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G2/C1 Hermite interpolation by planar PH B-spline curves
with shape parameter

Gudrun Albrechtb, Carolina Vittoria Beccaria,∗, Lucia Romania

aDipartimento di Matematica, Alma Mater Studiorum Università di Bologna, Italy
bEscuela de Matemáticas, Universidad Nacional de Colombia, sede Medelĺın, Colombia

Abstract

We solve the problem of G2/C1 Hermite interpolation (i.e. interpolation of prescribed boundary points as
well as first derivatives and curvatures at these points) by planar quintic Pythagorean Hodograph B-spline
curves with one free interior knot which acts as a shape parameter. We present conditions on the data
ensuring the existence of solutions. Finally, we illustrate the influence of the interior knot on the shape of
the resulting interpolant and on the values of the absolute rotation index or the bending energy.

Keywords: Planar B-spline curve; Pythagorean-Hodograph; Hermite interpolation; Shape parameter

1. Introduction

The problem of Hermite interpolation has been of interest to the Pythagorean Hodograph (PH) commu-
nity since the nineties (see, e.g., [1–7]). In this work we focus on the so called G2/C1 Hermite interpolation
problem (i.e. interpolation of prescribed boundary points as well as first derivatives and curvatures at these
points) since in many applications it is important to interpolate, together with points and curvature values,
also first derivatives rather than tangent directions. The main reason is that interpolation of G2/G1 bound-
ary data (i.e. points, tangents and curvatures) may lead to poorly parametrized curves. Instead, in several
contexts, it is important to approximate not only the original curve, but also its speed distribution along
the curve, namely its parameterization.

The G2/C1 Hermite interpolation problem has been already successfully solved in [4] using degree-7
polynomials. In our paper we propose a lower degree solution based on quintic PH B-spline curves with
one free interior knot whose location influences the shape of the curve. Following the seminal idea used
in [8], in the last decade several other authors managed to achieve lower degree PH solutions to various
types of Hermite interpolation problems [9–12], where the common denominator is always the construction
of PH curves made of two or more pieces. However, to the best of our knowledge, the only existing lower
degree solution to the G2/C1 Hermite interpolation problem is the one in [5]. In that paper, it is shown
the possibility of solving the problem by constructing two PH quintics glued at some point, and it is
suggested an empirical strategy to remove the curvature discontinuity at the junction point by manipulating
the acceleration components of the boundary conditions. The key improvement of our work consists in
automatically guaranteeing the construction of a smooth PH quintic biarc equipped with a shape parameter.

The remainder of this paper is organized as follows. In Section 2 we introduce the G2/C1 Hermite
interpolation problem and propose an algorithm for computing its solutions by means of planar quintic PH
B-spline curves with one free interior knot. In Section 3 we illustrate how to verify the existence of solutions
depending on the prescribed initial data. In Section 4 we present some numerical examples and investigate
the influence of the interior knot on the shape of the resulting interpolant as well as on the value of its
absolute rotation index or bending energy.
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2. The G2/C1 Hermite interpolation problem

According to [13, Corollary 1], a C2-continuous quintic PH B-spline curve

r(t) =

8∑
i=0

riN
5
i,ρ(t) , t ∈ [0, 1] , (1)

defined over the knot vector ρ = [0, 0, 0, 0, 0, 0, a, a, a, 1, 1, 1, 1, 1, 1] where a ∈ (0, 1) is a free interior knot

(see (53) in [13]) is obtained starting from a preimage quadratic spline curve z(t) =
∑3
i=0 ziN

2
i,µ(t), defined

over the partition µ = [0, 0, 0, a, 1, 1, 1]. The control points of r(t) depend on a and have the following
expressions, where r0 is arbitrary:

r1 = r0 + a
5 z2

0, r2 = r1 + a
5 z0z1, r3 = r2 + a

5

(
2
3z

2
1 + 1

3 z0 ((1− a)z1 + az2)
)
,

r4 = r3 + z1

5 ((1− a)z1 + az2) , r5 = r4 + z2

5 ((1− a)z1 + az2) ,

r6 = r5 + (1−a)
5

(
2
3z

2
2 + 1

3 z3 ((1− a)z1 + az2)
)
, r7 = r6 + 1−a

5 z2z3, r8 = r7 + 1−a
5 z2

3 .

(2)

We will now use these curves in order to solve the following G2/C1 Hermite interpolation problem: Given
arbitrary boundary points p0, p1, first derivatives d0, d1 at the boundary and corresponding curvature
values κ0, κ1, we look for the control points r0, r1, . . . , r8 of the PH quintic B-spline curve (1) such that
r(0) = p0 , r(1) = p1 , r′(0) = d0 , r′(1) = d1 , κ(0) = κ0 , κ(1) = κ1.

