), CY(4), IT(2), PL
(1), PT(1), RO(2)

ES(118), FR(38)*, IT(2),
PL(3)

0.39%
AT(1), CY(7), PT(5)

ES(7), FR(3)*, IT(1),
PL(3)

No evidence of recent rapid
spread or unusual levels of
disease

Some strains may show
enhanced virulence. Some
isolates have resistance to
multiple antimicrobials

35.7% of reported cases
hospitalised and 0.60% of
cases (3 people) died

The PL cases in breeding flocks occurred in 2014 (2 reports) and 2015 (1
report). All detections were recorded as being from a parent flock for
broiler production. The reports of S. Virchow from the official monitoring
data and the data provided by PL differ (so both have been included for
transparency) but it can be concluded that there was a low number of
isolations in 2014–2016 in broiler and layer flocks

In ES, all three cases in breeding flock for broiler production (level
unknown): two reported in 2014 and one in 2016. In ES and FR, a larger
number of isolations were reported laying hens in the additional data
provided: 118 cases reported in ES (2014–2016) and 38 in FR (2017)

No evidence of vertical transmission or chickens as a major source of
human infections

Agona 0.35% of
sporadic cases

No reported
outbreaks
attributed to
eggs and egg
products or
broiler meat and
products

0.16% of cases
attributed to
laying hens and
broilers

0.68%

AT(1), BG(1), UK(3)

IT(2)

0.53%
AT(8), BE(28), HR(1), CZ
(1), EL(1), MT(1), PT(2),
RO(79), SL(2), UK(6)

ES(13), IT(2), MT(1)

1.53%
AT(5), BE(2), CZ(1),
EL(3), PO(1), RO(33),
UK(6)

ES(8), FR(4)*, IT(7),
PL(2)

Little evidence of significant
spread despite common
occurrence as a feed
contaminant

No evidence of enhanced
virulence or relevant
antimicrobial resistance

30.6% of reported cases
hospitalised and 0% of cases
died

Large number of cases of S. Agona in BE (broilers) and RO (broilers and
layers), but not reported in breeding flocks. There were also a large
number of reports in FR in 2016

S. Agona is a common feed contaminant and human outbreaks have
often originated from FoNAO. No evidence of vertical transmission

Kentucky 0.33% of
sporadic cases

No reported
outbreaks

1.91%
BG(1), PO(1), RO(1),
ES(11)

PL(1)

0.96%
AT(1), BE(1), CY(9), CZ
(12), IE(8), MT(36), PT
(1), RO(167), UK(1)

5.75%
CY(1), FR(1), EL(1), IT
(176), MT(3), PO(4),
RO(5)

Rapid emergence of ST198,
which has rapidly spread in
broiler populations in many
EU countries

Many isolates have
resistance to multiple
antimicrobials and/or very
high MICs to ciprofloxacin
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attributed to
eggs and egg
products or
broiler meat and
products

0.29% of cases
attributed to
laying hens and
broilers

ES(221), IT(52), MT(32),
PL(1)

ES(18), FR(1)*, IT
(183), MT(10), PL(4)

37.7% of reported cases
hospitalised and 0.71% of
cases (2 people) diedS. Kentucky in layers occurring throughout 2014 (75 reports), 2015 (54

reports), 2016 (47 reports) in IT. However, it was not isolated in any
Italian breeding flocks. Also high but decreasing number of S. Kentucky
detections in RO in broilers: 2014 (179 reports), 2015 (652 reports), 2016
(36 reports). The isolation found in a breeding flock was in 2016 and the
flock type was unspecified. In ES, there were 11 isolations of S. Kentucky
in breeding flocks (7 in 2014; 4 in 2015), all of which were in breeding
flocks for broiler production line. Using data subsequently provided by ES
there were 221 isolations of S. Kentucky in breeding flocks (83 in 2014;
99 in 2015; 39 in 2016). It cannot be certain, but this could be
considered as the possible dissemination of S. Kentucky from breeding
flock(s) to broiler flocks via hatchery contamination

S. Kentucky is primarily associated with chicken flocks among potential
food animal sources for humans in the EU, but is also associated with
foreign travel outside the EU

Java 0.32% of
sporadic cases

No reported
outbreaks
attributed to eggs
and egg products
or broiler meat
and products

0.19%of cases
attributed to
laying hens and
broilers

0.14%
NL(1)

0.15%
BE(36)

0.06%
AT(2)

S. Java spread rapidly in
broiler populations in earlier
years but little obvious
involvement of transmission
from breeding flocks

Virulence is considered to be
low in most countries. Many
isolates have resistance to
multiple antimicrobials,
including CIAs in some cases

31.7% of cases hospitalised
and 0% of cases died

In BE, 26 detections of S. Java in broilers in 2014 and 10 in 2016. This
serovar has been associated with persistent contamination of broiler
farms in a small number of countries and has not spread to others.
Human cases can originate from many sources, including reptiles

Muenchen 0.3% of sporadic
cases

No reported
outbreaks
attributed to eggs
and egg products
or broiler meat
and products

0% 0%

ES(5), IT(13)

0.06%
AT(1), CY(1)

ES(2), IT(4)

No evidence of recent rapid
spread or unusual levels of
disease

No evidence of special
concerns regarding virulence
or AMR

40.0% of reported cases
hospitalised and 0.65% of
cases (2 people) died

Uncommon in poultry flocks, occasional contaminant of animal feed
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Brandenburg 0.27% of
sporadic cases

No reported
outbreaks
attributed to
eggs and egg
products or
broiler meat and
products

0.01% of cases
attributed to
laying hens and
broilers

0% 0.01%
RO(2), UK(1)

IT(1)

0.09%
PT(3)

ES(1)

No evidence of recent rapid
spread or unusual levels of
disease

No evidence of special
concerns regarding virulence
or AMR

35.7% of reported cases
hospitalised and 0% of cases
died

Uncommon in poultry flocks, occasional contaminant of animal feed

Saintpaul 0.27% of
sporadic cases

No reported
outbreaks
attributed to
eggs and egg
products or
broiler meat and
products

0.05% of cases
attributed to
laying hens and
broilers

0% 0.05%
CZ(1), PT(1), SL(11)

IT(5), PL(1)

0%

FR(2)*

No evidence of recent rapid
spread or unusual levels of
disease

Some strains may have
resistance to multiple
antimicrobials

23.6% of cases hospitalised
and 0% of cases died

More commonly associated with turkeys than chickens, though more
common in broilers in a small number of countries. Human infections
often linked with FoNAO

Oranienberg 0.26% of
sporadic cases

No reported
outbreaks
attributed to
eggs and egg
products or
broiler meat and
products

0% 0.008%
RO(1), EL(1)

0.12%
HR(4)

IT(2)

No evidence of recent rapid
spread or unusual levels of
disease

No evidence of special
concerns regarding virulence
or AMR in the literature, but
55.4% of reported cases
hospitalised and 0.50% of
cases (1 person) diedS. Oranienberg has been largely associated with FoNAO from outside the

EU, rather than food animals

Salmonella control in poultry flocks and its public health impact

www.efsa.europa.eu/efsajournal 130 EFSA Journal 2019;17(2):5596



Thompson 0.25% of
sporadic cases

No reported
outbreaks
attributed to
eggs and egg
products or
broiler meat and
products

0.14%
AT(1)

IT(6)

2.23%
AT(48),EL(5), IT(442),
RO(50), UK(1)

ES(10), IT(698)

0.66%
AT(7), HR(2), EL(12),
SL(1)

ES(7), FR(1)*, IT(16)

Recent rapid spread in
poultry populations is limited
to certain countries

Some strains may show
enhanced virulence and have
resistance to multiple
antimicrobials

27.7% of reported cases
hospitalised and 0.38% of
cases died

The reported S. Thompson in the breeding flock was in a parent breeder
for eggs in AT in 2015. Broiler cases: 2014 (1 report), 2015 (16 reports),
2016 (31 reports). In layers 2014 (1 report), 2015 (3 reports), 2016 (3
reports)