According to (2) this means that we have to determine the control points zi := ui + i vi, i = 0, . . . , 3,
of the preimage curve z(t). The positional interpolation constraints clearly imply r0 = p0 and r8 = p1. In
addition, the first derivative interpolation constraints yield the following conditions:

r′(0) = z2(0) = z2
0 = d0 = d0(cos(ω0) + i sin(ω0)) , d0 ≥ 0 , (3)

r′(1) = z2(1) = z2
3 = d1 = d1(cos(ω1) + i sin(ω1)) , d1 ≥ 0 .

By applying de Moivre’s theorem to the two equations in (3) we obtain the following solutions for z0 and
z3, where ωl = arg(dl) ∈ [0, 2π) for l = 0, 1:

z0 = u0 + i v0 = (−1)k
√
d0

(
cos
(ω0

2

)
+ i sin

(ω0

2

))
, k ∈ {0, 1} , (4)

z3 = u3 + i v3 = (−1)j
√
d1

(
cos
(ω1

2

)
+ i sin

(ω1

2

))
, j ∈ {0, 1}.

Note that we can limit ourselves to considering the combinations of z0, z3 with signs +,+ and +,−, i.e.,
k = j = 0 and k = 0, j = 1, since the others will give rise to the same solutions. Next, recalling the general

formula for the curvature of a PH curve (see, e.g., [6]) κ(t) = 2 (Im
(
z(t) z′(t)

)
)/(|z(t)|4), we can express the

curvature constraints at t = 0 and t = 1 as

κ(0) =
4

a
· Im(z̄0z1)

|z0|4
=

4

a
· u0v1 − u1v0

(u2
0 + v2

0)2
= κ0 , κ(1) =

4

1− a
· Im(z̄3z2)

|z3|4
=

4

1− a
· u2v3 − u3v2

(u2
3 + v2

3)2
= κ1 . (5)

If u0 6= 0, i.e., ω0 6= π, and u3 6= 0, i.e., ω1 6= π, we can derive v1 and v2 from (5), obtaining

v1 =
1

u0

(
u1v0 +

a

4
κ0(u2

0 + v2
0)2
)
, v2 =

1

u3

(
u2v3 −

(1− a)

4
κ1(u2

3 + v2
3)2

)
. (6)

If u0 = 0, respectively, u3 = 0, i.e., if ω0 = π, respectively, ω1 = π, we can not proceed as in (6), therefore
we always assume not to be in this situation.

To determine the remaining unknowns u1 and u2 in (6) we consider the equation

r7 − r1 =

6∑
i=1

∆ri , with ∆ri = ri+1 − ri. (7)
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Since r′(0) = 5
a (r1 − r0) = d0 , r′(1) = 5

1−a (r8 − r7) = d1 the left hand side of equation (7) is completely
determined by the given Hermite data as:

r7 − r1 = r8 − r0 −
(1− a)

5
d1 −

a

5
d0 = p1 − p0 −

(1− a)

5
d1 −

a

5
d0.

By (2) the right hand side of (7) reads as

1

5
(1− a

3
)z2

1 +
1

15
(2+a)z2

2 +
1

5
z1z2 +

1

15
(1−a)2z1z3 +

1

15
a(4−a)z0z1 +

1

15
(3−2a−a2)z2z3 +

1

15
a2z0z2. (8)

By separating the real and imaginary parts of the last equation we obtain a system of two real quadratic
equations in the two real unknowns u1 and u2 having the form:

CA : uTAu = 0 , CB : uTBu = 0 , (9)

with u = (1, u1, u2)T and 3 × 3 real symmetric matrices A = (ai,j)0≤i,j≤2 and B = (bi,j)0≤i,j≤2, whose
coefficients depend on the given geometric data and can be easily determined by symbolic computations.
The two equations in (9) represent conic sections in the real Euclidean plane. Whenever these conics are real
and have real intersection points, finding the solutions u1, u2 of these equations is equivalent to determining
the intersection points of the two conic sections. In order to obtain the intersection points we consider the
pencil of conic sections defined by the conics CA and CB as

uT (A+ λB)u = 0 , λ ∈ R. (10)

Among the one–parameter set of conics there are between one and three degenerate conics (see e.g., [14])
given by the λ-values obtained as solutions of the cubic equation in λ:

det(A+λB) = λ3 det(B)+λ2(det(B3)+det(B2)+det(B1))+λ(det(A3)+det(A2)+det(A1))+det(A) = 0 ,
(11)

where the matrices Ak for k = 1, 2, 3 are obtained by replacing the k-th column of A by the k-th column
of B, and the matrices Bk for k = 1, 2, 3 are obtained by replacing the k-th column of B by the k-th
column of A. These degenerate conics can be either pairs of distinct real, conjugate complex, or coinciding
lines. The intersection points of the conics of the pencil (10) are then easily obtained in the following way.
For a solution of the cubic equation (11), by inserting the corresponding λ-value into the equation (10) a
quadratic equation easily decomposable into two linear factors is obtained. These two linear equations in
u1 and u2 can be solved for, e.g., u1 in dependency of u2, which are then inserted into another conic of the
pencil, for example one of the given conics or another degenerate one, yielding a quadratic equation in u2.
This procedure yields the coordinates of the intersection points of the pencil conics, whenever they exist.
The control points of the corresponding PH B-spline curves are obtained by inserting the obtained ui, vi,
i = 0, . . . , 3 into the expression for ri in (2).

The total number of solutions of our interpolation problem is hence δ = δ+++δ+−, where δ++ respectively
δ+−, are the number of real intersection points of the conics from (9) for the sign choice ++ respectively +−
in (4). Among all solutions, the user is usually interested in the interpolating curve with minimum absolute
rotation index and bending energy (see, e.g., [1, 15]). The selected examples, included in the following, show
interpolation problems with δ = 4 (see Fig. 2) and δ = 8 (see Fig. 3) solutions, respectively.

3. Existence of solutions

In the following we study the existence of a solution for the G2/C1 Hermite interpolation problem.
Assigned a set of points, first derivatives and curvatures, there are two situations where a solution may not
be found. The first corresponds to the case where either A or B (or both) in (9) yield imaginary conics.
The second is the case where the two conics in (9) are real, but have no intersection.

Regarding the first problematic case, for a generic conic CM : m1,1u
2
1 +2m1,2u1u2 +m2,2u

2
2 +2m0,1u1 +

2m0,2u2 + m0,0 = 0 with symmetric matrix M := (mi,j)0≤i,j≤2,mi,j = mj,i, we suppose m0,0 ≥ 0 and we
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denote by M̃ := (mi,j)1≤i,j≤2 the 2 × 2 matrix of the associated quadratic form. We then consider the

following invariants: I
[M ]
1 := trace(M̃) , I

[M ]
2 := det(M̃) , I

[M ]
3 := det(M).

It is useful to observe that, for M ∈ {A,B}, I [M ]
1 and I

[M ]
2 only depend on the knot a and on the angles

ω0, ω1 defined by the input first derivatives. Here, I
[M ]
1 is linear in a whereas I

[M ]
2 quadratic in a. Instead

I
[M ]
3 depend on a, d0, d1, ω0, ω1, κ0, κ1 and are quintic polynomials in a and quadratic in κ0, κ1. For

I
[M ]
2 < 0 the conic is either a hyperbola or a pair of intersecting lines, i.e., real conics extending to infinity.

Thus both conics CA and CB are real if I
[A]
2 < 0 and I

[B]
2 < 0. In particular, we obtain

I
[A]
2 =

−(cos(ω0) cos(ω1)(4(a− 1
2 )2 − 25) + 9 cos( (ω0+ω1)

2 )2)

900 cos(ω0

2 )2 cos(ω1

2 )2
,

I
[B]
2 =

−(4 tan(ω0

2 ) tan(ω1

2 ) cos(ω0

2 )2 cos(ω1

2 )2(4(a− 1
2 )2 − 25) + 9 sin( (ω0+ω1)

2 )2)

900 cos(ω0

2 )2 cos(ω1

2 )2
,

from which one can see that

I
[A]
2 < 0 ⇔

 f(ω0, ω1) := cos(ω0) cos(ω1)

cos(
ω0+ω1

2 )2
< − 9

4(a− 1
2 )2−25

for ω0 + ω1 6= π and ω0 + ω1 6= 3π,

− cos(ω0)2 < 0 for ω0 + ω1 = π or ω0 + ω1 = 3π,
(14)

and

I
[B]
2 < 0 ⇔

 g(ω0, ω1) :=
4 tan(

ω0
2 ) tan(

ω1
2 ) cos(

ω0
2 )2 cos(

ω1
2 )2

sin(
ω0+ω1

2 )2
< − 9

4(a− 1
2 )2−25

for ω0 + ω1 6= 0 and ω0 + ω1 6= 2π,

tan
(
ω0

2

)2
cos
(
ω0

2

)4
> 0 for ω0 + ω1 = 0 or ω0 + ω1 = 2π.