From the additional data received from IT, there were six reports of
S. Thompson (5 in 2014, 1 in 2015), but breeding flock type (broiler or
layer breeding flock) was unknown. There were 256 reported cases in
2014, 123 in 2015 and 319 in 2016 (the official data did not include the
2014 data)

The 50 cases in RO broilers included 43 cases in 2015. It is likely that
S. Thompson, which is recognised as being a common contaminant of
broiler farms in many countries worldwide has been introduced into
broiler production in a small number of countries, but there is no evidence
of the ongoing involvement of broiler breeding flocks in most countries or
of spreading across the EU in the way that S. Infantis or S. Kentucky has
done. Human cases also originate from a wide variety of sources other
than poultry meat, such as FoNAO and processed fish products. There
could be a case for specific controls on breeding flocks in IT and AT

Braenderup 0.22% of
sporadic cases

No reported
outbreaks
attributed to
eggs and egg
products or
broiler meat and
products

0.85% of cases
attributed to
laying hens and
broilers

0%

ES(3)

0.02%
SK(4), UK(1)

ES(7), IT(8), PL(1)

0.6%
AT(1), CY(2), EL(17)

ES(3), FR(1)*, IT(7),
PL(1)

No evidence of recent rapid
spread or unusual levels of
disease

No evidence of special
concerns regarding virulence
or AMR in the literature, but
46.7% of reported cases
hospitalised and 1.1% of
cases (2 people) died

In ES, there were three reports of the serovar S. Braenderup in breeding
flocks for broiler production (2 in 2014; 1 in 2015). Of the seven
isolations in broilers, six of them occurred in 2015

14 cases of S. Braenderup were detected in layers in EL in 2016. In the
USA there is some evidence of vertical transmission and outbreaks
associated with handling chicks

Salmonella control in poultry flocks and its public health impact

www.efsa.europa.eu/efsajournal 131 EFSA Journal 2019;17(2):5596



Montevideo 0.2% of sporadic
cases

No reported
outbreaks
attributed to
eggs and egg
products or
broiler meat and
products

0.12% of cases
attributed to
laying hens and
broilers

0.27%
BE(1), CY(2)

ES(3), FR(1)*

0.60%
AT(23), BE(2), CZ(9),
EL(1), RO(21), SL(1),
UK(91)

ES(8), FR(257)*, IT
(16)

1.2%
AT(19), BE(1), EL(8), PT
(1), RO(4), SL(2), UK(5)

ES(5), FR(13)*, IT(7), PL
(1)

No evidence of recent rapid
spread or unusual levels of
disease

No evidence of special
concerns regarding virulence
or AMR

36.1% of reported cases
hospitalised and 0.54% of
cases (1 person) died

For the reports in breeding flocks, for both BE and CY, it is unknown
whether the flock was for egg or meat production. For the BE reported
case it was for a parent flock

FR recorded the detection of S. Montevideo in hatching eggs from a
breeding flock for broiler production line in 2016. In 2016 FR reported
231 isolations of S. Montevideo in broiler flocks

The UK cases in broilers were spread across the 3 years as 2014 (40
cases), 2015 (20 cases), 2016 (31 cases)

This serovar is a common contaminant of feed production facilities and
hatcheries so is likely to be found at all stages of poultry production. It is
also a common contaminant of FoNAO

Goldcoast 0.2% of sporadic
cases

1 outbreak (2
cases) attributed
to broiler meat
and products No
reported
outbreaks
attributed to
eggs and egg
products

0.02% of cases
attributed to
laying hens and
broilers

0%

ES(1)

0.04%
BE(1), PT(1), UK(7)

ES(5)

0%

ES(2), IT(1)

No evidence of recent rapid
spread or unusual levels of
disease

No evidence of special
concerns regarding virulence
or AMR

48.3% of reported cases
hospitalised and 0% of cases
died

Multiple sources including produce, uncommon in chickens
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Hadar 0.19% of
sporadic cases

No reported
outbreaks
attributed to
eggs and egg
products or
broiler meat and
products

0.06% of cases
attributed to
laying hens and
broilers

0.55%
ES(4)

0.04%
EL(3), IT(4), PL(1),
UK(1)

ES(24), FR(14)*, IT(5)

0.54%
CY(1), EL(9), PL(1),
RO(7)

ES(8), FR(1)*, IT(2)

No evidence of recent rapid
spread or unusual levels of
disease

No evidence of special
concerns regarding
virulence. Some isolates
have resistance to multiple
antimicrobials

39.2% of cases hospitalised
and 0% of cases died

The four reports of S. Hadar were in breeding flocks for broiler
production (level unknown). There were two reports in 2014 and 1 report
in 2015 and 2016. S. Hadar in poultry is known to be a relevant source of
human infection in some countries, but there is little evidence of vertical
transmission and the serovar is more common in ducks

Napoli 0.18% of
sporadic cases

No reported
outbreaks
attributed to
eggs and egg
products or
broiler meat and
products

0.69% of cases
attributed to
laying hens and
broilers

0%

FR(3)*, IT(4)

0%

FR(77), IT(3)

0%
IT(2), ES(1)

No evidence of recent rapid
spread or unusual levels of
disease

No evidence of special
concerns regarding virulence
or AMR

42.3% of reported cases
hospitalised and 0% of cases
died

France reported 77 isolations of S. Napoli in 2017. In breeding flocks, the
three reports were derived from broiler breeding flocks. IT also identified
this serovar in broilers and layers and ES identified S. Napoli in layers

This serovar is more likely to be associated with environmental
contamination than poultry, with human cases often liked to FoNAO
rather than meat or eggs. It has a limited distribution in poultry in the
EU
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Mbandaka 0.16% of
sporadic cases

No reported
outbreaks
attributed to
eggs and egg
products or
broiler meat and
products

0.15% of cases
attributed to
laying hens and
broilers

6.55%
AT(1), BE(17), CZ(1),
HR(3), IT(5), PL(11),
RO(1), UK(9)

ES(2), FR(1)*, IT(17),
PL(3)

5.28%
AT(13), BE(21),
CZ(18), HR(58),
IE(4), IT(559),
PL(20), PT(1),
RO(34), SE(2),
SI(1), UK(564)

ES(31), FR(75)*,
IT(633), MT(1),
PL(31)

2.68%
AT(14), BE(9), PL(35),
PT(9), RO(13), SE(1),
SI(1), UK(7)

ES(17), FR(12)*, IT(13),
MT(2), PL(37)

No evidence of recent rapid
spread or unusual levels of
disease

No evidence of special
concerns regarding virulence
or AMR. S. Mbandaka is
considered to be relatively
avirulent compared with
most serovars

34.3% of reported cases
hospitalised but 0.63% of
cases (1 person) died

Commonly reported serovar, especially in broiler flocks in IT and UK. PL,
BE and UK have larger number of reports from breeding flocks. Ten of
the cases in PL were from parent broiler-breeding flocks. BE and UK
provide no additional data on the type of breeding flock

S. Mbandaka is a common feed contaminant also found in hatcheries so
is detected on hatcher basket liners as well as on broiler carcasses. The
feed route is very prominent for this serovar because of its occurrence in
by-products of the vegetable oil extraction process (e.g. soya bean and
rape seed meal) and is commonly found in various food animal
populations, particularly broilers and dairy cattle

Livingstone 0.14% of
sporadic cases

No reported
outbreaks
attributed to
eggs and egg
products or
broiler meat and
products

0.19% of cases
attributed to
laying hens and
broilers

1.64%

BE(1), HR(1), EL(8),
RO(2)

FR(1)*, IT(2)

3.18%

AT(1), BE(46), HR(3),
FI(1), EL(18), IT(663),
MT(2), RO(25), UK(20)