(15)

The second line of (14) is equivalent to I
[A]
2 < 0 ⇔ ω0 + ω1 = π or ω0 + ω1 = 3π, where ω0 /∈ {π2 ,

3
2π},

whereas the second line of (15) to I
[B]
2 < 0⇔ ω0 +ω1 = 2π, where ω0 /∈ {0, π}. Using the fact that a ∈ (0, 1),

after some computations one finds that I
[A]
2 < 0 and I

[B]
2 < 0 in either one of the following cases:

1. f(ω0, ω1) < 9
25 and g(ω0, ω1) < 9

25 for ω0 + ω1 /∈ {kπ} for k = 0, 1, 2, 3;

2. ω0 + ω1 = π or ω0 + ω1 = 3π where ω0 /∈ {π2 ,
3π
2 } and g(ω0, ω1) < 9

25 ;

3. ω0 + ω1 = 2π where ω0 /∈ {0, π} and f(ω0, ω1) < 9
25 .

The above conditions 1., 2., 3. translate into constraints on the choices of the directions of first derivatives,
that is on the angles ω0 and ω1. Figure 1 illustrates the ranges for the angles ω0 and ω1 satisfying the
inequalities at item 1. By comparing the symbolic expressions of A and B, it is easily seen that the two
conics can be coincident only if ω0 = ω1 = π/4 + kπ, k ∈ {0, 1}. The stated conditions exclude the case
ω0 = ω1, thus guaranteeing that the two real conics are distinct. A further analysis also shows that these
conditions are always satisfied whenever the angle between d0 and d1 is greater than 3/5π (see Fig. 1
bottom).

The second problematic situation, where the two conics are real, but have no real intersection points,
i.e. have four imaginary intersection points, has been characterized in [16] by considering the nature of the
degenerate conics in (10). In order to state the conditions we need the abbreviations ∆M := det(M) and

θM :=
∑3
i=1 det(Mi), for M ∈ {A,B}, as well as ΣM := M00u

2 + M11v
2 + M22w

2 + M122vw + M022uw +
M012uv , where Mij is the (i, j)-th cofactor of the matrix M , and u, v, w are arbitrary real variables standing
for line coordinates in the projective plane. Furthermore we need φ = C00u

2 + C11v
2 + C22w

2 + C122vw +
C022uw + C012uv , where

C00 = b11a22 + a11b22 − 2a12b12, C01 = b12a02 + a12b02 − b22a01 − a22b01, C02 = b12a01 + a12b01 − b11a02 − a11b02,
C11 = b00a22 + a00b22 − 2a02b02, C12 = b02a01 + a02b01 − b00a12 − a00b12, C22 = b00a11 + a00b11 − 2a01b01,
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as well as

p =
ΣB(−θ2B+2θA∆B)−3∆2

BΣA+θB∆Bφ

∆2
B

,

q =
Σ2

B(θ2A−2θB∆A)+3Σ2
A∆2

B+ΣAΣB(2θ2B−4θA∆B)+ΣBφ(3∆A∆B−θAθB)−2ΣAφ∆BθB+φ2θA∆B

∆2
B

.

According to [16], the two conics CA and CB have four imaginary intersection points, i.e., our interpo-
lation problem does not have a solution, if and only if

D > 0 and
√
p2 − 3q − p > 0 for all values of u, v, w (16)

where D := θ2
Aθ

2
B+18∆A∆BθAθB−27∆2

A∆2
B−4∆Aθ

3
B−4∆Bθ

3
A is the pencil’s discriminant. Unfortunately,

these inequalities formally expressed in terms of our data are highly cumbersome, even if we choose special
values for (u, v, w), such as, e.g., (1, 0, 0). Therefore we propose to use this condition in order to check
numerically whether or not it holds for the chosen data.

4. Numerical examples and role of the interior knot

We consider first derivative vectors which fulfill the conditions illustrated in Fig. 1. Then, the input
curvature values are either sampled from the cubic polynomial interpolating the prescribed points and
derivatives (as in Fig. 2) or arbitrarily selected by the user (as in Fig. 3).