MT(1)

0.84%

BE(7), CY(4), EL(2),
MT(3), RO(5), SE(3),
UK(4)

ES(9), FR(11)*, IT(6),
MT(11), PL(1)

No evidence of recent rapid
spread or unusual levels of
disease

No evidence of special
concerns regarding virulence
or AMR

33.3% of reported cases
hospitalised and 0% of cases
died

No information is provided on the type of breeding flocks from which
S. Livingstone was isolated in BE, HR, EL or RO. IT reported a large
number of cases: 302 in 2014, 199 in 2015 and 162 in 2016.
S. Livingstone often occurs as a hatchery contaminant so is likely to be
occasionally found in poultry flocks during routine monitoring, but does
not usually persist in flocks. Some apparent isolations from breeding
flocks may be false positives resulting from sampling at the hatchery level
that is carried out in many countries
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Senftenberg 0.11% of
sporadic cases.
No reported
outbreaks
(2012–2016)

1 outbreak (34
cases) attributed
to broiler meat
and products

No reported
outbreaks
attributed to
eggs and egg
products

0.07% of cases
attributed to
laying hens and
broilers

3.68%
AT(1), BE(5), BG(1),
EL(1), RO(8), UK(11)

ES(6), IT(2)

1.43%
AT(24), BE(6), CY(1),
CZ(1), DK(2), EL(9),
HR(9), MT(1), PL(7),
PT(3), RO(194), SI(2),
UK(93)

ES(421), FR(97)*,
IT(39), PL(7)

1.17%
AT(4), BE(5), CY(1), EE
(1), EL(1), HR(12), PL(6),
PT(5), RO(3), UK(1)
ES(5), FR(4)*, IT(13),
PL(10)

No evidence of recent rapid
spread or unusual levels of
disease

No evidence of special
concerns regarding virulence
or AMR

42.2% of cases hospitalised
and 0% of cases died

Reports of S. Senftenberg in breeding flocks in the UK, RO and BE. Of the
11 UK cases, 9 were reported in 2016 but the breeder type is
unspecified. Likewise, six of the eight Romanian reported cases were in
2014. In the additional data provided by ES, all of the cases (1 in 2014, 5
in 2015) were in broiler-breeding flocks. 421 broiler flocks were reported
to have infection with S. Senftenberg (101, 182, 138 in 2014, 2015 and
2016, respectively); the highest reporting within the EU. RO and UK also
have higher levels across the 3 years of investigation and FR had a high
level of reported cases in broiler flocks in 2017

S. Senftenberg is a common resident contaminant of hatcheries, which
could result in false-positive test results for breeding flocks that are
monitored via hatchery samples. It is also a common contaminant of
animal feed, so is likely to be found in all poultry populations because of
this common exposure. In broiler flocks, although it may be found in
young chicks, it is often undetectable by the time of slaughter

Weltevreden 0.09% of
sporadic cases

No reported
outbreaks
attributed to
eggs and egg
products or
broiler meat and
products

0.22% of cases
attributed to
laying hens and
broilers

0% 0% 0%

FR(1)*

No evidence of recent rapid
spread or unusual levels of
disease

No evidence of special
concerns regarding virulence
or AMR

48.1% of reported cases
hospitalised and 0% of cases
died

This serovar is rare in animal populations in the EU and is usually
associated with FoNAO or travel to Asian countries
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Heidelberg 0.09% of
sporadic cases

No reported
outbreaks
attributed to
eggs and egg
products or
broiler meat and
products

0%

IT(4)

0.004%
IE(1)

IT(27)

0% Rapid spread in chickens and
turkeys in the American
continent. High potential for
vertical transmission

Some non-EU strains show
enhanced virulence. Many
isolates have resistance to
multiple antimicrobials
including ESCs

57.6% of reported cases
hospitalised but 0% of EU
cases died

S. Heidelberg was isolated in breeding flocks Italy in 2015 (3) and 2016
(1). No information was provided on the types of breeding flocks. In
broilers in IT there were 16 reports in 2014, 5 in 2015 and 6 in 2016

Not currently common in the EU in humans or chicken populations. Some
information suggests some strains found in Portugal, the Netherlands and
Ireland after importation of Brazilian poultry meat are similar to strains
that have emerged rapidly in the USA and Canada

Havana 0.04% of
sporadic cases

No reported
outbreaks
attributed to
eggs and egg
products or
broiler meat and
products

0.16% of cases
attributed to
laying hens and
broilers

0.14%

EL(1)

ES(4)

0.37%

BE(2), EL(1), PT(71),
RO(14), UK(2)

ES(11), IT(45)

0.27%

AT(1), BE(5), PT(3)

ES(5), FR(7)*, IT(5)

No evidence of recent rapid
spread or unusual levels of
disease

Some strains may show
enhanced virulence in
humans resulting in a higher
than expected frequency of
extra-intestinal disease

23.8% of reported cases
hospitalised but 2.5% of
cases (1 person) died

The reports of S. Havana in ES were from breeding farms for the broiler
production line (1 in 2014, 1 in 2015 and 2 in 2016). Most of the broiler
cases in ES were in 2014: 2014 (11); 2015 (4) and 2016 (1). In broilers
Portugal reported 71 isolations of S. Havana. The majority of these (53)
were in 2015

Not currently common in the EU in humans or chicken populations. Can
occasionally be found in animal feed ingredients imported from outside
the EU

Note: A Red-Amber-Green (RAG) status has been assigned for each serovar to each criterion and overall (see column 1) on the basis of the amount of evidence available(a)

(a): RED: serovar is frequently reported (> 10% of EU cases) in humans or accounts for > 10% of human cases attributed to layers/broilers; substantial evidence of transmission through the
poultry industry; substantial evidence of rapid and recent ability to spread in poultry and cause disease in humans; substantial evidence of increased virulence (e.g. invasiveness or
antimicrobial resistance). AMBER: serovar is occasionally reported in humans (1–10% of EU cases) or accounts for 1–10% of human cases attributed to layers/broilers; some evidence of
transmission through the poultry industry; some evidence of rapid and recent ability to spread in poultry and cause disease in humans; some evidence of increased virulence (e.g. invasiveness
or antimicrobial resistance). GREEN: is rarely reported in humans (< 1% of EU cases) or accounts for < 1% of human cases attributed to layers/broilers; limited/no evidence of transmission
through the poultry industry; limited/no evidence of rapid and recent ability to spread and cause disease; limited/no evidence of increased virulence (e.g. invasiveness or antimicrobial
resistance).

(b): The percentage given for each flock type is based on the 2014–2016 official monitoring data only. However, details of which MSs had reported the serovar are provided (and the number of
reports between 2014 and 2016), using both data reported to EFSA and additional data provided by MSs (identified by the use of italics). The data sources were kept separate as the
additional data provided by the MS did not always correspond with the data officially reported to EFSA. In some cases, additional information is also given from the raw data set providing
specific years and number of cases the serovar was reported for a particular MS and included in the ‘Comments’ column.

AMR: antimicrobial resistance; CIA: clinically important antimicrobial; ECDC: European Centre for Disease Prevention and Control; ESC: extended-spectrum cephalosporins; FoNAO: foods of non-
animal origin; FQ: fluoroquinolones; MDR: multidrug-resistant; MIC: minimum inhibitory concentration; MS: Member State; DT: definitive phage type.
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Country abbreviations: AT: Austria; BE: Belgium; BG: Bulgaria; CZ: the Czech Republic; CY: Cyprus; DE: Germany; DK: Denmark; EE: Estonia; EL: Greece; ES: Spain; FI: Finland; FR: France; HR:
Croatia; HU: Hungary; IE: Ireland; IT: Italy; LT: Lithuania; LU: Luxembourg; LV: Latvia; MT: Malta; NL: the Netherlands; PL: Poland; PT: Portugal; RO: Romania; SE: Sweden; SI: Slovenia; SK:
Slovakia; UK: the United Kingdom.
*FR: Table includes 2016 layer, 2016 breeding or 2017 broiler data only; **MT: 2014 data (2015, 2016 included in the EFSA official reporting).
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Table E.3: Number of human salmonellosis true cases (i.e. accounting for under-ascertainment and
underreporting) by the 28 serovars included in the model and originating from the laying
hen reservoir as estimated by the source attribution model (SAM) (baseline model)

Serovar % of total(a) Mean Median 95% CrI

ENTERITIDIS 93.3 433,800 390,100 [194,500; 932,200]

BRAENDERUP 2.09 9,703 6,629 [1,242; 36,820]
TYPHIMURIUM 1.74 8,087 7,269 [3,346; 17,680]

NAPOLI 0.641 2,983 2,377 [689.7; 8,887]
MONOPHASIC TYPHIMURIUM 0.441 2,052 1,866 [882.7; 4,335]

INFANTIS 0.357 1,663 1,491 [703.6; 3,646]
AGONA 0.209 973.5 815.5 [301.6; 2,598]

KENTUCKY 0.201 935.3 778.8 [290; 2,504]
VIRCHOW 0.148 689.3 505.8 [141.5; 2,364]

HAVANA 0.134 622.2 515.6 [175; 1,703]
NEWPORT 0.114 529.2 469.9 [206.6; 1,195]

MONTEVIDEO 0.100 467.4 377.8 [146.7; 1,331]
HADAR 0.0965 446.8 349.1 [103; 1,376]

LIVINGSTONE 0.0958 445.5 385.4 [167; 1,082]
TENNESSEE 0.0944 438.9 372 [151.4; 1,120]

ANATUM 0.0766 356.2 278.8 [94.76; 1,082]
INDIANA 0.0451 209.9 162.7 [50.85; 654.2]

MBANDAKA 0.0357 166.1 149 [68.21; 365.1]
BRANDENBURG 0.0352 163.9 107.7 [18.76; 653]

BOVISMORBIFICANS 0.0287 133.5 67.82 [2.187; 659]
GOLDCOAST 0.0180 83.72 57.46 [9.974; 314.5]

DERBY 0.0130 60.37 52.42 [20.16; 146.8]
SENFTENBERG 0.0121 56.36 50.35 [22.59; 125]

RISSEN 0.0102 47.23 40.25 [14.94; 120.7]
LONDON 0.00700 32.56 23.2 [4.641; 115.5]

SAINTPAUL 0.00656 30.52 24.97 [7.587; 86.17]
JAVA 0.0000631 0.2937 0.1962 [0.03122; 1.127]

WELTEVREDEN 0 0 0 [0; 0]

CrI: credibility interval.
(a): Based on the mean value.
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Table E.4: Number of human salmonellosis true cases (i.e. accounting for under-ascertainment and underreporting) by serovar and animal reservoir as
estimated by the source attribution model (SAM)

Serovar
Broilers Layers Pigs Turkeys

Mean Median 95% CrI Mean Median 95% CrI Mean Median 95% CrI Mean Median 95% CrI

ENTERITIDIS 896,900 760,300 [312,000;
2,300,000]

433,800 390,100 [194,500;
932,200]

727,900 635,000 [283,000;
1,730,000]

134,300 120,900 [59,270;
287,700]

AGONA 1,352 1,253 [661.5; 2,617] 973.5 815.5 [301.6; 2,598] 4,458 3,432 [1,102; 13,880] 14,450 12,160 [5,084;
37,470]

ANATUM 1,007 913.9 [451.2; 2,114] 356.2 278.8 [94.76; 1,082] 2,882 2,136 [556.7; 9,629] 410.6 295.5 [60.6; 1,453]

BOVISMORBIFICANS 0 0 [0; 0] 133.5 67.82 [2.187; 659] 35,440 30,170 [12,620; 89,210] 1,820 1,665 [835.9; 3,731]
BRAENDERUP 2,849 2,523 [1,063; 6,545] 9,703 6,629 [1,242; 36,820] 0 0 [0; 0] 0 0 [0; 0]

BRANDENBURG 0 0 [0; 0] 163.9 107.7 [18.76; 653] 17,050 14,260 [6,257; 44,450] 1,210 1,041 [413.7; 3,005]
DERBY 1,113 957.4 [431.7; 2,723] 60.37 52.42 [20.16; 146.8] 40,610 36,340 [17,720; 88,870] 4,831 4,408 [2,212; 9,952]

GOLDCOAST 246.7 217.7 [100.6; 565.1] 83.72 57.46 [9.974; 314.5] 7,336 6,584 [3,249; 15,960] 0 0 [0; 0]
HADAR 486.7 423.5 [176.3; 1,174] 446.8 349.1 [103; 1,376] 0 0 [0; 0] 9,371 7,386 [2,622;

27,860]

HAVANA 1,808 1,473 [541.4; 5,088] 622.2 515.6 [175; 1,703] 1,403 1,016 [239; 4,854] 0 0 [0; 0]
INDIANA 715.1 628.6 [296.2; 1,648] 209.9 162.7 [50.85; 654.2] 0 0 [0; 0] 2,278 2,008 [888.5; 5,219]

INFANTIS 53,300 49,000 [27,020; 105,000] 1,663 1,491 [703.6; 3,646] 2,990 2,645 [1,305; 6,756] 10,200 9,396 [4,832;
20,320]

JAVA 2,869 2,635 [1,384; 5,712] 0.2937 0.1962 [0.03122;
1.127]

0 0 [0; 0] 16.17 14.91 [7.738; 32.05]

KENTUCKY 3,365 2,732 [1,038; 9,458] 935.3 778.8 [290; 2,504] 5.017 2.958 [0.1969; 22.23] 14,760 12,260 [4,971;
39,510]

LIVINGSTONE 2,414 2,074 [921; 5,940] 445.5 385.4 [167; 1,082] 341.7 308.4 [153.2; 727.3] 108.1 92.75 [36.22; 272.2]

LONDON 38.05 29.4 [9.327; 117.8] 32.56 23.2 [4.641; 115.5] 6,408 5,845 [2,989; 13,080] 182.2 157.3 [65.18; 447.5]
MBANDAKA 2,058 1,859 [902.2; 4,391] 166.1 149 [68.21; 365.1] 163.7 141.6 [62.19; 393.6] 137.7 119.8 [52.2; 330.7]

MONOTYPH 5,949 5,430 [2,856; 12,150] 2,052 1,866 [882.7; 4,335] 411,400 367,400 [181,100;
900,700]

300,00 25,800 [10,870;
74,280]

MONTEVIDEO 1,341 1,204 [614.2; 2,910] 467.4 377.8 [146.7; 1,331] 975.8 734.6 [209.4; 3,214] 503.4 441.1 [195; 1,182]

NAPOLI 7,203 6,554 [3,381; 14,860] 2,983 2,377 [689.7; 8,887] 0 0 [0; 0] 0 0 [0; 0]
NEWPORT 1,647 1,364 [543.5; 4,443] 529.2 469.9 [206.6; 1,195] 5,335 4,025 [1,216; 17,220] 21,330 19,510 [10,320;

42,880]

RISSEN 54.63 47.8 [23.21; 126.8] 47.23 40.25 [14.94; 120.7] 31,110 26,290 [10,480; 80,160] 0 0 [0; 0]
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Serovar
Broilers Layers Pigs Turkeys

Mean Median 95% CrI Mean Median 95% CrI Mean Median 95% CrI Mean Median 95% CrI

SAINTPAUL 749.2 611.6 [258; 2,066] 30.52 24.97 [7.587; 86.17] 0 0 [0; 0] 13,050 11,820 5,746; 27,580]