The algorithm to be followed for computing all the solutions to the G2/C1 Hermite interpolation problem
reads as follows. Derive the values of z0 and z3 (namely u0, v0, u3, v3) from (4). Hence, substitute in (8) any
combination of z0 and z3 to be considered (i.e. taking signs +,+ and +,− in (4)), along with the resulting
values of v1 and v2 given by (6), and derive the two conics CA and CB in (9). Check the inequalities in
(16) and, if it turns out that CA and CB have real intersection points, compute them. Each intersection
point will give rise to a solution for u1, u2 that identifies a different PH B-spline interpolant that matches
the given Hermite boundary data.

In Figures 2 and 3 we display the conics CA and CB in the first column, whereas in all other columns we
show the PH B-spline curves corresponding to all the intersection points between the two conics. Although
the conics for the sign choice ++ and +− are very similar, they originate very different Hermite interpolants.
Among all, the ones with minimum absolute rotation index and bending energy can be easily identified.

Figure 4 shows the shape effects inherited by the PH B-spline interpolant when the interior knot is mod-
ified. The first two subfigures from left illustrate the shape modifications achieved by the two interpolants
from Figure 3 with smaller values of absolute rotation index (Rabs) and bending energy (Bend). The right-
most subfigure is instead obtained by interpolating a set of symmetric data, consisting of points p0 = (0, 0),
p1 = (1, 0) and derivatives d0 = (−1.5965, 2.7297), d1 = (−1.5965,−2.7297) such that ω1 = −ω0 + 2π. The
input value of κ0 and κ1 is −0.569210, which is computed by evaluating at each endpoint the curvature of
the cubic polynomial interpolating the prescribed points and derivatives. The displayed results show that,
for a = 0.5, the symmetry in the data is preserved whereas, for the two other choices of a, the curve is
attracted towards the first or last edge of the control polygon, respectively, in the same way as it happens
with B-spline curves.
In Figure 5 we illustrate different benefits provided by the interior knot. In particular we use the value of a
to minimize the absolute rotation index or the bending energy for the input data considered in Figure 4.

5. Conclusions and future research directions

We have introduced a method to interpolate G2/C1 Hermite boundary data by planar quintic PH B-
spline curves that benefit from a free interior knot. This knot is shown to provide the user with a tool that
can be used either to modify the shape of the interpolant or to achieve lower values of the bending energy
and absolute rotation index. Directions for further study include the extension of the proposed Hermite
interpolation method to spatial quintic PH B-spline curves with one free interior knot and to Minkowski PH
(MPH) curves.

5



0 1 2 3 4 5 6

0

1

2

3

4

5

6

Figure 1: Top: The borders of

the two regions where I
[A]
2 < 0

(red) and I
[B]
2 < 0 (blue). Bot-

tom: The two regions in which
d0 and d1 form an angle greater
than 3/5π, the dashed lines cor-
responding to 3/5π. (For in-
terpretation of the references to
color in this figure legend, the
reader is referred to the web ver-
sion of this article.)
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Figure 2: Input data p0 = (1, 0), p1 = (4, 3), d0 = (6,−3), d1 = (−3, 6), κ0 = κ1 =
0.3578 (where the latter are taken from the cubic polynomial interpolating p0, p1,
d0, d1) and solutions of the case ++ (top) +− (bottom). Left: The two conics CA

(blue) and CB (red) and a degenerate conic (dashed green). Center and right: The
PH B-spline curves corresponding to the two intersection points of the conics and
their control polygon. The arrows represent the normalized first derivatives and the
red bullet is the image of a = 0.5. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Figure 3: Input data p0 = (0, 0), p1 = (5, 0), d0 = (1, 3), d1 = (2,−1), κ0 = 0.1, κ1 = −0.2 (taken from [5, Example 5]) and
solutions of the case ++ (top) +− (bottom). Leftmost column: The two conics CA (blue) and CB (red) and a degenerate
conic (dashed green). Other columns: The PH B-spline curves corresponding to the four intersection points of the conics and
their control polygon. The arrows represent the normalized first derivatives and the red bullet is the image of a = 0.5. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Figure 4: Comparison of curves obtained with interior knot a = 0.05, a = 0.5 and a = 0.95 used as shape parameter.

Figure 5: Curves obtained by setting a to minimize the absolute rotation index (Rabs) or the bending energy (Bend) for the
data in Fig. 4. From left to right: a = 0.1435 corresponding to the minimum Rabs; a = 1.0e−03 corresponding to the minimum
Bend; a = 0.3676 corresponding to the minimum Bend. Note that for the rightmost dataset the minimum Rabs (≈ 0.66845) is
obtained for a = 0.5 and the corresponding curve is shown in Fig. 4 right.
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