SENFTENBERG 946.6 818.6 [358.4; 2,297] 56.36 50.35 [22.59; 125] 180.6 147.9 [58.14; 500.5] 2,928 2,596 [1,140; 6,702]
TENNESSEE 538.7 466.9 [216.3; 1,294] 438.9 372 [151.4; 1,120] 208.2 187 [87.76; 451.8] 0 0 [0; 0]

TYPHIMURIUM 13,540 12,590 [7,063; 25,630] 8,087 7,269 [3,346; 17,680] 421,400 382,600 [197,100;
872,300]

40,420 36,160 [16,510;
89,240]

VIRCHOW 12,630 10,800 [5,042; 31,170] 689.3 505.8 [141.5; 2,364] 365.6 320 [156.6; 848.2] 4,333 3,165 [760.3;
14,930]

WELTEVREDEN 3,247 2,881 [1,382; 7,283] 0 0 [0; 0] 0 0 [0; 0] 0 0 [0; 0]

CrI: credibility interval.
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Appendix F – Uncertainty

Table F.1: Examples of the major sources of uncertainty in the assessment of ToR 1, 3-5

Assessment components
Sources of uncertainty

Types of
uncertainty

Potential impact of the uncertainty
ToR Assessment inputs

ToR 1 Literature data –
transmission of
Salmonella from
breeding flocks to
progeny

The data relate to experimental
studies using high inoculation doses
of single isolates of Salmonella
serovars. Data is in some cases
conflicting, probably because of
different strains, lines of birds,
challenge and housing conditions

Extrapolation
uncertainty

Extrapolation from experimental challenge studies to full scale poultry breeding and
production could be misleading, especially if based on limited studies. The
cumulative findings of challenge studies support a greater ability of S. Enteritidis,
and S. Heidelberg and, to a lesser extent, certain strains of S. Typhimurium to
transmit vertically via internal contamination of eggs. Most of this work has been
done in the USA, using American strains, so it is not certain that the same ability
would apply to strains of the same serovars circulating in Europe, but cumulative
laboratory and field investigations support the special ability of S. Enteritidis to
transmit vertically, but there is less evidence for other serovars

Literature data - field
studies on the
distribution of
Salmonella within
poultry integrations

Many studies from a wide range of
countries describe the occurrence of
the same Salmonella serovars in
breeding flocks and their progeny,
and this applies to a wide range of
serovars. It is assumed that the
breeding flocks are responsible for
dissemination of infection within the
breeding pyramid

Ambiguity
(incomplete
information)

Although in many cases breeding flocks would be responsible for further
dissemination of various Salmonella serovars, particularly via external contamination
of eggs and consequent introduction of Salmonella into hatcheries, where it can
multiply and become resident, it is also possible that breeding flocks and progeny
may be exposed to the same source of contaminated feed. There is sufficient
evidence from field investigations to suggest that most hatchery contamination is
likely to originate from breeding flocks, but in some cases it may also be introduced
by contaminated equipment or hatchery workers and there is little published
definitive evidence. Although the same serovars may be found at different levels of
poultry breeding and production, few studies have carried out sensitive molecular
typing of isolates to show that the same strains are involved. Cumulative study
findings and experience suggest that breeding flocks can be the source of a wide
range of serovars, but this is highly variable according to the strain and hygiene
measures at the farm and hatchery, and some studies have reported no apparent
dissemination of certain strains of S. Typhimurium from broiler breeders to
commercial broiler flocks
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Assessment components
Sources of uncertainty

Types of
uncertainty

Potential impact of the uncertainty
ToR Assessment inputs

Lack of detailed knowledge of the
transmissibility of reported Salmonella
strains and the control actions applied
to positive flocks at breeder and
progeny level, as well as the size of
the flocks

Ambiguity
(incomplete
information)

Implementation of prevalence targets may not always prevent dissemination of
Salmonella from breeding flocks to commercial generations of chickens if effective
action is not taken to avoid this and action taken to limit dissemination at an early
stage by removing eggs from infected flocks from the hatchery. Some strains of
various serovars may not transmit vertically or do not colonise hatcheries, or if they
do persist in hatcheries do not persist in chicks at detectable levels to the age of
sampling. It is therefore difficult to assess the actual impact of prevalence targets at
breeder level. If infected, a large breeding flock would be likely to have a much
larger impact than a small one and large layer or broiler flocks would present more
public health risk, but larger scale breeding and production may be controlled better
in some countries. If infected progeny is culled on-farm, as in some countries, the
impact of Salmonella transmitted from breeding flocks is minimised

Sensitivity of the sampling
programmes

Ambiguity
(incomplete
information)

Sampling, sample handling and test methods are often applied in a suboptimal way,
as demonstrated by an up to 10-fold higher detection rate of infected flocks by
official sampling compared with operator sampling in many countries for breeding,
laying and broiler flocks. In particular, certain types of laying hen flocks (e.g. large
enriched cage systems, multitier aviary houses or extensive outdoor units with
multiple small mobile housing) can be difficult to sample in a representative way.
There is also a strong incentive to obtain negative results in laying hen flocks
because of the economic consequences of egg restrictions or in broiler flocks
because of the cost and inconvenience of on-farm culling or slaughter under special
hygiene precautions. In general, breeding flocks are likely to be better sampled
because of the frequency of testing and the fear of losing trade and reputational
damage if infected progeny are identified by customers. This uncertainty makes
accurate estimation of the true prevalence of Salmonella in the breeding and
production pyramid very difficult

Incomplete reporting of Salmonella
serovars from poultry monitoring
programmes, with a bias towards
reporting of regulated serovars

Ambiguity
(incomplete
information)

A large proportion of Salmonella reports have not been further investigated to
determine their serovar, e.g. only the target Salmonella serovars are reported by some
MSs. In some cases data do exist but is not reported because of resource limitations in
MSs. EU MSs for which data were missing or had a large proportion (~ 30%) of
‘unspecified’ serovars were contacted to request these data. As a consequence of this
request, additional data on Salmonella serovars isolated between 2014 and 2016 from
breeding, broiler and laying flocks were obtained from some MSs. Still, the absence of
data for these MSs does not necessarily indicate the absence of a particular serovar.
This limits the representativeness and conclusions that can be drawn from reported
data for the many MSs that do type all of their Salmonella isolates as there can be a
large proportion of ‘Salmonella unspecified’ which cannot be compared across
breeding and production sectors or with human data
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Assessment components
Sources of uncertainty

Types of
uncertainty

Potential impact of the uncertainty
ToR Assessment inputs

Lack of epidemiological data to
definitively link a Salmonella serovar
found in breeding flocks in a country
with the same serovar found in layer
or broiler flocks

Ambiguity
(incomplete
information)

Due to the aggregated nature of the data, the presence of a particular serovar in a
broiler or layer flock cannot be directly attributed to the detected presence in a
breeder flock without epidemiological data linking the establishments and the
confirmation that, genetically, the isolates are the same. Even with such evidence,
there is still a strong possibility that infection may have resulted from exposure to a
common source, e.g. contaminated feed from a feed mill with resident Salmonella.
This is currently the situation in the United Kingdom with S. 13, 23:i:- (a
monophasic variant of S. Idikan) which has become established in several feed mills
and hatcheries, leading to infection of both broiler breeding flocks and broiler flocks
even though this serovar would not be expected to be vertically transmitted. It is
therefore not possible to assess the relative contribution of different infection
routes

Non-inclusion of 2017 Salmonella
monitoring data

Ambiguity
(incomplete
information)

If Salmonella was detected in a breeder flock in 2016, transmission to a broiler/layer
flock might not be detected until the following year

Breeding flock type not specified in
the official monitoring

Ambiguity
(incomplete
information)

Many MSs do not provide the type of breeding flock, e.g. stage (elite, grandparent,
parent) and sector (broiler or egg production line). Therefore, all of the breeding
flock data was aggregated for the descriptive analysis and it was not possible to
consider alternative serovars in the different breeding sectors (broiler/egg line)

Lack of information on hospitalisation
status and outcome in terms of
mortality from human monitoring
data

Ambiguity
(incomplete
information)

Hospitalisation and outcome in terms of mortality resulting from a Salmonella
infection acquired in the EU is used to ascertain the virulence of the 28 different
Salmonella serovars considered in Table E.1 in Appendix E. However, for
hospitalisation, overall, this information is not available for 39.7% of cases. Similarly,
for outcome in terms of mortality, overall, this information is not available for 15.4%
of cases. There is also potential bias associated with different levels of reporting in
different countries, with many only reporting the most serious cases or those
associated with outbreaks. As the serovar distribution varies between countries,
particularly in relation to outbreaks, the data may not provide an accurate
representation of the situation at the EU level. Mortality levels for Salmonella are
low and often associated with other predisposing health conditions, so an apparent
high mortality rate for an individual serovar is likely to be misleading as this is based
on a very small number of cases

Salmonella control in poultry flocks and its public health impact

www.efsa.europa.eu/efsajournal 143 EFSA Journal 2019;17(2):5596



Assessment components
Sources of uncertainty

Types of
uncertainty

Potential impact of the uncertainty
ToR Assessment inputs

ToR 3 Evaluation of literature
data for the
assessment of the
impact of housing
conditions for layers
on Salmonella
occurrence

Use of experimental models Extrapolation
uncertainty

Some studies have used experimental models. The artificial infection of hens with
high doses of Salmonella is not representative of the situation in the field and the
spread of infection in different housing systems

Stocking densities used in studies are
not used in farms in EU and/or
pecking and scratching area missing
in enriched cage studies

Extrapolation
uncertainty

Some experimental studies comparing conventional cages and enriched cages
consider stocking densities different from the ones usually present in farms
(minimum required by the regulation) or lack of pecking and scratching area in
enriched cages thus introducing additional confounders and decreasing their
external validity.

Size and selection of sample Extrapolation
uncertainty

Some field studies have used very small sample sizes (farm and individual) which
decreases the accuracy of the results. Sampling strategy is not always described
which could lead to biased samples by intentional or unintentional targeting

Diversity in sample matrix and
laboratory analysis

Extrapolation
uncertainty

There is a large diversity in sample matrix and laboratory analyses conducted to
assess/determine the Salmonella status in a bird/farm, thus making comparison of
results between studies difficult

Conflicting outcomes Ambiguity
(incomplete
information)

The fact that some studies indicate more Salmonella occurrence in cages vs non-
cages, some other studies indicate the reverse and finally some studies do not find
differences leads to uncertainty on the results linked to ambiguity in the
conclusions

Missing data within studies Ambiguity
(incomplete
information)

Most of the studies do not report the OR or RR of the risk/protective factors

Older studies Extrapolation
uncertainty

Many publications are old and do not reflect current housing systems, particularly
the use of enriched cages

Lack of welfare data Ambiguity
(incomplete
information)

Data on the correlation between welfare of animals and Salmonella occurrence are
lacking

Evaluation of MS data
for the assessment of
the impact of housing
conditions for layers
on Salmonella
occurrence

Lack of sufficiently detailed
information on housing systems

Ambiguity
(incomplete
information)

The results of the statistical analysis on the effect of the housing system on the
occurrence of Salmonella in laying hen flocks should be interpreted with caution as
the data were not collected though a study that was specifically designed for this
purpose
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Assessment components
Sources of uncertainty

Types of
uncertainty

Potential impact of the uncertainty
ToR Assessment inputs

ToR 4 Evaluation of literature
data for the
assessment of the
impact of housing
conditions for broilers
on Salmonella
occurrence

Use of experimental models Extrapolation
uncertainty

Some studies have used experimental models. The artificial infection of hens with
high doses of Salmonella is not representative of the situation in the field and the
spread of infection in different housing systems

Conflicting outcomes Ambiguity
(incomplete
information)

The fact that some studies indicate more Salmonella occurrence in conventional vs
non-conventional systems, some other studies indicate the reverse and finally some
studies do not show a difference, leads to uncertainty on the results link to
ambiguity in conclusions

Size and selection of sample Extrapolation
uncertainty

Some field studies have used very small sample sizes (farm and individual) which
decrease the precision of the results. Sampling strategy is not always described,
which could lead to biased samples by intentional or unintentional targeting.

Diversity in sample matrix and
laboratory analysis

Extrapolation
uncertainty

There is a large diversity in sample matrix and laboratory analysis conducted to
assess/determine the Salmonella status in a bird/farm, thus making comparison of
results between studies difficult

Missing data within studies Ambiguity
(incomplete
information)

Most of the studies do not report the OR or RR of the risk/protective factors

Older studies Extrapolation
uncertainty

Some publications are old (before 2000) and do not reflect the large scale broiler
housing systems that are currently used in most countries

Lack of welfare data Ambiguity
(incomplete
information)

Data on the correlation between welfare indicators of animals and Salmonella
occurrence are lacking

Evaluation of MS data
for the assessment of
the impact of housing
conditions for broilers
on Salmonella
occurrence

Lack of sufficiently detailed
information on housing systems

Ambiguity
(incomplete
information)

The results of the statistical analysis on the effect of the housing system on the
occurrence of Salmonella in broiler flocks should be interpreted with caution as the
data were not collected through a study that was specifically designed for this
purpose
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Assessment components
Sources of uncertainty

Types of
uncertainty

Potential impact of the uncertainty
ToR Assessment inputs

ToR 5 Evaluation of literature
data on co-
colonisation of
broilers/poultry by
Salmonella and
Campylobacter

Most publications do not report on
the data on both organisms in the
same sample, instead the prevalence
and load of each is reported
separately. Of those publications that
do report this, only two report a
positive association and two report no
association. The studies are often
carried out according to different
study designs with different sampling
times, types of samples and test
methods.

Ambiguity
(incomplete
information)

No study has reported a negative association, so this is unlikely, and evidence of a
positive association is limited, although possibly suggested by a small number of
studies that suggest the presence of Campylobacter may sometimes alter gut
conditions in a way that may enhance the colonisation, persistence and extra-
intestinal invasion of birds by other organisms, including Salmonella. It is not
possible to determine whether co-colonisation occurs more often than expected on
the basis of randomness and if it does, the reason for this is not known. It could be
due to ‘external’ factors, e.g. the route of infection is common for both and is
influenced by management practices (e.g. bad hygiene), or due to some synergy in
infection dynamics in the birds’ intestinal tract

Analysis of data from
EU MS on co-
colonisation by
Salmonella and
Campylobacter

Data was received from very few
countries and is dominated by data
from a single MS which reported low
prevalence of both organisms.

Ambiguity
(incomplete
information)

The suggestion of a possible positive association between Campylobacter and
Salmonella is likely to be subject to bias due to a limited number of sources of data
and low prevalence of Campylobacter in one MS.

Evaluation of literature
data and analysis of
data from EU MS on
co-contamination of
broiler carcasses/meat
by Salmonella and
Campylobacter

There is considerable opportunity for
cross-contamination of broiler
carcasses at slaughter by both
organisms

Ambiguity
(incomplete
information)

There is potential for cross-contamination at slaughter. The level of cross-
contamination in terms of the contribution of the slaughter process itself is not
known, but is influenced by the level of infection (within-flock prevalence and
bacterial load) of the slaughter batches being processed

OR: odds ratio; RR: relative risk.
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Table F.2: Potential sources of uncertainty identified in the source attribution analysis (ToR 2) and the impact that these uncertainties could have on the
absolute and relative reduction of human salmonellosis cases under the scenario in which the prevalence of the current target serotypes
(S. Enteritidis and S. Typhimurium including monophasic strains) is set at 1% (or less) in layers and compared to the baseline model

Input/
parameter/
model
structure

Source of uncertainty
How uncertainty has been
addressed

Direction of the
effect on the
absolute
reduction of
human
salmonellosis
cases attributed
to the laying hen
reservoir (�/+)(a)

Direction of the
effect on the
relative reduction
of human
salmonellosis cases
attributed to the
laying hen
reservoir (�/+)(a)

Model Model
selection

The principle behind the applied model is that there are strong links
between certain subtypes (here: serovars) and one or more animal
reservoirs. Food products are seen as vehicles, and it assumed that
the subtype distribution in a particular food source is similar to the
one found in the reservoir from which it was contaminated. The
model cannot distinguish between transmission pathways within the
same reservoir, e.g. between eggs and meat from spent laying
hens. However, the proportion of human infections from the latter
source is assessed to be minor compared to the proportion from
eggs and egg products due to differences in the amount consumed
and in preparation and cooking procedures.
The ‘effect’ on the reduction (absolute or relative) that the
uncertainty may result in refers to the final results of the model, i.e.
the reduction observed going from the baseline situation to the
scenario. This means that the anticipated reduction in the number
of egg-associated cases would be less than estimated if some cases
originate from other pathways (e.g. direct contact, meat of spent
hens, environmental contamination, raw meat pet food etc.).
However, it can be argued that since the prevalence is measured at
flock level, a prevalence reduction would probably also have an
effect on the other pathways relating to the reservoir.
If eggs are overestimated as a source, the reduction in egg-
associated cases would in reality be less (-) than estimated by the
model which uses egg consumption data as one of the parameters.
At least in absolute numbers. In relative numbers, it is less
straightforward to assess, as a reduction in flock prevalence
presumably would also have an effect on the other transmission
pathways from the layer reservoir.

� �
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Input/
parameter/
model
structure

Source of uncertainty
How uncertainty has been
addressed

Direction of the
effect on the
absolute
reduction of
human
salmonellosis
cases attributed
to the laying hen
reservoir (�/+)(a)

Direction of the
effect on the
relative reduction
of human
salmonellosis cases
attributed to the
laying hen
reservoir (�/+)(a)

Model Model
structure

By using this SAM, it is assumed that the number of sporadic and
domestic (as acquired in EU) human cases can be explained as a
function of exposure: number of cases per MS, source and subtype =
amount of source available for consumption per MS 9 prevalence per
subtype, source and MS. This approach involves uncertainties that
cannot be measured directly such as differences between subtypes
(serovars), countries and food sources, which are likely to influence
the number of human cases

Uncertainty is addressed by
estimating two factors
accounting for these potential
differences. Namely, the food-
source dependent factor, which
account for differences
between food sources in their
ability to give rise to human
infections. As these may vary
by country, one factor is
estimated per food source and
MS. Similarly, there are
differences between the
subtypes (serovars) in their
ability to survive and infect
humans. This uncertainty is
described by including a
subtype-depending factor,
which is assumed not to vary
across countries. All factors are
included a priori as uniform
distributions, which are to most
uninformed distribution one
can, meaning that the model
itself has few assumptions

�/+(a) �/+(a)
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Input/
parameter/
model
structure

Source of uncertainty
How uncertainty has been
addressed

Direction of the
effect on the
absolute
reduction of
human
salmonellosis
cases attributed
to the laying hen
reservoir (�/+)(a)

Direction of the
effect on the
relative reduction
of human
salmonellosis cases
attributed to the
laying hen
reservoir (�/+)(a)

Data Compared to previous EU-level attribution models, this model
included fewer MSs. The MSs not included were Bulgaria, Cyprus,
Lithuania, Luxembourg and Romania, where the latter four were
included in the TT-SAM (Hald et al., 2012a). Cyprus and
Luxembourg are small countries contributing only with a minor
fraction to all Salmonella cases in the EU. Romania and Lithuania
had around 1,000 reported cases each in 2016, meaning that
around 410,000 human true cases are ‘missing’ in the model, when
accounting for underestimation. Export of eggs and eggs products
from these countries including Bulgaria is according to the obtained
trade data very limited. In addition, all these countries met the
Salmonella target in layer flocks in 2016. Eggs produced in these
MSs are, therefore, assessed only to contribute a very small number
of Salmonella cases in other EU MSs

Uncertainty not possible to
address in the model, as the
MSs could not be included due
to lack of data

+ No effect

Data The model included 28 of 944 serovars reported in 2016 and 2017
(Poland and Croatia). The 28 serovars corresponded to 65,087
(85%) of all 76,284 reported human cases. The serovars included
individually and therefore available for attribution, were selected
based on their occurrence in human domestic/EU cases and their
occurrence in the four included animal reservoir. The remaining 916
serovars were grouped into ‘Others serovars’ and human cases
belonging to this group were assigned to an unknown source
category. The majority of these cases are expected to be linked with
other sources than the four included in the model and the
consequence of not counting them is assessed to be minimal. As an
example, S. Dublin, which is known to be highly linked to the cattle
reservoir, was not included as an individual serovar

+ +
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Input/
parameter/
model
structure

Source of uncertainty
How uncertainty has been
addressed

Direction of the
effect on the
absolute
reduction of
human
salmonellosis
cases attributed
to the laying hen
reservoir (�/+)(a)

Direction of the
effect on the
relative reduction
of human
salmonellosis cases
attributed to the
laying hen
reservoir (�/+)(a)

Data Salmonella
occurrence in
animal
reservoirs

The principle behind the SAM assumes that the data included
represent all the important sources of human salmonellosis, but
food sources like beef, dairy products, imported food (from outside
EU) and fruits and vegetables are not included, although they are
known to act as vehicles for Salmonella. From a previous study
based on outbreak data, fruits and vegetables were estimated to
contribute 1.2–2.6% to the burden of human salmonellosis in the
EU in 2007–2009 (Pires et al., 2011). Foodstuffs imported from
outside the EU are not included in the model unless they resulted in
outbreaks reported in the EU Summary Report in 2016.

For potential non-animal food
sources, it is emphasised that
the SAM attributes human
cases to the animal reservoir.
This means that human
infections caused by fruit and
vegetables contaminated with
faeces from an animal reservoir
would be attributed to this
reservoir, if produced in the
EU. For some type of risk
management decisions
(relating to control in primary
production), this may be
appropriate, whereas for other
decisions (relating to control in
later stages of the food chain),
alternative attribution
approaches may need to be
explored.

+(b) +(b)

Data Salmonella
occurrence in
pigs

Prevalence data from the BLS in slaughter pigs were used for all MS
included in the model, except Malta. These data are more than 10
years old and may not reflect the situation in 2016, but are the best
data available.

�/+(c) �/+(c)
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Input/
parameter/
model
structure

Source of uncertainty
How uncertainty has been
addressed

Direction of the
effect on the
absolute
reduction of
human
salmonellosis
cases attributed
to the laying hen
reservoir (�/+)(a)

Direction of the
effect on the
relative reduction
of human
salmonellosis cases
attributed to the
laying hen
reservoir (�/+)(a)

Data Sporadic
human
salmonellosis

There are differences in the level of reporting of human food-borne
infections in the EU MSs reflecting both differences in the
methodologies used as well as the degree of reporting of human
salmonellosis. Underestimation (i.e. the combined underreporting
and under-ascertainment) was accounted for in the SAM, but the
estimation of the multiplication factors is based on Swedish
traveller’s data, which in itself involves some degree of uncertainty
by assuming that the incidence rate among travellers returning from
a particular country is the same as the overall incidence rate in the
country’s native population (Havelaar et al., 2013). In addition, the
estimates are almost 10 years old and reporting may have change
considerably in many MSs. Initiatives to obtain more recent data is
therefore recommended

Underestimation was
accounted for in the model by
including the multiplication
factors as probability
distribution.

�/+ �/+

Data Level of
subtyping
detail

The data limitation linked to the reporting of Salmonella data in the
animal/food reservoirs with limited serotyping information (e.g. for
animal reservoir data some MSs only report the targeted serovars
individually and aggregate the rest in ‘others’) made it necessary to
use other data sources. These uncertainties as well as the lack of
further discriminatory subtyping information for the common
serovars (S. Enteritidis and S. Typhimurium incl. the monophasic
variants) may have resulted in attribution of some human cases to
the wrong source. For instance, further typing of S. Enteritidis
would very likely have resulted in a better distinction between the
pig, broiler and laying hen reservoir in MSs where S. Enteritidis is
widely prevalent in two or more of these sources, and it is
considered extremely likely that this would have reduced the
number of S. Enteritidis infections from the pig reservoir, and
increased the number from the laying-hen reservoir

A comparison with a specific
model for Denmark, which
uses more complete, detailed
and specific data, was
conducted to evaluate potential
discrepancies at the MS level.
The estimates for broilers and
layers agreed well, whereas
this was not the case for the
pig reservoir. Here the
comparison indicated that the
role of the pig reservoir may in
general be underestimated, but
due to the low-quality data on
the pig reservoir and the lack

�(d) �(d)
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Input/
parameter/
model
structure

Source of uncertainty
How uncertainty has been
addressed

Direction of the
effect on the
absolute
reduction of
human
salmonellosis
cases attributed
to the laying hen
reservoir (�/+)(a)

Direction of the
effect on the
relative reduction
of human
salmonellosis cases
attributed to the
laying hen
reservoir (�/+)(a)

of further subtyping data for
the common serovars
(S. Enteritidis, S. Typhimurium
and monophasic Typhimurium),
it is not possible to assess the
contribution from of pigs/pork
more accurately at this point.

Data Salmonella
subtypes
distributions

For some sources/reservoirs, AMR monitoring data was used for
estimating the serovar distribution. These data may not represent
the situation at farm/reservoir level, as it is possible that resident
contamination of complex slaughter equipment may contribute to
Salmonella serovars found on carcass samples taken for AMR
monitoring (Corry et al., 2002; Barbut, 2015). It has, for instance,
been noted in the United Kingdom that Salmonella serovars that
have not been found, or are rare in the NCP monitoring data for
broiler flocks, such as S. Kentucky or S. Indiana are predominant in
AMR monitoring samples.

By including the before
mentioned subtype-dependent
factor, such differences are
accounted for. For instance, if
certain subtypes are
predominant in e.g. slaughter-
level samples, but this is not
reflected in the human cases,
the model will allocate a
relatively low subtype-
dependent factor. The SAM will
not estimate more cases to
these serovar.

�/+ (Minimal
impact)

�/+ (Minimal impact)
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Input/
parameter/
model
structure

Source of uncertainty
How uncertainty has been
addressed

Direction of the
effect on the
absolute
reduction of
human
salmonellosis
cases attributed
to the laying hen
reservoir (�/+)(a)

Direction of the
effect on the
relative reduction
of human
salmonellosis cases
attributed to the
laying hen
reservoir (�/+)(a)

Data Production The same data source has not been used to obtain information on
the production of the different animal foods as the EUROSTAT
production data for table eggs were insufficient and for poultry
meat is not reported by species. The other data sources collect data
using different methodologies, which may have resulted in amounts
of food available for consumption that is not representing the same
level of aggregation for each of the animal food sources. For
instance, using the weight of slaughtered carcasses for pigs as an
approximation for the amount available for consumption, may have
resulted in an overestimation as compared to the other sources, as
whole pig carcasses are obviously not consumed.

As long as the methods used
for estimating the amount
available for consumption is
the same within a food source,
the food-source dependent
factor will to some extent
account for any methodological
differences between food
sources.

�/+ (Minimal
impact)

�/+ (Minimal impact)

Data Trade data If some MSs systematically report more or less of a food source to
be exported from their country than what is in reality exported, the
model results will be impacted resulting in more or less cases in MSs
importing from that country.

�/+ (Impact
unknown)

�/+ (Impact
unknown)

AMR: antimicrobial resistance; BLS: baseline survey; NCP: national control programme; SAM: source attribution model.
(a): + means that the (real) outcome/effect is possibly overestimated; - means that the (real) outcome/effect is possibly underestimated.
(b): Omitting the cattle reservoir from the model may have the consequence that a proportion of human cases were wrongly attributed to reservoirs with similar serovar distributions. If more

cases on this account were attributed to the laying hen reservoir, it may have resulted in a higher reduction of the estimated number of both absolute and relative human cases in the
scenario analyses than what would be occurring in reality. Overall, it is considered unlikely that the lack of available data for other food sources bias the model result significantly, as long as it
is kept in mind that SAM only attributes domestic and sporadic cases to EU animal reservoirs.

(c): If the true prevalence figures are very different from the ones used, the number of attributed human cases to the pig reservoir would likewise be incorrect, which can also influence the
number of cases attributed to the laying hen reservoir. However, the direction of the effect cannot be assessed.

(d): If the number of S. Enteritidis infections from laying-hens in reality is higher, the expected reduction in the absolute and relative number cases when reducing the target to 1% would be
higher.
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Appendix G – MS data used to assess the effect of the housing system on
the Salmonella occurrence in broiler flocks, 2016–2017

Table G.1: Broiler flocks tested(a) for S. Enteritidis per country and their distribution with regard to
outdoor access, 2016–2017

Country No outdoor access Outdoor access Unknown(b) Total

Austria 1/3,761 4/2,421 NA 5/6,182

Belgium 12/16 NA 1/1 13/17
Czech Republic 123/9,598 NA NA 123/9,598

Denmark NA NA 2/4,290 2/4,290
Italy NA NA 7/23,203 7/23,203

Lithuania 1/1 NA NA 1/1
the Netherlands 21/34,643 NA NA 21/34,643

Poland 102/163,098 NA NA 102/163,098
Portugal 15/254 NA NA 15/254

Slovakia NA NA 23/5,076 23/5,076
Slovenia 1/2 NA NA 1/2

Total 276/211,373 1/2,421 33/32,570 313/246,364

NA: not applicable as no such flocks were tested.
(a): Number of positive flocks/number of tested flocks.
(b): Not known whether the birds had outdoor access.

Table G.2: Broiler flocks tested(a) for S. Typhimurium per country and their distribution with regard
to outdoor access, 2016–2017

Country No outdoor access Outdoor access Unknown(b) Total

Austria 5/3,583 NA NA 5/3,583

Belgium 9/16 NA NA 9/16
Czech Republic 5/9,598 NA NA 5/9,598

Denmark NA NA 1/3,606 1/3,606
Italy NA NA 1/20,705 1/20,705

Netherlands 47/34,643 NA NA 47/34,643
Poland 3/81,549 NA NA 3/81,549

Portugal 6/36 NA NA 6/36
Slovakia NA NA 2/2,199 2/2,199

Sweden 10/8,852 0/384 NA 10/9,236

Total 80/138,277 384 4/26,510 89/165,171

NA: not applicable as no such flocks were tested.
(a): Number of positive flocks/number of tested flocks.
(b): Not known whether the birds had outdoor access.
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Table G.3: Broiler flocks tested(a) for S. Typhimurium with the antigenic formula 1,4,[5],
12:i:- per country and their distribution with regard to outdoor access, 2016–2017

Country No outdoor access Outdoor access Unknown(b) Total

Belgium 4/10 1/1 1 5/11

Czech Republic 2/4,838 NA NA 2/4,838
Denmark NA NA 21/7,896 21/7,896

Italy NA NA NA 1/23,203
Lithuania 1/1 NA NA 1/1

Netherlands 13/34,643 NA NA 13/34,643
Portugal 10/168 NA NA 10/168

Spain NA 7/1,393 NA 7/1,393

Total 30/39,660 8/1,394 31,099 72,153

NA: not applicable as no such flocks were tested.
(a): Number of positive flocks/number of tested flocks.
(b): Not known whether the birds had outdoor access.
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